KR960011754B1 - Method for manufacturing high absorbent polymer - Google Patents

Method for manufacturing high absorbent polymer Download PDF

Info

Publication number
KR960011754B1
KR960011754B1 KR1019910016576A KR910016576A KR960011754B1 KR 960011754 B1 KR960011754 B1 KR 960011754B1 KR 1019910016576 A KR1019910016576 A KR 1019910016576A KR 910016576 A KR910016576 A KR 910016576A KR 960011754 B1 KR960011754 B1 KR 960011754B1
Authority
KR
South Korea
Prior art keywords
polymer
water
weight
acrylic acid
partially neutralized
Prior art date
Application number
KR1019910016576A
Other languages
Korean (ko)
Other versions
KR930006099A (en
Inventor
장태환
이형만
최수범
김명중
Original Assignee
주식회사 럭키
최근선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1019910016576A priority Critical patent/KR960011754B1/en
Application filed by 주식회사 럭키, 최근선 filed Critical 주식회사 럭키
Priority to JP4249363A priority patent/JP2786974B2/en
Priority to AT92116017T priority patent/ATE152152T1/en
Priority to DK92116017.2T priority patent/DK0533192T3/en
Priority to DE69219256T priority patent/DE69219256T2/en
Priority to EP92116017A priority patent/EP0533192B1/en
Priority to ES92116017T priority patent/ES2101777T3/en
Publication of KR930006099A publication Critical patent/KR930006099A/en
Priority to US08/260,182 priority patent/US5508381A/en
Application granted granted Critical
Publication of KR960011754B1 publication Critical patent/KR960011754B1/en
Priority to GR970400935T priority patent/GR3023274T3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/02Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to polysaccharides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The resin is prepared by polymerizing a hydrophilic monomer which is partially neutralized with a monomer having carboxyl or carboxylate group; adjusting the content of water in the polymer to 25 wt.% or less by rzeotrophic distillation in an oil soluble solvent, followed by adding a hydrophilic crosslinking agent having 0.005-5.0 wt.% of two epoxy groups or more to 7.0-25.0 wt.% of an aqueous solution; reacting, removing 0.6 wt. parts or more of water by azeotrophic distillation; and filtering and drying all the solvent to obtain a strong water-absorbent resin having an excellent attraction and gel strength.

Description

흡인력 및 겔 강도가 우수한 고흡수성 수지 제조 방법Superabsorbent polymer manufacturing method with excellent suction and gel strength

본 발명은 고흡수성 수지 제조 방법에 관한 것이다. 특히, 흡인력 및 겔 강도가 우수한 고흡수성 수지 제조 방법에 관한 것이다.The present invention relates to a method for producing a super absorbent polymer. In particular, it is related with the superabsorbent polymer manufacturing method which is excellent in suction force and gel strength.

흡수성 물질로는 스폰지, 펄프 및 종이 등과 같은 천연 물질과 -OH, -NH2, -COOH 등과 같은 친수성기를 가진 물질들을 염으로 부분 중화시켜 만든 합성 물질들로 이루어져 있다. 과거에는 스폰지, 펄프 및 종이 등과 같은 천연 물질들이 위생용 재료 및 농업용 재료로 많이 사용되어 왔다. 그러나, 이들은 물리적인 방법에 의해 물을 빨아들이는 메카니즘을 갖고 있으므로, 낮은 흡수량을 가지며, 또한 이들에 약간만 압력을 가하여도 흡수된 물이 대부분 빠져 나가는 문제점이 있다. 이러한 문제점들을 보완하기 위하여 물리적 및 화학적 방법에 의해 물을 빨아들이는 메카니즘을 갖는 합성 물질들이 요구되었으며, 그 주류를 이루는 것은 부분 가교시킨 폴리아크릴산 염, 검화시킨 전분-아크릴로니트릴 그래프트 공중합체, 가교시킨 셀룰로오즈-아크릴산 염 그래프트 공중합체 등이다. 이렇게 생리대, 기저귀 및 위생용 내프킨 등과 같은 위생 분야 그리고 토목, 원예용 분야에 주로 사용되고 있다. 또한 침적물의 응집, 기름에서의 탈수 및 건축자재의 이슬 응축방지의 목적 등 여러 분야에서 사용되고 있다.The absorbent material consists of natural materials such as sponges, pulp and paper, and synthetic materials made by partially neutralizing salts with hydrophilic groups such as -OH, -NH 2 and -COOH. In the past, natural materials such as sponges, pulp and paper have been used for hygienic and agricultural materials. However, since they have a mechanism of sucking water by a physical method, they have a low water absorption, and there is a problem that most of the absorbed water escapes even with a slight pressure on them. In order to overcome these problems, synthetic materials having a mechanism of sucking water by physical and chemical methods have been required, and its mainstream is partially crosslinked polyacrylic acid salt, saponified starch-acrylonitrile graft copolymer, and crosslinking. Cellulose-acrylic acid graft copolymer and the like. Thus, it is mainly used in sanitary fields such as sanitary napkins, diapers and hygienic napkins, and civil engineering and horticultural fields. In addition, it is used in various fields such as flocculation of sediment, dehydration in oil and prevention of dew condensation of building materials.

그 중에서도 고흡수성 수지의 가장 큰 용도는 위생용 재료 분야이다. 지금까지의 위생용 재료 분야에서 사용되는 고흡수성 수지의 물성을 이온 교환수 및 염수에서의 고흡수 속도 및 고흡수량에 주안점을 두고 개발하였으며 대부분의 특허가 이들의 개선을 위한 제조 방법에 관한 것이다. 그 예로써 미합중국 특허 제4,498,930호 및 미합중국 특허 제4,541,871호가 있다. 그러나 위생용 재료 분야, 특히 일회용 기저귀나 생리대에서는 오줌이나 생리액을 펄프가 먼저 빨아 들이고 이것을 다시 흡수성 수지가 펄프에서 빨아 들이므로 펄프로부터 빨아 들이는 힘, 즉, 흡인력과 흡수한 후의 포송포송한 상태를 유지하기 위해서는 흡수된 후의 보수력, 즉, 겔 강도가 무엇보다도 중요하다.Among them, the largest use of the super absorbent polymer is in the field of hygienic materials. The physical properties of the super absorbent polymers used in the field of hygienic materials up to now have been developed with the focus on the high absorption rate and high absorption amount in ion-exchanged water and brine, and most of the patents are related to manufacturing methods for improving them. Examples include US Pat. No. 4,498,930 and US Pat. No. 4,541,871. However, in the field of hygienic materials, in particular disposable diapers or sanitary napkins, the pulp sucks urine or physiological fluid first, and then the absorbent resin is sucked from the pulp, so that the suction force from the pulp, that is, the suction force and the puffed state after absorption In order to maintain the water retention capacity after absorption, that is, the gel strength is most important.

미합중국 특허 제4,497,930호에서는 중합 후 공비증류를 이용해 중합체를 기준으로 10∼40중량%의 물이 혼합체내에 존재하도록 물을 제거한 다음, 친유성 용매상에서 카르복실기와 카르복실레이트기에 반응할 수 있는 최소한 2개 이상의 반응기를 가진 가교제를 중합체를 기준으로 0.01∼5중량% 사용하여 40∼150℃에서 환류 반응만 시키는 방법으로, 가교제와 함께 중합체를 기준으로 단지 가교제를 용해시키는데만 물을 사용했기 때문에 가교제와 함께 첨가한 물의 양이 너무 적어 중합체 표면에만 소량의 가교제가 침투하고 중합체 내부에는 가교제가 침투하지 않아 흡수량 및 흡수 속도만 높고 흡인력 및 겔 강도는 현저히 감소되어 위생용 재료로써 사용이 곤란하다.In US Pat. No. 4,497,930, azeotropic distillation after polymerization removes water so that 10-40% by weight of water, based on the polymer, is present in the mixture, and then reacts with at least two carboxyl and carboxylate groups in a lipophilic solvent. A crosslinking agent having at least two reactors is used to reflux at 40 to 150 ° C. using 0.01 to 5% by weight of the polymer, and water is used only to dissolve the crosslinking agent based on the polymer together with the crosslinking agent. The amount of water added together is so small that a small amount of crosslinking agent penetrates into the polymer surface only, the crosslinking agent does not penetrate into the polymer, so that only the absorption and absorption rate are high, and the suction force and gel strength are significantly reduced, making it difficult to use as a hygienic material.

또한, 미합중국 특허 제4,541,871호에서는 중합 후 중합체내의 물의 함량이 0.01∼1.3중량부가 되도록 하기 위해서 공비증류를 이용해 물을 제거하거나 혹은 건조 중합체(수분 함량 2.5중량% 이하)에 물을 첨가한 후 중합체를 기준으로 0.1∼50중량부의 비극성 용매 중에서 중합체를 기준으로 0.005∼5중량%의 가교제를 첨가하여 가교 반응을 시키는 방법으로, 가교제만 투입하거나 혹은 중합체내의 물의 함량을 맞추기 위해서 적당량의 물(중합체를 기준으로 5.6∼75.6중량%)을 첨가하여 110℃에서 증발시켜 용매를 제거한 후 건조시켰는데, 가교제만 투입했을 경우는 중합체 표면에만 미량의 가교제가 존재하여 흡인력 및 겔 강도가 급속히 감소하며 건조된 중합체에 적당량의 물(중합체를 기준으로 5.6∼75.6중량%)을 첨가시킨 후 증발시켜 용매를 제거했을 때도 용매 제거시 첨가한 물의 양을 기준으로 0.5중량부 이하만 물이 제거되므로 흡인력 및 겔 강도를 높이지 못한다.In addition, in US Pat. No. 4,541,871, in order to ensure that the water content in the polymer is 0.01 to 1.3 parts by weight after polymerization, water is removed by azeotropic distillation or water is added to the dry polymer (water content of 2.5% by weight or less). A crosslinking reaction is performed by adding 0.005 to 5% by weight of a crosslinking agent based on the polymer in 0.1-50 parts by weight of a nonpolar solvent on the basis of a suitable amount of water in order to add only the crosslinking agent or to match the water content in the polymer. 5.6 to 75.6% by weight) was added and evaporated at 110 ° C. to remove the solvent, followed by drying. When only the crosslinking agent was added, a small amount of crosslinking agent was present only on the surface of the polymer, and thus the suction force and gel strength decreased rapidly. Even when the solvent is removed by evaporation after adding an appropriate amount of water (5.6 to 75.6 wt% based on the polymer) Based on the amount of water it was added upon removal only 0.5 parts by weight or less does not increase the suction power and gel strength, so water is removed.

그러므로 이러한 특허에서 사용되는 방법들은 흡수량 및 흡수 속도만 크고 흡인력 및 겔 강도는 현저히 떨어지므로 위생용 재료로써 사용하기가 곤란하다. 현재 위생용 재료 분야에서는 펄프를 통하여 물을 빨아들이는 능력(흡인력) 및 물을 흡수한 후의 겔 상태(겔 강도)가 크게 요구되고 있으며 실제로 적용 분야에서도 가장 중요한 문제이다.Therefore, the methods used in these patents are difficult to use as sanitary materials because only the amount of absorption and the rate of absorption are large and the suction force and gel strength are remarkably decreased. Currently, in the field of hygienic materials, the ability to suck water through pulp (suction force) and the gel state (gel strength) after absorbing water are greatly demanded, and are the most important problems in the field of application.

이에 본 발명자는 흡인력 및 겔 강도가 극히 우수한 고흡수성 수지의 제조 방법에 관한 발명을 수행하게 되었다. 카르복실기 혹은 카르복실레이트기를 가진 단량체를 부분 중화시킨 친수성 단량체를 중합하여 얻어진 중합체를 친유성 용매상에서 공비증류를 이용하여 중합체 내의 물이 중합체를 기준으로 25중량% 이하가 되도록 한 다음 적당량의 친수성 가교제를 적당량의 물에 용해시키고 수용액을 첨가하면 물이 중합체 내에 침투하면서 가교제도 함께 침투되므로 중합체 표면에는 다량, 중합체 내부에는 소량 가교제가 존재하게 된다. 그후 적당량의 물이 제거되도록 용매의 비점에서 반응시키면 중합체 표면에는 가교도가 높게, 그리고 내부에는 낮게 되어 흡인력 및 겔 강도가 극히 우수한 고흡수성 수지를 얻게 된다. 즉, 카르복실기 혹은 카르복실레이트기를 가진 단량체를 부분 중화시킨 친수성 단량체를 중합하여 얻은 중합체를 친유성 용매상에서 중합하여 공비증류를 이용해 중합체 내의 물의 함량이 중합체를 기준으로 25중량% 이하가 되도록 한다. 여기에 중합체를 기준으로 0.005∼5.0중량%의 친수성 가교제를 중합체를 기준으로 7.0∼25.0중량%의 물에 용해시킨 수용액을 첨가한 후 공비증류를 이용하여 첨가한 물의 양을 기준으로 0.6중량부 이상의 물을 제거한 다음 여과를 통하여 용매를 제거한 후 건조시켜서 흡인력 및 겔 강도가 우수한 고흡수성 수지를 제조하는 방법에 관한 것이다.Therefore, the present inventors have carried out the invention regarding a method for producing a super absorbent polymer having extremely excellent suction force and gel strength. The polymer obtained by polymerizing a hydrophilic monomer partially neutralized with a monomer having a carboxyl group or a carboxylate group was subjected to azeotropic distillation in a lipophilic solvent so that the water in the polymer was 25% by weight or less based on the polymer. When dissolved in an appropriate amount of water and an aqueous solution is added, the water penetrates into the polymer and the crosslinking agent also penetrates, so that a large amount of crosslinking agent is present on the polymer surface and a small amount of crosslinking agent inside the polymer. Thereafter, the reaction is carried out at the boiling point of the solvent to remove an appropriate amount of water, so that the degree of crosslinking is high on the surface of the polymer and low on the inside of the polymer to obtain a superabsorbent polymer having extremely excellent suction and gel strength. That is, the polymer obtained by polymerizing a hydrophilic monomer partially neutralized with a monomer having a carboxyl group or a carboxylate group is polymerized in a lipophilic solvent to use azeotropic distillation so that the water content of the polymer is 25% by weight or less based on the polymer. An aqueous solution in which 0.005 to 5.0 wt% of a hydrophilic crosslinking agent was dissolved in 7.0 to 25.0 wt% of water based on the polymer was added thereto, and then 0.6 parts by weight or more based on the amount of water added using azeotropic distillation. The present invention relates to a method for preparing a super absorbent polymer having excellent suction and gel strength by removing water and then removing the solvent through filtration.

본 발명을 구체적으로 설명하면 다음과 같다.The present invention will be described in detail as follows.

본 발명에 사용된 단량체 혹은 중합체는 카르복실기 또는 카르복실레이트기가 있는 곳으로 아크릴산, 메타크릴산 등의 단량체와 전분에 아크릴산을 그래프트시킨 후 부분 중화시킨 중합체, 셀룰로오즈에 아크릴산을 그래프트시킨 후 중화시킨 중합체, 전분에 아크릴로니트릴을 그래프트시킨 후 부분 중화시킨 중합체, 아가로오즈에 아크릴산에 그래프트시킨 후 부분 중화시킨 중합체, 치틴에 아크릴산을 그라프트시킨 후 부분 중화시킨 중합체, 아크릴산과 메타크릴산을 말레이산 아크릴아미드 2-아크릴아미드-2-메틸프로필술폰산, 2-히드록시 메타크릴레이트 등과 적당한 비율로 공중합시킨 후 부분 중화시킨 중합체를 이용할 수 있다.The monomer or polymer used in the present invention is a polymer having a carboxyl group or a carboxylate group and a monomer such as acrylic acid and methacrylic acid and acrylic acid grafted to starch and then partially neutralized, a polymer grafted acrylic acid to cellulose and neutralized, A partially neutralized polymer after grafting acrylonitrile to starch, a partially neutralized polymer after being grafted to acrylic acid on agarose, a partially neutralized polymer after grafting acrylic acid to chitin, and acrylic acid and methacrylic acid A partially neutralized polymer may be used after copolymerization in an appropriate ratio with amide 2-acrylamide-2-methylpropylsulfonic acid, 2-hydroxy methacrylate and the like.

본 발명에 의하면 아크릴산은 중화도가 50∼100몰%가 적당하며, 바람직하게는 60∼80몰%가 좋다. 아크릴산의 중화는 알칼리 금속의 수산화물이 좋으나, 바람직하게는 수산화 나트륨이 좋다. 중화도 50몰% 이하이면 염의 농도가 적어 물에 대한 전하 밀도가 작으므로 침투압이 적게 발생하여 원하는 고흡수성의 성질을 얻을 수가 없다. 또한 이 수용액의 단량체 농도는 20∼70%, 바람직하게는 40∼60%가 좋다. 역상 현탁 중합에 사용되는 용매는 비점이 30∼200℃인 지방족 또는 방향족 탄화수소로써, 예를 들면, n-핵산, n-헵탄, 벤젠, 크실렌, 톨루엔, 시클로 펜탄, 시클로 핵산 등의 친유성 용매이나 바람직하게는 시클로 핵산이 좋다. 중합시 용매의 양은 단량체 1중량부에 대해 0.1∼50중량부가 좋으나, 더욱 바람직하게는 0.5∼30중량부가 좋다.According to the present invention, acrylic acid has a degree of neutralization of 50 to 100 mol%, preferably 60 to 80 mol%. The neutralization of acrylic acid is preferably an alkali metal hydroxide, but preferably sodium hydroxide. If the degree of neutralization is 50 mol% or less, the salt concentration is small and the charge density to the water is small, so that the penetration pressure is small, so that the desired superabsorbent properties cannot be obtained. The monomer concentration of this aqueous solution is 20 to 70%, preferably 40 to 60%. The solvent used for reverse phase suspension polymerization is an aliphatic or aromatic hydrocarbon having a boiling point of 30 to 200 ° C., for example, a lipophilic solvent such as n-nucleic acid, n-heptane, benzene, xylene, toluene, cyclopentane, cyclo nucleic acid, Preferably cyclo nucleic acid is preferred. The amount of the solvent during the polymerization is preferably 0.1 to 50 parts by weight based on 1 part by weight of the monomer, more preferably 0.5 to 30 parts by weight.

본 발명에 사용된 분산제로는 HLB 값이 8∼12인 것으로 솔비탄 모노라우레이트(SPAN 20; HLB 값=8.6) 밀 로토슈거 에스테르 S-97(HLB 값=9.0)이 바람직하다.As the dispersant used in the present invention, a HLB value of 8 to 12 is preferably sorbitan monolaurate (SPAN 20; HLB value = 8.6) Miltotosugar ester S-97 (HLB value = 9.0).

본 발명에 사용되는 중합 개시제로는 수용성 라디칼 중합 개시제로, 예를 들면 과황산 암모늄, 과황산 칼륨 및 과산화 수소 등이다. 바람직하게는 과황산 칼륨이다. 개시제는 단독 또는 2종 이상을 조합하여 사용할 수 있다. 중합 과정 중 탈수 과정은 공비증류에 의해 중합 중 또는 중합 후에 탈수된다. 중합체 내의 물의 함량은 중합체를 기준으로 25중량% 이하가 되도록 조절되어야 본 발명에서 얻고자 하는 효과를 나타내며 위의 범위를 벗어나며 흡수량이 급격히 감소한다.As a polymerization initiator used for this invention, it is a water-soluble radical polymerization initiator, for example, ammonium persulfate, potassium persulfate, hydrogen peroxide, etc. Preferably potassium persulfate. An initiator can be used individually or in combination of 2 or more types. The dehydration process during the polymerization process is dewatered during or after the polymerization by azeotropic distillation. The content of water in the polymer should be adjusted to be 25% by weight or less based on the polymer to obtain the effect to be obtained in the present invention, which is outside the above range and the amount of absorption is drastically reduced.

가교제로는 수용성인 것으로써 카르복실기 또는 카르복실레이트와 반응할 수 있는 에폭시기가 2개 이상인 것을 사용하면 그 효과가 크게 나타난다. 그 예로는 아틸렌글리콜 디글리시딜에테르, 글리세롤 폴리글리시딜에테르, 트리메틸올프로판 폴리글리시딜에테르 및 솔비톨 폴리글리시딜에테르이며, 바람직하기로는 에틸렌글리콜 디글리시딜에테르이다. 가교제의 양은 사용되는 가교제의 종류와 중합체에 따라 다르나 중합체를 기준으로 0.005∼5.0중량%이다. 가교제가 0.005중량% 이하이면 흡인력이 급격히 감소하며, 5.0중량% 이상이면 가교밀도가 너무 커져 흡수량이 급격히 감소한다.As a crosslinking agent, when the thing which is water-soluble and the epoxy group which can react with a carboxyl group or a carboxylate is used 2 or more, the effect shows large. Examples are atylene glycol diglycidyl ether, glycerol polyglycidyl ether, trimethylolpropane polyglycidyl ether and sorbitol polyglycidyl ether, preferably ethylene glycol diglycidyl ether. The amount of crosslinking agent varies depending on the type of crosslinking agent used and the polymer, but is 0.005 to 5.0% by weight based on the polymer. If the crosslinking agent is 0.005% by weight or less, the suction force is drastically reduced, and if it is 5.0% by weight or more, the crosslinking density becomes too large and the water absorption is drastically reduced.

가교제와 함께 사용되는 물의 양은 중합체를 기준으로 7.0∼25.0중량%를 사용해야 흡인력 및 겔 강도가 우수한 고흡수성 수지를 얻을 수가 있다. 첨가하는 물의 양이 7.0중량% 이하이면 흡수량은 증가하나 흡인력 및 겔 강도가 급격히 떨어지며 25.0중량% 이상이면 흡수량이 급격히 떨어진다. 가교 반응 동안 제거하는 물의 양은 첨가하는 물의 양의 0.6중량부 이상이 되도록 하여야 흡인력 및 겔 강도가 우수하면서 흡수량이 적절한 고흡수성 수지를 얻을 수가 있다. 0.6중량부 이하로 물을 제거하면 흡인력 및 흡수량이 급격히 감소하므로 원하는 흡수성 수지를 얻기가 어렵다.The amount of water used together with the crosslinking agent should be 7.0 to 25.0 wt% based on the polymer to obtain a superabsorbent polymer having excellent suction and gel strength. If the amount of water to be added is 7.0% by weight or less, the absorption amount is increased, but the suction force and the gel strength are drastically decreased. The amount of water to be removed during the crosslinking reaction should be at least 0.6 parts by weight of the amount of water to be added to obtain a superabsorbent polymer having excellent suction force and gel strength and having an appropriate water absorption. When water is removed at 0.6 parts by weight or less, the suction force and absorption amount are drastically reduced, so that it is difficult to obtain a desired absorbent resin.

본 발명에서 생리 식염수에 대한 흡인력은 칼럼법을 이용한 것으로 흡수성 수지 1g에 대한 1, 2, 3, 4, 5분 동안의 흡인량(ml/g)을 측정한 것이며, 생리 식염수에 대한 흡수량(배)은 흡수성 수지 1g을 200g의 용액에 넣은 후 30분 뒤에 80 메쉬체로 여과하여 흡수한 겔의 무게를 측정한 것이다. 겔 강도는 손으로 만졌을 때의 촉감 및 강도로써 구분하여 나타내었다.In the present invention, the suction power for physiological saline is a column method and measures the suction amount (ml / g) for 1, 2, 3, 4, and 5 minutes with respect to 1 g of the water absorbent resin, and the absorption amount (fold) ), 1 g of water absorbent resin was added to a 200 g solution, and after 30 minutes, the weight of the absorbed gel was measured by filtration with an 80 mesh sieve. Gel strength is shown by the touch and strength when touched by hand.

이하, 실시예를 통하여 자세히 설명하면 다음과 같다.Hereinafter, the embodiment will be described in detail as follows.

[실시예 1]Example 1

교반기, 딘 스탁 장치, 응축기, 압력 조정 첨가 판넬 및 질소 주입기가 부착된 500ml 용량의 4구 둥근 플라스크에 시클로 핵산 160g 및 로토슈거 에스테르 S-970 1.0g을 넣고, 플라스크에 들어 있는 산소를 제거하기 위해 질소 기체를 주입시키고, 중탕온도를 75℃까지 올린다. 또 준비된 200ml 플라스크에 아크릴산 30.9g을 넣고, 상온으로 냉각시키면서 수산화 나트륨 수용액 49.1(수산화 나트륨 9.2g/증류수 39.9g)을 천천히 첨가시켜 중화도 60% 및 단량체 농도가 45중량%인 나트륨 염 용액을 만든다. 이 아크릴산 나트륨 염 용액에 과황산 칼륨 0.1g, 증류수 3g에 녹인 용액을 첨가하여 잘 섞어준다. 이 용액을 시클로 핵산과 분산제가 들어있는 플라스크에 압력 조정 첨가 판넬을 통하여 주입하여 반응을 시킨다. 중합체가 생성되면 중탕 온도를 90℃로 올려 생성된 중합체내의 물 함량이 20중량%가 되도록 하기 위해 공비증류로 물 38%를 제거한후, 에틸렌글리콜 디글리시딜에테르 0.2g을 물 5g에 용해시킨 수용액을 첨가하여 가교 반응을 시킨다. 이때 반응중 딘 스탁 장치를 이용하여 물 5g을 제거하고 반응을 완료시키며, 그 결과 얻어진 중합체를 여과한 후, 건조하여 흡인력 및 겔 강도가 우수한 흡수성 수지를 얻는다.Into a 500 ml four-necked round flask equipped with a stirrer, Dean stark unit, condenser, pressure adjusting panel and nitrogen injector, 160 g of cyclo nucleic acid and 1.0 g of Rotosugar ester S-970 were added to remove oxygen from the flask. Nitrogen gas is injected and the bath temperature is raised to 75 ° C. 30.9 g of acrylic acid was added to the prepared 200 ml flask, and sodium hydroxide aqueous solution 49.1 (sodium hydroxide 9.2 g / distilled water 39.9 g) was slowly added while cooling to room temperature to make a sodium salt solution having a degree of neutralization of 60% and a monomer concentration of 45% by weight. . To this sodium acrylate salt solution, 0.1 g of potassium persulfate and a solution of 3 g of distilled water are added and mixed well. This solution is injected into a flask containing cyclo nucleic acid and a dispersant through a pressure-controlled addition panel for reaction. When the polymer was formed, the water bath temperature was raised to 90 ° C. to remove water by azeotropic distillation in order to increase the water content of the polymer to 20% by weight, and then 0.2 g of ethylene glycol diglycidyl ether was dissolved in 5 g of water. An aqueous solution is added to the crosslinking reaction. At this time, 5 g of water was removed using a Dean Stark device during the reaction, and the reaction was completed. The resulting polymer was filtered and dried to obtain an absorbent polymer having excellent suction and gel strength.

이에 대한 결과를 표 2에 나타내었다.The results are shown in Table 2.

[실시예 2-5]Example 2-5

이에 대한 결과를 표 2에 나타내었다.The results are shown in Table 2.

[실시예 6]Example 6

에틸렌글리콜 디글리시딜에테르를 0.5g을 사용한 것을 제외하고는 실시예 3과 같이 실시하였다.Except that 0.5g of ethylene glycol diglycidyl ether was used, it carried out like Example 3.

이에 대한 결과를 표 2에 나타내었다.The results are shown in Table 2.

[비교예 1]Comparative Example 1

교반기, 딘 스탁장치, 응축기, 압력 조정 첨가 판넬 및 질소 주입기가 부착된 500ml 용량의 4구 둥근 플라스크에 시클로 핵산 160g 및 로토슈거 에스테르 S-970 1.0g을 넣는다. 그 후 플라스크에 들어있는 산소를 제거하기 위해 질소 기체를 주입시키고, 중탕 온도는 75℃까지 올린다. 또 준비된 200ml 플라스크에 아크릴산 30.9g을 놓고, 상온으로 냉각시키면서 수산화 나트륨 수용액 49.1g(수산화 나트륨 9.2g/증류수 39.9g)을 천천히 첨가시켜 중화 60% 및 단량체 농도가 45중량% 아크릴산 나트륨 염 용액을 만든다. 이 아크릴산 나트륨 염 용액에 과황산 칼륨 0.11g을 증류수 3g에 녹인 수용액을 첨가하여 잘 교반시킨다. 교반후 이 용액을 시클로 핵산과 분산제가 들어있는 플라스크에 압력 조정 첨가 판넬을 통하여 주입하여 반응을 시킨다. 중합체가 생성되면, 중탕 온도를 90℃로 올려 생성된 중합체 내의 물 함량이 20중량%가 되도록 하기 위해 공비증류로 물 38g을 제거한 다음, 상온으로 냉각시킨 후 중합체를 여과, 건조시킴으로써 흡수성 수지를 얻는다. 이에 대한 결과를 표2에 나타내었다.160 g of cyclo nucleic acid and 1.0 g of Rotosugar ester S-970 are placed in a 500 ml four-necked round flask equipped with a stirrer, Dean stocker, condenser, pressure adjustment panel and nitrogen injector. Thereafter, nitrogen gas is injected to remove oxygen from the flask, and the bath temperature is raised to 75 ° C. 30.9 g of acrylic acid was placed in the prepared 200 ml flask, and 49.1 g of aqueous sodium hydroxide solution (9.2 g of sodium hydroxide / 39.9 g of distilled water) was slowly added while cooling to room temperature to make a solution of 60% neutralization and 45% by weight sodium acrylate salt. . An aqueous solution in which 0.11 g of potassium persulfate was dissolved in 3 g of distilled water was added to the sodium acrylate salt solution, followed by stirring well. After stirring, the solution was injected into a flask containing cyclo nucleic acid and a dispersant through a pressure-added panel for reaction. When the polymer is formed, the water bath is heated to 90 ° C. to remove water by azeotropic distillation in order to achieve a water content of 20% by weight, and then cooled to room temperature, and then the polymer is filtered and dried to obtain an absorbent resin. . The results are shown in Table 2.

[비교예 2]Comparative Example 2

비교예 1의 실험을 반복한다. 단, 중합체 내의 물 함량이 20중량%의 되도록 한 후 에틸렌글리콜 디글리시딜에테르 0.2g만 첨가시켜, 잘 교반시킨 후 증류를 통하여 시클로 핵산을 제거하고, 중합체를 여과, 건조시켜 흡수성 수지를 얻는다.The experiment of Comparative Example 1 is repeated. However, after the water content in the polymer is 20% by weight, only 0.2 g of ethylene glycol diglycidyl ether is added, the mixture is stirred well, the cyclo nucleic acid is removed by distillation, and the polymer is filtered and dried to obtain an absorbent resin. .

이에 대한 결과를 표 2에 나타내었다.The results are shown in Table 2.

[비교예 3]Comparative Example 3

비교예 1의 실험을 반복한다. 단, 중합체 내의 물 함량이 20중량%가 되도록 한 후 에틸렌글리콜 디글리시딜에테르 0.2g을 물 1g에 녹여 만든 용액을 첨가시킨 후 2시간 동안 환류 반응을 시킨다. 그 후 중합체를 여과 건조시켜 흡수성 수지를 얻는다.The experiment of Comparative Example 1 is repeated. However, after the water content in the polymer is 20% by weight, a solution prepared by dissolving 0.2 g of ethylene glycol diglycidyl ether in 1 g of water is added and then refluxed for 2 hours. The polymer is then filtered and dried to obtain a water absorbent resin.

이에 대한 결과를 표 2에 나타내었다.The results are shown in Table 2.

[비교예 4][Comparative Example 4]

비교예 1의 실험을 반복한다. 단 중합체 내의 물 함량이 20중량%가 되도록 한 후 시클로 핵산을 제거하고 메탄올 160g을 치환하여 넣고, 에틸렌글리콜 디글리시딜에테르 0.2g을 첨가시키고 2시간 동안 환류 반응을 한다.The experiment of Comparative Example 1 is repeated. However, after the water content in the polymer is 20% by weight, the cyclo nucleic acid is removed, 160 g of methanol is substituted, and 0.2 g of ethylene glycol diglycidyl ether is added and refluxed for 2 hours.

그 결과를 표 2에 나타내었다.The results are shown in Table 2.

[비교예 5][Comparative Example 5]

비교예 1의 실험을 반복한다. 단 중합체내의 물 함량이 20중량%가 되도록 한 후 시클로 핵산을 제거하고, 메탄올 160g을 치환하여 넣고, 에틸렌글리콜 디글리시딜에테르 0.5g을 물 15g에 녹인 용액을 첨가시켜 2시간 동안 환류 반응을 시킨다.The experiment of Comparative Example 1 is repeated. However, after the water content in the polymer is 20% by weight, the cyclo nucleic acid is removed, 160 g of methanol is substituted, and a solution of 0.5 g of ethylene glycol diglycidyl ether in 15 g of water is added to reflux for 2 hours. Let's do it.

그 결과를 표 2에 나타내었다.The results are shown in Table 2.

Claims (5)

카르복실기나 카르복실레이트기를 가진 단량체를 부분 중화시킨 친수성 단량체를 중합한 후, 얻어진 중합체를 친유성 용매상에서 공비증류를 이용하여 중합체 내의 물의 함량이 중합체를 기준으로 25중량% 이하가 되도록 한 다음, 중합체를 기준으로 0.005∼5.0중량%의 에폭시기를 2개 이상 갖는 친수성 가교제를 중합체를 기준으로 7.0∼25.0중량%의 물에 용해시킨 수용액을 첨가한 후 반응시키면서 공비증류를 이용하여 첨가한 물의 양을 기준으로 0.6중량부 이상으로 물을 다시 제거시킨 후, 여과 건조함을 특징으로 하는 흡인력 및 겔 강도가 우수한 고흡수성 수지 제조방법.After polymerizing the hydrophilic monomer which partially neutralized the monomer having a carboxyl group or carboxylate group, the obtained polymer was subjected to azeotropic distillation in a lipophilic solvent so that the water content in the polymer was 25% by weight or less based on the polymer, and then Based on the amount of water added using azeotropic distillation while adding an aqueous solution in which a hydrophilic crosslinking agent having two or more 0.005 to 5.0% by weight epoxy group in water was dissolved in 7.0 to 25.0% by weight based on the polymer. After removing the water again to 0.6 parts by weight or more, the superabsorbent polymer manufacturing method excellent in suction power and gel strength, characterized in that the filtration and drying. 제1항에 있어서, 카르복실기나 카르복실레이트기를 가진 단량체가 아크릴산을 부분 중화시킨 아크릴산 알칼리 금속염임을 특징으로 하는 흡인력 및 겔 강도가 우수한 고흡수성 수지 제조 방법.The method of claim 1, wherein the monomer having a carboxyl group or carboxylate group is an alkali metal acrylate salt which partially neutralizes acrylic acid. 제1항에 있어서, 카르복실기나 카르복실레이트기를 가진 중합체가 전분에 아크릴산을 그래프트시킨 후, 부분 중화시킨 중합체, 셀룰로이즈에 아크릴산을 그래프트 시킨 후 부분 중화시킨 중합체, 아가로오즈에 아크릴산을 그래프트 시킨 후 부분 중화시킨 중합체, 치틴에 아크릴산을 그래프트 시킨 후 부분 중화시킨 중합체임을 특징으로 하는 흡인력 및 겔 강도가 우수한 고흡수성 수지 제조 방법.The method of claim 1, wherein the polymer having a carboxyl group or carboxylate group is grafted acrylic acid to starch, the polymer is partially neutralized, the acrylic acid is grafted to cellulose, the polymer is partially neutralized, and the acrylic acid is grafted to agarose. A method for producing a superabsorbent polymer having excellent suction and gel strength, wherein the polymer is partially neutralized and the polymer is partially neutralized after grafting acrylic acid to chitin. 제1항에 있어서, 친유성 용매는 n-핵산, n-헵탄, 벤젠, 크실렌, 톨루엔, 시클로펜탄, 시크롤핵산임을 특징으로 하는 흡인력 및 겔 강도가 우수한 고흡수성 수지 제조 방법.The method of claim 1, wherein the lipophilic solvent is n-nucleic acid, n-heptane, benzene, xylene, toluene, cyclopentane, and cyclonucleic acid. 제1항에 있어서, 가교제는 에틸렌글리콜 디글리시딜에테르, 트리메틸 프로판 폴리글리시딜 에테르, 솔비톨 폴리글리시딜 에테르임을 특징으로 하는 흡인력 겔 강도가 우수한 고흡수성 수지 제조 방법.The method of claim 1, wherein the crosslinking agent is ethylene glycol diglycidyl ether, trimethyl propane polyglycidyl ether, sorbitol polyglycidyl ether.
KR1019910016576A 1991-09-20 1991-09-20 Method for manufacturing high absorbent polymer KR960011754B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1019910016576A KR960011754B1 (en) 1991-09-20 1991-09-20 Method for manufacturing high absorbent polymer
AT92116017T ATE152152T1 (en) 1991-09-20 1992-09-18 METHOD FOR PRODUCING A HIGHLY WATER-ABSORBENT RESIN
DK92116017.2T DK0533192T3 (en) 1991-09-20 1992-09-18 Process for producing a highly water-absorbing resin
DE69219256T DE69219256T2 (en) 1991-09-20 1992-09-18 Process for producing a highly water-absorbent resin
JP4249363A JP2786974B2 (en) 1991-09-20 1992-09-18 Method for producing superabsorbent resin
EP92116017A EP0533192B1 (en) 1991-09-20 1992-09-18 Process for preparing highly water absorbent resin
ES92116017T ES2101777T3 (en) 1991-09-20 1992-09-18 PROCEDURE FOR PREPARING RESINS OF HIGH CAPACITY OF WATER ABSORPTION.
US08/260,182 US5508381A (en) 1991-09-20 1994-06-15 Process for preparing highly water absorbent resin
GR970400935T GR3023274T3 (en) 1991-09-20 1997-04-24 Process for preparing highly water absorbent resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019910016576A KR960011754B1 (en) 1991-09-20 1991-09-20 Method for manufacturing high absorbent polymer

Publications (2)

Publication Number Publication Date
KR930006099A KR930006099A (en) 1993-04-20
KR960011754B1 true KR960011754B1 (en) 1996-08-30

Family

ID=19320251

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910016576A KR960011754B1 (en) 1991-09-20 1991-09-20 Method for manufacturing high absorbent polymer

Country Status (1)

Country Link
KR (1) KR960011754B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7581189B2 (en) 2005-09-09 2009-08-25 Microsoft Corporation Dynamically generating a database report during a report building process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7581189B2 (en) 2005-09-09 2009-08-25 Microsoft Corporation Dynamically generating a database report during a report building process

Also Published As

Publication number Publication date
KR930006099A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
KR910008293B1 (en) High absorptive resin
US4735987A (en) Method for manufacture of high-expansion type absorbent polymer
US5281683A (en) Process for producing water-absorbent resin
EP0312952B1 (en) Process for preparing absorbent polymers
CA1086447A (en) Water absorbent polymers
CA1100748A (en) Flexible water absorbent polymer compositions
GB2081725A (en) A Process for the Production of a Hydrogel
JP2877255B2 (en) Manufacturing method of water absorbent resin with excellent durability
CN102212156A (en) Process for produciton of water-absorbing resin partilce agglomerates
NL8602749A (en) PROCESS FOR PREPARING A POROUS POLYMER AND ABSORBENT ARTICLES MADE THEREFROM.
JPH01207327A (en) Surface treating method of water absorbing resin
PT873187E (en) POLYMERS RETICULATED WITH AMINOATED ALCOOES INSATURATED WITH CAPACITY TO INCREASE VOLUME WITH WATER ITS PREPARATION AND UTILIZATION
CN109575350B (en) Method for preparing high-liquid-permeability water-absorbent resin
DE3617311A1 (en) Process for the preparation of a water-absorbent resin
JPH0725810B2 (en) Super absorbent resin manufacturing method
CA1183117A (en) Synthetic superabsorbent fibers
JPH0826085B2 (en) Method for producing water-absorbent resin having excellent durability
JP3349768B2 (en) Method and composition for producing acrylate polymer
US5508381A (en) Process for preparing highly water absorbent resin
KR960011754B1 (en) Method for manufacturing high absorbent polymer
JP2634181B2 (en) Powder polymer, its production method and its application to water-soluble fluid absorbing material
JP2786974B2 (en) Method for producing superabsorbent resin
JPS58127714A (en) Production of highly water-absorbing polymer
JP3251647B2 (en) Water-absorbing resin and method for producing the same
JPH0555523B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J2X1 Appeal (before the patent court)

Free format text: APPEAL AGAINST DECISION TO DECLINE REFUSAL

G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070626

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee