KR960002520B1 - Particle material removing method of exhaust gas - Google Patents

Particle material removing method of exhaust gas Download PDF

Info

Publication number
KR960002520B1
KR960002520B1 KR1019930005166A KR930005166A KR960002520B1 KR 960002520 B1 KR960002520 B1 KR 960002520B1 KR 1019930005166 A KR1019930005166 A KR 1019930005166A KR 930005166 A KR930005166 A KR 930005166A KR 960002520 B1 KR960002520 B1 KR 960002520B1
Authority
KR
South Korea
Prior art keywords
exhaust gas
trap
particulate matter
filter
diesel vehicle
Prior art date
Application number
KR1019930005166A
Other languages
Korean (ko)
Other versions
KR940021108A (en
Inventor
정현종
김태천
송배근
구본철
장혁상
이정희
권기수
민경철
Original Assignee
주식회사유공
김항덕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사유공, 김항덕 filed Critical 주식회사유공
Priority to KR1019930005166A priority Critical patent/KR960002520B1/en
Publication of KR940021108A publication Critical patent/KR940021108A/en
Application granted granted Critical
Publication of KR960002520B1 publication Critical patent/KR960002520B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/10Filter screens essentially made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1615Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of natural origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2003Glass or glassy material
    • B01D39/2017Glass or glassy material the material being filamentary or fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • B01D39/2051Metallic foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2082Other inorganic materials, e.g. ceramics the material being filamentary or fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2093Ceramic foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

The removal of particulate matters is conducted using both fuel additive-containing diesel and a filtering trap, or a noble metal-coated catalytic trap alone. And heat-insulating material or a housing of heat-insulating material is attached onto the exhaust discharge pipe from engine exhaust part to the filtering trap or the catalytic trap. The fuel additive, of which the concentration is 10-1000ppm, is at least one selected from oil-soluble transition metal compounds (Mn, Fe, Ni, Ce, Co, etc.), alkaline earth metal compounds (Ba, Ca), and lanthanide metal compounds (Ce, etc.).

Description

디젤차량 배기가스중 입자상물질의 제거방법Removal method of particulate matter in diesel vehicle exhaust

본 발명은 디젤차량 배기가스중의 입자상물질을 제거하는 방법에 관한 것이다.The present invention relates to a method for removing particulate matter in diesel vehicle exhaust gas.

현재 디젤차량의 보유비율이 전체 차량의 42%에 달하는 한국에서는 디젤차량의 배기가스로 배출되는 입자상물질이 주요한 대기오염요인으로 대두되고 있다. 디젤차량의 배기가스로 배출되는 입자상물질은 평균직경이 0.3㎛ 정도의 미연소 탄소입자로서 배기가스중의 농도가 환경기준치(1993년 해비듀티 차량의 경우 스모크 규제치 : 40%)를 초과할 경우 시각적으로 심한 불쾌감을 초래할 뿐아니라 암등 인체에 유해한 병을 유발하는 원인이 되고 있다. 따라서, 이러한 입자상물질의 강화된 배출규제가 요구되어 해비듀티 디젤차량의 경우 한국은 1996년에 0.67g/Hp. Hour, 미국은 1994년부터 0.1g/Hp. Hour로 규제를 강화할 예정이지만 아직까지 이를 만족시키는 기술이 상용화되지 못하여 다양한 연구가 활발히 수행되고 있다.In Korea, where the proportion of diesel vehicles is 42% of total vehicles, particulate matter emitted by the exhaust gas of diesel vehicles is a major air pollution factor. Particulate matter discharged from the exhaust gas of diesel vehicles is unburned carbon particles with an average diameter of about 0.3 μm. When the concentration in the exhaust gas exceeds the environmental standard value (the smoke limit of 40% for a heavy duty vehicle in 1993: As well as causing severe discomfort, it is the cause of harmful diseases such as cancer. Therefore, in the case of heavy duty diesel vehicles, in 1996, 0.67 g / Hp. Hour, United States since 1994, 0.1g / Hp. The company plans to strengthen regulations with Hour, but various studies are being actively conducted since the technology that satisfies this has not been commercialized.

입자상물질의 제거기술 개발방향은 엔진의 고효율화를 통한 미연소 물질의 생성억제, 연료첨가제를 이용한 연소성능의 개선, 입자상물질의 후처리기술등이 있으며 엔진의 고효율화 및 연료첨가제를 이용하는 방법은 엔진내에서의 연소효과를 증가시켜 입자상물질이나 매연등의 유해물질을 근본적으로 감소시킬 수 있으나 비용이 과다하게 소요되고, 현재의 기술수준으로는 완벽한 억제가 용이하지 않아 결국은 배기가스를 통해서 배출되고 있는 실정이다. 상기 후처리 기술은 배기가스중의 입자상불질을 여과하는 여과기술과 여과된 입자상물질을 연소하여 여과재를 재생하는 기술로 구성되며 여과기술은 배기가스중의 입자상물질을 효과적으로 포집할 수 있는 성능이 우수한 여과재의 선택과 실제의 차량에 적합하게 응용될 수 있도록 하는 연구에 주력하고 있다.The development direction of the removal of particulate matter includes the suppression of the production of unburned materials through the high efficiency of the engine, the improvement of the combustion performance using the fuel additive, and the post-treatment technology of the particulate matter. It is possible to fundamentally reduce harmful substances such as particulate matter and soot by increasing the combustion effect in Esau, but it is excessively expensive, and it is not easy to be completely suppressed by the current technology level, and is finally discharged through exhaust gas. It is true. The post-treatment technology is composed of a filtration technology for filtering particulate impurities in exhaust gas and a technology for regenerating the filter material by burning the filtered particulate matter. The filtration technology has an excellent ability to effectively collect particulate matter in exhaust gas. The research focuses on the selection of filter media and its application to actual vehicles.

그러나, 입자상물질의 여과에 따른 엔진배기통로의 배압상승으로 여과재를 손상시키고 엔진의 성능저하를 유발하며, 입자상물질의 침착된 여과재를 높은온도 조건에서 연소시킬때 효과적으로 연소시키기 위한 재생기술의 개발이 필요하게 되었다.However, the development of regeneration technology for damaging the filter medium and degrading the engine performance by increasing the back pressure of the engine exhaust passage due to the filtration of particulate matter and effectively burning the deposited filter medium of particulate matter at high temperature conditions. It became necessary.

현재까지 가장 널리 알려진 재생기술은 버너, 히터등을 이용하여 2차 에너지를 공급하거나 쒼背틀링으로 배기가스 온도를 높여 재생하는 방법과 연료에 촉매를 첨가하거나 촉매를 여과재에 침착시켜 재생시키는 방법이 있다.The most widely known regeneration technology to date is a method of supplying secondary energy by using a burner, a heater, or the like by regenerating the exhaust gas by raising the exhaust gas temperature, and adding a catalyst to the fuel or depositing the catalyst on the filter medium. have.

미합중국 특허 제3951613호, 제3761729호, 일본특허 공개 제86225282호에 의하면 연료에 구리, 셀륨, 망간, 규소, 철 등의 유기금속 첨가제를 연료에 주입하여 여과재를 재생하는데, 이 경우 첨가제주입량에 따라 재생성능이 변하며 우수한 재생성능을 나타내도록 첨가제주입량을 높일 경우 일부의 작은 양이 배가가스와 함께 여과재를 거쳐 대기로 배출되어 2차 공해를 유발하는 것으로 알려져 있다.According to US Patent Nos. 3951613, 3761729, and Japanese Patent Publication No. 86225282, fuel, organic metal additives such as copper, selium, manganese, silicon, and iron are injected into the fuel to regenerate the filter material. It is known that when the additive injection amount is increased and the regeneration performance is changed, and the additive injection amount is increased, a small amount of some is discharged to the atmosphere through the filter medium together with the doubling gas, causing secondary pollution.

한국특허 공고 제89-3594호, 미합중국 특허 제5083427호에는 여과재에 백금, 팔라듐, 로듐등의 귀금속촉매를 여과재에 침착시키고 이를 엔진배기관에 장착하여 여과재를 재생하는 방법이 보고되어 있다. 그러나, 이러한 벙법은 여러가지 단점이 있다. 즉, 예를들면 300℃ 정도인 보통의 디젤엔진 배기가스 온도에서는 입자상물질이 효과적으로 연소되지 못한다. 디젤엔진 배기가스 온도는 500℃ 이상으로 올라갈 경우도 있으나 대부분 300℃ 또는 그 이하인 경우가 일반적이다. 예를들면, 시내주행과 같이 간헐적인 고속운전을 제외하고는 서행운전속도이므로 그 온도는 통상적으로 300℃ 또는 그 이하가 된다. 따라서 촉매화된 여과재를 사용하는 경우 낮은 배기가스온도에서 입자상물질이 충분히 연소되지 못하고 과도하게 축적되어 배기가스 배출압력을 상승시키고 과량의 탄소물질이 급격히 연소하므로써 과도한 온도상승에 의해서 여과재가 파손되는 문제가 실제적용상의 큰 문제인 것으로 알려져 있다.Korean Patent Publication No. 89-3594 and US Pat. No. 5083427 report a method of depositing a noble metal catalyst such as platinum, palladium, rhodium, and the like on a filter medium and mounting it on an engine exhaust pipe to regenerate the filter medium. However, this approach has several disadvantages. That is, particulate matter is not effectively combusted at an ordinary diesel engine exhaust gas temperature of, for example, about 300 ° C. Diesel engine exhaust gas temperature may be raised to 500 ℃ or more, but most of the temperature is 300 ℃ or less in general. For example, except for intermittent high speed operation such as city running, the temperature is typically 300 ° C. or lower since it is a slow running speed. Therefore, in the case of using the catalyzed filter medium, particulate matter is not sufficiently burned at low exhaust gas temperature and excessively accumulated, thereby increasing the exhaust gas discharge pressure, and excessive carbon material is rapidly burned, causing the filter medium to be damaged by excessive temperature rise. Is known to be a big problem in practical application.

본 발명자들은 상기의 문제점들을 해결하기 위하여 광범위한 연구를 수행한 결과, 엔진 배기관을 흐르는 배기가스의 온도가 열손실로 인해 여과트랩에서는 엔진배기구보다 낮게 유지된다는 점을 발견하고, 본 발명은 이러한 발견에 기초하여 배기관을 단열시스템으로 개선하므로써 완성되었다.The present inventors have conducted extensive research to solve the above problems and found that the temperature of the exhaust gas flowing through the engine exhaust pipe is kept lower than the engine exhaust pipe in the filter trap due to heat loss. On the basis of this, the exhaust pipe was completed by improving the insulation system.

따라서, 본 발명은 쒼背틀링이나 2차 에너지의 공급없이 배기관내의 온도를 촉매가 작동하는 적절한 온도로 유지시킴으로써 상기 기술의 문제점인 재생효율을 상당히 향상시키는 방법을 제공하는데 그 목적이 있다.It is therefore an object of the present invention to provide a method of significantly improving the regeneration efficiency, which is a problem of the above technique, by maintaining the temperature in the exhaust pipe at an appropriate temperature at which the catalyst operates without quenching or supplying secondary energy.

상기 목적을 달성하고자 본 발명의 방법은 연료첨가제를 함유한 디젤과 여과트랩을 동시에 사용하거나 촉매를 코팅한 여과트랩(이하, 즉 매트랩)을 단독으로 사용하여 입자상 물질을 제거하는데 있어서, 엔진 배기관으로부터 상기 여과트랩에 이르는 배기관 또는 상기 촉매트랩까지를 단열재나 단열재를 함유한 하우징을 장착함으로서 여과트랩의 온도를 높여 입자상물질을 제거하는 방법으로 구성된다.In order to achieve the above object, the method of the present invention removes particulate matter by simultaneously using diesel and filter traps containing a fuel additive or by using a catalyst-coated filter trap (hereinafter, referred to as a mat trap) alone. By mounting a housing containing a heat insulating material or a heat insulating material to the exhaust pipe leading to the filter trap or up to the catalyst trap is configured to increase the temperature of the filter trap to remove particulate matter.

본 발명에서 사용하는 여과트랩은 연료첨가제를 사용할 경우에는 세라믹퐁, 세라믹 화이버 필터, 오픈 플로우 세라믹하니컴, 웰 플로우 하니컴 모노리스, 오픈 플로우 메탈하니컴, 메탈폼, 메탈메쉬등 디젤 입자상 물질 여과에 유용한 것으로 이미 공지된 모든 삼차원 구조물이 사용될 수 있으며 이에 특별한 제한은 없다.The filter trap used in the present invention is useful for filtration of diesel particulate matter such as ceramic pong, ceramic fiber filter, open flow ceramic honeycomb, well flow honeycomb monolith, open flow metal honeycomb, metal foam, metal mesh, etc. All known three-dimensional structures can be used and there is no particular limitation.

본 발명에 사용하는 연료첨가제는 유용성 전이금속화합물(Mn, Fe, Ni, Ce, Cu, Co등), 알칼리토금속화합물(Ba, Ca), 란타나이드계금속화합물(Ce등)중 1종 또는 2종 이상을 디젤에 첨가시켰을때 매연억제에 유용한 것으로 이미 공지된 모든 조연첨가제가 사용될 수 있으며 이에 특별한 제한은 없다.One or two of the fuel additives used in the present invention are oil-soluble transition metal compounds (Mn, Fe, Ni, Ce, Cu, Co, etc.), alkaline earth metal compounds (Ba, Ca), and lanthanide metal compounds (Ce, etc.). When added more than one species to the diesel can be used for all fuel additives known to be useful for suppressing soot, there is no particular limitation.

본 발명에서 사용하는 촉매트랩은 상기 여과트랩에 백금, 로듐, 팔라듐등 1종 또는 2종이상의 백금속금속을 코팅하여 제작한 것으로 디젤 입자상물질의 여과 및 재생에 유용한 것으로 이미 공지된 삼차원 구조물이 사용될 수 있으며 이에 특별한 제한은 없다.The catalyst trap used in the present invention is produced by coating one or two or more kinds of white metals such as platinum, rhodium, and palladium on the filter traps, and a three-dimensional structure already known to be useful for filtration and regeneration of diesel particulates may be used. There is no special limitation to this.

본 발명에서 사용하는 단열재는 석면, 미네랄 화이버, 셀룰라 글래스, 칼슘 실리케이트, 실리카 에어로젤, 다이아로마이트등 일반적으로 300℃ 이상의 고온에서도 단열성능이 우수한 것으로 이미 공지된 물질에 특별한 제한은 없다. 엔진 배기관부터 여과트랩이나 촉매트랩까지를 단열재나 단열재를 함유한 하우징을 장착하고 연료첨가제를 함유한 디젤을 주입하였다.Insulation materials used in the present invention is asbestos, mineral fibers, cell glass, calcium silicate, silica airgel, diatomite, etc. In general, there is no particular limitation to materials that are known to have excellent heat insulation performance even at high temperatures of 300 ° C or higher. From the engine exhaust pipe to the filter trap or the catalyst trap, a housing containing a heat insulating material or a heat insulating material was mounted, and diesel containing a fuel additive was injected.

이상과 같은 방법으로 연료첨가제와 여과트랩을 동시에 사용한 경우 트랩내의 온도가 50℃~150℃정도 상승하여 저속, 저부하에서도 재생이 쉽게 일어났음은 물론이고, 촉매트랩만 사용했을 때에도 입자상물질의 과다한 축적없이 재생이 용이하게 일어나서 과다한 배압의 변화로 인한 여과재의 손상을 최소화할 수 있었다.When the fuel additive and the filter trap are used at the same time as described above, the temperature inside the trap is increased by 50 ° C to 150 ° C, so that regeneration is easily performed even at low speed and low load, and even when only the catalyst trap is used, Regeneration could easily occur without accumulation, minimizing damage to the filter media due to excessive back pressure changes.

이하, 실시예 및 비교예를 통해 본 발명의 구성 및 그 효과를 구체적으로 설명하기로 하나, 이 예가 발명의 범주를 제한하지는 않는다.Hereinafter, the configuration and effects of the present invention will be described in detail with reference to Examples and Comparative Examples, but the examples do not limit the scope of the present invention.

[실시예1]Example 1

디젤연료 혼합물의 입자방출을 측정하기 위해 입자트랩 다이나모메타 실험을 실시하였다. 페터 AV-B 수퍼차지드 단일실린더 디젤 실험용 엔진이 사용되었다. 이 엔진은 코팅 EX-54세라믹 단일체 여과기와 연결되었다. 엔지배기관에서 여과트랩까지의 석면테이프(제일화학사의 Pack Non Drop Worp)로 두께가 5㎜가 되도록 감았다. 세륨나프테네이트를 500ppm 함유한 디젤조성물 15ℓ를 제조한다. 상기 디젤연료 조성물을 엔진에 주입하고 착화시 운전파워를 기록한다. 기존연료를 주입하여 운전속도 2250±20rpm, 냉각수온도 100±2℃, 오일온도 90±2℃, 오일압력 2.5±0.2bar, 공기투입구 압력 2280±15mbar의 정상운전조건에서 엔진의 바이패스 밸브를 잠그고 여과트랩 밸브를 연다. 엔진에서 방출된 입자가 여과기에 쌓임에 따라 엔진과 여과트랩 사이의 압력이 증가한다. 쒼背틀 밸브를 조작하여 5분마다 파워를 0.6KW씩 올려 압력이 급격히 감소하는 순간까지 트랩후단의 온도, 압력을 측정한다. 이때 재생이 일어나는 시간과 온도, 압력의 변화관계는 하기 표1과 같다.Particle trap dynamometer experiments were conducted to measure particle emissions of diesel fuel mixtures. A Peter AV-B supercharged single cylinder diesel engine was used. The engine was connected to a coated EX-54 ceramic monolithic filter. Asbestos tape (Pack Non Drop Worp from Cheil Chemical Co., Ltd.) from the engine exhaust pipe to the filter trap was wound to a thickness of 5 mm. 15 L of a diesel composition containing 500 ppm of cerium naphthenate is prepared. Inject the diesel fuel composition into the engine and record the operating power at ignition. By inserting the existing fuel, the engine bypass valve is shut off under normal operating conditions of 2250 ± 20rpm, coolant temperature 100 ± 2 ℃, oil temperature 90 ± 2 ℃, oil pressure 2.5 ± 0.2bar, air inlet pressure 2280 ± 15mbar. Open the filter trap valve. As the particles released from the engine accumulate in the filter, the pressure between the engine and the filter trap increases. Operate the chute valve and increase the power by 0.6KW every 5 minutes to measure the temperature and pressure at the end of the trap until the moment the pressure decreases rapidly. At this time, the relationship between the regeneration time and the temperature, pressure is shown in Table 1.

[비교예][Comparative Example]

실시예 1의 장치에서 석면테이프를 제거한 후 실시예 1과 동일한 조건에서 실험하였으며, 이때 재생이 일어나는 시간과 온도, 압력의 변화관계는 하기 표2와 같다.After removing the asbestos tape in the apparatus of Example 1, the experiment was carried out under the same conditions as in Example 1, wherein the time of regeneration occurs, and the change in temperature and pressure is shown in Table 2 below.

[표 1]TABLE 1

[표 2]TABLE 2

상기 표1과 2에서 알 수 있듯이 본 발명의 연료첨가제와 여과재를 동시에 사용하여 디젤 입자상물질에 제거하는 장치에 단열재를 부착하는 방법은 저파워, 저배압에서도 단시간에 쉽게 재생이 일어남을 알 수 있다.As can be seen from Tables 1 and 2, the method of attaching the insulation to the diesel particulate matter removal apparatus using the fuel additive and the filter medium of the present invention can be seen that the regeneration occurs easily in a short time even at low power and low back pressure. .

[실시예2]Example 2

월 플로우 하니컴 모노리스에 알루미나와 알루미나를 기준으로 백금과 팔라듐이 각각 0.5wt% 장착된 촉매여과재를 트랩에 조립한 후 페터 AV-B 슈퍼차지도 단일 실린더 디젤 실험용 엔진의 배기관에 장착하였다. 엔진배기관으로부터 촉매트랩까지를 감싸는 하우징을 충진두께가 8㎜가 되도록 제작하여 부착한 후, 배기관에서 촉매트랩에 이르는 배기장치와 하우징 사이의 공간에 칼슘실리케이트 분말을 충진하였다. 첨가제가 들어가지 않는 디젤을 시험용 연료로 사용하여 실시예 1과 동일한 운전조건에서 실험하였으며, 이때 재생이 일어나는 시간과 온도, 압력의 변화관계는 하기 표3과 같다.The wall flow honeycomb monolith was equipped with alumina and alumina-based platinum filter and palladium-based catalyst filter, respectively, in a trap, and then the Peter AV-B supercharger was mounted on the exhaust pipe of a single-cylinder diesel engine. The housing surrounding the catalyst trap from the engine exhaust pipe to the catalyst trap was fabricated and attached so that the filling thickness was 8 mm, and then calcium silicate powder was filled in the space between the exhaust device and the housing from the exhaust pipe to the catalyst trap. Using the additive-free diesel as a test fuel was tested under the same operating conditions as in Example 1, wherein the regeneration time, temperature, pressure change relationship is shown in Table 3.

[비교예2]Comparative Example 2

실시예 2의 장치에서 칼슘실리케이트 하우징을 제거한 후 실시예 2와 같은 조건에서 실험하였으며, 이때 재생이 일어나는 시간과 온도, 압력의 변화관계는 하기 표4와 같다.After the calcium silicate housing was removed from the apparatus of Example 2, the experiment was carried out under the same conditions as in Example 2, and the relationship between the time at which regeneration occurred, the temperature, and the pressure change was shown in Table 4 below.

[표 3]TABLE 3

[표 4]TABLE 4

상기 표3과 4에서 알 수 있듯이 본 발명의 촉매트랩만을 단독으로 사용하여 디젤 입자상물질을 제거하는 장치에 단열재를 부착하는 방법은 저파워, 저배압에서도 단시간에 쉽게 재생이 일어나므로 배압의 급격한 변화로 인한 여과재의 손상을 최소화할 수 있음을 알 수 있다. 따라서, 실제차량에 적용시 단열재를 부착하는 것만으로 저속, 저부하의 운전조건에서 촉매트랩이 재생되는 온도를 유지할 수 있어서, 2차 에너지를 공급하는 경우에 필요한 많은 장치를 제거할 수 있으므로 양산시 저렵하게 제작할 수 있는 장점이 있다.As can be seen from Tables 3 and 4, the method of attaching the insulating material to the apparatus for removing diesel particulate matter using only the catalyst trap of the present invention alone is low power, so that regeneration occurs easily in a short time even at low back pressure, so the rapid change in back pressure It can be seen that the damage caused by the filter medium can be minimized. Therefore, it is possible to maintain the temperature at which the catalyst trap is regenerated under low-speed and low-load operating conditions by simply attaching heat insulator when applied to the actual vehicle, thus eliminating many devices necessary for supplying secondary energy. There is an advantage that can be made.

Claims (7)

연료첨가제를 함유한 디젤과 여과트랩을 동시에 사용하거나 또는 촉매트랩만을 단독으로 사용하여 입자상물질을 제거하는데 있어서, 엔진배기관부터 상기 여과트랩에 이르는 배기관, 상기 촉매트랩까지를 단열재나 단열재가 함유된 하우징을 부착하여 디젤차량 배기가스중의 입자상물질을 제거하는 방법.In order to remove particulate matter by using a diesel and fuel trap containing a fuel additive at the same time or by using only the catalyst trap alone, the exhaust pipe from the engine exhaust pipe to the filter trap and the catalyst trap contain a heat insulating material or a heat insulating material housing. To remove particulate matter in diesel vehicle exhaust gas. 제1항에 있어서, 상기 연료첨가제가 유용성 전이금속화합물(Mn, Fe, Ni, Ce, Cu, Co등), 알칼리토금속화합물(Ba, Ca), 란타나이드계 금속화합물(Ce등)중 1종 또는 2종 이상인 것을 특징으로 하는 디젤차량 배기가스중의 입자상물질을 제거하는 방법.The fuel additive of claim 1, wherein the fuel additive is one of oil-soluble transition metal compounds (Mn, Fe, Ni, Ce, Cu, Co, etc.), alkaline earth metal compounds (Ba, Ca), and lanthanide metal compounds (Ce, etc.). Or at least two kinds of particulate matters in the diesel vehicle exhaust gas. 제1항에 있어서, 상기 연료첨가제농도가 10~1000ppm인 것을 특징으로 하는 디젤차량 배기가스중의 입자상물질을 제거하는 방법.The method for removing particulate matter in a diesel vehicle exhaust gas according to claim 1, wherein the fuel additive concentration is 10 to 1000 ppm. 제1항에 있어서, 상기 여과트랩이 세라믹폼, 세라믹화이버필터, 오플플로우세라믹 하니컴, 월플로우 하니컴 모노리스, 오픈플로우 메탈하니컴, 메탈폼, 메탈메쉬중 하나의 여과재로 제조된 것을 특징으로 하는 디젤차량 배기가스중의 입자상물질을 제거하는 방법.The diesel vehicle according to claim 1, wherein the filter trap is made of one of a filter material of ceramic foam, ceramic fiber filter, opflow ceramic honeycomb, wallflow honeycomb monolith, openflow metal honeycomb, metal foam, and metal mesh. A method for removing particulate matter in exhaust gas. 제1항에 있어서, 상기 촉매트랩이 제4항의 여과재에 금속촉매가 침착된 것을 특징으로 하는 디젤차량 배기가스중의 입자상물질을 제거하는 방법.The method of claim 1, wherein the catalyst trap is a metal catalyst deposited on the filter medium of claim 4 to remove particulate matter in the diesel vehicle exhaust gas. 제5항에 있어서, 상기 금속촉매가 백금, 로듐, 팔라듐등의 백금속 금속이 1종 또는 2종 이상이 침착된 것을 특징으로 하는 디젤차량 배기가스중의 입자상물질을 제거하는 방법.The method of removing particulate matter in a diesel vehicle exhaust gas according to claim 5, wherein the metal catalyst is one or two or more kinds of platinum metals such as platinum, rhodium, and palladium are deposited. 제1항에 있어서, 상기 단열재가 석면, 미네랄화이버, 셀룰라글래스, 칼슘실리케이트, 다이아토마이트, 미네랄을, 화이버글래스중 1종 또는 2종 이상의 혼합물로 구성되는 것을 특징으로 하는 디젤차량 배기가스중의 입자상물질을 제거하는 방법.2. The diesel vehicle exhaust gas according to claim 1, wherein the heat insulating material comprises asbestos, mineral fiber, cell glass, calcium silicate, diatomite, and minerals of one kind or a mixture of two or more kinds of fiberglass. How to remove particulate matter.
KR1019930005166A 1993-03-30 1993-03-30 Particle material removing method of exhaust gas KR960002520B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930005166A KR960002520B1 (en) 1993-03-30 1993-03-30 Particle material removing method of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930005166A KR960002520B1 (en) 1993-03-30 1993-03-30 Particle material removing method of exhaust gas

Publications (2)

Publication Number Publication Date
KR940021108A KR940021108A (en) 1994-10-17
KR960002520B1 true KR960002520B1 (en) 1996-02-22

Family

ID=19353111

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930005166A KR960002520B1 (en) 1993-03-30 1993-03-30 Particle material removing method of exhaust gas

Country Status (1)

Country Link
KR (1) KR960002520B1 (en)

Also Published As

Publication number Publication date
KR940021108A (en) 1994-10-17

Similar Documents

Publication Publication Date Title
KR100605005B1 (en) Catalytic soot filter and use thereof in treatment of lean exhaust gases
Hawker Diesel emission control technology
JP3113662B2 (en) Catalyst for exhaust gas purification of diesel engines
CA1285493C (en) Method and apparatus for filtering solid particulate matter from diesel engine exhaust
KR100595407B1 (en) Particulate matter reducing apparatus
KR100629208B1 (en) Exhaust purifier
KR20170142154A (en) Particulate filter with hydrogen sulphide block function
JP2004036609A (en) Particle filter having catalytically active coating for accelerating incineration of deposited soot particle in stage of regeneration
EP0194131B1 (en) Method and apparatus for filtering solid particulate matter from diesel engine exhaust
KR960005493B1 (en) Process for the preparation of catalyst to remove particle from diesel engine
JP3344371B2 (en) Exhaust gas purification device for internal combustion engine
KR960003793B1 (en) Catalyst filter for particle removal from diesel vehicle and the manufacturing process thereof
KR960002520B1 (en) Particle material removing method of exhaust gas
Bach et al. Combination of different regeneration methods for diesel particulate traps
JPS61135917A (en) Exhaust gas fine particles purifying device for diesel engine
Fanick et al. Emissions reduction performance of a bimetallic platinum/cerium fuel borne catalyst with several diesel particulate filters on different sulfur fuels
CN206111288U (en) Porous ceramic honey comb particle trap of Cordierite wall -flow type
CN111120048A (en) Graphene diesel engine tail gas purification device
CN216617625U (en) Self-cleaning tail gas purification system for heavy diesel special vehicle
KR950002477B1 (en) Method of removing particulates among diesel vehicles exhaust gas
JP2002180818A (en) Exhaust emission control device of internal combustion engine
JP2001349212A (en) Automobile exhaust emission control device by windable filter
Matsunuma et al. Status of particulate trap system for a heavy duty diesel truck
JPH1030429A (en) Particulate burning method and filter structure of exhaust black smoke removing device
JP3096466B2 (en) Purification method of diesel engine exhaust gas

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121122

Year of fee payment: 18

EXPY Expiration of term