KR960006237B1 - Process for the preparation of magnesia powders - Google Patents

Process for the preparation of magnesia powders Download PDF

Info

Publication number
KR960006237B1
KR960006237B1 KR1019930023742A KR930023742A KR960006237B1 KR 960006237 B1 KR960006237 B1 KR 960006237B1 KR 1019930023742 A KR1019930023742 A KR 1019930023742A KR 930023742 A KR930023742 A KR 930023742A KR 960006237 B1 KR960006237 B1 KR 960006237B1
Authority
KR
South Korea
Prior art keywords
powder
particle size
magnesia
weight
less
Prior art date
Application number
KR1019930023742A
Other languages
Korean (ko)
Other versions
KR950014033A (en
Inventor
김인술
박노형
Original Assignee
포항종합제철주식회사
조말수
재단법인산업과학기술연구소
백덕현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철주식회사, 조말수, 재단법인산업과학기술연구소, 백덕현 filed Critical 포항종합제철주식회사
Priority to KR1019930023742A priority Critical patent/KR960006237B1/en
Publication of KR950014033A publication Critical patent/KR950014033A/en
Application granted granted Critical
Publication of KR960006237B1 publication Critical patent/KR960006237B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4584Coating or impregnating of particulate or fibrous ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62842Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • C04B41/4543Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension by spraying, e.g. by atomising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The coated magnesia powder for flame spraying comprises of, in weight percent, 72 to 94.9% magnesia powder(M) of maximum particle size below 210 Pm, 5 to 25% converter slag(s) of particle size below 44 Pm, and 0.1 to 3.0% Mg-Al or Al metal powder(a) of particle size below 44 Pm. The disclosed powder of particle size below 0.5mm is produced by (1)coating the slag and metal powders with a common binder of 0.8 to 3.0% against weight of magnesia as mentioned above, (2)drying the coated powder at 100 to 150deg.C for 24hr, (3)sieving the powder to below 0.5mm size, by 35mesh. Compared with the known magnesia powder, this powder has better adherency, physical and mechanical properties. It is used for repair of industrial furnace, converter and vacuum degassing equipment for steel making, and for basic or magnesia refractory such as MgO, MgO-Cr2O3, MgO-C, MgO-Al2O3 spinel(S) for laddle and turndish.

Description

화염용사용 마그네시아계 분말재료 및 그 제조방법Magnesia Powder for Flame and Manufacturing Method

제1도는 본 발명에 따라 화염용사용 마그네시아계 분말재료를 제조하는 공정을 나타내는 제조공정도.1 is a manufacturing process diagram showing a process for producing a magnesia powder for flame use according to the present invention.

제2도는 본 발명의 화염용사용 마그네시아계 분말재료의 구성도.2 is a block diagram of a magnesia-based powder material for use in flames of the present invention.

본 발명은 각종 공엽요로, 특히 철강업용 전로, 진공탈가스설비, 래들 및 턴디쉬에 사용되고 있는 마그네시아(MgO)질, 마그네시아-산화크롬질, 마그네시아-카본질, 마그네시아 스핀넬질, 마그네시아-알루미나질내화물의 손상부위를 화염용사보수하는 분말용사재료에 관한 것으로서, 보다 상세하게는, 노체 설비의 장수명화 및 생산성 향상을 위한 열간 보수재료로서 효과적으로 이용할 수 있는 화염용사용 마그네시아계 분말재료 및 그 제조방법에 관한 것이다.The present invention relates to magnesia (MgO), magnesia-chromium oxide, magnesia-carbon, magnesia spinel, magnesia-alumina refractories, which are used in various co-fired furnaces, especially for steel industry converters, vacuum degassing facilities, ladles and tundishes. The present invention relates to a powder spraying material for flame spraying repair of damaged parts, and more particularly, to a magnesia powder material for flame which can be effectively used as a hot repairing material for long life and productivity improvement of furnace equipment. It is about.

마그네시아계 분말재료는 마그네시아가 용융점 2850℃의 고융점 물질이기 때문에 2500℃ 정도의 화염으로는 용융되지 않아 용사시공할 때 부착효율과 용사시공체가 나타내는 기공율, 꺾임강도가 문제가 되고 있다.Since magnesia is a high melting point material with a melting point of 2850 ° C., the magnesia-based powder material is not melted with a flame at about 2500 ° C., which causes problems of adhesion efficiency and porosity and bending strength of the sprayed body during thermal spraying.

따라서, 마그네시아를 주원료로 하는 마그네시아계 분말재료를 화염용사용으로 사용하는 경우에는 저융점물질인 슬래그, 시멘트등을 첨가하거나 화염온도를 높일 목적으로 코크스 혹은 금속분말을 첨가하고 있는데,그 첨가하는 원료의 종류, 입자 크기나 방법에 따라 다음과 같은 화염용사용 마그네시아계 분말재료가 알려져 있다.Therefore, when using magnesia-based powder material containing magnesia as the main raw material for the use of flame, coke or metal powder is added for the purpose of adding slag, cement, etc., which are low melting point materials, or raising the flame temperature. Depending on the type, particle size, and method, magnesia-based powder materials for use in flames are known.

즉, 1) 입경 200-10μm로 조정된 고융점 내화재료 분말의 입자 표면을 평균입경 10-0.1μm의 이소결정(易燒結性) 산화물 초미분말로 피복한 마그네시아-산화물계 화염용사용 내화분말(일본특개소 61-186258)That is, 1) the refractory powder for magnesia-oxide type flame which coated the particle surface of the high melting point refractory material powder adjusted to the particle diameter of 200-10 micrometers with the ultrafine powder of isocrystalline oxide of an average particle diameter of 10-0.1 micrometers ( Japan Special Publication 61-186258)

2) 마그네시아-크롬광의 혼합비 80/20∼50/50중량%인 마그네시아와 크롬광과의 혼합물 60-80중량%,산화크롬분말 1∼5중량% 및 코크스 분말 20-40중량%를 함유하는 마그네시아-산화크롬계 정련로용 용사재료(일본특개소 59-97577)2) Magnesia containing 60-80% by weight of a mixture of magnesia and chrome ore, 1-5% by weight of chromium oxide powder and 20-40% by weight of coke powder, of magnesia-chromium ore mixture ratio of 80/20 to 50/50% by weight. -Spray material for chromium oxide type refinery (Japanese special place 59-97577)

3) 마그네시아-돌로마이트계 화염용사용 염기성 내화조성물(일본특개소 60-215579)3) Basic refractory composition for magnesia-dolomite flame (Japanese Patent Application Laid-Open No. 60-215579)

4) 마그네시아-산화물계 화염용사용 취부보수재(일본특개소 59-223277)4) Mounting repair material for magnesia-oxide type flame (Japanese Patent Laid-Open No. 59-223277)

5) 입자크기 44μm 이하의 금속분말을 마그네시아등의 고융점재료에 피복하여 제조한 용사재료(일본특개소 60-161379)5) Thermal spraying material manufactured by coating metal powder with particle size of 44μm or less on high melting point material such as magnesia (Japanese Patent Application Laid-Open No. 60-161379)

6) 화염온도를 높여 용사재료의 부착율을 향상시킬 목적으로 코크스 분말을 첨가하여 제조된 용사재료(일본특개소 62-41772)6) Thermal spraying material manufactured by adding coke powder for the purpose of increasing the flame temperature and improving the adhesion rate of thermal spraying material (Japanese Patent Application No. 62-41772).

등이 알려져 있다. 그러나 상기 종래 용사재료들은 다음과 같은 문제점이 있다.Etc. are known. However, the conventional thermal spray materials have the following problems.

즉, 상기 1)의 용사재료는 마그네시아가 2850℃의 고내화도를 가지는 물질이므로 용사시공시 프로판가스와 산소에 의한 화염온도인 2500-2600℃ 정도로는 용융되지 않는 점에 착안하여 이소결성 산화물인 실리카, 알루미나, 스피넬등을 마그네시아 입자 표면에 피복하는 것을 특징으로 하지만, 이것은 마그네시아 입자에 이소결성 산화물을 피복한 방법임으로 66-73% 정도로 부착율이 아주 낮아 경제성이 없으며 산업상 실용성이 뒤떨어지는 문제점이 있다.That is, since the thermal spray material of 1) is magnesia having a high refractory degree of 2850 ° C., silica is an sinterable oxide in view of the fact that it is not melted at about 2500-2600 ° C. which is a flame temperature by propane gas and oxygen during thermal spraying. , Alumina, spinel, etc., is coated on the surface of the magnesia particles, but this is a method of coating the sintered oxide on the magnesia particles, the adhesion rate is very low, about 66-73%, economical and inferior in industrial practicality have.

또한, 상기 2)의 용사재료는 마그네시아-크롬광을 주골재로 사용하기 때문에 용사할때 산화크롬의 고온증발의 우려가 있으며, 다량의 코크스 분말을 사용하고 있어 실제 용사시공량은 코크스 분말의 양만큼 많은양의 용사재료를 용사하여야 되므로 비효울적인 문제점이 있다.In addition, since the thermal spraying material of 2) uses magnesia-chrome ore as the main aggregate, there is a fear of high temperature evaporation of chromium oxide during thermal spraying, and the actual thermal spraying amount is the amount of coke powder. As the amount of thermal spraying material must be sprayed, there is an ineffective problem.

또한, 상기 3)의 용사재료는 마그네시아 골재에 포틀란드 시멘트를 첨가한 용사재료로서 용사시공체는 포틀란드 시멘트의 주성분인 CaO와 SiO2에 의해 CaO-MgO-SiO2의 3성분계가 형성되어 머위나이트, 몬티셀라이트, 아케마나이트등의 저융점물질이 다량으로 생성되기 쉬운 문제점이 있다.In addition, the thermal spraying material of 3) is a thermal spraying material in which Portland cement is added to the magnesia aggregate, and the thermal spraying body is formed of CaO-MgO-SiO 2 by CaO and SiO 2 , which are the main components of the Portland cement. There is a problem in that low melting point materials such as nitrite, monticelite, akemenite, and the like are easily produced in large quantities.

또한, 상기 4)의 용사재료는 상기 2)의 용사재료와 마찬가지로 많은 양의 코크스 분말을 첨가 사용하는 취부 보수재로서, 고체연료인 코크스의 연소에 의한 회분생성에 의하여 알루미나(Al2O3), 산화규소(SiO2),산화철(Fe2O3)원을 생성시키므로 다량의 코크스 분말을 사용하여야만 된다. 따라서, 높은 용사효율을 기대하기는 어려운 문제점이 있다.In addition, the thermal spraying material of 4) is a mounting repair material using a large amount of coke powder as in the thermal spraying material of 2), and alumina (Al 2 O 3 ), A large amount of coke powder must be used because it generates silicon oxide (SiO 2 ) and iron oxide (Fe 2 O 3 ) sources. Therefore, it is difficult to expect high spray efficiency.

또한, 상기 5)의 용사재료는 고융점의 원료에 발열성 이산화성(易酸化性) 금속분말만을 사용하기 때문에 고융점의 원료를 충분히 용융시키지 못해 용사효율이 60% 정도로 아주 낮은 결점을 가진다. 또한, 상기 6)의 용사재료는 코크스 분말을 첨가, 사용함으로써 4)의 용사재료와 같은 결점을 가진다.In addition, since the thermal spraying material of 5) uses only pyrogenic dioxide metal powder for the raw material having a high melting point, the thermal spraying material does not sufficiently melt the raw material having a high melting point, and has a very low spraying efficiency of about 60%. The thermal spraying material of 6) has the same drawbacks as the thermal spraying material of 4) by adding and using coke powder.

이와같이 종래의 용사재료들은 마그네시아 분말이 고융점 물질이므로 마그네시아계 분말용사재료를 용사시공할때 용융되지 않으므로 마그네시아 분말 입자를 용사시공체중의 내화골재로서 부착될 수 있도록 하기위하여 소량의 저융점 분말 원료를 첨가하여 사용하거나, 이소결성 분말 혹은 이산화성 금속분말을 피복하여 사용해 왔는데, 이들 마그네시아계 용사재료들은 부착율이 낮거나 용사시공체의 물리적, 기계적 특성이 저하되는 등의 문제가 있었다.As the conventional spraying materials are not melted when the magnesia-based powder spraying material is sprayed because the magnesia powder is a high melting point material, a small amount of low-melting-point powder raw material is used to attach the magnesia powder particles as a fireproof aggregate in the spraying body. It has been used in addition to, or coated with sinterable powder or metal dioxide powder, these magnesia-based spraying materials had problems such as low adhesion rate or deteriorated physical and mechanical properties of the sprayed body.

따라서, 본 발명은 상기의 결점을 극복하기 위하여, 마그네시아계 내화성 골재 분말에 전로슬래그와 금속분말을 첨가, 피복하여 부착율이 극히 높고, 용사시공체의 물리적, 기계적 특성이 우수하고 산업상 이용가치가 높은 화염용사용 마그네시아계 분말재료 및 그 제조방법을 제공하고자 하는데, 그 목적이 있다.Therefore, in order to overcome the above-mentioned drawback, the present invention adds and coats converter slag and metal powder to magnesia-based fire resistant aggregate powder, and has a very high adhesion rate, excellent physical and mechanical properties of the sprayed body, and industrial use value. To provide a high flame magnesia-based powder material and a method for producing the same, the object is to.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 화염용사용 분말재료에 있어서, 마그네시아 분말:72-94.9중량%, 슬래그:5-25중량%, 및 금속분말:0.1-3.0중량%로 조성되고; 그리고 상기 마그네시아 중량에 대하여 0.8-3.0중량%의 바인더에의해 상기 슬래그 및 금속분말이 상기 마그네시아 분말 표면에 피복된 화염용사용 마그네시아계 분말재료에 관한 것이다.In the powder material for flame use, the composition is composed of magnesia powder: 72-94.9% by weight, slag: 5-25% by weight, and metal powder: 0.1-3.0% by weight; And it relates to a magnesia-based powder material for flame, wherein the slag and metal powder is coated on the surface of the magnesia powder by a binder of 0.8-3.0% by weight relative to the weight of the magnesia.

또한, 본 발명은 화염용사용 분말재료에 있어서 마그네시아 분말:50-79.5중량%, MgO-Al2O3스피넬및 알루미나 분말중 단독 또는 복합분말:32.0중량% 이하, 슬래그:5-25중량%, 및 금속분말:0.1-3.0중량%로 조성되고; 그리고 상기 마그네시아, MgO-Al2O3스피넬 및 알루미나 분말의 중량에 대하여 0.8-3.0중량%의 바인더에 의해 상기 슬래그 및 금속분말이 상기 마그네시아 분말, MgO-Al2O3스피넬 및 알루미나 분말의 표면에 피복된 화염용사용 마그네시아계 분말재료에 관한 것이다.In addition, the present invention is a magnesia powder: 50-79.5% by weight, MgO-Al 2 O 3 spinel and alumina powder in the powder material for use in flame, or composite powder: 32.0% by weight or less, slag: 5-25% by weight, And metal powder: 0.1-3.0% by weight; And a surface of the magnesia, MgO-Al 2 O 3 spinel, and the slag by a binder of 0.8-3.0% by weight based on the weight of the alumina powder and the metal powder is a powder of magnesia, MgO-Al 2 O 3 spinel, and alumina powder A magnesia-based powder material for use with a coated flame.

또한, 본 발명은 제1도에도 나타난 바와같이 화염용사용 분말재료를 제조하는 방법에 있어서, 최종 분말재료의 중량에 대하여 72-94.9중량%의 마그네시아 분말에 마그네시아 분말의 중량에 대하여 5-10중량%의 바인더를 첨가한 후, 혼련하여 마그네시아 분말 표면에 바인더를 피복시키거나 또는 최종 분말재료의 중량에 대하여 50-79.5중량%의 마그네시아 분말 및 최종 분말재료의 중량에 대하여 32.0중량% 이하의MgO-Al2O3스피넬 및 알루미나 분말 단독 또는 복합분말로 이루어진 배합분말에 배합분말 중량에 대하여5-10중량%의 바인더를 첨가한 후, 혼련하여 배합분말 표면에 바인더를 피복시키는 단계; 최종 분말재료의 중량에 대하여 5-25중량%의 슬래그 및 0.1-3.0중량%의 금속분말을 상기와 같이 바인더가 피복된 피복물에 첨가하여 가압 혼련하는 단계; 상기와 같이 가압 혼련된 가압 혼련물을 건조하는 단계; 및 상기와같이 건조된 혼련물(용사체)을 분쇄하여 체가름하는 단계를 포함하여 구성되는 화염용사용 마그네시아계 분말재료의 제조방법에 관한 것이다.In addition, the present invention, as shown in Figure 1 in the method for producing a powder for use for flame, magnesia powder to 72 to 94.9% by weight of the weight of the final powder material to 5 to 10% by weight of the magnesia powder After adding% binder, kneading to coat the binder on the surface of the magnesia powder or 50-79.5% by weight of the magnesia powder to the weight of the final powder material and 32.0% by weight or less of the MgO- Adding 5-10% by weight of the binder to the blended powder consisting of Al 2 O 3 spinel and alumina powder alone or composite powder, followed by kneading to coat the binder on the blended powder surface; Pressure kneading by adding 5-25 wt% slag and 0.1-3.0 wt% metal powder to the binder-coated coating as described above with respect to the weight of the final powder material; Drying the pressure kneaded mixture as described above; And it relates to a method for producing a fire-use magnesia-based powder material comprising a step of pulverizing the kneaded material (spray body) dried as described above.

이하, 상기 성분들의 수치한정 이유등에 대하여 설명한다.Hereinafter, reasons for numerical limitation of the above components will be described.

상기 MgO는 고융점물질로서 내화골재 역활을 하는데, 그 함량이 너무 적은 경우에는 물리, 화학적 성질 즉, 내식성 및 강도가 저하되고, 기공율이 증가하는 문제점이 있고, 너무 많은 경우에는 물리, 화학적 성질은 양호하지만, 화염용사시 부착성이 떨어지므로, 상기 MgO 함량은 72-94.9중량%로 제한하는 것이 바람직하다.The MgO serves as a refractory aggregate as a high melting point material, if the content is too small, the physical and chemical properties, that is, the corrosion resistance and strength is lowered, the porosity is increased, if too many physical and chemical properties Good, but poor adhesion in flame spraying, the MgO content is preferably limited to 72-94.9% by weight.

통상, 용사재료를 용사하기 위해 사용되는 용사장치의 버너 노즐(burner nozzle)의 용사재료 분출구멍 크기는 대량 2mm 정도로서, 운반개스(carrier gas)(용사재료 운반용 개스)에 의한 용사, 분출이 양호한 용사재료의 최대 입자크기는 0.5mm 이하로 제한되고 있다.In general, the spraying material ejection hole size of the burner nozzle of the thermal spraying device used to spray the spraying material is about 2 mm in mass, and the spraying by the carrier gas (the spraying material conveying gas) is good. The maximum particle size of the material is limited to 0.5 mm or less.

따라서, 최종 분말 용사재료의 입자크기를 0.5mm 이하로 조정하면서 슬래그/금속분말을 양호하게 피복할 수 있는 주성분 MgO 분말의 최대 입경은 70mesh 통과분인 210μm 이하로 제한하는 것이 바람직하다.Therefore, it is preferable to limit the maximum particle diameter of the main component MgO powder capable of satisfactorily covering the slag / metal powder while adjusting the particle size of the final powder spraying material to 0.5 mm or less to 210 μm or less, which is 70 mesh passage.

또한, 상기 MgO 분말의 일부를 MgO-Al2O3스피넬 분말 및 알루미나 분말중 단독 또는 복합으로 대체시킬 수 있는데, 이들 분말을 대체시키므로써 내열충격성이 향상된다.In addition, a part of the MgO powder may be replaced by a single or a combination of MgO-Al 2 O 3 spinel powder and alumina powder, the thermal shock resistance is improved by replacing these powders.

그러나, MgO 분말과 대체되는 분말의 양은 최종 분말재료의 중량에 대하여 32.0중량% 이하가 바람직한데, 그 이유는 32.0중량% 이상이 되면 화염용사시 부착성이 떨어지기 때문이다.However, the amount of powder to be replaced with MgO powder is preferably 32.0% by weight or less based on the weight of the final powder material, because when it is 32.0% by weight or more, adhesion is reduced during flame spraying.

또한, 상기 MgO-Al2O3스피넬 분말 및 알루미나 분말의 입자크기는 44μm 이하로 제한하는 것이 바람직하다.In addition, the particle size of the MgO-Al 2 O 3 spinel powder and alumina powder is preferably limited to 44μm or less.

본 발명의 분말재료를 제조할때 첨가되는 바인더(binder)로는 통상적인 바인더는 어느 것이나 가능하며,그 대표적인 예로서 PVA, CMC, 아라빅검(arabic gum), PVB, 당밀, 페놀수지등을 들 수 있으며, 그 첨가량은 바인더의 종류에 따라 다소 다르지만 MgO 분말, MgO-AlO3스피넬 분말 및 알루미나 분말의 중량에 대하여 5-10중량%로 제한하는 것이 바람직하며, 보다 바람직한 첨가량은 5-7중량%이다.As a binder added when preparing the powder material of the present invention, any conventional binder may be used, and representative examples thereof include PVA, CMC, arabic gum, PVB, molasses, and phenol resins. Although the amount of addition varies somewhat depending on the type of binder, the amount of MgO powder, MgO-AlO 3 spinel powder and alumina powder is preferably limited to 5-10% by weight, more preferably 5-7% by weight. .

상기 슬래그는 저융점물질로서 MgO 분말에 피복되어 용사시공시 용융에 의해 분말재료의 부착성을 향상시키기 위하여 첨가되는 것으로써, 그 첨가량이 5중량% 이하인 경우에는 저융점물질의 양이 너무 부족하여 용사시공체는 치밀해지지만 부착율이 현저히 감소하여 실용성이 띨어지고,25중량%를 초과하는 경우에는 저융점물질의 양이 상대적으로 많아져서 용사시공체가 다공화되고 높은 강도도 얻기 어려우므로, 상기 슬래그의 첨가량은 5-25중량%로 제한하는 것이 바람직하다.The slag is coated with MgO powder as a low melting point material and added to improve adhesion of the powder material by melting during spraying. When the added amount is 5 wt% or less, the amount of the low melting point material is too short. Although the sprayed body becomes dense, the adhesion rate decreases considerably, and the practicality decreases. When the sprayed body exceeds 25% by weight, the amount of the low melting point material increases relatively, so that the sprayed body becomes porous and hard to obtain high strength. The amount of slag added is preferably limited to 5-25% by weight.

본 발명에 사용될 수 있는 슬래그로는 전로슬래그등을 들 수 있으며, 이들과 유사한 용융점을 가지는 저융점물질도 사용가능하다.Slags that can be used in the present invention include converter slag and the like, low melting point material having a similar melting point can be used.

상기 금속분말은 화염용사시 발열반응에 의해 화염의 열효율을 증가시켜 용사재료의 용사효율 즉, 부착효율을 높이기 위하여 첨가되는 것으로써, 그 첨가량이 0.1중량% 이하인 경우에는 그 첨가효과가 없고,3.0중량% 이상인 경우에는 용사시공체 내에서 과도하게 별열하여 부품(Swelling) 현상이 생겨 용사시공체가 다공화되고 강도가 급격히 감소되므로, 금속분말의 첨가량은 0.1-3.0중량%로 제한하는 것이 바람직하다.The metal powder is added to increase the thermal efficiency of the flame by the exothermic reaction during flame spraying to increase the spraying efficiency of the thermal spraying material, that is, the adhesion efficiency, and when the amount is 0.1 wt% or less, the addition effect is not 3.0 In the case of more than% by weight, excessively separate in the sprayed body, so that a swelling phenomenon occurs, the sprayed body becomes porous and the strength decreases rapidly. Therefore, the amount of the metal powder is preferably limited to 0.1-3.0% by weight.

상기 금속분말로는 발열성 특히 산화후 마그네시아 또는 알루미나를 발생시키는 것이면 어느 것이나 사용가능한데, 그 예로서는 Mg-Al 합금분말, Mg 분말, 및 Al 분말등을 들 수 있다.The metal powder may be any one that generates magnesia or alumina after pyrogenicity, particularly after oxidation, and examples thereof include Mg-Al alloy powder, Mg powder, and Al powder.

상기 금속분말중에서 Mg 분말은 폭발성이 있어 취급상 위험하고, 가격적으로도 고가임으로 Mg-Al 합금분말과 Al 분말이 적당하며, 특히, 마그네시아를 발생시키는 Mg-Al 합금분말이 보다 바람직하다.Among the metal powders, Mg powder is explosive, which is dangerous in handling and expensive, and Mg-Al alloy powder and Al powder are suitable, and Mg-Al alloy powder which generates magnesia is particularly preferable.

슬래그는 제철소의 제철, 제강조업시 부생되는 괴상의 부산물로서 본 발명의 경우에는 이들을 분쇄하여 슬래그중에 함유되어 있는 강성분(Fe)을 자석으로 탈철한 후 사용한다.Slag is a by-product by mass produced in steelmaking and steelmaking in steel mills. In the present invention, the slag is pulverized and used after magnetizing steel components (Fe) contained in the slag.

이때, 분쇄하는 과정에서 슬래그의 최대 입자크기를 1.0μm 보다 작게 하려면 분급 장치를 별도로 사용해야 하므로 제조비용이 증가할 뿐만 아니라 혼련시 충분한 분산상태를 얻기가 어렵고,44μm를 초과하는 경우에는 최대입경 210μm 이하인 MgO 입자에 피복하여 최대 입자크기 0.5mm 이하의 용사재료 제조가 곤란해지므로, 상기 슬래그의 최대 입자크기는 1.0-4.4μm로 제한하는 것이 바람직하다.At this time, in order to make the maximum particle size of the slag smaller than 1.0μm in the crushing process, a classification apparatus must be used separately, so that the manufacturing cost increases and it is difficult to obtain a sufficient dispersion state when kneading, and when it exceeds 44μm, the maximum particle size is 210μm or less. It is preferable to limit the maximum particle size of the slag to 1.0-4.4 μm because it becomes difficult to coat the MgO particles to produce a spray material having a maximum particle size of 0.5 mm or less.

또한, 상기 금속분말의 경우에도 최대 입자크기가 1.0μm 이하인 경우 혼련시 충분한 분산상태를 얻기 어렵고,44μm를 초과하는 경우에는 최대입경 210μm 이하인 MgO 입자에 피복하여 최대 입자크기 0.5mm 이하의 용사재료 제조가 곤란하므로, 상기 금속분말의 최대 입자크기는 1.0-44μm로 제한하는 것이 바람직하다.In addition, even in the case of the metal powder, when the maximum particle size is 1.0 μm or less, it is difficult to obtain a sufficient dispersion state when kneading, and when it exceeds 44 μm, it is coated with MgO particles having a maximum particle size of 210 μm or less to prepare a spray material having a maximum particle size of 0.5 mm or less. Since it is difficult, the maximum particle size of the metal powder is preferably limited to 1.0-44 μm.

한편, 상기 MgO-Al2O3및 알루미나 분말은 슬래그와 금속분말을 가압 혼련한 다음, 바인더와 함께 첨가하여 혼련할 수도 있다.On the other hand, the MgO-Al 2 O 3 and the alumina powder may be kneaded by adding the slag and the metal powder and then kneading with a binder.

상기 슬래그와 금속분말을 일정량 첨가한 후 가압 혼련한 후 내화성 골재와 피복한 분말 원료의 치밀성을 유지하기 위하여 그대로 건조하는 것이 바람직하며, 산업상 생산성을 고려하여 통상의 건조로에서 100-150℃에서 24시간 정도 건조하는 것이 바람직하다.After the slag and the metal powder is added in a predetermined amount, it is preferable to dry it as it is, in order to maintain the compactness of the refractory aggregate and the coated powder raw material after pressure kneading. It is preferable to dry about time.

상기와 같이 혼련물을 분쇄하여 일정한 입자크기로 체가름 함으로써 제2도에서와 같은 화염용사용 분말재료가 제조된다.By pulverizing the kneaded product as described above and sieving to a constant particle size, a flame spray powder material as shown in FIG.

