KR960013791B1 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
KR960013791B1
KR960013791B1 KR1019930009977A KR930009977A KR960013791B1 KR 960013791 B1 KR960013791 B1 KR 960013791B1 KR 1019930009977 A KR1019930009977 A KR 1019930009977A KR 930009977 A KR930009977 A KR 930009977A KR 960013791 B1 KR960013791 B1 KR 960013791B1
Authority
KR
South Korea
Prior art keywords
film
layer
layer film
lens
optical
Prior art date
Application number
KR1019930009977A
Other languages
Korean (ko)
Other versions
KR950001327A (en
Inventor
편도인
Original Assignee
삼성항공산업 주식회사
이대원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성항공산업 주식회사, 이대원 filed Critical 삼성항공산업 주식회사
Priority to KR1019930009977A priority Critical patent/KR960013791B1/en
Publication of KR950001327A publication Critical patent/KR950001327A/en
Application granted granted Critical
Publication of KR960013791B1 publication Critical patent/KR960013791B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Abstract

The film comprises a first layer having the thickness of 0.25=F0.01 O( O; definite wave length of visible ray), second layer 0.53=F0.01 O, third layer 0.53=F0.01 O and fourth layer 0.25=F0.01 O, wherein the first, second, third and fourth layer each comprises, in series, SiO2, CeF3, ZrO3, SiO2 and formed on a lens of synthetic resin, the multi-coating is performed less than 74 deg.C, and the synthetic lens comprises polystylene or PMMA.

Description

광학부품의 다층 반사방지막Multilayer Anti-reflection Film of Optical Components

제1도는 본 발명에 따른 광학부품의 다층 반사방지막 구성을 나타내는 단면도.1 is a cross-sectional view showing the configuration of a multilayer antireflection film of an optical component according to the present invention.

제2도는 본 발명의 다층 반사방지막에 따른 파장과 반사율과의 관계를 보이는 특성도.2 is a characteristic view showing the relationship between the wavelength and reflectance according to the multilayer anti-reflection film of the present invention.

제3도는 본 발명의 따른 다층 반사방지막을 형성하기 위한 코팅기 내부 구조를 도시한 단면도이다.3 is a cross-sectional view showing an internal structure of a coater for forming a multilayer anti-reflection film according to the present invention.

산업상의 이용분야Industrial use

본 발명은 광학부품의 다층 반사방지막에 관한 것으로, 특히 4층 코팅막 구성의 적층막에 의해 구성되는 반사방지막 형태로 광학기기의 투과율을 향상시킬 수 있을뿐 아니라 막 강도를 증대시킬 수 있도록 한 플라스틱(합성수지) 광학부품의 다층 반사방지막에 관한 것이다.The present invention relates to a multilayer anti-reflection film of an optical component, and in particular, in the form of an anti-reflection film composed of a laminated film of a four-layer coating film composition, the plastics can not only improve the transmittance of the optical device but also increase the film strength. Synthetic resin).

일반적으로 광학부품의 반사방지막은 크게 단층 반사방지막과 다층 반사방지막으로 분류할 수 있다.In general, the antireflection film of an optical component can be roughly classified into a single layer antireflection film and a multilayer antireflection film.

최근들어 광학기기의 고성능화가 추구되면서, 광학계의 구조가 복잡해지고 렌즈의 매수가 많아지는 경우 단층 반사방지막으로는 충분한 투과율을 얻을 수 없게되어 단층 반사방지막의 결점, 예컨대 저반사 파장영역이 좁고 잔류반사율이 크다고 하는 결점을 개량한 다층 반사방지막이 많이 쓰여지고 있다.In recent years, as high performance of optical devices has been pursued, when the structure of the optical system is complicated and the number of lenses increases, sufficient transmittance cannot be obtained with a single layer antireflection film, so that defects of the single layer antireflection film, such as a low reflection wavelength region, are narrow and residual reflectance is high. Many multilayer antireflection films have been used which have improved the above-mentioned shortcomings.

이러한 다층 반사방지막의 기본형중 한가지로 그 막두께 구성을 광학부품인 유리기판쪽으로부터 광학막두께 λ°/4인 제1층막(λ°:설정파장), λ°/2인 제2층막, λ°/4인 제3층막으로 한 3층의 반사방지막이 제안되어 있다.One of the basic types of the multilayer antireflection film is that the film thickness of the first layer film (λ °: set wavelength) having an optical film thickness of λ ° / 4 from the glass substrate side of the optical component, the second layer film having λ ° / 2, and A three-layer antireflection film is proposed as a third layer film of 4/4.

각 층의 유전물질로서는 제1층막이 중간 굴절률 물질인 CeF3, LaF3, SiO등, 제2층막이 고굴절률 물질인 ZrO2, TiO2, TaSO5, ZnS등, 그리고 제3층막이 저굴절률 물질인 MgF2, SiO2등이 사용될 수 있다.As the dielectric material of each layer, the first layer film is CeF3, LaF3, SiO, etc., which are intermediate refractive materials, and the second layer film is ZrO 2 , TiO 2 , TaSO 5 , ZnS, etc., which are high refractive index materials, and the third layer film is a low refractive index material. MgF 2, SiO 2, etc. may be used.

상기와 같은 구성를 갖는 종래의 3층 반사방지막으로서 예컨대, 그 구성물질이 CeF3(λ°/4)-ZrO2(λ°/2)-MgF2(λ°/4)로 구성된 것이 있으나, 이는 막강도가 낮다는 결점이 있다.As a conventional three-layer antireflection film having the above structure, for example, the constituent material is composed of CeF 3 (λ ° / 4) -ZrO 2 (λ ° / 2) -MgF 2 (λ ° / 4). The disadvantage is low degrees.

이에 대해 1층막으로서 CeF3대신 AlO3를 사용하면 막강도가 크게 되어 상기 결점이 개선되는 것이 알려져 있다.On the other hand, when AlO 3 is used instead of CeF 3 as the one-layer film, it is known that the film strength is increased and the above defect is improved.

그러나, Al2O3와 같은 산화물 위에 ZrO2를 증착하는 경우, 강도를 높이는 목적으로 바닥온도를 어떤온도로 가열하는 공정을 동반하므로 ZrO2의 두께가 증가함에 따라 굴절률이 점차 낮아져 이른바 두께 방향이 불균질한 막이 되고, 따라서 3층 반사방지막의 설계파장 λ°의 피크 반사치가 크게 되어 버리는 결점이 있었다.However, in the case of depositing ZrO 2 on an oxide such as Al 2 O 3 , the step of heating the bottom temperature to a certain temperature for the purpose of increasing the strength, the refractive index is gradually lowered as the thickness of ZrO 2 increases, so the thickness direction is It became a non-uniform film, and there existed a fault which the peak reflection value of the design wavelength (lambda) (degree) of a 3-layer antireflection film becomes large.

이 결점의 해결책으로서 이미 개시된 일본 특허공보 제52-31204호에는 ZrO2의 중간에 아주 얇은 저굴절률의 MgF2층를 여러층 개재시키고 있다. 또 일본 특허공보 제51-33750호 및 제51-33751호에는 MgF2,CeO2를 함유한 복수측으로 균질한 ZrO2(λ°/2)과 등가인 등가막을 만들었다. 그러나 이러한 종래의 것은 모두 다 구성물질의 굴절률이 ZrO2의 굴절률과 커다란 차이가 있으므로(ZrO2: 2.05, MgF2: 1.39, CeO2 : 2.15)개재층의 사소한 막두께 변동 및 개재 위치의 사소한 차이가 있으면 이에 의해서도 증착후의 제품의 반사특성에 커다랗게 영향을 주어 안정된 높은 수율을 얻기 어려운 문제점이 있었다.As a solution to this drawback, Japanese Patent Application Laid-Open No. 52-31204, which is already disclosed, contains a very thin low refractive index MgF 2 layer in the middle of ZrO 2 . Japanese Patent Nos. 51-33750 and 51-33751 have made equivalent films equivalent to ZrO 2 (λ ° / 2) homogeneous in plural sides containing MgF 2 and CeO 2 . However, all of these conventional materials have a large difference in the refractive index of the constituent material from the refractive index of ZrO 2 (ZrO 2 : 2.05, MgF 2 : 1.39, CeO 2 : 2.15). If present, there was a problem that it is difficult to obtain a stable high yield because it greatly affects the reflective properties of the product after deposition.

상술한 바와 같이 발명에 의하면, 렌즈의 최고점 온도가 74℃ 이하인 상태에서 4층 구조의 다층 반사 방지막을 상술한 구성으로 코팅시키므로써 광의 반사를 막을 수 있게 되어 가시광선 전영역(특히, 420-680㎚)에서의 광의 반사방지막 특성이 뛰어나게 되어 상기 영역에서의 분광 투과율을 향상시킬 수 있게 된다. 또한 저온(상대적)에서 코팅막을 적충함으로써 합성수지의 취약점인 온도변화에 견디는 광학부품을 저렴한 코스트로 제작할 수 있게 디어 온도변화에 따른 막의 갈라짐 즉, 크랙현상을 방지할 수 있어 막 강도를 높일 수 있게 된다.According to the invention as described above, by coating the multilayer antireflection film of the four-layer structure in the above-described configuration in the state where the maximum temperature of the lens is 74 ℃ or less, it is possible to prevent the reflection of light, so that the entire visible light region (particularly, 420-680 It is possible to improve the antireflection film characteristic of the light in nm), thereby improving the spectral transmittance in the region. In addition, by stacking the coating film at low temperature (relative), it is possible to manufacture optical parts that withstand the temperature change, which is a weak point of synthetic resin, at low cost. .

이에 본 발명은 상기와 같은 점을 감안하여 이루어진 것으로 가시광의 전영역(특히 420-680nm 영역)에서 양호한 투과율 특성을 가질 수 있을 뿐 아니라 온도변화에 따른 막의 갈라짐을 제거할 수 있는 광학부품의 다층 반사방지막을 제공함에 그 목적이 있다.Accordingly, the present invention has been made in view of the above-mentioned point, and not only has good transmittance characteristics in the entire region of visible light (especially in the region of 420-680 nm), but also multilayer reflection of an optical component that can remove the cracking of the film due to temperature change. The purpose is to provide a protective film.

발명의 구성Composition of the Invention

상기와 같은 목적을 달성하기 위한 본 발명의 다층 반사방지막은 4층의 물질이 증착되는 형태로써, 광학부품인 합성수지 렌즈 표면상에 광학막 두께가 0.25±0.01λ°로 형성된 제1층막, 0.25±0.01λ°로 형성된 제2층막, 0.53±0.01λ°로 형성된 제3층막 및 0.25±0.01λ°로 형성된 제4층막이 순차적으로 적층된 구조를 갖도록 구성되어 상기 제1층막의 물질을 SiO2로 하고, 상기 제2층막의 물질을 CeF3로 하고, 상기 제3층막의 물질을 ZrO2로 하고, 상기 제4층막의 물질을 SiO2로 한다.(이때, λ°: 가시광선의 설정파장)Multi-layered anti-reflection film of the present invention for achieving the above object is the first layer film, 0.25 ± ± ± 1 ± 1, the optical film thickness of 0.25 ± 0.01 λ ° on the surface of the synthetic resin lens as an optical component is deposited form The second layer film formed at 0.01λ °, the third layer film formed at 0.53 ± 0.01λ °, and the fourth layer film formed at 0.25 ± 0.01λ ° are sequentially laminated so that the material of the first layer film is SiO2. The material of the second layer film is CeF3, the material of the third layer film is ZrO 2 , and the material of the fourth layer film is SiO 2 (lambda °: set wavelength of visible light).

작용Action

본 발명은 상술한 구성에 의해 광학부품인 합성수지 렌즈 표면상에 형성된 제1층, 제2층, 제3층 및 제4층의 증착물질과 상기 증착물질의 굴절률 및 막두께를 변화시키므로써 가시광선 영역에서의 분광투과율 특성이 우수한 다층 반사방지막을 얻을 수 있게 된다.According to the above-described configuration, the present invention provides visible light by changing the deposition materials of the first layer, the second layer, the third layer, and the fourth layer formed on the surface of the synthetic resin lens, which is an optical component, and the refractive index and film thickness of the deposition material. It is possible to obtain a multilayer antireflection film having excellent spectral transmittance characteristics in the region.

실시예Example

이하 첨부된 도면을 참조로 하여 본 발명의 실시예에 대해 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

제1도는 본 발명에 따른 광학부품의 다층 반사방지막 구조를 도시한 단면도를 나타낸 것으로 그 기본적 구조는 합성수지 렌즈(1)의 표면상에 4층 구성의 반사방지막이 적층되는 것으로, 각 층막의 굴절률 및 막두께가 아래의 범위에 있는 것을 특징으로 한다.1 is a cross-sectional view showing a multilayer antireflection film structure of an optical component according to the present invention. The basic structure is that an antireflection film having a four-layer structure is laminated on the surface of a synthetic resin lens 1, and the refractive index of each layer film and The film thickness is characterized by being in the following range.

제1층 1.45≤N1≤1.48, 0.24λ°≤N1D1≤0.26λ°First layer 1.45≤N 1 ≤1.48, 0.24λ ° ≤N 1 D 1 ≤0.26λ °

제2층 1.62≤N2≤1.65, 0.24λ°≤N2D1≤0.26λ°Second layer 1.62≤N 2 ≤1.65, 0.24λ ° ≤N 2 D 1 ≤0.26λ °

제3층 1.85≤N3≤2.25, 0.52λ°≤N3D3≤0.54λ°Third layer 1.85≤N 3 ≤2.25, 0.52λ ° ≤N 3 D 3 ≤0.54λ °

제4층 1.45≤N4≤1.48, 0.24λ°≤N4D4≤0.26λ°Fourth layer 1.45≤N 4 ≤1.48, 0.24λ ° ≤N 4 D 4 ≤0.26λ °

여기서 N1, N2, N3 및 N4는 각 층막을 구성하는 물질의 굴절률을 나타내며, λ°는 가시광선의 설정파장을 나타내는 것으로 본 발명에서는 503-515nm의 값을 가진다. 계속해서 N1D1, N2D2, N3D3, N4D4는 각 층막을 구성하는 물질의 굴절률에 물리적인 두께를 곱한값, 즉 광학막 두께를 나타낸다.Here, N1, N2, N3, and N4 represent refractive indices of materials constituting each layer film, and λ ° represents a set wavelength of visible light, and has a value of 503-515 nm in the present invention. Subsequently, N 1 D 1 , N 2 D 2 , N 3 D 3 , and N 4 D 4 represent a value obtained by multiplying the refractive index of the material constituting each layer film by the physical thickness, that is, the optical film thickness.

각 층막의 유전물질로는 제1층막(3)을 SiO2로 하고 , 제2층막 CeF3로, 제3층막(7)을 ZrO2로, 제4층막(9)을 1층막과 동일한 SiO2물질로 구성하며, 다층 반사방지막이 형성될 상기 렌즈(1)는 합성수지 렌즈 소재 중에서 가장 물성치가 나쁜 폴리스틸렌(P-Stulen)이나 PUMA등의 광학재료를 사용하는 것이 가능하다. 이때, 사기 렌즈(1) 상에 적충되는 다층 코팅막은 상기 렌즈의 최고점 온도가 74℃ 이하에서 코팅이 이루어지므로 크랙(crack : 막의 갈라짐)을 방지할 수 있어 합성수지 광학부품으로서 사용이 무난하고 저렴한 코스트로 제공이 가능하다는 잇점을 갖는다.In each layer film dielectric material is a first layer film (3) in a SiO 2 and the second layer film CeF 3, the third-layer film (7) as ZrO2, a fourth same SiO 2 material and a layer film first layer film (9) The lens 1, to which the multilayer anti-reflection film is to be formed, may use optical materials such as polystyrene (P-Stulen) or PUMA, which have the most poor physical properties among synthetic resin lens materials. At this time, the multilayer coating film deposited on the fraudulent lens 1 is coated at the peak temperature of the lens below 74 ° C., thereby preventing cracks, and thus it is easy to use as a synthetic resin optical part. It has the advantage that it can be provided.

상기와 같은 구조를 갖는 다층 반사방지막의 코팅 방법은 일반적인 제3도에 제시된 코팅기로 형성이 가능하다.The coating method of the multilayer anti-reflection film having the structure as described above can be formed by the coater shown in FIG.

제3도는 코팅기의 내부구조를 개략적으로 도시한 부분 사시도를 나타낸 것으로 공정과정을 간략하게 설명하면, 먼저 코팅 렌즈 홀더에 렌즈(19)를 삽입한 다음 상기 렌즈(19)가 삽입된(dome)(17) 상·중·하에 측정글라스(25) 3개를 삽입한다. 이때 측정글라스(25)의 재질은 굴절률 값이 1.52인 BK-7로 하며, 측정글라스(25)와 코팅 페즈(19)의 높이는 같도록 형성함에 유의한다. 상기 측정글라스(25)를 렌즈 돔(17)상에 넣는 이유는 렌즈가 곡면이 형성되어 있으므로 빛이 입사되었을 경우 모두 투과되어 전체적인 투과율과 반사율이 얼마인지를 체크(check)할 수 없기 때문이다. 이때 상기 측정글라스(25)는 한면만을 연마시키고 한면은 확산시킨 뒤 돔(17)의 상·중·하의 각각 연마된 면을 밑으로 삽입시킨다.3 is a partial perspective view schematically showing the internal structure of the coating machine. Briefly explaining the process, the lens 19 is first inserted into the coating lens holder, and then the lens 19 is inserted (dome). 17) Insert three measuring glasses (25) on the top, middle and bottom. In this case, the material of the measuring glass 25 is set to BK-7 having a refractive index value of 1.52, and the height of the measuring glass 25 and the coating fez 19 is formed to be the same. The reason why the measurement glass 25 is placed on the lens dome 17 is that the lens has a curved surface, and thus, when the light is incident, all of the measurement glass 25 is transmitted so that the overall transmittance and reflectance cannot be checked. In this case, the measuring glass 25 is polished only on one surface and diffused on one surface, and then inserted into the upper, middle, and lower polished surfaces of the dome 17, respectively.

시료도가니 제3도의 A도에 제시된 바와 같이 1번 도가니에는 SiO2를, 2번 도가니에는 CeF3를, 3번 도가니에는 ZrO2를, 4번 도가니에는 SiO2를 시료마다 별도로 배열하고, 돔(17)내에 BK-4 재질의 굴절률 1.49인 모니타 글라스(21) 3개를 삽입한다. 즉, SiO2와 CeF3를 공용화로 하나 쓰고 ZrO2와 SiO2각각 1개를 사용한다. 이때 상기 모니타 글라스(21)는 상기 다층 반사방지막이 코팅될시의 반사율을 체크해서 셔터(11)를 열고 닫는 광센서 역할을 담당한다.As shown in FIG. 3A of the sample crucible, SiO 2 is placed in the crucible No. 1, CeF 3 in the crucible No. 2 , ZrO 2 in the crucible No. 3 , and SiO 2 in the crucible No. 4 is separately arranged for each sample. 17) Insert three monitor glasses 21 with a refractive index of 1.49 of BK-4 material. That is, one of SiO 2 and CeF 3 is used as a common solution, and one of ZrO 2 and SiO 2 is used. In this case, the monitor glass 21 serves as an optical sensor for checking the reflectance when the multilayer antireflection film is coated to open and close the shutter 11.

이어서 진공을 실시하게 되는데, 이때 진공도는 코팅되는 각 층막의 막강도와 관련되므로 2×10-5Torr를 정확하게 유지해야 한다. 이는 즉, 분자가 합성수지 렌즈를 향해 위로 상승할 수 있는 평균 자유행정 거리가 5㎡까지 가능하다는 것을 뜻하므로 코팅막 강도가 그만큼 좋아질 수 있음을 나타낸다.Subsequently, a vacuum is performed, in which the vacuum degree is related to the film strength of each layer film to be coated, so it is necessary to accurately maintain 2 × 10 −5 Torr. This means that the average free stroke distance up to 5 m 2, where the molecule can rise upwards towards the resin lens, indicates that the coating film strength can be improved.

이후 설정파장 503-510㎚에서 시료도가니(A)에 배열된 시료를 이용하여 반사방지막인 각 적층막들을 형성하게 되는데, 여기서는 본 실시예에서 제시된 굴절률 및 막두께의 특정 범위 중 선택된 한 실험치를 기준으로 하여 각각의 적충막 형성공정을 설명하고자 한다.Thereafter, using the samples arranged in the sample crucible (A) at a set wavelength of 503-510 nm, each of the laminated films, which are antireflective films, is formed, based on an experimental value selected from a specific range of the refractive index and the film thickness presented in this embodiment. It will be described for each of the erythrocyte forming process.

예컨대, 가시광선의 설정파장값이 510㎚일 경우를 예로 들어보자. 먼저 시료도가니 1번에 제1층막 물질인 SiO2시료를 넣고 셔터(11)를 닫는다. 그후 시료를 전자빔(beam)(13)의 중앙에 맞추고 예열한 뒤 정상적으로 녹았을때 셔터(11)를 열고 0.25λ°만큼 태운다. 이렇게 하면 코팅기 내부에(23) 형성된 진공도에 의해 분자가 뛰어올라 측정글라스(25)와 렌즈(19) 및 모니타 글라스(21)의 한면상에 SiO2물질이 적층되게 된다. 이어서 상기와 동일한 방법으로 시료도가니 2번 및 3번에 CeF3및 ZrO2를 넣고 예열한뒤 녹으면 셔터를 열고 각각 0.25λ° 및 0.53λ°만큼 태워 적층막을 코팅시킨다. 이때 렌즈 돔(17)상에 배열되어 상기 적층막이 코팅될 렌즈(19) 표면상의 최고점 온도는 저온 74℃ 이하가 되도록 한다. 상기 온도범위를 넘어설 경우는 막크랙이 발생하므로 주의를 요한다. 다시 4번 도가니에 제4층막 물질인 SiO2를 0.25λ°만클 태워 적층막을 코팅시키므로써 4층 구조의 다층 반사방지막을 완성시킨다.For example, consider a case where the set wavelength of visible light is 510 nm. First, the SiO 2 sample, which is the first layer film material, is put into the sample crucible 1 and the shutter 11 is closed. Thereafter, the sample is centered on the electron beam 13, preheated, and when melted normally, the shutter 11 is opened and burned by 0.25λ. This causes the molecules to jump by the degree of vacuum formed inside the coater 23 so that SiO 2 material is deposited on one surface of the measuring glass 25, the lens 19, and the monitor glass 21. Subsequently, CeF 3 and ZrO 2 were added to sample crucible Nos. 2 and 3 in the same manner as above, and after preheating and melting, the shutter was opened and burned by 0.25λ ° and 0.53λ ° respectively to coat the laminated film. At this time, the peak temperature on the surface of the lens 19 to be coated on the lens dome 17 to be coated so that the laminated film is a low temperature 74 ℃ or less. If the temperature exceeds the above range, care should be taken because film cracking occurs. The fourth crucible was further coated with a layer of SiO 2, which is a fourth layer material, at a thickness of 0.25λ, thereby completing a multilayer anti-reflection film having a four-layer structure.

이렇게 실시된 광학부품의 막구성 조건을 도표화해서 나타내면 표1에 제시된 바와 같다.The film composition conditions of the optical component thus implemented are shown in table 1 as shown.

한편, 제2도는 본 발명의 실시예에 따른 파장과 반사율과이 관계를 보이는 특성도로서 상기 실험 데이타를 이용하여 반사율 특성을 그래프화 해놓은 것이다.On the other hand, Figure 2 is a characteristic diagram showing the relationship between the wavelength and reflectance according to an embodiment of the present invention is a graph of the reflectance characteristics using the experimental data.

상기 도면에서 보여주듯이 상기와 같은 막두께 및 굴절률을 가질 경우, 420-680㎚ 파장영역에서의 실제 반사율은 0.5% 이하로 측정되었으며, 상기 파장영역에서의 분광투과율 역시 측정결과, 420㎚와 680㎚에서 각각 95.5% 이상, 98% 이상의 최고 투과율을 갖는 것으로 측정되었다.(이때 측정 글라스의 재질은 BK-7이다)As shown in the figure, when the film thickness and refractive index were as described above, the actual reflectance in the 420-680 nm wavelength region was measured to be 0.5% or less, and the spectral transmittance in the wavelength region was also measured, 420 nm and 680 nm. The highest transmittances of 95.5% and 98% were measured, respectively (in this case, the measurement glass is made of BK-7).

Claims (3)

광학부품인 합성수지 렌즈 표면 상에 광학막 두께가 0.25±0.01λ°로 형성된 제1층막, 0.25±0.01λ°로 형성된 제2층막, 0.53±0.01λ°로 형성된 제3층막 및 0.25±0.01λ°로 형성된 제4층막이 순차적으로 적층된 구조를 갖도록 구성되어 상기 제1층막의 물질을 SiO2로 하고, 상기 제2층막의 물질을 CeF3로 하고, 상기 제3층막의 물질을 ZrO2로 하고, 상기 제4층막의 물질을 SiO2로 한 것을 특징으로 하는 광학부품의 단층 반사방지막.(여기서 λ°는 가시광선이 설정파장)The first layer film having an optical film thickness of 0.25 ± 0.01λ °, the second layer film formed of 0.25 ± 0.01λ °, the third layer film formed of 0.53 ± 0.01λ ° and 0.25 ± 0.01λ ° on the synthetic resin lens surface, which is an optical component. The fourth layer film formed of the first layer film is SiO 2 , the material of the second layer film is CeF 3 and the material of the third layer film is ZrO 2 . And the material of the fourth layer film is SiO 2 , wherein a single layer anti-reflection film of an optical component (wherein λ ° is a visible light wavelength). 제1항에 있어서, 상기 다층 반사방지막은 적층막이 형성될 렌즈 표면상의 최고점 온도가 74℃ 이하에서 멀티 코팅됨을 특징으로 하는 광학부품의 다층 반사방지막.The multilayer anti-reflection film of an optical component according to claim 1, wherein the multilayer anti-reflection film is multi-coated at a peak temperature of 74 ° C. or less on the lens surface on which the laminated film is to be formed. 제1항에 있어서, 상기 합성수지 렌즈는 폴리스티렌 및 PMMA 광학재료중 선택된 어느 하나로 이루어짐을 특징으로 하는 광학부품의 다층 반사방지막.The multilayer anti-reflection film of an optical component according to claim 1, wherein the synthetic resin lens is made of one selected from polystyrene and PMMA optical materials.
KR1019930009977A 1993-06-03 1993-06-03 Optical device KR960013791B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930009977A KR960013791B1 (en) 1993-06-03 1993-06-03 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930009977A KR960013791B1 (en) 1993-06-03 1993-06-03 Optical device

Publications (2)

Publication Number Publication Date
KR950001327A KR950001327A (en) 1995-01-03
KR960013791B1 true KR960013791B1 (en) 1996-10-10

Family

ID=19356720

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930009977A KR960013791B1 (en) 1993-06-03 1993-06-03 Optical device

Country Status (1)

Country Link
KR (1) KR960013791B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1018795B1 (en) 1999-01-08 2008-03-05 Lg Electronics Inc. Structure of rotor for outer rotor type brushless motor

Also Published As

Publication number Publication date
KR950001327A (en) 1995-01-03

Similar Documents

Publication Publication Date Title
US9817155B2 (en) Optical lens with scratch-resistant anti-reflective layer
US4896928A (en) Chromatically invariant multilayer dielectric thin film coating
US5460888A (en) Multi-layered optical film
US4854670A (en) Wide angle optical filters
US6606196B2 (en) Optical element having antireflection film
US20050219724A1 (en) Optical element having a dielectric multilayer film
JPS6256481B2 (en)
US4931315A (en) Wide angle optical filters
CN107636495A (en) It is included in the optical goods of the antireflection coatings in visible region for low light conditions
US4979802A (en) Synthetic resin half-mirror
CN107407746A (en) The coating of antistatic antireflection
KR960013791B1 (en) Optical device
US4628005A (en) Heat wave shielding lamination
JPS6177002A (en) Optical antireflecting film
JPH10123303A (en) Antireflection optical parts
JP2561955B2 (en) Multi-layer antireflection film for plastic lenses
JPH04191801A (en) Optical parts
JPH05173005A (en) Aluminum surface reflection mirror
JPH0511101A (en) Optical member having antireflection film
KR20200143670A (en) Lens coating layer
JPH04166901A (en) Optical parts having antireflection coating
KR102303249B1 (en) Near-infrared ray absorbing article comprising reinforcement glass and Optical filter containing the same
US20240118553A1 (en) Partial beam splitter, stack comprising two or more such partial beam splitters and method of manufacturing such a partial beam splitter
JP2017223914A (en) Silicon substrate with infrared functional film
JPH05107402A (en) Optical member having antireflection film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090928

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee