KR950008533B1 - Control devices output of hydraulic pump - Google Patents
Control devices output of hydraulic pump Download PDFInfo
- Publication number
- KR950008533B1 KR950008533B1 KR1019910021924A KR910021924A KR950008533B1 KR 950008533 B1 KR950008533 B1 KR 950008533B1 KR 1019910021924 A KR1019910021924 A KR 1019910021924A KR 910021924 A KR910021924 A KR 910021924A KR 950008533 B1 KR950008533 B1 KR 950008533B1
- Authority
- KR
- South Korea
- Prior art keywords
- flow rate
- pump
- output
- discharge
- hydraulic
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B9/00—Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member
- F15B9/02—Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type
- F15B9/08—Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type controlled by valves affecting the fluid feed or the fluid outlet of the servomotor
- F15B9/09—Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type controlled by valves affecting the fluid feed or the fluid outlet of the servomotor with electrical control means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
- F02D29/04—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2221—Control of flow rate; Load sensing arrangements
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2246—Control of prime movers, e.g. depending on the hydraulic load of work tools
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2292—Systems with two or more pumps
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2296—Systems with a variable displacement pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/04—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
- F15B11/042—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
- F15B11/0423—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in" by controlling pump output or bypass, other than to maintain constant speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20546—Type of pump variable capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6306—Electronic controllers using input signals representing a pressure
- F15B2211/6309—Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6346—Electronic controllers using input signals representing a state of input means, e.g. joystick position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/665—Methods of control using electronic components
- F15B2211/6652—Control of the pressure source, e.g. control of the swash plate angle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/665—Methods of control using electronic components
- F15B2211/6654—Flow rate control
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fluid-Pressure Circuits (AREA)
- Operation Control Of Excavators (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
Description
제1도는 본 발명의 실시예를 나타낸 펌프출력 제어장치의 유압회로도,1 is a hydraulic circuit diagram of a pump output control device showing an embodiment of the present invention,
제2도는 본 발명의 레귤레이터의 상세도를 나타낸 유압회로도,2 is a hydraulic circuit diagram showing a detailed view of the regulator of the present invention,
제3도는 본 발명의 콘트롤러 내부구조를 나타낸 개략도.Figure 3 is a schematic diagram showing the internal structure of the controller of the present invention.
제4도는 본 발명의 콘트롤러에 의한 제어프로그램의 순서도,4 is a flowchart of a control program by the controller of the present invention;
제5도는 본 발명의 조작수단의 조작량에 따른 출력전압특성을 나타낸 그래프.5 is a graph showing the output voltage characteristics according to the amount of operation of the operation means of the present invention.
제6도는 본 발명의 직류증폭기의 입력전압과 출력전류와의 특성을 나타낸 그래프.6 is a graph showing the characteristics of the input voltage and output current of the DC amplifier of the present invention.
제7도는 본 발명의 전자비례 감압밸브의 입출력 특성을 나타낸 그래프.7 is a graph showing the input and output characteristics of the electromagnetic proportional pressure reducing valve of the present invention.
제8도는 본 발명의 펌프 레귤레이터의 네가티브 특성을 나타낸 그래프,8 is a graph showing the negative characteristics of the pump regulator of the present invention,
제9도는 조작수단의 펌프토출 요구 유량의 단계와 펌프 출력 특성을 나타낸 선도.9 is a diagram showing the stage of the pump discharge demand flow rate and the pump output characteristics of the operating means.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
1 : 콘트롤러 2 : 원동기1 controller 2 prime mover
3 : 가변용량형 유압펌프 4 : 제3펌프3: variable displacement hydraulic pump 4: third pump
5 : 레귤레이터 6a,6b : 펌프제어용 전자비례 감압밸브5: Regulator 6a, 6b: Electronic proportional pressure reducing valve for pump control
7a,7b : 전자비례 감압밸브 블록, 8 : 유량제어밸브블록,7a, 7b: electromagnetic proportional pressure reducing valve block, 8: flow control valve block,
9 : 유압모터 10 : 유압실린더9: hydraulic motor 10: hydraulic cylinder
11 : 조작수단 12 : 출력선택수단11: operation means 12: output selection means
본 발명은 유압굴삭기, 유압크레인 등과 같이 원동기의 회전력에 의해 구동되는 유압펌프의 토출유량 제어장치에 관한 것으로, 구체적으로는 유압펌프의 토출유량에 의해 작동되는 유압 액츄에이터를 구비한 유압기계 장치에 있어서, 원동기에 과부하가 걸리지 않고 원동기의 출력을 최대한 활용할 수 있도록 펌프토출량을 제어하고, 또한 고부하 영역에서도 운전자의 조작성이 양호해지도록 조작신호에 따른 펌프의 출력유량을 최적으로 제어하는 유압펌프의 토출유량 제어장치에 관한 것이다.The present invention relates to a discharge flow rate control device for a hydraulic pump driven by the rotational force of the prime mover, such as a hydraulic excavator, hydraulic crane, etc. Specifically, in a hydraulic machine device having a hydraulic actuator operated by the discharge flow rate of the hydraulic pump The discharge flow rate of the hydraulic pump to control the pump discharge rate so that the output of the prime mover can be utilized to the maximum without overloading the prime mover, and to optimally control the output flow rate of the pump according to the operation signal so that the driver's operability is improved even in a high load region. It relates to a control device.
일반적으로 최근에 사용되는 유압구동회로는 원동기의 출력을 최대한 활용하여 작업효율을 증대시키고, 작업종류 또는 부하의 크기에 따라 최대출력을 미리 설정하여 불필요한 에너지 손실을 최대한 줄이도록 노력하고 있다.In general, hydraulic drive circuits used in recent years are trying to maximize the output of the prime mover to increase the work efficiency, and to minimize the unnecessary energy loss by setting the maximum output in advance according to the type of work or load size.
즉, 가변용량형 유압펌프의 토출유량은 원동기의 회전수와 펌프 경사판의 경전량의 곱에 정해지게 되므로 토출유량은 경전량의 증가와 함께 증가된다.That is, the discharge flow rate of the variable displacement hydraulic pump is determined by the product of the rotational speed of the prime mover and the amount of warp of the pump inclined plate, so the discharge flow rate increases with the increase of the amount of warp.
그런데 유압펌프의 구동은 원동기에 의하여 행해지므로 유압펌프로부터의 입력토오크가 원동기의 출력보다 크게 되면 즉, 원동기에 과부하가 걸리게 되면 원동기의 회전수가 감소되고, 더 큰 과부하가 계속해서 걸리게 되면 정지하게 된다.However, since the driving of the hydraulic pump is performed by the prime mover, if the input torque from the hydraulic pump is greater than the output of the prime mover, that is, if the prime mover is overloaded, the number of revolutions of the prime mover is reduced, and if the greater overload continues, the motor stops. .
따라서, 종래에는 원동기의 출력범위 안에서 유압펌프의 입력토오크를 제한하여 조절하면서 최대출력을 활동할 수 있도록 펌프의 사판 경전량을 조절하여 입력토오크를 제한하여 주는 레귤레이터를 설치하여 사용함으로서 자기 펌프와의 상대펌프(단독시는 자기펌프만)의 입력을 피드 백(Feed Back)받아 압력이 증가하면 토출유량을 감소하도록 하고, 압력이 감소하면 유량을 줄여 원동 기어 출력을 최대한 활용할 수 있도록 되어 있다.Therefore, conventionally, by adjusting and adjusting the input torque of the hydraulic pump within the output range of the prime mover, by installing a regulator that limits the input torque by adjusting the swash plate tilt amount of the pump to operate the maximum output relative to the magnetic pump The feed back of the pump (only the magnetic pump only) is fed back to reduce the discharge flow rate when the pressure increases, and to reduce the flow rate when the pressure decreases to make the best use of the motive gear output.
이러한 방식은 유압회로를 통해 목적을 달성할 수 있도록 되어 있어 구조가 매우 복잡하여 제작에 어려움이 많을 뿐만 아니라 기술적인 한계가 있어 그 효율정도가 다소 저하되는 문제가 있었고, 펌프의 출력 크기를 제한하는 유압회로나 운전자의 조작수단(레버나 페달)에 비례한 토출량을 토출해주는데 있어서, 네가티브(Negative) 방식을 이루는 구조등을 포함시켜 유압회로를 구성해야 하므로 그 구조가 매우 복잡하게 구성되어 있었다.This method is designed to achieve the purpose through the hydraulic circuit, which is very complicated in structure and difficult to manufacture, and there is a problem that the degree of efficiency decreases slightly due to technical limitations. In discharging the discharge amount in proportion to the hydraulic circuit or the driver's operation means (lever or pedal), the hydraulic circuit must be configured to include a negative structure and the like.
그리고, 저부하 영역에서 운전자의 조작수단에 비례하여 유량이 토출되나, 고부하 영역으로 갈수록 사판 경전량의 조작각이 일정이상이 되면 조작량에 관계없이 최대 토출량을 토출시키게 되어 운전자의 조작영역이 작아지고 또한 조작성도 한계가 있어 좋지 못하는 등의 문제가 있었다.In addition, the flow rate is discharged in proportion to the driver's operation means in the low load region, but when the operating angle of the swash plate tilting amount becomes higher than a certain amount toward the high load region, the maximum discharge amount is discharged regardless of the operation amount, and the driver's operation region becomes smaller. In addition, there was a problem such as poor operability is limited.
따라서, 본 발명은 상기와 같은 문제점들을 제거하기 위하여 창출된 것으로서, 운전자의 조작량의 요구유량과 원동기의 최대출력의 제한에 따른 펌프의 최대 토출가능 유량을 콘트롤러를 통해 비교하여 요구 토출유량을 간단히 연산 출력을 함으로서 레귤레이터 구조를 간단하게 하고 조작을 용이하게 하는데 목적이 있다.Therefore, the present invention was created to eliminate the above problems, and simply calculates the required discharge flow rate by comparing the maximum dischargeable flow rate of the pump according to the limitation of the driver's operation amount and the maximum output of the prime mover through the controller. The purpose is to simplify the regulator structure and to facilitate operation by outputting.
다른 목적은, 펌프의 출력압력을 검출하여 펌프의 최대 토출가능유량을 역산하여 원동기의 출력제한치 하에서 펌프의 출력을 최대로 증가시켜 에너지 요출을 증가시키고 작업성능을 향상시키는 데 있다.Another object is to detect the output pressure of the pump and invert the maximum dischargeable flow rate of the pump to increase the output of the pump to the maximum under the output limit of the prime mover, thereby increasing energy outflow and improving work performance.
또 다른 목적은, 작업에 필요로 하는 펌프특성 곡선을 기계적으로 구현하기가 매우 어려운 것을 원하는 형태 그대로 콘트롤러를 통해 손쉽게 구현하도록 하고, 불필요한 에너지 낭비를 막을 수 있도록 하는데 있다.Another purpose is to make it easy to implement the pump characteristic curve required for the work mechanically in the desired form through the controller, and to prevent unnecessary waste of energy.
또 다른 목적은, 고부하 영역에서도 운전자의 최대 조작가에 따라서 토출유량을 비례적으로 조절하여줌으로써 유연하고 세밀한 조작성을 향상시킬 수 있도록 하는데 있다.Still another object is to improve the flexibility and detailed operability by adjusting the discharge flow rate proportionally according to the maximum operator of the driver even in a high load region.
상기의 목적을 달성하기 위한 본 발명의 구성은 다음과 같다.The configuration of the present invention for achieving the above object is as follows.
원동기(2)의 회전력에 의하여 구동되는 최소한 한개 이상의 가변용량형 유압펌프(3)와 이 유압펌프(3)의 토출유량에 의하여 작동되는 복수개의 유압 액튜에이터(9)At least one variable displacement hydraulic pump 3 driven by the rotational force of the prime mover 2 and the plurality of hydraulic actuators 9 operated by the discharge flow rate of the hydraulic pump 3.
(10)와 상기 유압펌프(3)로부터 상기 액튜에이터(9)(10)에 전달되는 작동유의 흐름방향과 흐름양을 조절하는 복수의 유량제어밸브(8)와 운전자의 조작량을 전기신호(전압 또는 전류)로 바꾸어 출력하는 조작수단(11)을 구비한 유압기계장치에 있어서, 상기 원동기(2)의 출력마력크기를 제한하는 전기적 조절장치를 가지고 있어서 그 최대크기를 선택하는 출력선택수단(12)과, 상기 용량형 유압펌프(3)의 사판 경전각을 조절하여 토출유량을 변화시켜 주는 레귤레이터(5)와, 상기 레귤레이터(5)를 조절하기 위해 제어신호를 일정유압을 발생시키는 제3펌프(4)로부터 압유를 공급받아 입력전기신호량에 따라 파이롯트압을 발생시켜 레귤레이터(5)을 조절해주는 전자비례 감압밸브(6a)(6b)와, 상기 가변용량형 유압펌프(3)의 토출압력을 검출하는 제1검출수단(14a,14b)과 상기 구성요소들의 입·출력 신호들을 제어하는 전자식 콘트롤러(1)로 구성되어 있다. 상기와 같이 구성된 본 발명의 작용효과를 설명하면 다음과 같다.(10) and a plurality of flow control valves (8) for adjusting the flow direction and the flow amount of the hydraulic fluid transmitted from the hydraulic pump (3) to the actuator (9) (10) and the operation amount of the driver to the electric signal (voltage or A hydraulic machine device having an operating means (11) for converting and outputting electric current), the output selecting means (12) having an electrical control device for limiting the output horsepower size of the prime mover (2) to select the maximum size thereof And a regulator 5 for varying the discharge flow rate by adjusting the swash plate tilt angle of the displacement hydraulic pump 3, and a third pump for generating a constant hydraulic pressure in order to control the regulator 5. 4) the proportional pressure reducing valve (6a) (6b) and the discharge pressure of the variable displacement hydraulic pump (3) to control the regulator (5) by generating a pressure pressure according to the input electric signal amount received from the pressure oil First detecting means 14a, 14b for detecting and It is composed of an electronic controller (1) for controlling the input and output signals of the components. Referring to the effects of the present invention configured as described above are as follows.
운전자가 원하는 소정의 작업을 하기 위해 조작수단을 통해 조작을 하면, 조작신호에 따라 각 액투에이터의 작동요구유량이 연산되고 연산된 각각의 작동요구 유량은 작 엑튜에이터를 조절하는 유량 조절밸브의 열림량이 연산되고, 또한 각 작동요구 유량의 합에 의해 펌프 입력 요구 유량을 연산하게 된다. 그리고, 상기 출력 선택수단으로부터 기입력되어 설정되어 있는 출력 마력 선도로부터 상기 제1검출수단을 통해 검출한 토출압력으로부터 부하상태에 따른 최대 토출가능유량을 계산한다.When the operator operates through the operation means to perform the desired work, the operating demand flow rate of each actuator is calculated according to the operation signal, and the calculated operation demand flow rate is opened by the flow control valve that controls the work actuator. The amount is calculated and the pump input required flow rate is calculated by the sum of the respective operating demand flow rates. Then, the maximum dischargeable flow rate in accordance with the load state is calculated from the discharge pressure detected through the first detection means from the output horsepower diagram previously input and set from the output selection means.
그리하여, 펌프입력요구 유량과 최대 토출가능유량을 비교하는 비교수단을 거쳐 펌프입력요구 유량이 최대 토출가능유량보다 크면 최대 토출가능유량을 펌프출력값으로 하고, 만약, 펌프 압력 요구유량이 최대 토출 가능 유량보다 작거나 같은 경우에는 펌프 요구 유량을 펌프 출력값으로 하여 출력하게 된다.Thus, if the pump input demand flow rate is greater than the maximum dischargeable flow rate, the maximum dischargeable flow rate is set as the pump output value through the comparison means for comparing the pump input demand flow rate and the maximum dischargeable flow rate. In the case of smaller or equal, the pump required flow rate is output as the pump output value.
그러면 출력수단은 이 값을 전기량으로 바꾸어 출력하면 상기의 전자비례 감압밸브를 조절하게 되고, 이에 해당하는 빠이롯트압이 레귤레이터를 작동시켜 사판경전각을 일정위치로 이동시켜 유량을 토출하게 된다.Then, the output means converts this value into an electric quantity and outputs the electric proportional pressure reducing valve. The corresponding pilot pressure operates the regulator to move the swash plate tilt angle to a predetermined position to discharge the flow rate.
이렇게 함으로서 원동기의 출력을 최대로 활용하여 출력을 증가시키고, 조작에 필요한 유량만을 토출하게 됨으로써 유량손실을 최소한으로 줄일 수 있게 된다.In this way, the output of the prime mover is maximized to increase the output, and only the flow rate required for the operation is discharged, thereby reducing the flow rate loss to the minimum.
상기 원동기의 출력마력을 선택하는데 있어서, 원동기의 실제 회전수를 검출하는 제2수단을 구비하고 있어서, 펌프 토출가능유량을 계산하는데 제1검출수단으로서 압력을 검출하여 이에 따른 유량을 계산한다.In selecting the output horsepower of the prime mover, a second means for detecting the actual number of revolutions of the prime mover is provided, and the pressure is detected as the first detecting means for calculating the pump dischargeable flow rate, and the flow rate is calculated accordingly.
즉, 원동기가 노후화되거나 공기가 부족한 고지대 작업시 또는 기계적인 오차에 의하여 출력이(같은 회전수에서도) 떨어지게 된다. 이때 부하가 걸리면 원동기 회전수가 기준치 이하로 되면 그 점에서의 펌프토출유량은 같은 부하 상태일지라도 유량을 적게 출력하도록 토출유량을 보정하여 펌프 토출가능 유량을 계산한다.In other words, the power output (even at the same rotational speed) is reduced when the prime mover is deteriorated or when the air is high in the highlands, or by mechanical errors. At this time, when the load is applied, if the motor revolution speed is lower than the reference value, the pump discharge flow rate is calculated by correcting the discharge flow rate so as to output a small flow rate even under the same load condition.
상기 제1검출수단을 사용하여 펌프토출유량을 연산하지 않고 대신에 상기 엑투에이터들의 작동속도를 검출하는 복수의 제3검출수단을 구비하고 있어서, 작동속도를 검출하여 엑튜에이터에 작동하는 유량을 통해 펌프토출유량을 계산하고, 제2검출수단으로부터 원동기의 회전수를 검출하여 부하의 변동에 따른 유량편차를 보상하여 줌으로서 유압펌프의 최대토출가능유량을 연산하는 것을 특징으로 하는 펌프토출유량 제어장치이다.It is provided with a plurality of third detection means for detecting the operating speed of the actuators instead of calculating the pump discharge flow rate using the first detection means, through the flow rate to detect the operating speed to operate the actuator The pump discharge flow rate control apparatus for calculating the pump discharge flow rate, and calculates the maximum dischargeable flow rate of the hydraulic pump by detecting the rotational speed of the prime mover from the second detection means to compensate for the flow rate variation in accordance with the load change to be.
또한 상기의 펌프압력 요구유량을 연산하는데 있어서, 부하의 크기에 따라 조작수단의 요구유량값이 변하는 것을 특징으로 하여서 운전자는 항상 조작수단의 풀스토로크(full stroke)를 조절하여 유량을 요구하게 되도록 연산하는 구조를 갖도록 되어 있어 있는 것을 특징으로 하는 펌프 토출유량 제어장치이다.In the calculation of the pump pressure required flow rate, the required flow rate value of the operation means is changed according to the magnitude of the load, so that the driver always requests the flow rate by adjusting the full stroke of the operation means. It is a pump discharge flow control apparatus characterized by having a structure which calculates.
다음은 도면을 참조하여 본 발명의 실시예를 상세히 설명하기로 한다.Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
제1도는 본 발명을 구현하기 위해서 구성한 펌프 토출유량 제어장치의 개략도1 is a schematic diagram of a pump discharge flow rate control apparatus configured to implement the present invention.
이다.to be.
제2도는 상기 제1도의 콘트롤러의 내부 회로도를 개략적으로도 표현한 것이고, 제4도는 본 발명을 수행하기 위한 전체 알고리즘을 개략적으로 나타낸 플로우차트이다.FIG. 2 is a schematic representation of an internal circuit diagram of the controller of FIG. 1, and FIG. 4 is a flowchart schematically illustrating an entire algorithm for carrying out the present invention.
그러면 제4도의 플로우차트를 통해 본 발명의 내용을 상세히 설명하기로 한다.Next, the contents of the present invention will be described in detail through the flowchart of FIG. 4.
먼저 제3도는 본 발명을 구현하기 위한 콘트롤러의 내부구조를 나타낸 개략도의 일례이다. CPU(25)는 메모리(ROM, 25)에 프로그램으로 입력되어 있는 제어 플로우차트에 의해 본 발명의 내용을 수행한다.First, Figure 3 is an example of a schematic diagram showing the internal structure of the controller for implementing the present invention. The CPU 25 performs the contents of the present invention by a control flowchart inputted to the memory (ROM) 25 as a program.
수준((41)에서 조작수단(11)을 통해 운전자의 입력 조작량(01)에 따른 전기신호(전압 또는 전류)로 입력하면 A/D신호변환 입력부(29)를 통하여 조작량을 읽어들인다. 여기서 조작량 0i와 전기발생신호 Vi의 특성 선도는 제5도와 같이 비례 출력특성을 갖도록 하였다.Inputting an electric signal (voltage or current) according to the driver's input manipulation amount 01 through the manipulation means 11 at the level 41 reads the manipulation amount through the A / D signal conversion input section 29. The characteristic diagrams of 0i and the electric generation signal Vi have a proportional output characteristic as shown in FIG.
또한 수순(42)에서 출력선택수단(12)의 선택모드 M과 원동기(2) 회전수 N를 제2검출수단을 통해 검출하여 읽어들이고, 상기 가변 용량형 유압펌프(3)의 토출압력 P를 즉 부하압력을 제1검출수단(14a,14b)을 통해 읽어들인다. 여기서 본 발명을 구현하기 위해 제2검출수단(15)은 마그네틱업 센서를 통해 원동기(2)의 회전부에 기어구조를 이루어 그 수를 회전수 카운터부(27)를 통해 원동기 회전수로 환산하는 구조를 이루고 있고, 제1검출수단(14a,14b)은 압력변화에 따른 출력 전압의 형태가 비례적인 특성을 갖는 공지된 반도체 압력센서의 일종이다.Further, in step 42, the selection mode M of the output selection means 12 and the rotational speed N of the prime mover 2 are detected and read through the second detection means, and the discharge pressure P of the variable displacement hydraulic pump 3 is read. That is, the load pressure is read out through the first detecting means 14a and 14b. In order to implement the present invention, the second detecting means 15 has a gear structure in the rotating part of the prime mover 2 through the magnetic up sensor and converts the number into the prime mover speed through the speed counter part 27. The first detecting means (14a, 14b) is a kind of known semiconductor pressure sensor having a characteristic that the form of the output voltage according to the pressure change is proportional.
이 압력신호를 A/D신호변환부(28)를 통하여 입력시킨 다음 수순(43)에서 수순(41)에서 읽어들인 조작수단의 조작량 0i에 따른 요구 펌프토출량 Qi를 연산하다. 이는 이미 Qi - f(0i)의 특정값이 입려되어 있어, 예를 들면 제 9 도의 kmax의 값과 같이 (또는 data 값)으로 입력되어 있어 조작수단(11)의 해당되는 조작량에 따라 Qi값이 결정된다.The pressure signal is inputted through the A / D signal conversion unit 28, and then the required pump discharge amount Qi is calculated in accordance with the operation amount 0i of the operation means read in step 41 from step 43. This is already given a specific value of Qi-f (0i), for example, it is inputted as a value (or data value) such as the value of kmax in FIG. 9 so that the Qi value depends on the corresponding operation amount of the operating means 11. Is determined.
물론 조작수단(11)이 복수일 경우 특성선도는 각각 다를 수 있으며, 조작수단Of course, when there are a plurality of operating means 11, the characteristic diagram may be different, respectively,
(11)의 조작량에 대한 해당값들은 모두 합한 값이 요구 펌프 토출량을 Qi가 된다.The sum of the corresponding values for the manipulated value in (11) is the required pump discharge amount Qi.
그 다음 수순(44)에서 실제 펌프 토출가능 유량 Qr을 연산한다.Then, in step 44, the actual pump dischargeable flow rate Qr is calculated.
이 단계에서는 원동기(2)의 최대출력을 제한하는 출력모드에 따라 원동기(2)의 특성선도가 선택되고, 이 특성 선도하에서 실제 원동기 회전수 N을 알고, 유압펌프 압력 P를 통해 펌프의 사용마력In this stage, the characteristic diagram of the prime mover 2 is selected according to the output mode which limits the maximum output of the prime mover 2. Under this characteristic diagram, the actual prime speed of the motor N is known, and the horsepower of the pump through the hydraulic pump pressure P
W = P.Qr = P.D.NW = P.Qr = P.D.N
(Q = D.N)(Q = D.N)
P : 부하입력P: load input
D : 1회전당의 펌프 토출유량D: Pump discharge flow rate per one revolution
W : 원동기 출력마력W: Motor output horsepower
N : 원동기 회전수N: prime mover speed
이 되어 유량펌프(3)가 원동기(2)에 과부하가 걸리지 않고 최대 출력 범위안에서 토출할 수 있는 펌프 토출 가능 유량 Qr이 연산된다.In this way, the pump dischargeable flow rate Qr which the flow rate pump 3 can discharge in the maximum output range, without overloading the prime mover 2 is calculated.
수순(45)에서 수순(43)(44)에서 연산한 조작수단(11)의 요구펌프 투출량(Qi)와 실제 펌프 토출 가능 유량 Qr의 유량펀차 △Q가 영(0)보다 크거나 같으면 즉, 요구 펌프 토출량 Qi가 실제 펌프토출가능 유량 Qi보다 크거나 같으면 이는 과부하 범위이므로 출력을 제한하여 실제 펌프 토출가능유량 Qr을 펌프 토출유량 QO로 한다.If the required pump discharge amount Qi of the operating means 11 calculated in steps 45 to 44 and the flow rate difference ΔQ of the actual pump dischargeable flow rate Qr are greater than or equal to zero (0), that is, If the required pump discharge amount Qi is greater than or equal to the actual pump dischargeable flow rate Qi, this is an overload range, so the output is limited to set the actual pump discharge flow rate Qr to be the pump discharge flow rate QO.
그리하여 수순(49)에서 펌프토출유량 QO를 내기위한 해당 출력전압 VO를 계산하여 출력시키면 콘트롤러(1)의 D/A신호 변환부(32)를 통해 전압이 출력되고, 이 전압신호는 실제로 펌프용 전자 비례 감압 밸브(6a,6b)를 구동시키기 위해 출력신호를 증폭부(33)에서 전류치(I0)로 변환되어(제6도의 감압밸브(6a,6b)는 제7도와 같이 제어신호용 압유를 발생시키는 제3펌프(기어펌프)(4)로부터의 파이롯트 압력을 근원으로 출력 전류치(I0)에 대해 출력 파이롯트 압력 Pi이 변화를 나타내어 이 압력(Pi) 에 따라 사판경전각 θ가 움직여 펌프의 목표 토출량을 토출하게 된다.Thus, when the corresponding output voltage VO for outputting the pump discharge flow rate QO is calculated and output in step 49, the voltage is output through the D / A signal converter 32 of the controller 1, and the voltage signal is actually used for the pump. In order to drive the electromagnetic proportional pressure reducing valves 6a and 6b, the output signal is converted into the current value I0 by the amplifier 33 (the pressure reducing valves 6a and 6b in FIG. 6 generate the hydraulic pressure for the control signal as shown in FIG. Based on the pilot pressure from the third pump (gear pump) 4, the output pilot pressure Pi changes with respect to the output current value I0, and the swash plate diameter angle θ is moved according to this pressure Pi, so that the target discharge amount of the pump is moved. Will be discharged.
이렇게 함으로써 운전자가 원하는 유량을 정확하게 토출하고 또한 원동기에 과부하가 걸리지 않는 범위에서 최대한의 출력을 낼 수 있도록 함으로써 그 효율을 증대시킬 수 있다.In this way, the driver can accurately discharge the desired flow rate, and the efficiency can be increased by providing the maximum output in a range not overloading the prime mover.
수순(43)에서 펌프요구유량을 QI를 연산하는데 있어서, 제 9 도의 조작 수단의 조작량과 펌프요구유량의 특성선도와 제10도의 펌프출력특성선도로부터 운전자의 조작수단(11)으로부터의 입력조작량 0I로부터 펌프 유규유량 QI를 연산하는데 유압펌프In calculating the pump demand flow rate QI in step 43, the input operation amount 0I from the driver's operation means 11 from the characteristic line of the operation amount and pump request flow rate of FIG. 9 and the pump output characteristic line of FIG. To calculate the pump flow rate QI from the hydraulic pump
(3)의 토출압력을 검출하는 제1검출수단으로 토출압력, P를 검출하여 이 압력에 따라 압력 조작량, 0I와 폄프요구유량 QI의 관계식(3) The first detection means for detecting the discharge pressure detects the discharge pressure, P and is a relational expression of the pressure operation amount, 0I and the pump demand flow rate QI according to this pressure.
QI = k ×0I(k : 요구유량계수)QI = k × 0I (k: required flow coefficient)
에서 상기 요구유량계수, k의 값이 증가 또는 감소된다.The value of the required flow coefficient, k, is increased or decreased.
기존에는 펌프토출압력, P하에서, 압력이 변하지 않는 한 조작수단(11)의 요구조작량은 100%이거나 0I에 상관없이 요구유량계수는 특정기울기(예를들면 k=max) 한계로 고정되어 있어서 0I 이상인 경우에는 펌프요구유량은 항상 QI = Q1으로 일정하다.Conventionally, under the pump discharge pressure P, as long as the pressure does not change, the required flow rate of the operating means 11 is 100% or 0I, regardless of 0I, the required flow rate coefficient is fixed to a specific slope (eg k = max) limit so that 0I In this case, the pump demand flow rate is always constant at QI = Q1.
그러나, 본 발명에서는 제2도의 펌프출력 특성선도의 부하압력 변화에 따른 조작수단(11)의 조작량에 대한 펌프요구유량의 관계선도 즉 요구유량계소, k의 최소치However, in the present invention, the relationship diagram of the pump demand flow rate with respect to the operation amount of the operation means 11 according to the load pressure change in the pump output characteristic diagram of FIG.
(kmin)범위, HI에 대하여 펌프토출유량을 결정한다.Pump discharge flow rate is determined for (kmin) range and HI.
즉, 조작수단(11)의 조작량이 0I일때 펌프부하압력이 P1이면 출력 특성곡선, W1에서 유구유량센서는 k1이 연산, 선택되어 펌프요구유량은 Q2가 된다.That is, if the pump load pressure is P1 when the operation amount of the operation means 11 is 0I, the flow rate flow sensor k1 is calculated and selected in the output characteristic curve W1, and the pump demand flow rate is Q2.
또한, 출력선택수단(12)의 선택위치에 따라 부하압력의 변화에 대한 최대펌프요구유량의 크기가 증가 또는 감소할 수 있다. 다시 말하면, 출력선택수단(12)의 선택위치가 출력선도, W1를 선택한 경우에는 이에 따라 요구유량계수의 증감폭은 H1가 된다. 그리하여 부하압력, P1하에서 선택위치가 W1인 경우에는 상기와 같이 요구유량계수가 k1이 되어 펌프요구유량은 Q2가 된다. 그러나, 같은 압력하에서 선택위치가 W2가 되면 요구유량계슈는 k2가 선택되고, 이에 따른 펌프 요구유량은 Q3가 된다. 그리고, 상기 조건하에서 부하압력이 P1에서 p2로 감소된 경우에는 동출력곡선, W1인 경우에서라도 요구유량계수는 k1가 선택되고 동조작량의 위치에서라도 펌프요구유량은 Q4가 된다. 조작수단(11)의 조작이 복합적으로 이루어지는 경우에도 상기의 단독조작시의 펌프요구유량 연산과 같이 제9도의 조작량과 펌프요구유량특성선도 및 제10도의 펌프출력특성선도에 적용하여 펌프요구유량을 연산한다.In addition, the magnitude of the maximum pump demand flow rate with respect to the change in the load pressure can be increased or decreased depending on the selection position of the output selection means 12. In other words, when the selection position of the output selection means 12 selects the output line and W1, the increase / decrease width of the required flow coefficient becomes H1 accordingly. Thus, when the selection position is W1 under the load pressure, P1, the required flow rate coefficient is k1 as described above, and the pump demand flow rate is Q2. However, when the selection position is W2 under the same pressure, the required flowmeter is selected as k2, and the pump demanded flow rate is Q3. When the load pressure is reduced from P1 to p2 under the above conditions, the required flow coefficient k1 is selected even in the case of the dynamic output curve, W1, and the pump demand flow rate is Q4 even at the position of the same operation amount. Even when the operation means 11 is combined, the pump demand flow rate is applied to the operation amount shown in FIG. 9, the pump demand flow rate characteristic diagram, and the pump output characteristic diagram shown in FIG. Calculate
즉, 하나의 유압펌프에 두개의 액튜에이터(9,10)작동이 이루어질 경우, 예를 들면 출력선택수단(12)의 출력선도가 W1, 펌프부하압력이 P1하에서 제1조작수단의 조작량이 01이고, 다른 제2조작수단의 조작량은 02이면 요구유량계수는 k1이 되고 k1에서의 제1펌프요구유량은 Q2, 제2펌프요구유량 Q3을 구할 수 있다. 이둘의 합을 Qt라 하고, k1에서 최대토출가능유량을 Qlmax라 하면 이 두 값을 비교하여 총펌프요구유량이 최대토출가능유량보다 작거나 같으며(즉, Qt >= Q1max) 총펌프요구유량을 펌프요구유량으로 하고(즉, QI = Qt), 다시 총펌프요구유량 Qt이 최대토출가능유량 Qlmax, 보다 크면(즉, Qt =< Q1max), 최대토출가능유량을 펌프요구량으로 선택, 연산한다(즉 QI = Q1max).That is, when two actuators 9 and 10 are operated in one hydraulic pump, for example, the output diagram of the output selection means 12 is W1 and the pump load pressure is P1 and the amount of operation of the first operating means is 01. If the operation amount of the other second operation means is 02, the required flow rate coefficient is k1, and the first pump demand flow rate at k1 is Q2, and the second pump demand flow rate Q3 can be obtained. If the sum of these two is Qt, and the maximum dischargeable flow rate at Q1 is Qlmax, the two pumps are compared and the total pump demand flow rate is less than or equal to the maximum dischargeable flow rate (ie, Qt> = Q1max). Is the pump demand flow rate (ie QI = Qt), and if the total pump demand flow rate Qt is greater than the maximum dischargeable flow rate Qlmax, that is, Qt = <Q1max, the maximum dischargeable flow rate is selected and calculated as the pump demand flow rate. (Ie QI = Q1max).
또한, 제9도에서 펌프에 최대토출유량을 제한하기 위해서 별도의 제3의 선택수단을 추가시킴으로서(또는 출력선택수단(12)에 따라 최대 토출유량 크기도 포함하여 선택될 수도 있다) 이 제3의 선택수단에 의하여 운전자는 작업의 종류에 따라 최대토출유량크기를 선택한다. 그러면 제9도의 특성선도에서 이 선택치에 의해 최대토출유량, Qmax이 결정되고 다시 요구유량계수, k의 값이 제1검출수단으로부터 검출된 펌프토출압력에 따라 펌프요구유량이 연산하는 것을 특징으로 하는 펌프토출유량 제어장치이다.In addition, in FIG. 9, the third discharge means may be added to the pump to limit the maximum discharge flow rate (or may be selected including the maximum discharge flow size according to the output selection means 12). By means of selection, the driver selects the maximum discharge flow size according to the type of work. Then, in the characteristic diagram of FIG. 9, the maximum discharge flow rate, Qmax is determined by this selection value, and the required flow rate coefficient, k, is again calculated according to the pump discharge pressure detected from the first detection means. Pump discharge flow rate control device.
상기의 본 발명에 적용 실시한 예에서는 요구유량계수 k, 및 출력선도 WI로써,직선과 곡선을 각각 적용하였으나, 본 발명에서는 이 형태에 제한을 두지 않고 유압기계장치나 운전자의 요구특성에 따라 그 형태들을 자유로이 변경하여 수기화하거나 데이터화하여 적용할 수 있다.In the example applied to the present invention, the required flow coefficient k and the output line WI, respectively, a straight line and a curve are applied. However, the present invention is not limited to this form but according to the required characteristics of the hydraulic machinery or the driver. These can be freely changed and handwritten or dataized and applied.
이와 같이 조작수단의 조작량, 부항압력, 출력선택수단(12)으로부터 선택된 출력선도의 위치변화에 대하여 최적의 펌프요구유량을 연산하고 이 연산된 값을 펌프토출유량으로 출력함으로써 운전자의 요구에 부응하여 조작성을 향상시켜 특히, 고부하압력하에서도 고분해능의 미세작업을 손쉬고 정확하게 작업을 수행할 수 있다.In this way, the optimum pump demand flow rate is calculated for the operation amount of the operation means, the cupping pressure, and the position change of the output line selected from the output selection means 12, and the calculated value is output as the pump discharge flow rate to meet the needs of the driver. By improving operability, it is possible to easily and precisely perform high resolution fine work even under high load pressure.
이와같은 본 발명은 다음과 같은 효과가 있다.The present invention as described above has the following effects.
첫째, 운전자의 조작성 향상이다.First, the driver's operability is improved.
어떠한 부하영역에서도 운전자는 조작수단을 100% 전체조작범위에서 유압펌프의 토출유량을 조절하여 줌으로써 특히, 고부하 영역에서도 미세한 조작이 매우 손쉽게 이루어짐으로써 조작성의 향상을 가져다 줄 뿐 아니라 둘째, 필요한 작업의 종류나 부하정도에 따라서 출력을 미리 조절하여 줌으로써 불필요한 에너지의 손실을 막고, 기계장치의 내구성도 유지할 수 있다.In any load area, the operator adjusts the discharge flow rate of the hydraulic pump at 100% of the entire operating range, and in particular, the minute operation is very easily performed even in the high load area. However, by adjusting the output in advance according to the degree of load, unnecessary energy loss can be prevented and the durability of the mechanical device can be maintained.
뿐만 아니라 기존의 유압펌프의 토출유량을 제어하기 위해 유압식의 네가티브 컨트롤(NEGATIVE CONTROL)방식이나 전마력제어(FULL POWER CONTROL)등을 적용하는데 있어서 펌프 레귤레이터의 입력제어신호포트가 여러개 포함되어 그 구조가 매우 복잡할 뿐 아니라 제어정도도 떨어졌으나 본 발명을 적용한 시스템은 한개의 제어 압력신호 포트에 의해 레귤레이터를 제어함으로써 그 구조가 매우 단순하여 가공이 용이할 뿐만 아니라 상당히 향상시킬 수 있는 등의 효과가 있는 발명인 것이다.In addition, in order to control the discharge flow rate of the existing hydraulic pump, in order to apply the hydraulic negative control method or the full power control, the pump regulator includes a plurality of input control signal ports. Although not only very complicated but also the degree of control is reduced, the system to which the present invention is applied has the effect that the structure is very simple and can be greatly improved by controlling the regulator by one control pressure signal port. It is an invention.
Claims (5)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019910021924A KR950008533B1 (en) | 1991-11-30 | 1991-11-30 | Control devices output of hydraulic pump |
US07/981,218 US5303551A (en) | 1991-11-30 | 1992-11-25 | Flow rate control apparatus for oil-hydraulic pump |
EP92120144A EP0545271B1 (en) | 1991-11-30 | 1992-11-26 | Flow rate control apparatus for oil-hydraulic pump |
DE69222508T DE69222508T2 (en) | 1991-11-30 | 1992-11-26 | Device for controlling the amount of liquid in a hydraulic pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019910021924A KR950008533B1 (en) | 1991-11-30 | 1991-11-30 | Control devices output of hydraulic pump |
Publications (2)
Publication Number | Publication Date |
---|---|
KR930010392A KR930010392A (en) | 1993-06-22 |
KR950008533B1 true KR950008533B1 (en) | 1995-07-31 |
Family
ID=19323983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019910021924A KR950008533B1 (en) | 1991-11-30 | 1991-11-30 | Control devices output of hydraulic pump |
Country Status (4)
Country | Link |
---|---|
US (1) | US5303551A (en) |
EP (1) | EP0545271B1 (en) |
KR (1) | KR950008533B1 (en) |
DE (1) | DE69222508T2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011062379A3 (en) * | 2009-11-18 | 2011-11-03 | 두산인프라코어 주식회사 | Hydraulic pump control device and control method for construction machinery |
WO2012087048A3 (en) * | 2010-12-22 | 2012-09-07 | 두산인프라코어 주식회사 | Method for controlling hydraulic pump in excavator |
WO2014208787A1 (en) * | 2013-06-26 | 2014-12-31 | 볼보 컨스트럭션 이큅먼트 에이비 | Device for controlling control valve of construction machine, method for controlling same, and method for controlling discharge flow rate of hydraulic pump |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4308198C1 (en) * | 1993-03-15 | 1994-07-28 | Rexroth Mannesmann Gmbh | Torque control via swivel angle or eccentricity in hydrostatic machines with axial and radial piston arrangement |
KR0171389B1 (en) * | 1993-07-02 | 1999-03-30 | 토니헬샴 | Control device and method for hydraulic construction machinery |
KR950019129A (en) * | 1993-12-30 | 1995-07-22 | 김무 | Engine-pump control device and method of hydraulic construction machine |
US5540049A (en) * | 1995-08-01 | 1996-07-30 | Caterpillar Inc. | Control system and method for a hydraulic actuator with velocity and force modulation control |
JP3567051B2 (en) * | 1996-06-12 | 2004-09-15 | 新キャタピラー三菱株式会社 | Operation control device for hydraulic actuator |
US5875630A (en) * | 1997-06-10 | 1999-03-02 | Sauer Inc. | Hydraulic drive assembly |
JP3383754B2 (en) * | 1997-09-29 | 2003-03-04 | 日立建機株式会社 | Hydraulic construction machine hydraulic pump torque control device |
JP3419661B2 (en) * | 1997-10-02 | 2003-06-23 | 日立建機株式会社 | Auto accelerator device for prime mover of hydraulic construction machinery and control device for prime mover and hydraulic pump |
DE19824319A1 (en) * | 1998-06-02 | 1999-12-16 | O & K Mining Gmbh | Method for regulating in particular the swiveling device of a mobile machine |
US6305419B1 (en) | 2000-07-14 | 2001-10-23 | Clark Equipment Company | Variable pilot pressure control for pilot valves |
US6591697B2 (en) * | 2001-04-11 | 2003-07-15 | Oakley Henyan | Method for determining pump flow rates using motor torque measurements |
EP1350930B2 (en) * | 2002-04-03 | 2016-01-27 | SLW Automotive Inc. | Variable displacement pump and control therefor |
US7726948B2 (en) * | 2002-04-03 | 2010-06-01 | Slw Automotive Inc. | Hydraulic pump with variable flow and variable pressure and electric control |
DE10307190A1 (en) * | 2003-02-20 | 2004-09-16 | O & K Orenstein & Koppel Gmbh | Method for controlling a hydraulic system of a mobile work machine |
US7165397B2 (en) | 2003-11-10 | 2007-01-23 | Timberjack, Inc. | Anti-stall pilot pressure control system for open center systems |
US20090090102A1 (en) * | 2006-05-03 | 2009-04-09 | Wilfred Busse | Method of reducing the load of one or more engines in a large hydraulic excavator |
JP5330945B2 (en) * | 2008-10-29 | 2013-10-30 | 三菱重工業株式会社 | Hydraulic system and wind power generator equipped with the same |
KR101582689B1 (en) * | 2009-06-02 | 2016-01-05 | 두산인프라코어 주식회사 | Swing control apparatus and swing control method for construction machinery |
US20110056194A1 (en) * | 2009-09-10 | 2011-03-10 | Bucyrus International, Inc. | Hydraulic system for heavy equipment |
US20110056192A1 (en) * | 2009-09-10 | 2011-03-10 | Robert Weber | Technique for controlling pumps in a hydraulic system |
US8606451B2 (en) | 2010-10-06 | 2013-12-10 | Caterpillar Global Mining Llc | Energy system for heavy equipment |
US8626403B2 (en) | 2010-10-06 | 2014-01-07 | Caterpillar Global Mining Llc | Energy management and storage system |
US8718845B2 (en) | 2010-10-06 | 2014-05-06 | Caterpillar Global Mining Llc | Energy management system for heavy equipment |
US9303659B2 (en) * | 2010-12-28 | 2016-04-05 | Volvo Construction Equipment Ab | Method of controlling the flow rate of a variable capacity hydraulic pump for a construction apparatus |
US9190852B2 (en) | 2012-09-21 | 2015-11-17 | Caterpillar Global Mining Llc | Systems and methods for stabilizing power rate of change within generator based applications |
KR101800103B1 (en) * | 2014-06-04 | 2017-11-21 | 가부시키가이샤 고마쓰 세이사쿠쇼 | Attitude computing device for operating machine, operating machine, and attitude computing method for operating machine |
JP6430735B2 (en) * | 2014-07-09 | 2018-11-28 | 日立建機株式会社 | Drive device for work machine |
FR3035829B1 (en) * | 2015-05-05 | 2018-09-14 | Poclain Hydraulics Industrie | HYDRAULIC ASSISTING SYSTEM FOR MOTORIZED ENGINE WITH OPEN CIRCUIT |
JP6982158B2 (en) * | 2017-02-17 | 2021-12-17 | ヤンマーパワーテクノロジー株式会社 | Hydraulic machine control device |
WO2019117375A1 (en) * | 2017-12-14 | 2019-06-20 | Volvo Construction Equipment Ab | Hydraulic machine |
JP7419352B2 (en) | 2018-09-10 | 2024-01-22 | アルテミス インテリジェント パワー リミティド | Device with hydraulic machine controller |
IT201900015674A1 (en) * | 2019-09-05 | 2021-03-05 | Calpeda A Spa | Method of protection and management of actuation of a pressurization system |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3049938A1 (en) * | 1979-10-15 | 1982-03-18 | Y Aoyagi | Method of controlling internal combustion engine and hydraulic pump system |
EP0093413B1 (en) * | 1982-04-30 | 1988-02-03 | Nissan Motor Co., Ltd. | Apparatus for controlling line pressure in continuously variable transmission |
DE3319408A1 (en) * | 1983-05-28 | 1984-11-29 | Robert Bosch Gmbh, 7000 Stuttgart | POWER STEERING DEVICE WITH AT LEAST ONE HYDRAULIC ADDITIONAL CONSUMER CONNECTED TO IT |
JPS6084464A (en) * | 1983-10-14 | 1985-05-13 | Nissan Motor Co Ltd | Hydraulic control unit for automatic transmission |
US4742676A (en) * | 1984-12-24 | 1988-05-10 | Linde Aktiengesellschaft | Reversible hydrostatic transmission pump with drive engine speed control |
US4741159A (en) * | 1986-04-08 | 1988-05-03 | Vickers, Incorporated | Power transmission |
JPH0535249Y2 (en) * | 1988-03-31 | 1993-09-07 | ||
US5048293A (en) * | 1988-12-29 | 1991-09-17 | Hitachi Construction Machinery Co., Ltd. | Pump controlling apparatus for construction machine |
DE69004789T3 (en) * | 1989-01-18 | 1997-12-18 | Hitachi Construction Machinery | HYDRAULIC DRIVE UNIT FOR CONSTRUCTION MACHINERY. |
JPH02221702A (en) * | 1989-02-22 | 1990-09-04 | Nireco Corp | Electric hydraulic servomotor |
US4936340A (en) * | 1989-06-21 | 1990-06-26 | Coretest Systems, Inc. | Pressure regulator |
US5174114A (en) * | 1990-02-28 | 1992-12-29 | Hitachi Construction Machinery Co., Ltd. | Hydraulic drive system for construction machine |
US5111660A (en) * | 1991-03-11 | 1992-05-12 | Ford Motor Company | Parallel flow electronically variable orifice for variable assist power steering system |
US5167121A (en) * | 1991-06-25 | 1992-12-01 | University Of British Columbia | Proportional hydraulic control |
-
1991
- 1991-11-30 KR KR1019910021924A patent/KR950008533B1/en not_active IP Right Cessation
-
1992
- 1992-11-25 US US07/981,218 patent/US5303551A/en not_active Expired - Lifetime
- 1992-11-26 EP EP92120144A patent/EP0545271B1/en not_active Expired - Lifetime
- 1992-11-26 DE DE69222508T patent/DE69222508T2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011062379A3 (en) * | 2009-11-18 | 2011-11-03 | 두산인프라코어 주식회사 | Hydraulic pump control device and control method for construction machinery |
WO2012087048A3 (en) * | 2010-12-22 | 2012-09-07 | 두산인프라코어 주식회사 | Method for controlling hydraulic pump in excavator |
WO2014208787A1 (en) * | 2013-06-26 | 2014-12-31 | 볼보 컨스트럭션 이큅먼트 에이비 | Device for controlling control valve of construction machine, method for controlling same, and method for controlling discharge flow rate of hydraulic pump |
Also Published As
Publication number | Publication date |
---|---|
DE69222508T2 (en) | 1998-05-07 |
KR930010392A (en) | 1993-06-22 |
DE69222508D1 (en) | 1997-11-06 |
EP0545271B1 (en) | 1997-10-01 |
US5303551A (en) | 1994-04-19 |
EP0545271A1 (en) | 1993-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950008533B1 (en) | Control devices output of hydraulic pump | |
KR100760129B1 (en) | Control device for working vehicle | |
JP2567193B2 (en) | Hydraulic pump discharge flow control device | |
EP1260716B1 (en) | Control device for construction machine | |
JP5156237B2 (en) | Hydraulic drive device and hydraulic drive vehicle | |
KR101637571B1 (en) | Hydraulic pump control apparatus and control method for construction machinery | |
RU2499153C2 (en) | Control over drive engine rpm | |
EP0041273B1 (en) | Circuit pressure control system for hydrostatic power transmission | |
KR101364396B1 (en) | Method of controlling hybrid working machine and pump output limiting method for hybrid working machine | |
US5469646A (en) | Fine operation mode changeover device for hydraulic excavator | |
JP2752501B2 (en) | Pump torque control method | |
EP2682531A1 (en) | Control device for construction machine | |
EP0644335A1 (en) | Hydraulic drive for hydraulic work machine | |
US4507057A (en) | Control system for hydraulic pumps of a civil machine | |
EP1207304A1 (en) | Pump control method and pump control device | |
JP2015140763A (en) | Engine pump control device and work machine | |
CN113090600B (en) | Variable differential and differential mode load sensitive hydraulic control system and method and engineering machinery | |
CN110199142B (en) | Work vehicle and method for controlling work vehicle | |
JP2011508142A (en) | Method for controlling a hydrostatic drive | |
KR0152300B1 (en) | Outlet flow control method for hydraulic pump | |
EP3441598B1 (en) | Work machine | |
WO2012154463A2 (en) | Method,apparatus,and computer-readable storage medium for controlling torque load of multiple variable displacement hydraulic pumps | |
JPH0599201A (en) | Method and device for limiting capacity of hydraulic system | |
JP4127771B2 (en) | Engine control device for construction machinery | |
KR20160115475A (en) | Apparatus and method for controlling hydraulic pump of construction machinery, construction machinery including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
G160 | Decision to publish patent application | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20090630 Year of fee payment: 15 |
|
LAPS | Lapse due to unpaid annual fee |