KR940011272B1 - Visuable light semiconductor laser manufacturing method - Google Patents
Visuable light semiconductor laser manufacturing method Download PDFInfo
- Publication number
- KR940011272B1 KR940011272B1 KR1019920005516A KR920005516A KR940011272B1 KR 940011272 B1 KR940011272 B1 KR 940011272B1 KR 1019920005516 A KR1019920005516 A KR 1019920005516A KR 920005516 A KR920005516 A KR 920005516A KR 940011272 B1 KR940011272 B1 KR 940011272B1
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- growth rate
- semiconductor laser
- active layer
- glad
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
- H01S5/0428—Electrical excitation ; Circuits therefor for applying pulses to the laser
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
제 1 도는 일반적인 이중 접합 구조도.1 is a general double junction structure diagram.
제 2 도는 종래의 InGaAIP계의 이중접합구조의 에너지밴드 구조도.2 is an energy band structure diagram of a conventional double junction structure of InGaAIP system.
제 3 도는 본 발명의 양 글래드층의 성장율에 따른 좌표도.Figure 3 is a coordinate diagram according to the growth rate of both glad layer of the present invention.
제 4 도는 본 발명의 양 글래드의 성장시간에 따른 성장율 좌표도.4 is a growth rate coordinate chart according to the growth time of both grads of the present invention.
제 5 도는 본 발명의 InGaAIP계의 이중접합구조의 에너지밴드 구조도.5 is an energy band structure diagram of a double junction structure of an InGaAIP system of the present invention.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
1 : n-CaAs 기판 2 : n글래드층1: n-CaAs Substrate 2: n Glad Layer
3 : 활성층 4 : p글래드층3: active layer 4: p-glazed layer
5 : p-GaAs 캡층 △Ec, δc : 전도대의 에너지 밴드갭 차5: p-GaAs cap layer ΔEc, δc: energy band gap difference of conduction band
△Ev, δv : 가전자대의 에너지 밴드갭 차ΔEv, δv: energy band gap difference of valence band
본 발명은 가시광 반도체 레이저 제조방법에 관한 것으로서, 특히 반도체 다이오드의 MOCVD(Matel Oxide Chemical Vapor Deposition) 성장시 n글래드층과 p글래드층의 성장율을 조절하여 에너지 밴드갭이 증가하도록 하여 반도체 레이저 발전개시 전류의 증가를 방지하고 반도체 레이저의 동작온도를 높일 수 있게 한 것에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a visible light semiconductor laser. In particular, semiconductor laser power generation is performed by controlling the growth rate of an n-clad layer and a p-glad layer during MOCVD growth of a semiconductor diode. The present invention relates to preventing an increase in starting current and increasing an operating temperature of a semiconductor laser.
일반적으로 반도체 레이저의 이중접합구조는 제 1 도와 같이 n-GaAs 기판(1)위에 n글래드층(2)와 활성층(3)과 p글래드층(4) 및 p-GaAs 캡층(5)을 연속증착하여서 형성된다.In general, a double junction structure of a semiconductor laser has an n-glad layer 2, an active layer 3, a p-glad layer 4, and a p-GaAs cap layer 5 on an n-GaAs substrate 1 as shown in FIG. It is formed by continuous deposition.
상기와 같이 반도체 레이저의 이중접합구조를 형성하기 위해서 종래의 가시광 반도체 레이저는 GaAs와 격자상수는 같으면서 에너지 밴드갭은 가시광 발광영역에 있는 In0.49(AlnGa1-x)0.51P의 4원소를 이용하여 GaAs 기판에 레이저 다이오드 구조를 성장하여 제조한다. 상기와 같은 InGaAIP는 AlCaAs계 반도체 레이저 제조에 주로 이용되던 LPE(Liquid Phase Epitaxy : 액상에티택셜) 방법에 의한 제조는 성장이 어렵기 때문에 대체적으로 MOCVD 방법에 의한 성장을 하게 된다. 상기 MOCVD 방법에 의한 성장은 670mm대의 가시광 반도체 레이저는 활성층을 In0.49Ga0.51P로 사용하며 H글래드 및 p글래드는 In0.49(AlxGa1-x)P(x는 0.4-0.7)을 사용한다. 상기 InGaAIP계의 반도체는 레이저 다이오드 구조인 이중접합(double heterojuction) 구조를 성장하였을 때 제 2 도와 같이 전도대(Conduction Band)쪽의 에너지 밴드갭 차이(△Ec)가 작아서 주입전류(J) 주입시 오버플로우(Over Flow) 전류(JL)가 발생하기 쉽다.As described above, in order to form a double junction structure of the semiconductor laser, the conventional visible light semiconductor laser has four elements of In 0.49 (Al n Ga 1-x ) 0.51 P in the visible light emitting region with the same lattice constant and GaAs. It is produced by growing a laser diode structure on a GaAs substrate. InGaAIP as described above is generally grown by MOCVD because it is difficult to manufacture by the Liquid Phase Epitaxy (LPE) method, which is mainly used for manufacturing AlCaAs-based semiconductor lasers. According to the MOCVD method, the 670mm visible light semiconductor laser uses an active layer of In 0.49 Ga 0.51 P, and H and p glass have In 0.49 (Al x Ga 1-x ) P (x is 0.4-0.7). use. The InGaAIP-based semiconductor has a small energy band gap difference (ΔEc) toward the conduction band when the double heterojuction structure, which is a laser diode structure, is small. Overflow current J L is likely to occur.
즉, 전도대의 에너지 밴드갭 차(△Ec)와 가전자대의 에너지 밴드갭 차(△Ev)는 △Ec : △Ev=43 : 57가 된다. 상기와 같은 현상은 반도체 레이저의 상온 또는 고온 동작시 발진개시 전류를 증가시키고, 최고 발진 온도를 제한하는 결과를 가져오게 되며, 반도체 레이저의 단파장화를 위해 활성층의 Al 조성비를 높일 경우 이러한 현상은 더욱 심각하게 대두된다. 상기 현상을 방지하기 위하여 MOCVD 방법에 의해 성장된 InGaAIP의 성장조건에 따른 에너지 밴드갭 특성이 실제 반도체 레이저 제조에 이용된다.That is, the energy band gap difference ΔEc of the conduction band and the energy band gap difference ΔEv of the valence band are ΔEc: ΔEv = 43: 57. This phenomenon increases the oscillation start current at room temperature or high temperature operation of the semiconductor laser, and results in limiting the maximum oscillation temperature, and this phenomenon is further increased when the Al composition ratio of the active layer is increased to shorten the wavelength of the semiconductor laser. It is taken seriously. In order to prevent the phenomenon, the energy band gap characteristic according to the growth conditions of InGaAIP grown by the MOCVD method is used in actual semiconductor laser manufacturing.
상기와 같이 MOCVD 방법에 의해 성장된 InGaAIP는 성장온도와 도핑농도 등에 따라 그 원자배열이 정돈된 상태(Ordering State)에서 정돈되지 않은 상태(Disordering State)로 변화하면서 최고 50meV 이상의 에너지 밴드갭 차이를 가져오게 된다. 이러한 특성을 이용하여 p글래드층의 Zn 도핑농도를 크게하여 에너지 밴드갭을 향상시키는 방법이 사용되는데, 이 경우 p글래드층의 도핑농도가 높아짐으로 인하여 가전자대의 위치가 높아짐으로 해서 전도대쪽의 에너지 밴드갭 차가 제 2 도와 같이 증가하게 된다.As described above, the InGaAIP grown by the MOCVD method has an energy bandgap difference of up to 50 meV or more while changing its order from the ordering state to the ordering state according to the growth temperature and the doping concentration. Come. Using this characteristic, a method of improving the energy band gap by increasing the Zn doping concentration of the p-glaze layer is used. In this case, the doping concentration of the p-glare layer is increased so that the position of the valence band is increased. The energy bandgap difference of increases with the second degree.
또한 단순히 글래드층의 Al 조성비를 높혀서 에너지 밴드갭을 증가시키는 방법이 있는데, In0.49(AlxGa1-x)0.51P는 Al 조성비 N에 따라 에너지 밴드갭이 아래식과 같이 나타나고, 이 식은 InGaAIP의 원자배열이 완전한 정돈이 되지 않은 상태(Disodering State)일 경우에 적용된다.In addition, there is a method of increasing the energy band gap by simply increasing the Al composition ratio of the glad layer. In 0.49 (AlxGa 1-x ) 0.51 P, the energy band gap is represented by the following equation according to the Al composition ratio N, which is an atom of InGaAIP. Applies when the array is in a Disodering State.
Eg=1.91+0.52X ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥(식 1)Eg = 1.91 + 0.52X ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥
상기 방법은 InAIP가 글래드층으로 사용된다. 그러나 상기와 같이 단순히 글래드층의 Al 조성비를 높히는 경우 Zn와 Si 또는 Se 도핑에 문제가 된다. InGaAIP의 Al 조성비가 증가함에 따라 도펀트(Dopant)들의 활성화에너지(activation energy)가 증가하여 실제 캐리어접속(Carrier Concentration)은 급격히 감소하게 된다. 또한 p글래드층의 Zn 도핑을 증가시켜 에너지 밴드갭 차(△Ec)를 증가시키는 방법은 글래드층의 Al 조성비에 따라 Zn 도핑에 의해 성장진행중 Zn가 활성층 등으로 확산됨으로서 원하는 반도체 레이저 특성을 얻는데 크게 문제가 되었다.In the method, InAIP is used as the glad layer. However, simply increasing the Al composition ratio of the glass layer as described above is a problem in the doping of Zn and Si or Se. As the Al composition ratio of InGaAIP increases, the activation energy of the dopants increases and the actual carrier concentration decreases drastically. In addition, the method of increasing the energy band gap difference (ΔEc) by increasing the Zn doping of the p-cladding layer is performed by Zn doping in accordance with the Al composition ratio of the glad layer. It was a big problem to get.
본 발명은 상기와 같은 종래의 문제점을 해소하고자, 이중접합구조, 성장시 n글래드층과 p글래드층의 성장율과 활성층 성장율을 다르게 하여 양 글래드 층과 활성층간의 에너지 밴드갭 차이를 증대시킬 수 있게 하여 반도체 레이저 발진개시 전류를 증가시키고 반도체 레이저 동작온도를 높일 수 있게 한 것에 목적을 둔것이다. 상기와 같은 목적을 가진 본 발명은 이중접합구조 성장시에 n글래드층과 p글래드층의 성장율과 활성층의 성장율을 서로 다르게 설정한다. 상기 양 글래드 성장율과 활성층의 성장율을 다르게 하므로서 에너지 밴드갭 차이를 증대시킬수 있게 한 것이다.The present invention is to solve the conventional problems as described above, to increase the energy bandgap difference between the two layers and the active layer by varying the growth rate and the active layer growth rate of the n-clad layer and p-glad layer during growth. It aims to increase the semiconductor laser start-up current and increase the semiconductor laser operating temperature. The present invention having the above object sets the growth rate of the n-layered layer and the p-layered layer and the growth rate of the active layer differently during the double junction structure growth. It is possible to increase the energy band gap difference by varying the growth rate of the two glass growth rate and the active layer.
이를 더욱 상세히 설명하면 다음과 같다.This will be described in more detail as follows.
제 3 도와 같이 이중접합구조 성장시 n-In0.49(AlxGa1-x)0.51P(x=0.4-0.7)의 n글래드층과 p-In0.49(AlxGa1-x)0.51P(x=0.4-0.7)의 p글래드층과의 성장율과, In0.49(AlxGa1-x)0.51P(x=0-0.3)의 활성층 성장율을 다르게 설정한다. 즉, 상기 성장율은 제3a도와 같이 n글래드층과 활성층은 4μm/hr로 설정한다. 상기 n글래드층과 P글래드층의 원자배열이 무질서하게 되는 것을 이용하여 양 글래드층과 활성층간의 에너지 밴드갭 차이를 증대시킬 수 있게 한 것이다.As shown in FIG. 3, n-in 0.49 (Al x Ga 1-x ) 0.51 P (x = 0.4-0.7) n-glad layer and p-In 0.49 (Al x Ga 1-x ) 0.51 P The growth rate of the (x = 0.4-0.7) p-layer and the active layer growth rate of In 0.49 (AlxGa 1-x ) 0.51 P (x = 0-0.3) are set differently. That is, the growth rate is set to 4 μm / hr n layer and the active layer as shown in Figure 3a. It is possible to increase the energy band gap difference between the two glad layer and the active layer by using the arrangement of the atomic arrangement of the n-clad layer and the P-glass layer.
상기에서 n글래드층의 성장율은 8μm/hr로 하고 p글래드층의 성장율은 12μm/hr로서 단계적으로 제3b도와 같이 변화시켜 양 글래드층과 활성층 사이의 에너지 밴드갭 차이를 증대시킬 수 있고, 글래드층과 GaAs기판층 사이의 에너지 밴드 차이를 줄일 수도 있다.In the above, the growth rate of the n-glad layer is 8 μm / hr and the growth rate of the p-glass layer is 12 μm / hr, which can be changed stepwise as shown in FIG. 3b to increase the energy band gap difference between the two glad layers and the active layer. The energy band difference between the glad layer and the GaAs substrate layer may be reduced.
상기와 같은 본 발명의 작동효과를 설명하기로 하겠다.It will be described the operation effect of the present invention as described above.
가시광 반도체 레이저의 이중접합구조를 제조하기 위해서는 특성향상을 위해서 전류제한층 등의 구조와는 관계없이 이중접합구조의 MOCVD 성장이 꼭 필요한데 이중접합의 에너지 밴드갭 차에 의해서 전기적 특성에 영향을 받는다. 따라서 에너지 밴드갭 차이를 높이기 위해서 글래드층과 활성층에서 글래드층의 성장율을 높혀야 한다.In order to manufacture the double junction structure of the visible light semiconductor laser, MOCVD growth of the double junction structure is necessary regardless of the structure such as the current limiting layer to improve the characteristics, and the electrical characteristics are affected by the energy band gap difference of the double junction. Therefore, in order to increase the energy band gap difference, it is necessary to increase the growth rate of the glass layer in the glass layer and the active layer.
일반적으로 MOCVD에 의한 InGaAIP계의 이중접합구조의 성장온도는 650℃-750℃ 정도이며, 이 온도영역에서는 성장율에 따라 반도체 재료의 에너지 밴드갭의 크기에 큰 차이를 나타나게 된다. 상기 이중접합구조의 성장온도를 650℃로 하고 글래드층의 성장율 4μm/hr일 때와 성장율 12μm/hr일 때와 실험한 결과 12μm/hr인 경우의 에너지 밴드갭이 약 50meV 정도 더 크게 나타났으며, 이때 성장표면의 상태도 매우 양호하였다.In general, the growth temperature of the InGaAIP-based double junction structure by MOCVD is about 650 ° C to 750 ° C. In this temperature range, the energy bandgap of the semiconductor material shows a large difference depending on the growth rate. When the growth temperature of the double-junction structure was set to 650 ℃ and the growth rate of the glass layer 4μm / hr and the growth rate of 12μm / hr experiments showed that the energy bandgap of 12μm / hr was about 50meV larger At this time, the state of the growth surface was also very good.
따라서 본 발명에서는 n글래드층과 활성층의 성장율 4μm/hr로 제 3a 도와 같이 성장한다. 또한 제 3b 도와 같이 n글래드층의 성장율 8μm/hr로 한 다음 활성층 성장율을 4μm/hr로 성장한다. 그러므로 양 글래드 혹은 p글래드의 에너지 밴드갭을 제 5 도와 같이 증대시킬 수 있다.Therefore, in the present invention, the growth rate of 4 nm layer and the active layer 4 μm / hr grows with the 3a degree. Further, as shown in FIG. 3b, the growth rate of the n-glad layer is 8 μm / hr, and the active layer growth rate is 4 μm / hr. Therefore, the energy band gap of both glads or p glazes can be increased with the fifth degree.
상기 제 5 도에서와 같이 전도대의 에너지 밴드갭 차(δc)와 가전자대의 에너지 밴드갭 차(δv)는 각각 20-30meV 정도의 크기가 된다. 또한 성장율이 높아질수록 똑같은 양의 원료를 주입시켰을 때 도핑농도가 증가하게 된다. 즉 주입원료량을 증가시키지 않고 p글래드층의 도핑농도 증가에 따른 가전자대의 상승효과까지 기대할 수 있게 되며 같은 Al 조성비를 가진 경우에는 높은 도핑을 얻을 수 있으므로 저항을 줄일 수 있는 효과가 있다.As shown in FIG. 5, the energy band gap difference δ c of the conduction band and the energy band gap difference δ v of the valence band are each about 20-30 meV. In addition, as the growth rate increases, the doping concentration increases when the same amount of raw material is injected. That is, the synergistic effect of the valence band can be expected by increasing the doping concentration of the p-glare layer without increasing the amount of injected raw materials, and when the same Al composition ratio, high doping can be obtained, thereby reducing the resistance.