제2도에서, M은 마그네시아 입자, S는 MgO-Al2O3 스피넬, 금속분말입자, S는 전로슬래그 입자를 나타낸다.In FIG. 2, M represents magnesia particles, S represents MgO-Al 2 O 3 spinel, metal powder particles, and S represents converter slag particles.

이때, 화염용사용 분말재료의 최대 입자크기는 0.5mm 이하(35mesh 통과)로 제한하는 것이 바람직한데,그 이유는 통상의 용사장치의 버너노즐의 크기에서 대용량의 용사장치까지 적용가능한 입자크기의 용사재료가 되고, 실용성을 높일 수 있기 때문이다.At this time, the maximum particle size of the flame spray powder material is preferably limited to 0.5mm or less (35 mesh pass), because the spray of the particle size applicable to the burner nozzle size of the conventional spraying equipment to a large-capacity spraying equipment It is because it becomes a material and can improve practicality.

이하, 실시예를 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

(실시예)(Example)

입경 210μm 이하의 마그네시아 분말과 입경 44μm 이하의 MgO-Al2O3스피넬 분말, 입경 44μm 이하의 알루미나 분말을 기본 내화성 분말 골재로 하여 바인더를 6중량% 첨가한 후 30분간 혼련하여, 최대입경44μm 이하의 전로슬래그와 Mg-Al 분말 혹은 Al 분말을 하기 표 1와 첨가량으로 첨가하여 가압혼련한 후 혼련물을 건조온도 120℃에서 24시간 건조한 다음, 최종 혼련물을 입경 0.5mm 이하로 체가름하여 화염용사용 분말재료를 제조하였다.Magnesia powder with a particle size of 210 μm or less, MgO-Al 2 O 3 spinel powder with a particle size of 44 μm or less, and alumina powder with a particle size of 44 μm or less are added as a basic refractory powder aggregate, followed by kneading for 30 minutes, followed by kneading for 30 minutes. The furnace slag and Mg-Al powder or Al powder were added in the following Table 1 and the addition amount, and the mixture was pressurized and kneaded, and then the mixture was dried at a drying temperature of 120 ° C. for 24 hours. A thermal spray powder was prepared.

상기와 같이 제조된 화염용사용 분말재료를 프로판가스 15Nm/hr, 산소 75Nm3/hr의 조건으로 얻어진 화염을 이용하여 40kg/hr의 용사속도로 용사하여 용사시공체를 얻었다.The thermal spraying powder prepared as described above was sprayed at a spraying speed of 40 kg / hr using a flame obtained under the conditions of propane gas 15 Nm / hr and oxygen 75 Nm 3 / hr to obtain a sprayed body.

이때, 용사시 용사중단과 동시에 급냉에 의한 열충격을 방지하기 위하여 용사중단 즉시 적열된 상태의 용사시공체를 1400℃로 가열한 전기로 안에 넣은 후 노냉시켰다.At this time, in order to prevent thermal shock due to quenching at the same time as the spraying during spraying, the sprayed construction body in the state of being heated immediately after spraying was put into the electric furnace heated to 1400 ° C. and then cooled.

상기와 같이 제조된 용사시공체에 대하여 기공율(%), 용사재료 부착율(중량%) 및 꺾임강도를 측정하고,그 결과를 하기 표 1에 나타내었다.The porosity (%), the spraying material adhesion rate (% by weight) and the bending strength of the thermally sprayed body manufactured as described above were measured, and the results are shown in Table 1 below.

이때 기공율은 KSL 3114의 방법으로, 부착율은 용사한 용사재료의 중량에 대해 부착된 용사시공체의 중량비의 백분율로, 꺾임강도는 4점법으로 측정하였다.The porosity was measured by the method of KSL 3114, the adhesion rate was the percentage of the weight ratio of the sprayed body attached to the weight of the thermal sprayed material, and the bending strength was measured by the 4-point method.

[표 1]TABLE 1

#1 일본, 특개소 59-13673# 1 Japan, special places 59-13673

#2일본, 특개소 60-161379# 2 Japan, special places 60-161379

#3 일본, 특개소 62-41772# 3 Japan, special places 62-41772

$ PVA 첨가량을 나타낸 것임.Indicates the amount of $ PVA added.

상기 표 1에 나타난 바와같이, 본 발명의 용사재료를 용사하여 얻은 용사시공체(발명예 A-L)의 경우에는 92중량% 이상의 부착율,199kg/㎠ 이상의 강도, 및 13.3% 이하의 기공율을 나타내고 있음을 알 수 있다.As shown in Table 1, in the case of the thermal sprayed body obtained by thermal spraying the thermal spraying material of the present invention (Inventive Example AL), the adhesion rate of 92% by weight or more, the strength of 199kg / cm 2 or more, and the porosity of 13.3% or less are shown. It can be seen.

한편, 전로슬래그 20중량% 및 금속분말 4중량%를 첨가한 비교예 F의 경우에는 금속분말의 과다로 용사중의 과격한 산화발열에 의해 용사시공체가 다공화되고 부착율도 저하되며 강도도 급격히 감속됨을 알 수있다.On the other hand, in the case of Comparative Example F in which 20 wt% of converter slag and 4 wt% of metal powder were added, the excessive amount of metal powder caused the oxidized heat of the sprayed body to become porous, the adhesion rate decreased, and the strength decreased rapidly. Able to know.

또한, 금속분말 2.0중량% 첨가에 전로슬래그를 30중량% 첨가한 비교예 G의 경우에는 금속분말의 영향은 충분하지만 전로슬래그, 즉 저융점물질의 함량이 너무 많아 용사시공체의 특성이 저하된다.In addition, in the case of Comparative Example G in which the converter slag was added 30 wt% to the 2.0 wt% of the metal powder, the effect of the metal powder was sufficient, but the properties of the sprayed slag were reduced because the content of the converter slag, that is, the low melting point material was too high. .

또한, 전로슬래그를 너무 적게 첨가한 비교예 H의 경우에는 저융점 물질의 함량이 적어 용사시공체는 기공율 9.5%도 치밀해지지만 부착율이 56% 정도밖에 되지 않아 경제성이 띨어진다.In addition, in the case of Comparative Example H in which too little converter slag is added, the content of the low melting point material is low, so that the sprayed body has a high porosity of 9.5%, but the adhesion rate is only about 56%, resulting in economical efficiency.

또한, 금속분말을 첨가하지 않고 전로슬래그도 0.lmm 이하의 분말을 사용하여 단순혼련에 의해 제조한 용사재료를 용사한 종래예 I의 경우에는 본 발명에 비하여 부착성이 미흡하고 강도가 상당히 떨어지며, 전로슬래그를 첨가하지 않은 종래예 J의 경우에도 역시 기공율과 부착율이 현저히 떨어짐을 알 수 있다.In addition, in the case of the conventional example I which sprayed the spraying material manufactured by the simple kneading using the powder of which the converter slag was not more than 0.1 mm without the addition of the metal powder, the adhesiveness was insufficient and the strength was considerably inferior as compared with the present invention. In the case of the conventional example J without addition of the converter slag, it can be seen that the porosity and the adhesion rate are also significantly decreased.

또한, 마그네시아 분말이외에 코크스 분말만을 사용한 종래예 K의 경우에는 비교적 치밀한 용사시공체를 얻을 수는 있지만, 높은 부착율을 기대하기 어렵고 다량의 코크스 사용에 따른 용사효율의 저하가 우려된다.In addition, in the case of the conventional example K using only coke powder in addition to magnesia powder, a relatively dense sprayed body can be obtained, but it is difficult to expect a high adhesion rate, and there is a fear of lowering the spray efficiency due to the use of a large amount of coke.

상술한 바와같이 본 발명은 기존의 마그네시아계 분말용사보수 재료보다 우수한 부착성과 물리적, 기계적특성을 나타내고 치밀한 용사시공체를 얻을 수 있어서, 용사보수 효과의 향상으로 제강요로의 각종 염기성내화물에 대한 열간 용사보수재료로서 이용이 가능하여 제강요로의 사용수명 향상을 가할 수 있는 효과가있는 것이다.As described above, the present invention exhibits better adhesion and physical and mechanical properties than the conventional magnesia powder spray repair material, and obtains a dense thermal sprayed body. Thus, the thermal spraying of various basic refractories in steelmaking furnaces can be improved by improving the spray repair effect. It can be used as a repair material, which has the effect of improving the service life of steelmaking furnaces.

Claims (4)

화염용사용 분말재료에 있어서, 최대 입자크기 210μm 이하의 마그네시아 분말:72-94.9중량%, 최대입자크기 44μm 이하의 전로슬래그:5-25중량%, 및 최대 입자크기 44μm 이하의 금속분말:0.1-3.0중량%로 조성되고; 상기 마그네시아 중량에 대하여 0.8-3.0중량%의 바인더에 의해 상기 슬래그 및 금속분말이 상기 마그네시아 분말 표면에 피복되고; 그리고 그 입자크기가 0.5mm 이하인 것을 특징으로 하는 화염용사용 마그네아계 분말재료.Magnesia powder having a maximum particle size of 210 μm or less: 72-94.9 wt%, converter slag having a maximum particle size of 44 μm or less: 5-25 wt%, and a metal powder having a maximum particle size of 44 μm or less: 0.1- 3.0 wt%; The slag and the metal powder are coated on the surface of the magnesia powder by a binder of 0.8-3.0% by weight based on the weight of the magnesia; Magnesium powder for use in flames, characterized in that the particle size is 0.5mm or less. 화염용사용 분말재료에 있어서, 최대 입자크기 210μm 이하의 마그네시아 분말:50-79.5중량%, 최대입자크기 MgO-Al2O3스피넬 및 알루미나 분말중 단독 또는 복합분말:32.0중량% 이하, 최대 입자크기44μm 이하의 전로슬래그:5-25중량%, 및 금속분말:0.1-3.0중량%로 조성되고; 상기 마그네시아, MgO-Al2O3스피넬 및 알루미나 분말의 중량에 대하여 0.8-3.0중량%의 바인더에 의해 상기 전로슬래그 및 금속분말이 상기 마그네시아 분말, MgO-Al2O3스피넬 및 알루미나 분말의 표면에 피복되고; 그리고 그 입자크기가 0.5mm 이하인 것을 특징으로 하는 화염용사용 마그네시아계 분말재료.Magnesium powder with a maximum particle size of 210 μm or less: 50-79.5% by weight, maximum particle size MgO-Al 2 O 3 spinel and alumina powder: 32.0% by weight or less, maximum particle size Converter slag of 44 μm or less: 5-25 wt%, and metal powder: 0.1-3.0 wt%; By a binder of 0.8-3.0 weight% based on the weight of said magnesia, MgO-Al 2 O 3 spinel, and alumina powder on the surface of the converter slag and the magnesia powder is metal powder, MgO-Al 2 O 3 spinel, and alumina powder Covered; And the magnesia-based powder material for use, characterized in that the particle size is 0.5mm or less. 화염용사용 분말재료를 제조하는 방법에 있어서, 최종 분말재료의 중량에 대하여 72-94.8중량%의 입자크기 210μm 이하인 마그네시아 분말에 마그네시아 분말의 중량에 대하여 5-l0중량%의 바인더를 첨가한 후, 혼련하여 마그네시아 분말 표면에 바인더를 피복시키는 단계; 최종 분말재료의 중량에 대하여 5-25중량%의 최대 입자크기 44μm 이하인 전로슬래그 및 0.1-3.0중량%의 최대 입자크기 44μm 이하인 금속분말을 상기와 같이 바인더가 피복된 피복물에 첨가하여 가압 혼련하는 단계; 상기와 같이 가압 혼련된 가압혼련물을 100-150℃의 온도범위에서 건조하는 단계; 및 상기와 같이 건조된 혼련물을 분쇄하여 입자크기 0.5mm 이하로 체가름하는 단계를 포함하여 구성됨을 특징으로 하는 화염용사용 마그네시아 분말재료의 제조방법.In the method for producing the powder for flame use, after adding the binder of 5-10% by weight to the weight of the magnesia powder to the magnesia powder of 210-94.8% by weight of the particle size 210μm or less with respect to the weight of the final powder material, Kneading to coat the binder on the surface of the magnesia powder; Pressure kneading by adding a converter slag having a maximum particle size of 44 μm or less and a metal particle having a maximum particle size of 44 μm or less with a maximum particle size of 5-25 wt% based on the weight of the final powder material to the binder-coated coating as described above. ; Drying the pressure kneaded mixture as described above under a temperature range of 100-150 ° C .; And pulverizing the dried kneaded material as described above, and sieving to a particle size of 0.5 mm or less. 화염용사용 분말재료를 제조하는 방법에 있어서, 최종 분말재료의 중량에 대하여 50-79.5중량%의 입자크기 210μm 이하인 마그네시아 분말 및 32.0중량% 이하의 MgO-Al2O3스피넬 및 알루미나 분말 단독또는 복합분말로 이루어진 배합분말에 배합분말중량에 대하여 5.0-10.0중량%의 바인더를 첨가한 후, 혼련하여 배합분말 표면에 바인더를 피복시키는 단계; 최종 분말재료의 중량에 대하여 5-25중량%의 최대 입자크기 44μm이하인 전로슬래그 및 0.l-3.0중량%의 최대 입자크기 44μm 이하인 금속분말을 상기와 같이 바인더가 피복된 피복물에 첨가하여 가압 혼련하는 단계; 상기와 같이 가압혼련된 가압혼련물을 100-150℃의 온도범위에서 건조하는 단계; 및 상기와 같이 건조된 혼련물을 분쇄하여 입자크기 0.5mm 이하로 체가름하는 단계를 포함하여 구성됨을 특징으로 하는 화염용사용 마그네시아계 분말재료의 제조방법.In the method for producing the powder for flame use, magnesia powder having a particle size of 210 μm or less of 50-79.5 wt% or less and MgO-Al 2 O 3 spinel and alumina powder of 32.0 wt% or less, based on the weight of the final powder, alone or in combination Adding a binder of 5.0-10.0% by weight based on the weight of the blended powder to the blended powder, followed by kneading to coat the binder on the blended powder surface; Pressure kneading by adding a converter slag having a maximum particle size of 44 μm or less at a maximum particle size of 44 to 25% by weight and a metal powder having a maximum particle size of 44 μm or less at a maximum particle size of 0.1 to 3.0 wt% to the binder-coated coating as described above. Making; Drying the pressure kneaded mixture as described above in a temperature range of 100-150 ° C .; And pulverizing the dried kneaded material as described above, and sieving to a particle size of 0.5 mm or less.
KR1019930023742A 1993-11-09 1993-11-09 Process for the preparation of magnesia powders KR960006237B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930023742A KR960006237B1 (en) 1993-11-09 1993-11-09 Process for the preparation of magnesia powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930023742A KR960006237B1 (en) 1993-11-09 1993-11-09 Process for the preparation of magnesia powders

Publications (2)

Publication Number Publication Date
KR950014033A KR950014033A (en) 1995-06-15
KR960006237B1 true KR960006237B1 (en) 1996-05-11

Family

ID=19367673

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930023742A KR960006237B1 (en) 1993-11-09 1993-11-09 Process for the preparation of magnesia powders

Country Status (1)

Country Link
KR (1) KR960006237B1 (en)

Also Published As

Publication number Publication date
KR950014033A (en) 1995-06-15

Similar Documents

Publication Publication Date Title
US4471059A (en) Carbon-containing refractory
JP3212600B2 (en) Refractory material bound by sialon substrate and method of preparation
KR101283756B1 (en) Chromina-alumina refractory
US4152166A (en) Zircon-containing compositions and ceramic bodies formed from such compositions
KR960006237B1 (en) Process for the preparation of magnesia powders
EP0116194B1 (en) A carbon-containing refractory
KR960006239B1 (en) Process for the preparation of magnesia powders
KR940007226B1 (en) Mo-al203 low expansion flame spray material
JPS6241774A (en) Non-burnt refractory heat insulator
KR100299444B1 (en) Refractory powder for thermal spray coating
KR100213320B1 (en) Process for producing spray deposit
JP2885630B2 (en) Flame spray material
JP2885629B2 (en) Flame spray material
JP3143666B2 (en) Refractory materials for steelmaking furnaces
JPH0421563A (en) Production of magnesia-chrome-based refractory
JPS5934674B2 (en) Basic refractory composition
JPH02274370A (en) Refractories for vessel for pretreatment of molten iron
CA1189093A (en) Carbon-containing refractory
JPH0437029B2 (en)
GB1564927A (en) Bonds for refractory materials
JPH0774090B2 (en) Method for producing alumina-chromia fired body
JPH0510299B2 (en)
JP2872900B2 (en) Flame spray material
JP3009580B2 (en) Flame sprayed material and manufacturing method thereof
JPH09295874A (en) Prepared unshaped refractory containing aluminum oxycarbide

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030506

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee