KR950002200B1 - Mosfet and manufacturing method thereof - Google Patents

Mosfet and manufacturing method thereof Download PDF

Info

Publication number
KR950002200B1
KR950002200B1 KR1019920012597A KR920012597A KR950002200B1 KR 950002200 B1 KR950002200 B1 KR 950002200B1 KR 1019920012597 A KR1019920012597 A KR 1019920012597A KR 920012597 A KR920012597 A KR 920012597A KR 950002200 B1 KR950002200 B1 KR 950002200B1
Authority
KR
South Korea
Prior art keywords
region
gate
forming
insulating film
semiconductor layer
Prior art date
Application number
KR1019920012597A
Other languages
Korean (ko)
Other versions
KR940003095A (en
Inventor
김기홍
Original Assignee
금성일렉트론주식회사
문정환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금성일렉트론주식회사, 문정환 filed Critical 금성일렉트론주식회사
Priority to KR1019920012597A priority Critical patent/KR950002200B1/en
Publication of KR940003095A publication Critical patent/KR940003095A/en
Application granted granted Critical
Publication of KR950002200B1 publication Critical patent/KR950002200B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors

Abstract

The method includes the steps of forming a P well region (7) in the substrate (1) to etch the well region (7) except a channel region, forming a field insulating film (8) for isolating between the active and the field regions to form a gate insulating film (2) on the active region, implanting ions thereinto to adjust the threshold voltage and the break-down voltage, forming a doped semiconducting layer(3) thereon to deposit an insulating film (9) thereon to flatten the substrate, etching-back the film (9) to deposit a metal layer (10) on the film (3) to remove the film (9), vertically etching the layer (3) to pattern a gate, and forming a source and drain region (6), thereby extending the channel length three-dimensionally to overcome a short channel effect.

Description

MOSFET 구조 및 제조방법MOSFET structure and manufacturing method

제 1 도는 종래의 MOSFET 구조단면도.1 is a cross-sectional view of a conventional MOSFET structure.

제 2 도는 본 발명의 MOSFET 구조단면도.2 is a cross-sectional view of a MOSFET structure of the present invention.

제 3 도는 본 발명의 MOSFET 공정단면도.Figure 3 is a MOSFET process cross section of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : p형 실리콘기판 2 : 게이트 절연막1: p-type silicon substrate 2: gate insulating film

3 : 폴리실리콘 5 : 측벽절연막3: polysilicon 5: sidewall insulating film

6 : 소오스/드레인 7 : p형 웰6 source / drain 7 p-type well

8 : 필드산화막 9 : CVD 산화막8: field oxide film 9: CVD oxide film

10 : 금속층10: metal layer

본 발명은 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)에 관한 것으로, 특히 고집적 소자에 적당한 셀프-얼라인드 컨벡스(Self aligned convex) MOSFET의 구조 및 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal oxide semiconductor field effect transistor (MOSFET), and more particularly, to a structure and a manufacturing method of a self-aligned convex MOSFET suitable for highly integrated devices.

종래의 MOSFET를 첨부된 도면을 참조하여 설명하면 다음과 같다.Referring to the conventional MOSFET with reference to the accompanying drawings as follows.

제 1 도는 종래의 MOSFET 구조단면도로써, p형 실리콘기판(1)의 표면에 게이트 절연막(2)을 형성하고, 그위에 폴리실리콘(3)과 캡게이트 절연막(4)을 차례로 증착하고 포토 에치 공정으로 패터닝하여 게이트를 형성하고, 게이트를 마스크로 하여 실리콘기판(1)에 LDD 구조를 위한 저농도 n형 이온주입하고, 게이트 측벽에 측벽절연막(5)을 형성하여 고농도 n형 이온주입으로 LDD 구조의 소오스/드레인(6)을 형성하여 이루어진 MOSFET 구조이다.FIG. 1 is a cross-sectional view of a conventional MOSFET structure, in which a gate insulating film 2 is formed on a surface of a p-type silicon substrate 1, a polysilicon 3 and a cap gate insulating film 4 are sequentially deposited thereon, and a photo etch process. Patterned to form a gate, a low concentration n-type ion implantation for the LDD structure is implanted into the silicon substrate 1 using the gate as a mask, and a sidewall insulating film 5 is formed on the sidewall of the gate to form a LDD structure with a high concentration n-type ion implantation. It is a MOSFET structure formed by forming the source / drain 6.

이와같은 종래의 MOSFET는 게이트에 전압을 인가하면 게이트 하측의 소오스/드레인 사이에 채널이 형성되어 신호를 전달하게 된다.In the conventional MOSFET, when a voltage is applied to a gate, a channel is formed between a source / drain under the gate to transmit a signal.

그러나 이와같은 종래의 MOSFET에 있어서는 낮은 전압(5V-3.3V)에 의한 디자인 마진(Design Margin)이 감소하고, 숏 채널 효과(Short channel effect)에 의한 펀치쓰루(Punch-through)의 항복 전압을 개선하기 위해서는 기판농도가 증가해야 하며, 기판 농도의 증가에 따라 문턱전압(VT)을 조절하기 위해 게이트 절연막을 얇게 형성해야 하는 문제점이 발생하며 게이트 절연막을 얇게 형성하게 되면 GIDL(Gate Induced Drain Leakage)와 TDDB(Time Dependent Dielectric Breakdown) 등의 새로운 문제점들이 계속해서 발생된다.However, in such a conventional MOSFET, the design margin due to low voltage (5V-3.3V) is reduced and the punch-through breakdown voltage due to the short channel effect is improved. In order to increase the substrate concentration, a problem arises in that a thin gate insulating film is formed to control the threshold voltage (V T ) according to the increase of the substrate concentration. And new problems continue to arise, such as TDDB (Time Dependent Dielectric Breakdown).

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로, 3차원적으로 채널길이를 확장하여 고집적화에 따른 숏 채널 효과를 극복한 고집적 반도체 소자의 구조 및 제조방법을 제공하는데 그 목적이 있다.Disclosure of Invention The present invention has been made to solve the above problems, and an object thereof is to provide a structure and a manufacturing method of a highly integrated semiconductor device overcoming the short channel effect due to high integration by extending the channel length in three dimensions.

이와같은 목적을 달성하기 위한 본 발명은 채널영역을 볼록하게 형성하고 게이트가 상기 볼록한 부위를 감싸도록 형성하고 문턱전압과 항복전압을 별도의 이온주입으로 개선한 것이다.The present invention for achieving the above object is to form a convex channel region, the gate is formed to surround the convex portion and to improve the threshold voltage and breakdown voltage by separate ion implantation.

이와같은 본 발명을 첨부된 도면을 참조하여 보다 상세히 설명하면 다음과 같다.This invention is described in more detail with reference to the accompanying drawings as follows.

제 2 도는 본 발명의 MOSFET 구조단면도로써, p형 실리콘기판(1)의 p형 웰(well)(7)내에 LDD구조의 n형 소오스/드레인(6)이 형성되고, 소오스/드레인간의 채널영역이 볼록하게 형성되고, 볼록한 채널영역 표면에 게이트 절연막(2)이 형성되고, 볼록한 채널영역을 감싸고 게이트(3)가 형성된 구조이다.2 is a cross-sectional view of the MOSFET structure of the present invention, in which an n-type source / drain 6 having an LDD structure is formed in a p-type well 7 of a p-type silicon substrate 1, and a channel region between the source and the drain is formed. The structure is formed convexly, the gate insulating film 2 is formed on the surface of the convex channel region, surrounds the convex channel region, and the gate 3 is formed.

이와같은 구조의 본 발명 MOSFET 제조방법을 공정 단면도인 제 3 도를 참조하여 설명하면 다음과 같다.Referring to FIG. 3, which is a cross-sectional view of the present invention, the MOSFET manufacturing method having such a structure is as follows.

먼저 제 3도a와 같이 p형 실리콘기판(1)에 p형 웰(Well)(7)을 형성하고 게이트 마스크를 이용하여 채널 영역을 제외한 p형 웰(7)영역을 소정의 깊이로 식각한다.First, as shown in FIG. 3A, a p-type well 7 is formed in the p-type silicon substrate 1, and the p-type well 7 region excluding the channel region is etched to a predetermined depth using a gate mask. .

먼저 제 3 도b와 같이 소자간의 격리를 위해 필드산화막(8)을 성장하고 액티브영역에 게이트 산화막(2a)을 성장하고 문턱전압(VT)조절과 항복전압 개선을 위해 p형 웰(7) 표면부위와 깊은 부분에 이온 주입을 실시한다.First, FIG. 3 for element isolation between the growth of the field oxide film 8, and growing a gate oxide film (2a) on the active region and the threshold voltage as b (V T), control the breakdown-voltage p-type to improve the well (7) Ion implantation is performed on the surface and deep parts.

이때, 채널영역은 DSC(Drain Separated Channel Implat)가 된다.At this time, the channel region becomes DSC (Drain Separated Channel Implat).

그리고, 제 3 도c와 같이 전면에 도핑된 폴리실리콘(3)을 증착하거나 폴리실리콘(3)을 증착하여 도핑을 한뒤 폴리실리콘(3)위 전면에 CVD(Chemical Vapour Deposition) 산화막(9)을 묽게 증착하여 평탄화시킨다.Then, as shown in FIG. 3C, the doped polysilicon 3 is deposited on the front surface or the polysilicon 3 is deposited to doping, and then a CVD (Chemical Vapor Deposition) oxide film 9 is deposited on the front surface of the polysilicon 3. Dilute thin to planarize.

계속해서, 제 3 도d와 같이 CVD 산화막(9)을 채널 영역 상측의 폴리실리콘(3)이 들어날 때까지 에치백하고, 들어난 표면에 텅스텐(W)을 증착하거나 에치백후 고융점 금속을 증착하고 어닐링하여 폴리실리콘(3) 표면에 실리사이드(silicide)를 형성하는 방법으로 금속층(10)을 형성한다.Subsequently, as shown in FIG. 3D, the CVD oxide film 9 is etched back until the polysilicon 3 above the channel region enters, and tungsten (W) is deposited on the raised surface or the high melting point metal is etched back. The metal layer 10 is formed by depositing and annealing to form silicide on the surface of the polysilicon 3.

제 3 도e와 같이 CVD 산화막(9)을 완전히 제거하고 수직 식각하여 폴리실리콘(3)의 불필요한 부위를 제거하여 게이트를 패터닝한 뒤 LDD 구조의 소오스/드레인을 형성하기 위해 저농도 n형 이온 주입을 한다.As shown in FIG. 3E, the CVD oxide layer 9 is completely removed and vertically etched to remove unnecessary portions of the polysilicon 3 to pattern the gate, and then a low concentration n-type ion implantation is performed to form a source / drain of LDD structure. do.

그다음, 제 3 도f와 같이 게이트에 측벽산화막을 형성하고, 고농도 n형 이온주입하여 LDD 구조의 소오스/드레인(6)을 형성함으로 본 발명의 MOSFET가 완성된다.Then, the MOSFET of the present invention is completed by forming a sidewall oxide film in the gate and implanting a high concentration of n-type ions to form the source / drain 6 of the LDD structure as shown in FIG.

이상에서 설명한 바와같은 본 발명의 MOSFET에 있어서는 2차원적으로는 동일한 채널 길이를 가지면서 3차원적으로 채널길이 확장이 가능하며 전원전압(Vcc)이 높아도 전류동작(circuit operation)이 가능하므로 디자인 마진이 크게되고, p형 웰 표면과 깊은 영역에 이온 주입하여 문턱 전압조절과 펀치 쓰루에 의한 항복전압 개선을 별도로 조정할 수 있으며, 게이트 절연막의 두께를 얇게 할 필요가 없어 TDDB, GIDL등의 문제점을 해결할 뿐만 아니라 기타 디램(DRAM)의 커패시터와 함께 형성될 경우 셀 커패시턴스(cell capacitance)를 증가시킬 수 있는 등의 효과가 있다.As described above, in the MOSFET of the present invention, the channel length can be expanded in three dimensions while having the same channel length in two dimensions, and a circuit operation can be performed even when the power supply voltage Vcc is high. Larger, ion implantation into the p-type well surface and deeper areas allows the adjustment of threshold voltage and breakdown voltage improvement due to punch-through separately. In addition, when formed with other DRAM capacitors, the cell capacitance may be increased.

Claims (3)

제 1 도전형 기판에 제 1 도전형 웰이 형성되어 웰내에 소오스/드레인 영역이 형성되고, 소오스/드레인 간의 채널영역이 볼록하게 형성되고, 볼록한 채널영역 사이에 절연막을 갖고 볼록한 채널영역을 감싸고 게이트가 형성됨을 특징으로 하는 MOSFET의 구조.A first conductivity type well is formed on the first conductivity type substrate to form a source / drain region in the well, a channel region between the source / drain is convex, an insulating layer is formed between the convex channel regions, and the gate is surrounded by the convex channel region. MOSFET structure, characterized in that is formed. 제 1 도전형 기판에 제 1 도전형 웰을 형성하고 채널 영역을 제외한 웰 영역을 소정의 깊이고 식각하는 공정과, 필드절연막으로 액티브 영역과 필드영역을 한정하고 액티브 영역에 게이트 절연막을 형성하는 공정과, 문턱전압과 항복전압을 조절하기 위해 이온 주입하는 공정과, 전면에 도핑된 반도체층을 형성하고 반도체층 위에 절연막을 증착하여 평탄화하는 공정과, 상기 반도체층 표면이 들어날 때까지 절연막을 에치백하는 공정과, 들어난 반도체층 표면에 금속층을 증착하고 상기 절연막을 제거하는 공정과, 상기 반도체층을 수직 식각하여 불필요한 부분을 제거하여 게이트를 패터닝하는 공정과, 상기 게이트를 마스크로 이용하여 소오스/드레인 영역을 형성하는 공정으로 이루어짐을 특징으로 하는 MOSFET 제조방법.Forming a first conductivity type well in the first conductivity type substrate and etching a well region except a channel region with a predetermined depth, and defining a active region and a field region with a field insulating film and forming a gate insulating film in the active region Ion implantation to control the threshold voltage and breakdown voltage; forming a doped semiconductor layer on the front surface; depositing an insulating film on the semiconductor layer to planarize; and insulating the insulating film until the semiconductor layer surface enters. A process of depositing a metal layer on the surface of the semiconductor layer and removing the insulating layer; patterning a gate by removing an unnecessary portion by vertically etching the semiconductor layer; and using the gate as a mask MOSFET manufacturing method comprising the step of forming a / drain region. 제 2 항에 있어서, 반도체층 표면에 고융점 금속을 증착하고 어닐링하여 금속층을 형성함을 특징으로 하는 MOSFET 제조방법.The method of claim 2, wherein the metal layer is formed by depositing and annealing a high melting point metal on the surface of the semiconductor layer.
KR1019920012597A 1992-07-15 1992-07-15 Mosfet and manufacturing method thereof KR950002200B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920012597A KR950002200B1 (en) 1992-07-15 1992-07-15 Mosfet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920012597A KR950002200B1 (en) 1992-07-15 1992-07-15 Mosfet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR940003095A KR940003095A (en) 1994-02-19
KR950002200B1 true KR950002200B1 (en) 1995-03-14

Family

ID=19336358

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920012597A KR950002200B1 (en) 1992-07-15 1992-07-15 Mosfet and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR950002200B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100260488B1 (en) * 1996-12-30 2000-07-01 김영환 Method of manufacturing a field effect transistor

Also Published As

Publication number Publication date
KR940003095A (en) 1994-02-19

Similar Documents

Publication Publication Date Title
KR940002400B1 (en) Manufacturing method of semiconductor device with recess gate
US6162693A (en) Channel implant through gate polysilicon
US5937297A (en) Method for making sub-quarter-micron MOSFET
US7645654B2 (en) JFET with built in back gate in either SOI or bulk silicon
US7268043B2 (en) Semiconductor device and method of manufacturing the same
US5714393A (en) Diode-connected semiconductor device and method of manufacture
US5244823A (en) Process for fabricating a semiconductor device
US20120267724A1 (en) Mos semiconductor device and methods for its fabrication
KR100248506B1 (en) A method of fabricating semiconductor device for improving characteristics of transistor
KR930009132B1 (en) Method of fabricating high integrated semiconductor memory device
US5547903A (en) Method of elimination of junction punchthrough leakage via buried sidewall isolation
KR100488099B1 (en) A mos transistor having short channel and a manufacturing method thereof
KR100529651B1 (en) Semiconductor device and method for manufacturing thereof
KR950002200B1 (en) Mosfet and manufacturing method thereof
KR100341182B1 (en) Method of forming mos transistor in semiconductor device
KR100408000B1 (en) Method for Forming Semiconductor Device
KR20080006268A (en) Method of manufcaturing a tunneling field effect transistor
US20030124824A1 (en) High yield and high speed CMOS process
KR20030053962A (en) Method of manufacturing short-channel transistor in semiconductor device
US20230402457A1 (en) Transistor structure and method for fabricating the same
KR0142787B1 (en) Fabrication method of mosfet
KR950000145B1 (en) It ldd structure for ig fet and manufacturing method thereof
KR100464535B1 (en) A method for forming a transistor of a semiconductor device
KR100219073B1 (en) Mosfet and method of manufacturing the same
KR20010064328A (en) Method for fabricating MOS transistor with ITLDD structure

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050221

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee