KR930009621B1 - 화력발전플랜트의 제어장치 - Google Patents

화력발전플랜트의 제어장치 Download PDF

Info

Publication number
KR930009621B1
KR930009621B1 KR1019850004862A KR850004862A KR930009621B1 KR 930009621 B1 KR930009621 B1 KR 930009621B1 KR 1019850004862 A KR1019850004862 A KR 1019850004862A KR 850004862 A KR850004862 A KR 850004862A KR 930009621 B1 KR930009621 B1 KR 930009621B1
Authority
KR
South Korea
Prior art keywords
sub
control device
plant
command
loop control
Prior art date
Application number
KR1019850004862A
Other languages
English (en)
Other versions
KR860001387A (ko
Inventor
히로시 야마다
미찌히로 이이오까
아끼라 스가노
아쓰시 다끼다
세이이쓰 니가와라
마사유끼 후까이
Original Assignee
가부시기가이샤 히다찌세이사꾸쇼
미다 가쓰시게
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP59140533A external-priority patent/JPS6121503A/ja
Priority claimed from JP14952684A external-priority patent/JPS6129901A/ja
Application filed by 가부시기가이샤 히다찌세이사꾸쇼, 미다 가쓰시게 filed Critical 가부시기가이샤 히다찌세이사꾸쇼
Publication of KR860001387A publication Critical patent/KR860001387A/ko
Application granted granted Critical
Publication of KR930009621B1 publication Critical patent/KR930009621B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/18Applications of computers to steam boiler control

Abstract

내용 없음.

Description

화력발전플랜트의 제어장치
제 1 도는 물,증기프로세스에 있어서의 프로세스구성의 개념을 도시한 도면.
제 2 도는 물,증기프로세스에 있어서의 서브프로세스의 구성을 도시한 도면.
제 3 도는 급수서브프로세스에 있어서의 소프로세스의 구성을 도시한 도면.
제 4 도는 화력발전플랜트와 프로세스와 기기의 구성을 도시한 도면.
제 5 도는 종래 행하고 있는 프로세스와 제어장치의 배치의 관계를 도시한 도면.
제 6 도는 본원 발명에 있어서의 제어장치배치의 기본적 개념을 도시한 도면.
제 7 도는 본원 발명의 개념에 의거한 제어시스템구성의 일예로서, 제 7a 도는 드럼형, 제 7b 도는 관류형을 도시한 도면.
제 8 도는 본원 발명장치의 하드웨어의 구성도.
제 9 도는 본원 발명에 있어서의 SLC와 DCM, SGC 주변의 기본시스템구성을 도시한 도면.
제 10 도는 SGC의 기능도.
제 11 도는 아날로그제어용 DCM의 기능도.
제 12 도는 디지탈제어용 DCM의 기능도.
제 13 도 ∼ 제 15 도는 본원 발명에 있어서의 제어장치 고장시의 백업방법의 개념을 도시한 도면.
제 16 도 ∼ 제 18 도는 급수계를 예로 한 본원 발명의 실시예를 도시한 도면.
제 19 도, 제 20 도는 상위제어장치 고장시에 하위제어장치로 백업을 하기 위해 필요한 프로세스신호의 일예를 도시한 도면.
본원 발명은 화력발전플랜트의 제어장치에 관한 것이며, 특히 제어장치에 이상이 발생했을 때 화력발전플랜트에 주는 영향을 극력 경감할 수 있는 화력발전플랜트의 제어장치에 관한 것이다.
안정되게 전력을 공급한다고 하는 사회적 사명을 갖는 화력발전플랜트는 고신뢰도하에 운전되지 않으면 안된다. 그러므로, 플랜트 각 기기(機器)는 물론이고, 플랜트의 제어장치에 대하여도 고신뢰화 대책이 실시되어, 제어장치의 이상정지시에 플랜트를 정지시키지 않도록 연구된 제어장치구성으로 되어 있다. 예를 들면, 미합중국 특허 제 4,347,564호에서는 제어장치의 일부를 이중화(二重化)하여 마스터제어장치(master controller)의 다운(down)시에 호스트콤퓨터로 전환한다. 또는, 일본국 특개소 50-143989호에서는 서브루프(sub-loop)제어장치의 이상시에, 통상시에는 사용하지 않는 예비의 서브루프제어장치를 기동하고, 이로써 제어를 대행시키는 이른바 1 : n 백업(back up)방식으로 하고 있다. 이들 다중화방식의 경우, 1대의 제어장치에 이상이 발생해도 화력발전플랜트를 정지시키는 일 없이 운전속행이 가능하며 고신뢰성의 제어장치로 할 수 있다. 그러나, 이들 다중화방식은 동일기능의 것을 최소한 1대 여분으로 구비할 필요가 있으므로, 고가격화 되는 것을 피할 수 없다.
이상의 문제점으로부터 본원 발명의 목적으로 하는 바는 제어장치를 극력 다중화함이 없이 제어장치의 이상이 플랜트운전에 주는 영향을 극력 경감할 수 있는 화력발전플랜트의 제어장치를 제공하는데 있다.
본원 발명에 있어서, 부하요구신호와 화력발전플랜트로부터의 복수의 플랜트치를 입력하고, 부하요구신호를 달성하는데 필요한 플랜트의 발전량, 급수량, 연료량, 공기량, 재순환가스량중 최소한 2개에 대한 지령신호를 출력하는 하나의 마스터제어장치와, 지령신호마다 독립하여 설치되며, 각 지령신호에 따라 각각의 조작단을 제어하기 위한 조작량을 부여하는 복수의 서브루프제어장치와, 복수의 서브루프제어장치와 마스터 제어장치와의 사이에 설치된 전송루프와, 각 서브루프제어장치로부터의 조작량마다 설치된 조작단을 구동하는 복수의 구동수단과, 하나의 서브루프제어장치와 그 지령신호에 의해 구동되는 복수의 구동수단과의 사이에 설치된 I/O 버스와, 각 플랜트치를 검출하여 상기 마스터제어장치 또는 서브루프제어장치로 배송하는 복수의 플랜트치의 검출수단을 구비한다.
다음에, 본원 발명의 일실시예에 대하여 설명하지만, 그 전에 기초로 되는 개념(화력발전플랜트가 어떻게 구성되며, 이 플랜트구성에 입각하여 어떻게 제어장치를 구축하는 것이 좋은가)에 대하여 설명한다.
제 1 도에 화력발전플랜트의 플랜트특성에 착안한 제어계통분할의 개념에 대하여 도시한다.
화력발전플랜트는 여러 가지의 기능이 복잡하게 관련된 복합프로세스의 집합체이지만, 그 내용을 물질 및 에너지의 흐름에 착안하여 분류하면 제 1 도에 도시한 바와같이, 연소프로세스 I, 물,증기프로세스 Ⅱ, 발전프로세스 Ⅲ, 냉각프로세스 Ⅳ의 4개의 프로세스로 정리할 수 있다. 화력발전플랜트의 제어는 이들 4개의 프로세스를 조합하여 서로 협조를 취함으로써 외부로부터 주어지는 전력수요에 대하여 안정되게 전력을 공급하는 것을 목적으로 한다. 제 1 도에 도시한 각각의 프로세스는 그 기능에 착안하면 다시 복수의 서브프로세스로 분류할 수 있다. 제 2 도에 물,증기프로세스 Ⅱ를 다시 서브프로세스로 분류한 것을 도시한다. 도면중(Ⅱ 10)은 복수(復水)서브프로세스, (Ⅱ 11)은 저압금수가열,탈기(脫氣)서브프로세스, (Ⅱ 12)는 급수서브프로세스, (Ⅱ 13)은 고압급수가열서브프로세스, (Ⅱ 14)는 증발,과열서브프로세스, (Ⅱ 15)는 재열(再熱)프로세스이다. 서브프로세스는 플랜트의 내력(耐力)강화를 위해 필요에 따라서 동등용량의 복수(複數)의 소(小)프로세스를 갖는다. 또, 소프로세스는 다시 기기(機器)의 단위로 세분할 할 수 있다.
제 3 도에 급수서브프로세스(Ⅱ 12)를 소프로세스 및 기기로 분할한 것을 도시한다. (Ⅱ 12A)∼(Ⅱ 12C)는 각각 급수펌프 소프로세스를 도시한다. 소프로세스내의 기기는 급수펌프(Ⅱ 12A1), 급수펌프변속기(Ⅱ 12A2), 급수펌프모터(Ⅱ 12A3), 급수부스터펌프(Ⅱ 12A4), 급수부스터펌프모터(Ⅱ 12A5), 급수펌프출구밸브(Ⅱ 12A6), 급수펌프재순환밸브(Ⅱ 12A7)이다. 이상을 정리하면 발전플랜트의 구성은 제 4 도에 도시한 바와 같이 프로세스, 서브프로세스, 소프로세스, 기기의 레벨로 나눌 수 있다. 여기서, 플랜트의 프로세스레벨 또는 서브프로세스레벨에서 고장이 발생한 경우는 플랜트의 운전계속은 불가능하며, 플랜트운전정지로 되는 일이 많다. 그러나, 소프로세스레벨 또는 기기레벨에서의 고장에서는 플랜트의 출력감축등에 의해 운전계속이 가능할 것이다.
그런데, 종래는 상기와 같은 플랜트의 분석이 불충분하여 이 결과가 제어장치구성에 반영되어 있지 않다. 급수서브프로세스의 예를 제 5 도에 도시한 바와 같이 복수의 소프로세스(Ⅱ 12A)∼(Ⅱ 12C)에 걸쳐 그 기기의 성격에 착안하여 아날로그제어기기용의 급수유량제어장치(30)와, 온,오프 제어기기용의 급수제어시켄서(31)를 배치하고 있다. 이 경우, 제어장치(30), 또는 급수제어시켄서(31)의 고장은 소프로세스(Ⅱ 12A)∼(Ⅱ 12C)의 자동운전의 계속을 불가능하게 한다. 이것은 급수서브프로세스(12)의 모든 소프로세스의 자동운전계속이 불가능해지는 것을 나타내고 있으며, 플랜트 운전의 계속에 중대한 지장을 준다. 그러므로, 본원 발명에 있어서는 플랜트특성에 착안하여 플랜트를 분류하고, 최하위의 제어로서 기기에 대응하여 DCM(드라이브콘트롤모듈), SGC(시그널콘디셔닝모듈)을 배치하고, 그 상위에 소프로세스에 대응하여 서브루프제어장치를 배치하며, 다시 그 상위프로세스, 서브프로세스에 대응하여 마스터제어장치를 배치하여 프로세스, 서브프로세스간의 서로의 협조를 취한 제어를 하며, 최상위에 감시제어장치를 설치하여, 이들 제어장치를 모두 일중계(一重系)로 구성했다.
이 기본적인 개념을 제 6 도에 도시한다. 도면중(40)은 기기, (41)은 소프로세스, (42)는 서브프로세스를 도시한다. SGC는 프로세스로부터의 데이터의 입력신호를 처리하는 것이다. DCM은 기기단위로 설치되어 제어신호 또는 수동지령에 의해 각각의 기기(40)를 조작하는 것이다. 이들 SGC 및 DCM은 시스템 전체중에서의 최소단위이며, 수동조작, 기기의 보호나 제한을 한다. SLC는 서브루프제어장치이며, 상기 DCM, SGC를 합하여 소프로세스에 대응하여 배치되어서 아날로그제어, 시켄스제어를 한다. MC는 마스터제어장치이며, 복수의 서브루프제어장치 SLC를 통괄하고, 프로세스간이나 서브프로세스간의 협조가 취해진 제어를 권장하는 것이다. SVC는 감시제어장치이며, 플랜트총합감시, 맨머신 인터페이스, 데이터록, 더큐멘트작성, 제어프로그램의 다운로드, 프로그램의 수정 및 예측제어 등의 고기능 제어를 하는 것이다.
상기 기본에 따라서 드럼형(drum type) 보일러의 발전플랜트에 대한 제어시스템을 구성한 예를 제 7a 도에 도시한다. 역시 관류형(one through type) 보일러의 경우의 구성예를 제 7b 도에 도시한다. 이 도면에 있어서, 제어장치는 감시제어장치 SVC, 마스터제어장치 MC 및 15대의 서브루프제어장치 SLC로 구성된다. 또, 제 7a 도의 드럼형의 경우의 마스터제어장치 MC는 계통주파수 F, 주증기압력 MSP, 절탄기(節炭機)출구가스 O2GO2, 공기유량 AIR, 화로(火爐)드라프트 FD, 드럼레벨 DL, 주증기온도 MST, 재열증기온도 RSP, 연료량 … 석탄유량 QC, 주증기유량 MSQ, 주급수유량 MSF을 입력하는 등의 복수의 프로세스나 서브프로세스간의 상호의 관련에 의해 결정되는 제어량을 각각의 협조를 취하면서 제어하는 것이다. 관류형일 경우, 화력플랜트는 드럼을 구비하고 있지 않으며 이른바 3요소(주증기유량 MSQ, 드럼레벨 DL, 주급수유량 MSF)에 의한 급수제어를 하지 않기 때문에, 제 7b 도의 마스터제어장치 MC는 드럼레벨 DL을 본질적으로 필요로 하지 않는다. 그리고, 제 7b 도의 관류형의 마스터제어장치 MC에서는 공기유량 AIR, 주증기유량 MSQ도 입력되어 있지 않다. 마스터제어장치 MC에 입력된 이들 양은 감시제어장치 SVC의 플랜트상태감시부(B1)에 있어서 감시된다. 또, 보일러의 제어를 양호하게 하는데는 주증기온도 MST, 재열증기온도 RST의 장래치를 예측하여 이들을 제어하는 것이 좋으므로, 감시제어장치 SVC내의 예측제어부(B2)에서 적절히 주증기온도 MST, 재열증기온도 RST의 예측이 행해진다. 마스터제어장치 MC는 이들 입력외에 중앙급전지령소로부터의 부하요구지령(1)을 받아서, 각 요구지령을 각각 서브루프제어장치 SLC에 부여한다. 그리고, 각 지령과 이것을 입력하는 서브루프제어장치 SLC와의 대응은 다음과 같다.
SLC-1 : 발전량지령(2)
SLC-2 ∼ -7 : 밀마스터지령(7)
SLC-8, -9 : 공기유량지령(8), 화로드라프트지령(9)
SLC-10 ∼ -12 : 급수량지령(4)
SLC-13 ∼ -14 : 주증기온도지령(5)
SLC-15 : 재열증기온도지령(10)
여기서, 마스터제어장치 MC는 상기 각 지령을 다음의 개념에 입각하여 작성한다.
발전량지정(2) :
드럼형과 관류형에서 동일하다. 먼저, 주파수보정부(B4)에 있어서 보정신호(SC1)를 작성하고, 유니트마스터지령부(B3)에 있어서 중급지령(中級指令)을 보정신호(SC1)로 수정하여 유니트마스터지령(UM)을 얻는다. 한편, 허용부하부(B5)는 복수대의 보조기중의 일부가 트립했을 때 나머지 보조기를 사용하여 운전계속 가능한 최대허용부하를 설정한 것이며, 저신호선택부(B6)는 유니트마스터지령부(B3)와 허용부하부(B5)의 출력중에서 작은 것을 선택하고, 이것을 발전량 지령으로 한다.
밀마스터지령(7) :
가산기(AD1)에 있어서 총석탄유량이 구해지며, 가산기(AD1)의 출력은 석탄종별에 의해 정해지는 열량보정부(B7)의 출력과 승산기(乘算器)(MP1)에서 승산되어, 실제총연료유량이 구해진다. 감산기(SB1)는 그 목표신호(6) 또는 (6')와의 차를 구하고, 그에 따라서 밀마스터제어부(B8)에 있어서 밀마스터지령(7)이 구해진다. (7)은 중급지령(1)을 유지하는데 필요한 총석탄량을 뜻한다. 그리고, 총연료의 지령신호(6), (6')는 보일러형에 따라 구하는 방법이 다르다. 드럼형의 경우(제 7a 도), 발전량지령(2)에 대하여 주증기압력으로 보정한 신호이며, 주증기압력제어부(B9)에 있어서 주증기압력을 일정하게 하기위한 신호(SC2)를 구하고, 보일러마스터부(B10)에서 발전량지령(2)을 신호(SC2)로 수정하여 연료량지령신호(6')를 얻는다. 관류형의 경우(제 7b 도), 급수량지령부(B11)에 있어서 발전량지령(2)을 신호(SC2)로 보정하여 총급수량지령(3)을 얻는다. 한편, 주증기온도를 일정하게 하기위한 주증기온도제어부(B12)의 출력(주증기온도지령 5)을 사용하여 연소량지령부(B13)에서 공급수지령(3)을 주증기온도지령(5)으로 수정해서, 연료량지령신호(6)를 얻고 있다.
급수유량지령(4) :
제 7a 도의 드럼형의 경우, 이른바 3요소제어의 개념에 의해 개개의 보일러급수펌프(BFP)에 부여하는 급수유량지령(4)이 구해진다. 즉, 설정기(SET1)가 부여하는 수위목표신호와 실수위기 감산기(SB2)에서 구해지며, 드럼레벨제어부(B14)에서 드럼레벨제어신호(3')를 얻는다. 드럼레벨제어는 신호(3'')에 의해 실용가능하지만, 제어응답성이 나쁘기 때문에 가산기(AD2)에 있어서, 주증기유량 MSQ과 주급수유량 MSF과의 차를 드럼레벨제어신호(3'')에 가산하여 제어신호(3')를 얻는다. 주급수제어부(B15)에 있어서 제어신호(3')를 사용하여, 개개의 보일러공급수펌프 BFP에 대한 급수유량지령(4)을 얻는다. 제 7b 도의 관류형의 경우, 중급지령에 따라서 총급수량지령(3)이 상기와 같이 구해지고 있으며, 이것은 감산기(SB3)에서 실제 총공급수유량과 비교되며, 그 편차에 따른 급수제어부(B16)의 연산에 의해 개개의 보일러공급수펌프 BFP에 대한 급수유량지령(4)이 결정된다.
공기유량지령(8) :
기본적으로는, 공기유량지령(8)은 제 7a 도의 보일러마스터부(B10) 또는 제 7b 도의 연소량지령부(B13)에서 구해진 연료유량지령(6') 또는 (6)을 연소가스중의 O2량에 의해 보정하여 구해진다. 즉, 가산기(AD2)에 의해 절탄기출구의 가스에 포함되는 O2량이 구해지고, 설정기(SET2)에서 정해진 O2목표와의 차를 감산기(SB5)에서 구하고, 화로드라프트제어부(B19)에 있어서 공기유량지령연산부(B18)의 출력을 감산기(SB4)에서 구한다. 블록(17)은 가스중의 O2를 일정하게 하기 위한 가스 O2제어부이며, 그 출력에 의해 연료유량지령(6)을 공기유량지령연산부(B18)에서 수정한다. 또한, 공기유량지령연산부(B18)의 출력과 실제의 공기유량과의 차를 감산기(SB5)의 출력으로 수정하기 시작하여, 공기유량지령(8)으로 한다.
주증기온도지령(5) :
주증기온도제어부(B12)에 있어서, 주증기온도편차를 적절히 비례적분 연산하여 주증기온도지령(5)이 구해진다.
화로드라프트지령(9) :
설정기(SET3)의 출력과 화로드라프트의 검출치가 감산기(SB6)에서 구해지고, 화로드라프트제어부(B19)에 있어서 적절히 비례적분연산하여 그 지령(9)이 연산된다.
재열증기온도지령(10) :
설정기(SET4)의 출력과 재열증기온도의 검출치가 감산기(SB7)에서 구해지며, 재열증기온도제어부(B20)에 있어서의 적절한 비례적분연산에 의해 그 지령(10)이 연산된다.
마스터제어장치 MC는 그 타입마다 제 7a, b 도와 같이 구성되고, 후술하는 서브루프제어장치 SLC에 상기한 지령신호를 송출한다. 이들 SLC에 있어서, (SB8)∼(SB12)는 마스터제어장치 MC로부터의 지령과 각각 검출한 프로세스상태와의 차를 구하는 감산기이며, (B21)∼(B25)는 각각 적절한 비례적분 등의 조절 기능으로서, 구체적으로는 순차 발전량제어, 급탄기제어, 1차공기유량제어, BFP 제어, 감온기출구증기온도제어를 위한 조절기이다. 이와 같이, SLC-1∼-7, SLC-10∼-14는 이른바 피드백콘트롤을 형성한다. SLC-8, -9, -15는 오픈루프제어이며, (B26)∼(B29)는 각각 FDF 제어, IDF 제어, 가스재순환량제어, 가스분배량제어를 위한 예를들면 함수발생기능을 구비한다.
한편, 드라이브콘트롤모듈 DCM에서는 서브루프제어장치 SLC로 부터의 제어지령을 조작단에 출력하는 동시에 수동조작회로를 구성하고 있으며, 수동시에는 서브루프제어장치의 출력을 전환, 수동조작지령을 출력한다.
제 7a, b 도의 최하단에는 이미 주지의 화력발전플랜트의 개략 구성을 나타내고 있으며, 그 설명은 생략하기로 하고, 각 SLC의 출력이 DCM을 통해 플랜트의 어느 부분을 조작제어하는가에 대한 대응을 다음에 기술한다.
SLC-1 ; 터빈T의 입구의 증기가감밸브 CV. 단, CV는 일반적으로 4밸브 내지 8밸브가 병치되므로, 각 CV마다 DCM을 배설한다.
SLC-2∼-7 ; 도면은 석탄보일러의 예를 나타내고 있으며, 석탄을 석탄분쇄기 CP에 공급하기 위한 석탄이송기 CF의 속도(연료량)와, 분쇄된 미분탄을 보일러로 반송하기 위한 1차공기유량제어용의 댐퍼 PAD의 개폐도. 그리고, CF, CP, PAD로 이루어지는 석탄분쇄유니트 CMU는 일반적으로 복수 병렬설치되며, 각각의 유니트가 각각 하나의 SLC에 의해 제어된다. 이 도면의 예에서는, SLC, CMU가 각각 6대 있다.
SLC-8, -9 ; 보일러에 도입하는 공기유량을 제어하는 화로드라프트팬 FDF과, 보일러에서 도출하는 가스유량을 제어하는 유도드라프트팬 IDF. 도시하지 않았지만, FDF와 IDF는 각각 병렬로 2대 설치되어 있으며, 1조의 FDF와 IDF가 SLC-8에 의해, 다른 세트가 SLC-9에 의해 제어된다.
SLC-10, -12 ; 보일러에의 급수량을 제어하기 위한 보일러급수펌프 BFP. BFP는 복수대 병렬배치(도면에서는 3대)되며, A-BFP를 SLC-10이, B-BFP를 SLC-11이, C-BFP를 SLC-12가 제어한다.
SLC-13, -14 : 보일러에서 발생한 증기에 분무하여 냉각하기 위한 감온기 RT의 스프레이밸브 SPV의 개폐도. 2조 병렬설치된 감온기의 각각을 SLC-13과 SLC-14가 제어한다.
SLC-15 : NOX(nitrogen-oxide products) 저감을 위해 연소가스를 재차 보일러에 도입하기 위한 가스 재순환팬 GRF. 또, 재열기 RH와 1차 과열기(過熱器) SH를 별개의 연도(煙道)에 인도하여 각각에 흐르는 가스유량을 제어하는 패러렐댐퍼 PD.
제 7 도에는 제어기능의 분할을 중심으로 시스템구성을 도시하였으나, 제 8 도에 실제의 하드웨어구성을 도시한다.
부호는 제 1 도중에서 사용한 것과 같은 것이다. (50)은 시리얼데이터전송루프이며 분산배치된 복수의 서브루프제어장치 SLC, 마스터제어장치 MC, 감시제어장치 SVC를 유기적으로 결합한 것이다.
제 8 도에서 SVC내의 (200)은 프린터, (201), (206)은 디스플레이, (202)는 키보드, (203)은 플로피(204)는 시스템콘솔, (205)는 예측제어 등을 위해 사용되는 상위제어장치이며, (207)은 감시용 제어장치이다. 그리고, (208)은 SLC군이며, 제 7 도의 예에서 기술하면 (208-1)은 예를들면 급수제어용 SLC군(제 7 도의 SLC-10∼-12)이고, (208-2)는 밀제어용 SLC군(제 7 도의 SLC-2∼-7)이며, (208-3)은 공기량제어용 SLC군(제 7 도의 SLC-8, -9)이다. 하나의 SLC에는 복수의 SGC와 DCM이 배설되며, SLC와 SGC, DCM의 사이는 I/O버스(60)로 결합된다. 그리고, 마스터제어장치 MC에는 DCM은 없으며, 복수의 SGC가 I/O버스(60)에 의해 결합된다. 시그널콘디셔닝모듈 SGC은 발전플랜트(100)의 각종 상태량, 예를들면 제 7 도에 나타낸 검출기출력을 검출하여 SLC나 MC에 부여하기 위한 것으로서, 드라이브 콘트롤모듈 DCM은 SLC로부터의 출력에 따라서 발전플랜트(100)내의 기기를 구동한다. 이와 같이, 본원 발명의 제어장치는 제 8 도에 도시한 바와같이 계층(階層)구성으로 되어 있으며, 제 7 도에 도시한 바와같이 서브루프제어장치 SLC는 MC로부터의 목표치를 입력하여 DCM에 기기(40)의 조작량을 출력한다.
제 9 도에, 하나의 SLC와 이에 결합되는 SGC, DCM의 회로부분을 도시한다. (50)은 시리얼데이터전송루프이며, 서브루프제어장치 SLC를 다른 제어장치 MC나 SLC에 결합한다. (60)은 I/C 버스이며, 서브루프제어장치 SLC와 복수의 SGC, DCM을 결합하는 것이다. 서브루프제어장치 SLC는 BPU, 메모리 등으로 이루어지는 프로세서이지만, SGC, DCM은 일종의 I/O 장치이다.
다음에, 제 10 도에 따라서 SGC의 기능을 설명한다. 원칙적으로서 SGC는 하나의 검출기에 1대 설치되어 도면중 (70)의 검출단으로부터의 신호에 대하여 블록(71)에서 먼저 단선(斷線)을 검출한다. 이것은 예를들면 입력신호의 급변으로부터 판단가능하다. 블록(72)에서는 필요에 따라서 비선형(非線型)보정, 개평(開平), 가감산 등의 신호를 처리한다.
즉, 예를들면 밸브개폐도신호 등의 비선형 특성을 보상하며, 또는 입력된 2개의 압력신호의 차를 구하여 그 개평연산에 의해 유량에 상당하는 신호를 구하고, 다시 소정의 게인을 승산하는 등의 처리를 한다. 블록(73)에서는 적절히 디지탈변환하여 그 신호를 분배한다. 분배선은 I/O 버스(60)를 통해 서브루프제어장치 SLC 등의 상위제어장치에 보내는 것과, I/O 버스(60)를 통하지 않고 지시계나 DCM 등에 분배하는 것이 있으며, 예를들면 I/O버스(60)를 통하지 않고 프로세스신호를 신호선(211)을 통해 지시계나 DCM에 보내어 프로세스신호를 감시, 제어할 수 있다. 또, 마찬가지로 프로세스신호를 블록(74)에서 모니터하여 상위제어장치고장을 검지하고, 신호선(210)을 통해 경보용이나 보호용의 접점출력을 외부에 출력하여 감시,보호기능(61)에 부여한다.
제 11 도에 따라서 아날로그제어용의 DCM의 기능의 상세를 설명한다. 여기서, DCM은 원칙으로서 하나의 조작단마다 설치된다. 그리고, I/O버스(60)로부터 입력되는 상위제어장치 SLC로부터의, 예를들면 밸브(83)의 개폐도에 대한 지령신호(S40)는 통상은 전환기(80), 자동/수동전환기(81), 전압/전류변환기(82)를 통해 조작단(83)을 구동한다. 조작단(83)의 조작신호(S41) 또는 (S42)는 이상진단회로(84)에 있어서 조작단위치검출기(85)에서 검지된 포지션피드백신호(S43)와 대조하여 체크된다. 이 체크결과의 출력(S44) 및 조작단 전개/전폐 리미트스위치(86)로부터의 입력(S45)은 논리회로(87)에 의해 처리되며, 신호(S46)로서 수동조작스테이션(88A)에 인가되어 램프표시된다. 또, (88A)에는 자동/수동의 운전상태(A/H 별), 밸브(83)의 개폐도신호(S43)도 표시된다. 이 (88A)는 수동모드(H)를 선택하여 증가 또는 감소버튼을 누르면, 그 출력이 증가 또는 감소하도록 구성되어 있다. 또, 수동모드(H)가 선택되면 자동/수동전환회로(89)를 통해 전환기(81)를 메모리(92)측으로 전환한다. (90)은 개/폐논리회로이며, 수동조작스테이션(88A)으로부터의 수동에 의해 개/폐조작신호 및 보호회로(61)로부터의 강제개폐신호(212)에 의해 메모리(92), 자동/수동전환기(81)를 통해 조작단(83)을 개폐할 수 있다. 이 회로에 의해 상위제어장치가 고장나서 I/O버스(60)로부터의 제어지령이 입력되지 않아도, 수동조작 및 보호회로의 동작에 의해 조작단을 개폐할 수 있는 것이 DCM의 특징이다. 또 하나의 DCM의 특징은 백업회로(93)이다. 즉, 상위제어장치 SLC의 고장시에는 SGC를 통해 수신하는 프로세스피드백신호(211)를 홀더(94)로 유지하여 설정치로 하고, 비교기(95)에서 프로세스피드백신호와 비교하여 비례적분연산기(96) 및 전환기(80)를 통해 프로세스피드백량을 상위고장발생 직전의 값으로 제어하는 기능을 갖는 것이다.
이상의 SGC 및 DCM의 기능에 의해 상위제어장치(서브루프제어장치 SLC)고장시에도 수동조작의 확보, 보호기능의 확보, 최소한도의 프로세스피드백제어기능의 확보가 가능해져서 시스템의 일중화(一重化) 구성이 가능해진다.
또한, 제 12 도에서 디지탈제어용의 DCM의 기능의 상세를 설명한다. I/O 버스(60)로부터 주어지는 상위제어장치 SCL로부터의 자동기동/정지지령(S51)은 기동정지논리회로(130)에서 신호선(211)을 통해 SGC에서 얻은 인터록조건에 적합한가 판정된다. 자동/수동전환회로(101)에 의해 자동모드선택시에는 AND1, OR1, AND3, OR2를 통해 기동정지논리회로(130)의 출력에 의해 스위치기어(104)가 조작된다. 또, PB스테이션(88D)에서 수동이 선택되어 있을때는 수동의 기동/정지지령에 의해 AND2, OR1, AND3, OR2를 통해 기동정지논리회로(130)의 출력에 의해 스위치기어(104)가 조작된다. 또, PB 스테이션(88D)에서 수동이 선택되어 있을 때는 수동의 기동/정지지령에 의해 AND2, OR1, AND3, OR2를 통해 스위치기어(104)를 온,오프한다. 그리고, 허가조건논리회로(102)는 인터록조건에 적합할 때만 AND3의 출력을 허가한다. 또, 보호회로(61)로부터의 지령(212)에 의해 OR2를 통해 긴급정지된다. 또, 스위치기어(104)에 연동하여 개폐되는 접점(106)으로부터의 신호(S52)와 조작지령(S53)에 의해 또 진단회로(107)에 의해 이들의 불일치에 따라서 이상을 진단한다. 이 진단결과(S54) 및 피드백신호(S52)는 논리회로(108)를 통해 PB 스테이션(88D)에 표시된다. 디지탈제어용의 경우에도 DCM의 큰 특징은 상위제어장치(서브루프제어장치) 이상시에도 수동조작에 의한 기동/정지 및 보호로직에 의한 강제정지기능을 확보할 수 있는 것이다. 그리고, 이 도면에서 AND는 논리적(論理積), OR은 논리화(論理和)이다.
이상의 구성에 있어서, 상위제어장치 고장시에 하위제어장치가 상위의 제어기능의 밑부분을 축퇴(縮退)백업함으로써 시스템의 신뢰성을 향상시키는 본원 발명의 자율제어 방법에 대하여 다음에 기술한다.
제 13 도는 마스터제어장치 MC, 서브루프제어장치 SLC, 드라이브콘트롤모듈 DCM을 구비한 제어기능이 도시되어 있으며, 먼저 MC는 편의상 다음 3가지 기능으로 분류된다. 이 가운데, 계통마스터주제어부(110)는 이 서브루틴의 협조제어에 관한 필요불가결의 제어이다. 계통마스터 어드밴스트제어부(111)는 이 서브루프제어에 관한 것으로서, 그 제어성을 향상시키기 위해 설치된 것이다. 계통마스터보조제어부(112)는 이 서브루프제어에 관한 제한회로나 기동, 정지시의 제어회로등이다. 마스터제어장치 MC에서는 이들의 제어와 부하지령 등으로부터 협조부(113)에 의해 서브루프제어간의 협조를 취한 지령을 작성하여 서브루프제어장치 SLC-A, SLC-B, SLC-C에 부형한다.
각 서브루프제어장치 SLC의 제어기능의 내역은 서브루프제어로서 불가결의 서브루프주제어(114), 부가적 제어인 제한요소(115), 비선형 보정요소(116)로 분류할 수 있다.
본원 발명에서는 제 13 도와 같이 기능분활하고 있지만, 여기서 특징적인 것은 서브루프제어장치 SLC는 그 상위계의 마스터제어장치 MC의 계통마스터주제어부(110)의 동이란 처리부(110')를 가지며, 드라이브콘트롤모듈 DCM은 그 상위계의 서브루프제어장치 SLC의 서브루프주제어(114)와 동일한 처리부(114')를 갖는 것이다. 그리고, (110') 또는 (114')는 통상시는 (110) 또는 (114')와 동일한 입력을 얻고 있을 뿐이며, 구체적으로는 대기하고 있을 뿐이다.
제 14 도는 마스터제어장치 MC 고장시의 서브루프제어장치 SLC에 의한 기능축퇴백업제어의 설명도이다. (110A')는 서브루프제어장치 SLC-A 내에 설치된 제 13 도의 계통마스터주제어부(110)와 동등의 기능이다. 마스터제어장치 MC의 고장시에는, 서브루프제어장치 SLC-A가 마스터제어장치 MC의 제어기능내에서 필요불가결의 (110)의 기능만을 (110')에서 실행하여 마스터제어장치 MC 대신에 서브루프제어장치 SLC-C, SLC-B에도 지령을 부여하여, 서브루프제어장치 SLC-A∼SLC-C간의 협조를 유지한다. 이것이 마스터 제어장치 MC 고장시의 서브루프제어장치 SLC에 의한 기능축퇴백업기능이다.
다음에, 제 15 도에 다시 서브루프제어기능 SLC-A도 고장났을 때의 DCM에 의한 기능축퇴백업에 대하여 도시한다. (114')는 DCM 내에 배설된 서브루프제어장치 SLC 내의 서브루프제어기능(114)과 동등의 기능이며, 이로써 서브루프제어장치 SLC-A 고장시에는 DCM은 서브루프제어장치의 주제어기능만은 실행하는 것이 가능하게 된다. 그리고, 이때 SLC-B 내에 설치된 계통마스터주제어부(110B')는 마스터제어장치 MC 대신에 SLC-C에도 지령을 부여하여, SLC-B와 SLC-C간의 협조를 유지한다.
이상이 플랜트특성에 따른 제어장치의 최적계층분산배치 및 기능축퇴백업에 의한 고신뢰성 일중계 제어시스템에 의한 자율제어방법의 기본원리이다.
여기서, 제 7a, b 도의 경우에 어느 구성요소를 계통마스터주제어로 하고, 계통마스터 보조제어로 하며, 또는 계통마스터어드밴스트제어로 하는가를 예시하면 다음과 같이 된다.
계통마스터주제어 ; B3, B4, B9, B10, B11, AD1, B8, B18, SB5, B19, SET3, SB6, B19, SET1, SB2, B14, B15, B12, SET4, SB7, B20, B13,
계통마스터보조제어 ; B5, B6, MP1, B7, AD2, SET2, SB4, B17, AD2,
계통마스터어드밴스트제어 ; B2,
마스터제어장치내의 각 요소를 이상과 같이 정의한 다음, 제 7a 도의 드럼형의 경우 각 SLC는 다음의 것을 계통마스터주제어(110')로서 구비한다.
SLC-1 ; B3, B4
SLC-2∼ -7 ; B9, B10, AD1, SB1, B8
SLC-8, -9 ; B18, B19, SB5, SET3, SB6, B19
SLC-10∼-12 ; SET1, SB2, B14, B15
SLC-13, -14 ; B12
SLC-15 ; SET4, SB7, B20
제 7b 도의 관류형의 경우 다음과 같다.
SLC-1 ; B3, B4
SLC-10∼ -12 ; B9, B11, SB3, B16
SLC-13, -14 ; B12
SLC-2∼ -7 ; B13, AD1, SB1, B8
SLC-8, -9 ; B18, SB5, B19, SET3, SB6, B19
SLC-15 ; SET4, SB7, B20
또, DCM 내에 서브루프제어(114')로서 구비되는 기능에 대하여 보면, 이것은 제 7a, b 도의 SLC내에 나타낸 피드백제어 도는 함수발생기와 같은 것을 구비하면 되며, 여기에서의 상세한 설명을 생략한다.
그리고, 제 14 도의 마스터제어장치 MC가 다운일 때, 제 7a 도의 SLC-8, -9내의 계통마스터주제어(110')의 연산을 위하여는 연료량지령(6')을 필요로 하지만, 이것은 SLC-2∼ -7의 계통마스터주제어(110')가 구한 신호(6')를 전송하여 사용한다. 마찬가지로, SLC-2∼ -7에 있어서는 발전량지령(2)을 필요로하지만, 이것은 SLC-1내의 (110')에서 구한 것을 전송하여 사용하는 것으로 실현할 수 있다. 제 7b 도의 경우에도 필요한 신호는 다른 SLC에서 전송된다. 예를들면, 제 14 도의 마스터제어장치 MC가 다운일 때, 제 7b 도의 SLC-8, -9내의 계통마스터주제어(110')의 연산을 위하여는 연료량지령(6)을 필요로하지만, 이것은 SLC-2∼ -7의 계통마스터주제어(110')가 구한 신호(6)를 전송하여 사용한다. 또, SLC-2∼ -7에 있어서는 급수량지령(3)을 필요로 하지만, SLC-10∼-12의 계통마스터제어(110')가 구한 신호(3)를 전송하여 사용한다. 마찬가지로, SLC-10∼ -12에서 필요하는 발전량지령(2)은 SLC-1로부터의 전송에 의해 얻어진다.
다음에 본원 발명의 기능축퇴백업기능에 대하여 제 7a 도에 도시한 드럼형 보일러의 급수서브프로세스 제어를 예로 들어 실시예를 나타낸다.
제 16 도는 정상시의 급수서브프로세스(Ⅱ 12)의 제어를 도시한다. 마스터제어장치 MC중, 급수제어에 관한 검출신호는 각각 SGC를 통해 I/O 버스(60)를 통하여 입력된다. P1ST는 터빈 제 1 단후압력이며, SGC내의 함수발생기에 의해 주증기유량 MSQ으로 환산된다. MST는 주증기온도이며, 함수발생기(143)와 승산기(144)에 의해 주증기유량 MSQ으로 환산된다. MST는 주증기온도이며, 함수발생기(143)와 승산기(144)에 의해 주증기유량 MSQ의 온도를 보정한다. DL은 드럼레벨이며, 비교기(146)에서 (147)의 설정치와 비교되고, 함수발생기(148)에서 비선형 게인보정을 받은 후 비례적분기(149)에 입력되며, 그 출력은 가산기(150)에서 선행신호로서의 주증기유량 MSQ과 가산되어 합계급수유량의 지령치로 된다. MSF는 합계 급유량이며, 급수온도 TSF에 의해 승산기(153)에서 온도보정되고, 비교기(154)에서 지령치와 비교되어 함수발생기(155)와 승산기(156)에 의해 주증기유량 MSQ으로부터의 게인보정이 가해져 비례적분기(157)에 입력되고, 그 출력은 각 급수소프로세스에 대한 급수유량지령으로 된다. 이 지령치는 시리얼데이터전송루프(50)를 통해 각 급수서브루프제어장치 SLC-A, SLC-B, SLC-C에 부여된다. (110')는 서브루프제어장치 SLC내에 배설된 축퇴백업기능이다. 마스터제어장치 MC로부터의 지령은 전환기(159A)를 통해 상한리미트회로(160A)를 통해 비교기(161A)에 의해 (162A)에서 검출된 급수펌프 (163A)의 유량피드백신호와 비교되며, 함수발생기(161A) 및 승산기(165A)에 의해 게인보정을 받아 비례적분기(166A)에 입력된다. 그 출력은 함수발생기(167A)에 의해 비선형 보정되어 I/O버스(60)를 통해 펌프회전수지령으로서 DCM-A에 부여된다. (114')는 DCM-A에 배설된 축퇴백업기능이다. 회전수지령은 전환기(169A), (171A)를 통해 펌프의 변속기(172A)에 부여되어 스피드를 제어한다.
제 17 도는 마스터제어장치 MC가 고장났을 경우의 예를 도시한다. 급수서브루프제어장치 SLC-A의 축퇴백업기능(110A')이 동작하여 마스터제어장치 대신에 서브루프제어장치 SLC-B, SLC-C에 급수지령을 출력하고 있다. SLC-A는 드럼레벨신호(145)를 입력하여 설정치(180A)와 비교기(181A)에서 비교하여 그 출력을 비례적분기(182A)에 부여하여 그 출력이 각 펌프의 급지령으로 되는 전환기(159A)를 통해 한쪽은 자체의 금수지령에, 또 한쪽은 시리얼데이터전송루프(50)를 통해 급수서브루프제어장치 SLC-B, SLC-C의 급수지령으로 된다. 이와 같이 하여, 급수서브루프제어장치 SLC-A가 SLC-B, SLC-C의 협조를 얻어 드럼레벨제어를 계속한다.
그리고, 전환기(159A)의 전환은 항상 서브루프제어장치 SLC-A에서 마스터제어장치 MC로부터의 급수지령신호를 감시하여, 신호가 없어진 것에 의해 행한다.
제 18 도는 마스터제어장치 MC 고장시에 다시 급수서브루프제어장치 SLC-A가 고장났을 경우이다. 이 경우는, 마스터제어장치 MC의 제어기능은 급수서브루프제어장치 SLC-B의 축퇴백업기능(110')에 의해 대행되며, 그 지령치가 시리얼데이터전송루프(50)를 통해 급수서브루프제어장치 SLC-C에 부여되어 SLC-B, SLC-C의 협조를 얻은 드럼레벨의 제어가 가능해진다.
또, 이때 급수서브루프제어장치 SLC-A에 배치된 DCM-A는 그 안에 배설된 축퇴백업기능(114a)의 동작에 의해 펌프유량의 피드백제어를 할 수 있다. 즉, SGC에서 DCM-A에 부여되는 검출기(162A)로부터의 펌프유량신호는 설정치(190A)와 비교기(191A)에 의해 비교되고, 비례적분기(192A)에 부여되어 펌프스피드지령으로 되어서, 전환기(169A)를 통해(172A)의 펌프의 변속기에 부여되어 스피드를 제어하는 것이다.
또, 전환기(169A)의 전환은 서브루프제어장치의 경우와 마찬가지로 항상 DCM이며, 서브루프제어장치 SLC에서 급수소프로세스에 대한 급수유량지령신호를 감시하여 신호가 오지 않게 된 것에 의해 행한다.
제 19 도에 각 계통마다의 서브루프제어장치 SLC가 마스터제어장치 MC 고장시에 상위 마스터제어장치 MC의 제어기능의 일부분을 축퇴백업하기 위해 필요한 프로세스입력신호 예를 나타낸다. 이 프로세스신호를 제어대상신호로 하여 서브루프제어장치 SLC에 계통마스터주제어의 회로를 구성함으로써, 마스터제어장치 MC 정상시와 같은 빠른 부하변화에 대한 추종은 할 수 없어도, 3%/분 정도의 느린 부하변화에는 추종가능하게 할 수 있다. 예를 들면 드럼보일러의 경우, 급수계에서는 드럼레벨, 연료계에서는 주증기압력, 공기계에서는 가스 O2, 가스계에서는 화로드라프트, 재순환계에서는 재열증기압력이 상기 목적을 실현하기 위한 프로세스신호이다.
한편, 서브루프제어장치 SLC 고장시에는 서브루프제어장치의 지령신호에 의한 카스케이드제어는 할 수 없지만, DCM에 의해 제어하고 있는 조작단의 프로세스신호를 DCM에 수신하여, 이 프로세스신호를 제어대상신호로 하여 DCM에 서브루프제어의 회로를 구성함으써, DCM 내의 설정치에 의한 설정피드백제어를 가능하게 하며, 조작단위로 적은 프로세스 외란(外亂)을 흡수할 수 있다. 제 20도에 SLC 고장시에 DCM에 수신하는 프로세스신호의 일예를 나타낸다.
예를 들면, 급수서브루프에서는 각 급수펌프유량, 연료서브루프에서는 각 밀마다의 석탄유량, 1차 공기유량, 공기, 가스, 재순환서브루프에서는 각 팬의 토출압력이 상기 목적을 실현하기 위한 프로세스신호이다.
또한, 통상 서브루프제어장치 SLC는 계통마다 복수의 동종조작단 그룹마다 할당된다(예를 들면 급수계 3그룹, 연료계 6그룹, 공기계 2그룹 등). 그러므로, SLC가 1대 고장나서 관련되는 하위의 DCM에서 제어하고 있는 조작단이 DCM 내의 설정치에 의한 정치(定値)피드백제어로 되어도, 남은 정상의 SLC 측의 조작단은 카스케이드제어가 가능하며, 이로써 다소의 부하변화에도 추종가능하다.
전술한 바와 같이, 본원 발명에 의하면 발전플랜트의 계층분산형 일중화시스템이라도, 제어고장시에 플랜트운전을 계속할 수 있고, 경제적이며 신뢰성이 높은 제어시스템을 구축할 수 있다고 하는 효과가 있다.

Claims (12)

  1. 부하요구신호와 화력발전플랜트로부터의 복수의 플랜트치를 입력하고, 상기 부하요구신호를 달성하는데 필요한 플랜트의 발전량, 급수량, 연료량, 공기량, 재순환가스량중 최소한 2개에 대한 지령신호를 출력하는 하나의 마스터제어장치와 상기의 지령신호마다 독립하여 설치된 복수의 서브루프제어장치로서, 각 지령신호에 따라 각각의 조작단을 제어하기 위한 조작량을 부여하는 복수의 서브루프제어장치와, 각 서브루프제어장치로부터의 조작량마다 설치된 조작단을 구동하는 복수의 구동수단과, 각 플랜트치를 검출하여 상기 마스터제어장치 또는 서브루프제어장치로 배송하는 복수의 플랜트치의 검출수단으로 이루어지는 것을 특징으로 하는 화력발전플랜트의 제어장치.
  2. 제 1 항에 있어서, 상기의 하나의 지령신호를 달성하기 위해 조작단이 복수 병렬배치되고 , 그 하나의 지령신호를 달성하기 위해 독립하여 설치된 서브루프제어장치는 상기 조작단의 병렬수만큼 최소한 설치되며, 각 서브루프제어장치가 각각의 조작단의 조작량을 접함으로써 전체로서 상기 하나의 지령신호를 달성하는 것을 특징으로 하는 화력발전플랜트의 제어장치.
  3. 부하요구신호와 화력발전플랜트로부터의 복수의 플랜트치를 입력하고, 상기 부하요구신호를 달성하는데 필요한 플랜트의 발전량, 급수량, 연료량, 공기량, 재순환가스량중 최소한 2개에 대한 지령신호를 출력하는 하나의 마스터제어장치와, 상기의 지령신호마다 독립하여 설치된 복수의 서브루프제어장치로서, 각 지령신호에 따라 각각의 조작단을 제어하기 위한 조작량을 부여하는 복수의 서브루프제어장치와, 이 복수의 서브루프제어장치와 상기 마스터제어장치와의 사이에 설치된 전송루프와, 각 서브루프제어장치로부터의 조작량마다 설치된 조작단을 구동하는 복수의 구동수단과 하나의 서브루프제어장치와 그 지령신호에 의해 구동되는 복수의 구동수단과의 사이에 설치된 I/O버스와, 각 플랜트치를 검출하여 상기 마스터제어장치 또는 서브루프제어장치로 배송하는 복수의 플랜트치의 검출수단으로 이루어지는 것을 특징으로 하는 화력발전플랜트의 제어장치.
  4. 부하요구신호와 화력발전플랜트로부터의 복수의 플랜트치를 입력하고, 상기 부하요구신호를 달성하는데 필요한 플랜트의 발전량, 급수량, 연료량, 공기량, 재순환가스량중 최소한 2개에 대한 지령신호를 출력한 하나의 마스터제어장치와, 상기의 지령신호마다 독립하여 설치된 복수의 서브루프제어장치로서, 각 지령신호에 따라 각각의 조작단을 제어하기 위한 조작량을 부여하는 복수의 서브루프제어장치와, 각 서브루프제어장치로부터의 조작량마다 설치된 조작단을 구동하는 복수의 구동수단과, 각 플랜트치를 검출하여 상기 마스터제어장치 또는 서브루프제어장치로 배송하는 복수의 플랜트치의 검출수단으로 이루어지는 화력발전플랜트의 제어장치로서, 서브루프제어장치는 그 지령신호를 정하기 위해 필요한 마스터제어장치가 구비한 계통마스터주제어기능을 내장하고 있으며, 마스터제어장치 정지시에 자체에 내장하여 계통마스터주제어기능으로부터 자체의 지령신호를 발생하며, 이에 따라 구동수단에 조작량신호를 발생시키고, 이에 따라 구동수단에 조작량신호를 부여하여 그 제어를 행하는 것을 특징으로 하는 화력발전플랜트의 제어장치.
  5. 제 4 항에 있어서, 서브루프제어장치가 구비한 발전량지령에 대한 계통마스터주제어기능으로서 주파수제어기능을 구비하는 것을 특징으로 하는 화력발전플랜트의 제어장치.
  6. 제 5 항에 있어서, 드럼형 보일러의 경우에 서브루프제어장치가 구비한 급수량지령에 대한 계통마스터주제어기능으로서 보일러드럼레벨기능을 구비하는 것을 특징으로 하는 화력발전플랜트의 제어장치.
  7. 제 5 항에 있어서, 관류형 보일러의 경우에 서브루프제어장치가 구비한 급수량지령에 대한 계통마스터주제어기능으로서 주증기압력제어기능을 구비하는 것을 특징으로 하는 화력발전플랜트의 제어장치.
  8. 제 4 항 내지 제 6 항중 어느 한항에 있어서, 드럼형 보일러의 경우에 서브루프제어장치가 구비한 급수량지령에 대한 계통마스터주제어기능으로서 주증기압력제어기능을 구비하는 것을 특징으로 하는 화력발전플랜트의 제어장치.
  9. 제 4 항, 제 5 항 및 제 7 항중 어느 한항에 있어서, 관류형 보일러의 경우에 서브루프제어장치가 구비한 연료량지령에 대한 계통마스터주제어기능으로서 주증기온도제어기능을 구비하는 것을 특징으로 하는 화력발전플랜트의 제어장치.
  10. 제 4 항 내지 제 7 항중 어느 한 항에 있어서, 서브루프제어장치가 구비한 공기량지령에 대한 계통마스터주제어기능으로서 보일러가스의 산소농도제어기능을 구비하는 것을 특징으로 하는 화력발전플랜트의 제어장치.
  11. 제 4 항 내지 제 7 항중 어느 한 항에 있어서, 서브루프제어장치가 구비한 재순환가스지령에 대한 계통마스터주제어기능으로서 보일러재열증기온도제어기능을 구비하는 것을 특징으로 하는 화력발전플랜트의 제어장치.
  12. 부하요구신호와 화력발전플랜트로 부터의 복수의 플랜트치를 입력하고, 상기 부하요구신호를 달성하는데 필요한 플랜트의 발전량, 급수량, 연료량, 공기량, 재순환가스량중 최소한 2개에 대한 지령신호를 출력하는 하나의 마스터제어장치와, 상기의 지령신호마다 독립하여 설치된 복수의 서브루프제어장치로서, 각 지령신호에 따라 각각의 조작단을 제어하기 위한 조작량을 부여하는 복수의 서브루프제어장치와, 각 서브루프제어장치로부터의 조작량마다 설치된 조작단을 구동하는 복수의 구동수단과, 각 플랜트치를 검출하여 상기 마스터제어장치 또는 서브루프제어장치로 배송하는 복수의 플랜트치의 검출수단으로 이루어지는 화력발전플랜트의 제어장치로서, 상기 구동수단의 그 입력으로 하는 조작량신호를 정하기 위해 필요한 서브루프제어장치가 구비한 서브루프제어기능을 내장하고 있으며, 서브루프제어장치의 정지시에 자체에 내장된 서브루프의 주제어기능으로부터 자체의 조작량신호를 발생하여 이에 따라 조작단을 제어하는 것을 특징으로 하는 화력발전플랜트의 제어장치.
KR1019850004862A 1984-07-09 1985-07-08 화력발전플랜트의 제어장치 KR930009621B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP84-140533 1984-07-09
JP59140533A JPS6121503A (ja) 1984-07-09 1984-07-09 火力発電プラントの制御装置
JP84-149526 1984-07-20
JP14952684A JPS6129901A (ja) 1984-07-20 1984-07-20 火力発電プラントの制御方法

Publications (2)

Publication Number Publication Date
KR860001387A KR860001387A (ko) 1986-02-26
KR930009621B1 true KR930009621B1 (ko) 1993-10-07

Family

ID=26473013

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019850004862A KR930009621B1 (ko) 1984-07-09 1985-07-08 화력발전플랜트의 제어장치

Country Status (4)

Country Link
US (1) US4707778A (ko)
EP (1) EP0168019B1 (ko)
KR (1) KR930009621B1 (ko)
DE (1) DE3587599T2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100743125B1 (ko) * 2006-09-26 2007-07-27 한국동서발전(주) 관류 보일러의 주증기 온도 제어 방법 및 시스템

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4885677A (en) * 1986-07-21 1989-12-05 The Babcock & Wilcox Company Automatic system for sequential control and fault detection of devices used in batch processes
FR2610120B1 (fr) * 1987-01-26 1989-07-13 Merlin Gerin Ensemble de commande et de protection connectant un reseau de communication local a un processus industriel
JPS63216689A (ja) * 1987-03-04 1988-09-08 株式会社日立製作所 自動作業装置
JPH0832095B2 (ja) * 1987-04-15 1996-03-27 中部電力株式会社 プラント監視装置
US4941113A (en) * 1988-06-15 1990-07-10 Dundics Marton J Computer monitoring and testing of automatic control system
US5161110A (en) * 1990-02-27 1992-11-03 Atlantic Richfield Company Hierarchical process control system and method
US5185708A (en) * 1990-06-18 1993-02-09 Ge Fanuc Automation North America, Inc. Method for collecting data by a manufacturing process manager from a plurality of programmable logic controllers
JPH04101201A (ja) * 1990-08-21 1992-04-02 Toshiba Corp プラント監視制御システム
GB2272611A (en) * 1992-11-05 1994-05-18 Integrated Control Platforms L Control system for machinery and/or plant apparatus
US6901299B1 (en) * 1996-04-03 2005-05-31 Don Whitehead Man machine interface for power management control systems
US7401577B2 (en) * 2003-03-19 2008-07-22 American Air Liquide, Inc. Real time optimization and control of oxygen enhanced boilers
US20050234598A1 (en) * 2004-04-15 2005-10-20 Discenzo Frederick M Autonomous agents for coordinated diagnostics, reconfiguration, and control for coupled systems
US7515975B2 (en) * 2005-12-15 2009-04-07 Honeywell Asca Inc. Technique for switching between controllers
US9180238B2 (en) * 2008-06-11 2015-11-10 Baxter International Inc. Distributed processing system and method for dialysis machines
US8757105B2 (en) * 2008-12-08 2014-06-24 General Electric Company System and method for controlling liquid level in a vessel
US20110120128A1 (en) * 2009-11-20 2011-05-26 Alstom Technology Ltd Method of controlling a power plant
JP5430535B2 (ja) * 2010-10-25 2014-03-05 本田技研工業株式会社 プラントの制御装置
US9058029B2 (en) * 2011-03-31 2015-06-16 Brad Radl System and method for creating a graphical control programming environment
US9768613B2 (en) * 2011-05-31 2017-09-19 Cisco Technology, Inc. Layered and distributed grid-specific network services
CN116206744A (zh) 2015-06-25 2023-06-02 甘布罗伦迪亚股份公司 具有分布式数据库的医疗装置系统和方法
KR102406882B1 (ko) * 2018-12-28 2022-06-10 한국전기연구원 유도가열식 유리관 밀봉장치
CN111503616A (zh) * 2020-04-29 2020-08-07 贵州理工学院 基于plc和组态软件的沸腾锅炉监控系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4455614A (en) * 1973-09-21 1984-06-19 Westinghouse Electric Corp. Gas turbine and steam turbine combined cycle electric power generating plant having a coordinated and hybridized control system and an improved factory based method for making and testing combined cycle and other power plants and control systems therefor
US4015548A (en) * 1975-06-25 1977-04-05 Combustion Engineering, Inc. Distributed programmable control system
JPS54152767A (en) * 1978-05-24 1979-12-01 Hitachi Ltd Process accomodation control method
JPS55146552A (en) * 1979-05-02 1980-11-14 Hitachi Ltd N 1 backkup method of dispersion type hierarchy system
US4472783A (en) * 1980-07-21 1984-09-18 Kearney & Trecker Corporation Flexible manufacturing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100743125B1 (ko) * 2006-09-26 2007-07-27 한국동서발전(주) 관류 보일러의 주증기 온도 제어 방법 및 시스템

Also Published As

Publication number Publication date
US4707778A (en) 1987-11-17
EP0168019A3 (en) 1986-08-13
KR860001387A (ko) 1986-02-26
EP0168019B1 (en) 1993-09-29
DE3587599T2 (de) 1994-05-11
EP0168019A2 (en) 1986-01-15
DE3587599D1 (de) 1993-11-04

Similar Documents

Publication Publication Date Title
KR930009621B1 (ko) 화력발전플랜트의 제어장치
US4222229A (en) Multiple turbine electric power plant having a coordinated control system with improved flexibility
US4333310A (en) Combined cycle electric power plant with feedforward afterburner temperature setpoint control
US4445180A (en) Plant unit master control for fossil fired boiler implemented with a digital computer
CN103299511A (zh) 将自备发电设施的控制与冶炼设施的控制集成的方法
US4854121A (en) Combined cycle power plant capable of controlling water level in boiler drum of power plant
JPH06201891A (ja) 原子炉の制御装置及び方法
US4577281A (en) Method and apparatus for controlling the control valve setpoint mode selection for an extraction steam turbine
US4168608A (en) Combined cycle electric power plant with coordinated steam load distribution control
US4184324A (en) Combined cycle electric power plant with coordinated plural feedback turbine control
US4220869A (en) Digital computer system and method for operating a steam turbine with efficient control mode selection
US6223520B1 (en) Gas turbine combined plant, method of operating the same, and steam-cooling system for gas turbine hot section
CA1244250A (en) Automatic control system for thermal power plant
US4036011A (en) Multiple valve sequential control for a combined cycle power plant
JPH0525121B2 (ko)
Maffezzoni Concepts, practice and trends in fossil-fired power plant control
JP3649454B2 (ja) 発電プラントの制御方法
USRE35776E (en) Automatic control system for thermal power plant
CN85105833A (zh) 热力发电厂的控制
JP2549195B2 (ja) 複合サイクル発電プラントの補助蒸気供給方法
JPS6121503A (ja) 火力発電プラントの制御装置
Upadhyaya et al. Advanced control design, optimal sensor placement, and technology demonstration for small and medium nuclear power reactors
Carmon Considerations in the application of self-tuning PID controllers using EXACT-tuning algorithm
Vasudeva Power plant operation and maintenance cost reduction through control system improvements
JP2960212B2 (ja) コンバインドサイクル発電プラントの負荷制御装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20041004

Year of fee payment: 12

EXPY Expiration of term