그리고 제 4 도와 같이 n글래드층과 p글래드층 성장시 성장율을 단계적으로 높이거나 줄이면서 에너지 밴드갭이 서서히 증가하거나 서서히 감소하여 활성층과의 에너지 밴드갭 차이는 높이면서 n GaAs기판과 n글래드층, p글래드층과 p글래드갭층 사이의 에너지 밴드갭 차이는 감소시켜 전류가 주입되면서 갑자기 큰 장벽 때문에 발진 전류가 증가하는 현상을 줄일 수 있게 된다.In addition, as shown in FIG. 4, the energy band gap gradually increases or decreases gradually as the growth rate increases or decreases during the growth of the n and p-layers, thereby increasing the gap between the n GaAs substrate and the n layer. The energy band gap difference between the rad layer, the p-glad layer, and the p-glass gap layer is reduced to reduce the phenomenon of sudden increase in oscillation current due to a large barrier as the current is injected.
이와 같이 양 글래드층이나 활성층의 성장율을 변화시킴으로서 Al 조성비의 증가나 높은 도핑을 위한 주입원료량의 증가없이 에너지 밴드갭은 증대시킴에 따라서 글래드층과 활성층간의 전도대 에너지 밴드갭 차이를 크게하여 발전계서 전류의 증가를 방지하고 반도체 레이저의 동작온도를 높일 수 있게 된 것이다.By changing the growth rate of both the glad layer and the active layer as described above, the energy band gap increases without increasing the Al composition ratio or the amount of injected raw material for high doping, thereby increasing the difference in the conduction band energy band gap between the glad layer and the active layer. It is possible to prevent the increase of the current in the power generation system and increase the operating temperature of the semiconductor laser.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019920005516A KR940011272B1 (en) | 1992-04-02 | 1992-04-02 | Visuable light semiconductor laser manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019920005516A KR940011272B1 (en) | 1992-04-02 | 1992-04-02 | Visuable light semiconductor laser manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR930022641A KR930022641A (en) | 1993-11-24 |
KR940011272B1 true KR940011272B1 (en) | 1994-12-03 |
Family
ID=19331297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019920005516A KR940011272B1 (en) | 1992-04-02 | 1992-04-02 | Visuable light semiconductor laser manufacturing method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR940011272B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7516337B2 (en) | 2004-10-22 | 2009-04-07 | Samsung Electronics Co., Ltd. | Apparatus for supplying power to controller |
-
1992
- 1992-04-02 KR KR1019920005516A patent/KR940011272B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7516337B2 (en) | 2004-10-22 | 2009-04-07 | Samsung Electronics Co., Ltd. | Apparatus for supplying power to controller |
Also Published As
Publication number | Publication date |
---|---|
KR930022641A (en) | 1993-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7402843B2 (en) | Group III-V compound semiconductor and group III-V compound semiconductor device using the same | |
US4819036A (en) | Semiconductor device | |
EP0554089B1 (en) | Semiconductor light-emitting device | |
US5508554A (en) | Semicoductor device having defect type compound layer between single crystal substrate and single crystal growth layer | |
JPH0650723B2 (en) | Epitaxial growth method | |
US4207122A (en) | Infra-red light emissive devices | |
EP0328134B1 (en) | Semiconductor laser device and method of manufacturing semiconductor laser device | |
US5242857A (en) | Method of manufacturing semiconductor structures | |
US5107514A (en) | Semiconductor optical element | |
US5146467A (en) | Semiconductor laser device | |
US5315133A (en) | Compound semiconductor structure including p-type and n-type regions doped with carbon | |
JP5215267B2 (en) | Method for producing compound semiconductor film | |
KR940011272B1 (en) | Visuable light semiconductor laser manufacturing method | |
US5400356A (en) | Index-guided laser on grooved (001) substrate | |
JPH0828327B2 (en) | Method for manufacturing semiconductor device | |
US5192711A (en) | Method for producing a semiconductor laser device | |
JPH07254750A (en) | Semiconductor laser | |
US5190891A (en) | Method for fabricating a semiconductor laser device in which the p-type clad layer and the active layer are grown at different rates | |
JPS6349396B2 (en) | ||
JP3027116B2 (en) | Solar cell | |
JPH01214083A (en) | Semiconductor laser device and its manufacture | |
JPH03276688A (en) | Semiconductor laser device and manufacture thereof | |
JP2005159152A (en) | Manufacturing method of iii-v compound semiconductor crystal and manufacturing method of semiconductor device using the same | |
JPS5826539Y2 (en) | semiconductor laser | |
JPH0567839A (en) | Semiconductor laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
G160 | Decision to publish patent application | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20031008 Year of fee payment: 10 |
|
LAPS | Lapse due to unpaid annual fee |