KR930002705B1 - Process for preparing a thermoplastic resin having a good impact resistance and mechanical strength - Google Patents

Process for preparing a thermoplastic resin having a good impact resistance and mechanical strength Download PDF

Info

Publication number
KR930002705B1
KR930002705B1 KR1019900002529A KR900002529A KR930002705B1 KR 930002705 B1 KR930002705 B1 KR 930002705B1 KR 1019900002529 A KR1019900002529 A KR 1019900002529A KR 900002529 A KR900002529 A KR 900002529A KR 930002705 B1 KR930002705 B1 KR 930002705B1
Authority
KR
South Korea
Prior art keywords
weight
latex
parts
rubber
particle diameter
Prior art date
Application number
KR1019900002529A
Other languages
Korean (ko)
Other versions
KR910015609A (en
Inventor
김동렬
이찬홍
Original Assignee
주식회사럭키
최근선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사럭키, 최근선 filed Critical 주식회사럭키
Priority to KR1019900002529A priority Critical patent/KR930002705B1/en
Publication of KR910015609A publication Critical patent/KR910015609A/en
Application granted granted Critical
Publication of KR930002705B1 publication Critical patent/KR930002705B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/02Chemical or physical treatment of rubber latex before or during concentration
    • C08C1/065Increasing the size of dispersed rubber particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

The thermoplastic resin is prepared by (1) mixing gamma-latex (A) (weight average particle diameter = 0.03-0.2 μm) and rubber latex (B) (weight average particle diameter = 0.03-0.2 μm), (2) enlarging the mixture to form the latex (C) having weight average particle diameter of 0.25-0.5 μm, (3) adding a monomer mixture consisting of above 60 wt.% of aroamatic vinyl monomer (D) and below 40 wt.% of vinyl compound (E) copolymerizable with (D), initiator and chain transfer agents into the latex (C) obtained in (2), and (4) emulsion graft polymerizing it. The resin has an excellent impact resistance and mechanical strength.

Description

내충격성 및 기계적 강도가 우수한 열가소성 수지의 제조방법Manufacturing method of thermoplastic resin excellent in impact resistance and mechanical strength

본 발명은 우수한 내충격성과 기계적 강도(인장강도, 굴곡강도)가 향상된 신규의 열가소성 수지의 제조방법에 관한 것이다.The present invention relates to a method for producing a novel thermoplastic resin with improved impact resistance and mechanical strength (tensile strength, flexural strength).

종래에는 단단하고 부스러지기 쉬운 열가소성수지 예를들면, 폴리스티렌, 폴리메틸 메타크릴레이트, 스티렌-아크릴로니트릴 공중합체 등에 폴리부타디엔, 부타디엔-스티렌 공중합체, 부타디엔-아크릴로니트릴 공중합체 등의 디엔계 고무질을 첨가하여 내충격성 수지를 얻어 왔다. 그러나, 고무질을 첨가하게 되면 충격강도는 향상이 되지만, 기계적 강도가 떨어지는 단점이 있다. 그리하여 본 발명자는 충격강도와 기계적 강도를 동시에 향상시킬 수 있는 방법을 모색하여 본 발명을 완성하였다.Conventionally, diene-based rubbery materials such as polybutadiene, butadiene-styrene copolymer, butadiene-acrylonitrile copolymer and the like are hard and brittle thermoplastic resins such as polystyrene, polymethyl methacrylate and styrene-acrylonitrile copolymers. Was added to obtain an impact resistant resin. However, when rubber is added, impact strength is improved, but mechanical strength is inferior. Thus, the present inventors completed the present invention by searching for a method capable of simultaneously improving the impact strength and the mechanical strength.

또 통상의 내충격성 수지는 매트릭스 수지에 분산된 고무입자의 직경에 최종 조성물의 내충격성이 크게 영향을 받는다. 따라서, 고무입자의 직경을 크께 하기 위해 많은 노력을 하여왔다. 그러나 본 발명은 고무입자의 직경을 가능한 작게 하여도 본 발명의 목적에 부합할 수 있는 수지를 제조할 수 있는 장점이 있다. 통상적으로 상업화되어 있는 내충격성 아크릴로니트릴-부타디엔-스티렌의 공중합체에는 입경이 0.3~0.5㎛의 고무가 분산되어 있다. 실제 이러한 대구경의 고무입자를 전량 사용하여 유화중합법에 의해 그라프트 반응을 행할때 다량의 응고물이 생성되어 많은 분리한 점이 있다. 따라서, 대구경의 입자는 전체 고무질 함량에서 약 40~80%정도 밖에 사용할 수 없다.In addition, the impact resistance of the final composition is largely affected by the diameter of the rubber particles dispersed in the matrix resin. Therefore, much effort has been made to increase the diameter of the rubber particles. However, the present invention has the advantage of producing a resin that can meet the object of the present invention even if the diameter of the rubber particles as small as possible. In the copolymer of impact-resistant acrylonitrile-butadiene-styrene commercially available, rubber having a particle size of 0.3 to 0.5 µm is dispersed. In fact, when the graft reaction is carried out by emulsion polymerization using a large amount of such large-diameter rubber particles, a large amount of coagulum is produced and there are many separation points. Therefore, large diameter particles can be used only about 40 to 80% of the total rubber content.

만약, 이보다 적게 되면 내충격성이 향상될 수 없다. 그러나, 본 발명을 이용하면 평균입경이 0.25~0.35㎛으로 다소 작더라도 높은 내충격성 및 우수한 가공성을 나타낼 수 있다.If less than this, impact resistance cannot be improved. However, using the present invention can exhibit high impact resistance and excellent workability even if the average particle size is slightly smaller than 0.25 ~ 0.35㎛.

본 발명을 보다 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 통상의 유화중합에 의해 제조되는 고무질 라텍스와 고무질 라텍스보다 소수성이 강하고 단단한 라텍스를 혼합하여 고무입자경을 비대화시킬때 부드러운 고무입자내 이러한 물질을 삽입시키거나 흡착시킨 후 통상의 유화중합법으로 그라프트시켜 내충격성 및 기계적 강도가 동시에 향상되는 열가소성 수지를 제조하였다. 그 과정을 요약하면 다음과 같다.The present invention is a conventional emulsion polymerization method by inserting or adsorbing such a substance in the soft rubber particles when the rubber particle diameter is increased by mixing hydrophobic and hard latex with rubber latex prepared by conventional emulsion polymerization and hard latex. The graft was made to produce a thermoplastic resin which simultaneously improved impact resistance and mechanical strength. The process is summarized as follows.

1) 소구경의 고무질 라텍스의 제조로 그 평균입경은 0.03~0.2㎛이고, 겔 함량은 40~95%가 적절하다.1) It is a small-diameter rubber latex. The average particle size is 0.03 ~ 0.2㎛, and the gel content is 40 ~ 95%.

2) 고무라텍스와 혼합할 라텍스 형태의 물질제조(이하

Figure kpo00001
-라텍스라 칭함)2) Manufacture of latex material to be mixed with rubber latex
Figure kpo00001
-Called latex)

무게 평균분자량이 300~40,000이고, 보다 적절하게는 500~10,000이고, 평균입경이 0.03~0.2㎛인 라텍스 형태의 물질. 또한,

Figure kpo00002
-라텍스는 방향족 비닐단량체 단독 또는 방향족 비닐단량체와 이와 공중합 가능한 비닐단량체 혼합물이고, 혼합물중 방향족 비닐단량체가 50중량%이상임.A latex material having a weight average molecular weight of 300 to 40,000, more preferably 500 to 10,000 and an average particle diameter of 0.03 to 0.2 µm. Also,
Figure kpo00002
The latex is an aromatic vinyl monomer alone or a mixture of aromatic vinyl monomers and vinyl monomers copolymerizable with the aromatic vinyl monomer, and the aromatic vinyl monomer in the mixture is 50% by weight or more.

3) 고무질 라텍스와

Figure kpo00003
-라텍스의 혼합 및 비대화공정.3) with rubbery latex
Figure kpo00003
-Mixing and non-conversation process of latex.

1) 항의 고무질 라텍스와

Figure kpo00004
-라텍스의 혼합비는 고무질 라텍스 100중량부당 0.01~20.0중량부가 적절하며, 보다 적합하게는 0.1~10중량부가 좋다. 또 비대화된 고무질 라텍스의 크기는 0.25~0.35㎛이 적절하다.1) Protest with rubbery latex
Figure kpo00004
-The mixing ratio of latex is 0.01 to 20.0 parts by weight per 100 parts by weight of rubber latex, more preferably 0.1 to 10 parts by weight. In addition, the size of the rubberized latex is preferably 0.25 ~ 0.35㎛.

4) 그라프트 공중합체의 제조4) Preparation of Graft Copolymer

3) 항에서 비대화된 고무질은 5~80중량부가 적절하며, 그라프트 단량체로는 방향족 비닐단량체와 비닐단량체의 혼합비가 60~99.25/40~0.75가 적절하다.5 to 80 parts by weight is appropriate for the rubber material enlarged in paragraph 3, and a mixture ratio of aromatic vinyl monomer and vinyl monomer is 60 to 99.25 / 40 to 0.75 as a graft monomer.

상기의 공정에 의해 제조된 열가소성 수지는 내충격성 및 기계적 강도가 우수하다.The thermoplastic resin produced by the above process is excellent in impact resistance and mechanical strength.

상기 공정을 보다 구체적으로 설명하면 다음과 같다.The process is described in more detail as follows.

1) 소구경 고무라텍스의 제조1) Manufacture of small-diameter rubber latex

그라프트 공중합체의 제조법은 이미 잘 알려져 있고, 일반적으로 그라프트 공중합체의 라텍스 형태는 고부를 제조하고, 그 위에 매트릭스와 상용성이 있는 단량체들을 그라프트시킨 것이다.The preparation of graft copolymers is already well known and generally the latex form of the graft copolymer is to prepare a high portion and to graft monomers compatible with the matrix thereon.

적절한 고무기체는 공액디엔고무, 에틸렌-프로필렌-디엔 3원 공중합체, 아크릴레이트-디엔 공중합체와 이들의 혼합체등이며, 보다 적절한 고무기체의 제조는 값이 싸고 용도가 다양하며, 우수한 물성을 나타내는 1,3-부타디엔으로 만드는 것이다.Suitable rubber bases are conjugated diene rubbers, ethylene-propylene-diene terpolymers, acrylate-diene copolymers and mixtures thereof, and more suitable rubber bases are inexpensive, versatile in use, and exhibit excellent physical properties. It is made from 1,3-butadiene.

본 발명에서는 1,3-부타디엔 단독 또는 4 내지 15중량%의 친수성 단량체가 포함된 고무질도 매우 유용하다. 대표적으로는 아크릴로니트릴, 메타크릴로니트릴, 메타크릴로니트릴과 이들의 혼합물이 사용 가능하다. 여기서 공액디엔고무는 다음의 것들이 포함된다. 즉, 1,3-부타디엔, 2-메틸-1,3-부타디엔, 1,3-디메틸-1,3-부타디엔, 펜타디엔, 2-네오펜틸-1,3-부타디엔 및 1,3-부타디엔의 하이드로카본 유사체, 2-클로로-1,3-부타디엔, 2-시아노-1,3-부타디엔 등의 치환체 등이 있다.In the present invention, rubber containing 1,3-butadiene alone or 4 to 15% by weight of hydrophilic monomers is also very useful. Typically acrylonitrile, methacrylonitrile, methacrylonitrile and mixtures thereof can be used. Conjugated diene rubber includes the following. That is, 1,3-butadiene, 2-methyl-1,3-butadiene, 1,3-dimethyl-1,3-butadiene, pentadiene, 2-neopentyl-1,3-butadiene and 1,3-butadiene Substituents such as hydrocarbon analogs, 2-chloro-1,3-butadiene, 2-cyano-1,3-butadiene, and the like.

대표적인 음이온성 유화제로는 알킬알릴설포네이트, 알칼리메탈알킬설페이트, 설포네이트화된 알킬에스테르, 지방산의 비누가 사용될 수 있다. 구체적인 예로는 소디움도데실벤젠설포네이트, 소디움 부틸나프틸렌설포네이트, 소디움 라우릴설페이트, 디옥틸소디움 설포석시네이트, 디소디움도데실 디페닐이소디설포네이트, N-옥타데실 디소디움설포석시네이트 등이다. 또 지방산의 알칼리염은 탄소수가 16~18인 것이 적절하며, 대표적으로 스테아린산, 올레인산 등이 있다,. 또 로진산의 알칼리염등도 사용한다. 사용되는 유화제양은 단량체 100중량부당 0.1~5중량부 이내면 적당하다. 또 적절한 개시제나 촉매로서는 수용성 퍼설페이트나 퍼옥시 화합물을 이용할 수 있고, 수용성 산화환원제도 사용할 수 있다.Representative anionic emulsifiers may be used alkylallylsulfonates, alkali metalalkylsulfates, sulfonated alkylesters, soaps of fatty acids. Specific examples include sodium dodecylbenzenesulfonate, sodium butylnaphthylenesulfonate, sodium laurylsulfate, dioctylsodium sulfosuccinate, disodium dodecyl diphenylisodisulfonate, N-octadecyl disodium sulfosoxy Nate and the like. Moreover, it is appropriate that the alkali salt of fatty acid has 16 to 18 carbon atoms, and typical examples thereof include stearic acid and oleic acid. In addition, an alkali salt of rosin acid is used. The amount of emulsifier used is suitably within 0.1 to 5 parts by weight per 100 parts by weight of monomer. As a suitable initiator or catalyst, a water-soluble persulfate or a peroxy compound can be used, and a water-soluble redox can also be used.

가장 적절한 수용성 퍼설페이트로는 나트륨 또는 칼슘 퍼설페이트이고, 지용성 개시제로는 큐멘하이드로퍼옥사이드, 아조비스아이소부티로니트릴, 터셔리부틸 하이드로퍼옥사이드, 파라메탄하이드로퍼옥사이드, 벤조일퍼옥사이드 등이 사용된다. 사용되는 양은 중합된 단량체에 대해 0.02에서 1중량% 이내로 사용된다. 분자량 조절제로는 머켑탄 종류가 사용되며, 단량체 100중량부당 0.01~1.0중량부가 적당하다. 고무 기체의 중합은 대개 50~80℃에서 10시간 내지 20시간 동안 행하여 중합전환율이 90~95%가 되도록 한다.Most suitable water-soluble persulfates are sodium or calcium persulfate, and fat-soluble initiators include cumene hydroperoxide, azobisisobutyronitrile, tertiary butyl hydroperoxide, paramethane hydroperoxide and benzoyl peroxide. . The amount used is within 0.02 to 1% by weight relative to the polymerized monomer. As the molecular weight regulator, mutantan type is used, and 0.01 to 1.0 parts by weight per 100 parts by weight of the monomer is suitable. The polymerization of the rubber gas is usually carried out at 50 to 80 DEG C for 10 to 20 hours so that the polymerization conversion is 90 to 95%.

본 발명에 적합하기 위해서는 고무입자경이 대략 0.03~0.2㎛이 적절하고, 겔 함량이 40~95%가 적합하다.In order to be suitable for the present invention, a rubber particle diameter of about 0.03 to 0.2 탆 is appropriate, and a gel content of 40 to 95% is suitable.

2) 고무라텍스에 삽입 또는 흡착된 라텍스 형태의 물질 제조공정2) Manufacturing process of latex material inserted or adsorbed on rubber latex

본 발명의 특징은 고무기질내에 고무질보다 소수성이 강한 물질을 첨가시켜 그라프트 공중합을 행하므로 삽입 또는 흡착된 물질은 매우 중요하다. 이때 사용 가능한 것으로는 소수성이 강한 단량체를 중합하여 고무질 라텍스와 혼합될 수 있는 형태면 본 발명을 이룰 수 있다.The feature of the present invention is that the material inserted or adsorbed is very important because graft copolymerization is performed by adding a hydrophobic material stronger than rubber in the rubber substrate. In this case, the present invention can be used as long as it can be mixed with rubbery latex by polymerizing a hydrophobic strong monomer.

그러나 삽입된 물질은 비대화된 고무입자보다 크기가 작아야 하고, 고무질보다 단단한 성질을 갖고 있는 것이 좋다. 따라서, 이러한 성질에 적합한 단량체로는 방향족 비닐단량체가 좋다. 그 대표적인 예는 다음과 같다. 스티렌,

Figure kpo00005
-메틸스티렌,
Figure kpo00006
-에틸스티렌,
Figure kpo00007
-메틸비닐톨루엔,
Figure kpo00008
-메틸디알킬스티렌, o-,m-,p-비닐톨루엔, o-에틸스티렌, p-에틸스티렌, 2,4-디메틸스티렌, p-터셔리부틸스티렌, 그리고 이들의 혼합물도 본 발명에서는 적합하다. 그 제조법은 통상의 유화중합법에 의해서도 가능하고, 기타 다른 방법(괴상중합, 현탁중합등)에 의해 제조된 후 라텍스화 한 것도 가능하다.However, the inserted material should be smaller in size than the enlarged rubber particles and have a harder property than rubber. Therefore, an aromatic vinyl monomer is preferable as a monomer suitable for this property. Representative examples are as follows. Styrene,
Figure kpo00005
Methyl styrene,
Figure kpo00006
Ethyl styrene,
Figure kpo00007
Methylvinyltoluene,
Figure kpo00008
-Methyldialkylstyrene, o-, m-, p-vinyltoluene, o-ethylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, p-tertiarybutylstyrene, and mixtures thereof are also suitable in the present invention. Do. The production method can be made by a conventional emulsion polymerization method, or can be latexed after being produced by other methods (block polymerization, suspension polymerization, etc.).

또 라텍스화 하지 않고 용매에 녹여 고무라텍스에 팽윤시킨 후, 그라프트 반응을 행할 수 있는 형태도 본 발명을 쉽게 달성할 수 있다. 이때 제조된 라텍스는 다음의 성질이 만족될때 본 발명의 목적을 달성할 수 있다. 중량 평균입경이 0.03~0.2㎛이고, 보다 적합하게는 0.03~0.15㎛이다. 분자량은 무게 평균분자량이 300~40,000(수 평균분자량이 200~35,000, 또 무게 평균분자량대 수 평균분자량의 비가 1.0~5.0)의 범위에 들어야 한다. 보다 적합하기로는 무게 평균분자량이 500~10,000이 좋다.In addition, the present invention can be easily achieved in a form in which a graft reaction can be performed after dissolving in a solvent and swelling in a rubber latex without latexing. The latex produced at this time can achieve the object of the present invention when the following properties are satisfied. The weight average particle diameter is 0.03-0.2 micrometer, More preferably, it is 0.03-0.15 micrometer. The molecular weight should be in the range of 300 to 40,000 weight average molecular weights (200 to 35,000 number average molecular weights and 1.0 to 5.0 ratios of weight average molecular weights to number average molecular weights). More suitably, the weight average molecular weight is 500 ~ 10,000.

3) 고무라텍스와 삽입될

Figure kpo00009
-라텍스와의 혼합공정3) Rubber Latex to be inserted
Figure kpo00009
Mixing process with latex

본 발명의 목적에 적합하기 위해서는 고무라텍스 100중량부(고형분)당

Figure kpo00010
-라텍스 0.01~20.0중량부(고형분)가 적절하며, 보다 적합하기로는 0.05~10중량부가 좋다.To suit the purpose of the present invention per 100 parts by weight of rubber latex (solid content)
Figure kpo00010
-0.01 to 20.0 parts by weight (solid content) of latex is appropriate, and 0.05 to 10 parts by weight is more preferable.

4) 혼합라텍스의 비대화 공정4) Enlargement process of mixed latex

입자 비대화 방법으로는 산에 의한 방법, 전단력에 의한 방법, 용매에 의한 방법, 고분자 전해질에 의한 방법, 냉동-해동의 방법 등 어느 방법도 가능하다. 그러나, 본 발명의 취지에 가장 적합한 것으로는 입자 비대화 평균입경이 0.25~0.5㎛이고, 그 입자 분포가 가능한 좁은것이 적절하므로 산에 의해 고무입자를 비대화 시키는 것이 좋다. 왜냐하면 비대화 입자크기가 균일할때 고무입자내에 삽입 또는 흡착되는

Figure kpo00011
-라텍스의 양이 각각의 비대화 고무입자내에 거의 동일하게 삽입 또는 흡착이 가능하기 때문이다.As the method for enlarging the particles, any method such as an acid method, a shearing method, a solvent method, a polymer electrolyte method or a freeze-thaw method can be used. However, the most suitable thing for the purpose of the present invention is that the average particle size of the particles is 0.25 to 0.5 mu m, and the narrowest possible particle distribution is suitable. Because when the enlarged particle size is uniform,
Figure kpo00011
This is because the amount of latex can be inserted or adsorbed almost equally in each of the enlarged rubber particles.

5) 그라프트 공중합체의 제조5) Preparation of Graft Copolymer

통상의 유화중합법에 의해 실시하되, 본 발명의 목적에 적합하기 위해서는 고무함량이 5~80%가 적절하다.Although it is carried out by the conventional emulsion polymerization method, 5 to 80% of the rubber content is suitable for the purpose of the present invention.

이때 사용되는 단량체는 방향족 비닐화합물과 방향족 비닐화합물과 공중합 가능한 다른 비닐화합물 단량체의 1종 또는 2종 이상과의 혼합물을 사용할 수 있다. 비닐방향족 화합물과 공중합 가능한 비닐단량체는 아크릴로니트릴, 메타크릴로니트릴 등의 비닐시안 화합물, 아크릴산, 메타크릴산 등이 불포화 카르본산 및 그 저급 에스테르의 예로는 메타크릴레이트, 부틸아크릴레이트, 메틸메타크릴레이트 등이 있다.The monomer used at this time can use the mixture of 1 type, or 2 or more types of an aromatic vinyl compound and the other vinyl compound monomer copolymerizable with an aromatic vinyl compound. Examples of vinyl monomers copolymerizable with vinylaromatic compounds include vinyl cyanide compounds such as acrylonitrile and methacrylonitrile, acrylic acid and methacrylic acid, and unsaturated carboxylic acids and lower esters thereof, such as methacrylate, butyl acrylate, and methyl methacrylate. Acrylates and the like.

또 최종 열가소성 수지의 가공성은 매트릭스 수지의 분자량에 크게 영향을 받으므로 그라프팅 반응시 생성되는 매트릭스 부분과 그라프트된 공중합체의 분자량 조절은 매우 중요하다. 분자량 조절제의 사용양은 단량체 100중량부당 0.01~1.5중량부가 적절하다. 그 예로는 머캡탄류와 알릴브로마이드, 사염화탄소, 브로모트리클로로메탄, β-브로모스티렌등이 사용될 수 있다. 한편, 그라프팅 반응시 사용되는 개시제는 고무라텍스 제조시 사용가능한 것과 동일하다. 유화제는 고무라텍스 중합에 사용되는것중 택일하거나 혼합하여 사용해도 좋으며, 그 사용량은 단량체 100중량부당 0.3중량부에서 3.0중량부가 적당하다.In addition, since the processability of the final thermoplastic resin is greatly influenced by the molecular weight of the matrix resin, it is very important to control the molecular weight of the matrix portion and the grafted copolymer produced during the grafting reaction. The amount of the molecular weight modifier used is appropriately 0.01 to 1.5 parts by weight per 100 parts by weight of the monomer. Examples thereof include mercaptans, allyl bromide, carbon tetrachloride, bromotrichloromethane, β-bromostyrene, and the like. On the other hand, the initiator used in the grafting reaction is the same as can be used in the production of rubber latex. The emulsifier may be used alternatively or mixed among those used for rubber latex polymerization, and the amount of the emulsifier is suitably 0.3 to 3.0 parts by weight per 100 parts by weight of the monomer.

이때, 단량체, 개시제, 분자량 조절제, 유화제 등은 고무질 라텍스 존재하에서 일괄 투입 또는 분할하여 투입하거나, 또는 연속적으로 첨가하여도 좋고, 연속첨가시 투입시간은 대략 3시간 내지 4시간이 적절하다. 또 반응온도는 대개 40℃에서 80℃가 되면 본 발명을 수행하는데 지장이 없다.In this case, the monomer, the initiator, the molecular weight regulator, the emulsifier and the like may be added in a batch or dividedly added in the presence of rubbery latex, or may be added continuously, and the addition time in the continuous addition is preferably about 3 hours to 4 hours. In addition, when the reaction temperature is usually 40 ° C to 80 ° C, there is no problem in carrying out the present invention.

6) 응고 후 수세공정 및 건조공정6) washing and drying process

응고공정은 그라프트 공중합체 100중량부당(고형분)5% 황산 30중량부를 투입하여 70℃에서 90℃ 사이에서 약 30분간 행하고, 탈이온수로 충분히 수세후 원심분리법에 의해 10분간 탈수시킨다. 이후 유동층 건조기에서 70℃에서 1시간동안 건조시키면 백색의 분말을 얻을 수 있다.The coagulation step is performed by adding 30 parts by weight of 5% sulfuric acid per 100 parts by weight of the graft copolymer (solid content) for about 30 minutes at 70 ° C. to 90 ° C., followed by washing with deionized water sufficiently for 10 minutes by centrifugation. After drying for 1 hour at 70 ℃ in a fluid bed dryer to obtain a white powder.

7) 매트릭스 수지와의 혼합7) Mixing with Matrix Resin

본 발명에서는 매트릭스 수지로 스티렌-아크릴로니트릴의 공중합체의 혼합하여 활제, 열안정제 등을 첨가하여 고무함량을 15%,250%,25%로 희석시킨 다음 압출하여 펠렛을 만들고, 80℃에서 2시간 건조후 사출하고 물성측정용 시편을 제작하였다.In the present invention, a copolymer of styrene-acrylonitrile is mixed with a matrix resin, and a lubricant, a heat stabilizer, and the like are added to dilute the rubber content to 15%, 250%, and 25%, followed by extrusion to make pellets. After drying for a time, it was injected and a specimen for measuring the physical properties was prepared.

이하, 실시예로서 설명하면 다음과 같다.Hereinafter, it demonstrates as an Example as follows.

[제조예 1.][Production Example 1.]

고무라텍스(PBL-1)의 제조Manufacture of rubber latex (PBL-1)

1,3-부타디엔 100중량부, 포타슘올레이트 2.0중량부, 개시제(포타슘 퍼옥시디설페이트) 0.3중량부, 분자량 조절제로 터셔리도데실머캡탄(t-DDM) 0.4중량부 및 탈이온수 120중량부를 가압 반응조에 넣고, 60℃에서 16시간 반응 후 평균입자경 0.08㎛, 고형분 42%의 폴리부타디엔 라텍스를 얻었다.100 parts by weight of 1,3-butadiene, 2.0 parts by weight of potassium oleate, 0.3 part by weight of an initiator (potassium peroxydisulfate), 0.4 part by weight of tertidodecylmercaptan (t-DDM) with a molecular weight regulator and 120 parts by weight of deionized water It put in the reactor and after 16 hours reaction at 60 degreeC, the polybutadiene latex of 0.08 micrometer of average particle diameters, and 42% of solid content was obtained.

[제조예 2.][Production Example 2.]

Figure kpo00012
-1 라텍스의 제조
Figure kpo00012
Preparation of -1 Latex

스티렌 100중량부, 포타슘올레이트 4.0중량부, 개시제(K2S2O) 0.5중량부, 분자량 조절제(t-DDM) 6중량부, 탈이온수 205.6중량부를 80℃에서 5시간동안 반응시켜 고형분이 33.4%이고, 평균입자경이 0.05㎛인

Figure kpo00013
-1 라텍스를 얻었다. 이 라텍스를 응고시켜 분말을 수득한 후 겔퍼미에아션 크로마토그래피(GPC)로 분자량을 측정한 결과 무게 평균분자량이 6,700이었다.100 parts by weight of styrene, 4.0 parts by weight of potassium oleate, 0.5 parts by weight of initiator (K 2 S 2 O), 6 parts by weight of molecular weight modifier (t-DDM), and 205.6 parts by weight of deionized water were reacted at 80 ° C. for 5 hours. 33.4%, the average particle diameter is 0.05㎛
Figure kpo00013
-1 latex was obtained. The latex was solidified to obtain a powder, and then the molecular weight was measured by gel permeation chromatography (GPC). As a result, the weight average molecular weight was 6,700.

[제조예 3.][Production Example 3.]

Figure kpo00014
-2 라텍스의 제조
Figure kpo00014
Preparation of -2 Latex

제조예 1의

Figure kpo00015
-라텍스 제조에서 분자량 조절제 3중량부를 줄여 중합한 결과, 평균입자경은 동일하였고 무게 평균분자량이 12,000이었다.Of Preparation Example 1
Figure kpo00015
-After the polymerization of 3 parts by weight of the molecular weight regulator in the latex production, the average particle diameter was the same and the weight average molecular weight was 12,000.

[제조예 4.][Production Example 4.]

Figure kpo00016
-3 라텍스의 제조
Figure kpo00016
Preparation of -3 Latex

제조예 1의

Figure kpo00017
-1 라텍스 제조에서 분자량 조절제 5중량부를 줄여 중합한 결과, 평균입자경은 동일하였고 무게 평균분자량이 35,100이었다.Of Preparation Example 1
Figure kpo00017
Polymerization was carried out by reducing 5 parts by weight of the molecular weight modifier in -1 latex production, and the average particle diameter was the same, and the weight average molecular weight was 35,100.

[제조예 5.][Manufacture example 5.]

Figure kpo00018
-4 라텍스의 제조
Figure kpo00018
Preparation of -4 Latex

제조예 1의

Figure kpo00019
-1 라텍스 제조에서 분자량 조절제를 0.5중량부 투입하여 동일하게 중합한 결과, 평균입자경은 동일하였고 무게 평균분자량이 66,100이었다.Of Preparation Example 1
Figure kpo00019
In the preparation of -1 latex, 0.5 parts by weight of a molecular weight modifier was added to polymerize the same.

[제조예 6.][Production Example 6.]

Figure kpo00020
-5 라텍스의 제조
Figure kpo00020
-5 Preparation of Latex

스티렌 100중량부, 포타슘올레이트 2.0중량부, 개시제(KPS) 0.5중량부, t-DDM 6중량부, 탈이온수 205.6중량부를 넣고, 80℃에서 5시간동안 반응시켜 폴리스티렌 라텍스를 얻었다. 이때 평균입자경은 0.15㎛이었고 분자량은 6,200이었다.100 parts by weight of styrene, 2.0 parts by weight of potassium oleate, 0.5 part by weight of an initiator (KPS), 6 parts by weight of t-DDM, and 205.6 parts by weight of deionized water were added and reacted at 80 ° C. for 5 hours to obtain a polystyrene latex. At this time, the average particle diameter was 0.15㎛ and the molecular weight was 6,200.

[실시예 1.]Example 1.

1) PBL-1 라텍스와

Figure kpo00021
-1 라텍스와의 혼합 및 응집공정1) with PBL-1 latex
Figure kpo00021
-1 mixing and flocculation with latex

제조예 1의 PBL-1 라텍스 100중량부(고형분)와 제조예 2의

Figure kpo00022
-1라텍스 3중량부(고형분)를 혼합한 후로진산칼륨 0.2중량부를 넣고 교반을 시작하였다. 이때 교반속도는 20rpm이다. 30분 후 5% 초산 수용액 50중량부를 1시간동안에 걸쳐 투입한다. 이때 교반속도는 15rpm으로 줄였다. 초산 수용액의 투입이 완료되면 10%의 수산화칼륨 23중량부를 투입하고 라텍스의 pH를 측정하였다. 이때 pH가 10.2였다. 응집된 고무입자의 크기는 0.32㎛이었다. 또한 입경분포는 매우 좁았다.100 parts by weight (solid content) of PBL-1 latex of Preparation Example 1 and Preparation Example 2
Figure kpo00022
After mixing 3 parts by weight of -1 latex (solid content), 0.2 parts by weight of potassium rosinate was added and stirring was started. At this time, the stirring speed is 20rpm. After 30 minutes, 50 parts by weight of an aqueous 5% acetic acid solution was added over 1 hour. At this time, the stirring speed was reduced to 15 rpm. After the addition of the acetic acid aqueous solution was added 23 parts by weight of 10% potassium hydroxide and the pH of the latex was measured. PH was 10.2 at this time. The size of the aggregated rubber particles was 0.32 mu m. In addition, the particle size distribution was very narrow.

2) 그랴프트 공중합체 제조2) Graft Copolymer Preparation

평균입경이 0.32㎛인 응집 고무라텍스 34중량부(고형분)와 응집전 입경 0.08㎛의 고무라텍스 6중량부(고형분)를 혼합하여 반응조에 넣고, 스티렌 45중량부, 아크릴로니트릴 15중량부, t-DDM 0.5중량부, 로진산칼륨 1.5중량부, 탈이온수 170중량부의 유화액을 4시간동안 연속적으로 투입하였다. 이때 개시제는 산화-환원계로 큐멘하이드로퍼옥사이드 0.15중량부, 탈이온수 10중량부, 피로인산포스페이트 0.25중량부, 덱스트로즈 0.3중량부, 황산제 1철 7수염 0.005중량부로 구성되어 있다. 반응온도는 65℃로 4시간동안 유지시켰고, 단량체 유화액 투입완료 후 1시간동안은 70℃로 하여 숙성시켰다. 최종 반응 전환율은 98%였다.34 parts by weight of agglomerated rubber latex (solid content) having an average particle diameter of 0.32 μm and 6 parts by weight of a rubber latex (solid content) having a particle diameter of 0.08 μm before agglomeration were mixed into a reaction tank, and 45 parts by weight of styrene, 15 parts by weight of acrylonitrile, and t 0.5 parts by weight of DDM, 1.5 parts by weight of potassium rosinate and 170 parts by weight of deionized water were added continuously for 4 hours. At this time, the initiator is composed of 0.15 parts by weight of cumene hydroperoxide, 10 parts by weight of deionized water, 0.25 parts by weight of pyrophosphate, 0.3 parts by weight of dextrose, and 0.005 parts by weight of ferrous sulfate salt. The reaction temperature was maintained at 65 ° C. for 4 hours, and aged at 70 ° C. for 1 hour after the completion of the monomer emulsion addition. Final reaction conversion was 98%.

상기에서 얻어진 그라프트 공중합체 라텍스를 묽은 황산수용액으로 응고하여 수세 및 건조공정을 거쳐 백색의 분말을 얻었다.The graft copolymer latex obtained above was coagulated with a dilute sulfuric acid solution and washed with water and dried to obtain a white powder.

이 분말의 고무질 함량은 약 38.8중량부이다. 이것과 혼합할 스티렌-아크릴로니트릴 공중합체의 무게 분자량은 180,000이고, 아크릴로니트릴의 함량은 24%였다. 상기의 SAN 수지를 혼합하여 최종 ABS 수지내 고무함량을 15%, 20%, 25%로 조절한 후, 사출하여 물성측정용 시편을 얻었고, 그 측정결과는 표 1과 같다.The rubbery content of this powder is about 38.8 parts by weight. The weight molecular weight of the styrene-acrylonitrile copolymer to be mixed with this was 180,000, and the content of acrylonitrile was 24%. After mixing the SAN resin, the rubber content in the final ABS resin was adjusted to 15%, 20%, and 25%, followed by injection to obtain a specimen for measurement of physical properties. The measurement results are shown in Table 1 below.

[실시예 2.]Example 2.

실시예 1과 동일하게 행하고,

Figure kpo00023
-1 라텍스 대신
Figure kpo00024
-2 라텍스를 사용하였다.It carried out similarly to Example 1,
Figure kpo00023
-1 instead of latex
Figure kpo00024
-2 latex was used.

[실시예 3.]Example 3.

실시예 1과 동일하게

Figure kpo00025
-1 라텍스 대신
Figure kpo00026
-2 라텍스를 사용하였다.In the same manner as in Example 1
Figure kpo00025
-1 instead of latex
Figure kpo00026
-2 latex was used.

[실시예 4.]Example 4.

제조예 1의 PBL-1 라텍스 100중량부와 제조예 6의

Figure kpo00027
-5 라텍스 6중량부를 혼합한 후 실시예 1과 동일하게 응집공정을 거치고 그라프트 중합을 실시하였다.100 parts by weight of PBL-1 latex of Preparation Example 1 and Preparation Example 6
Figure kpo00027
After mixing 6 parts by weight of -5 latex was subjected to the coagulation process in the same manner as in Example 1 and subjected to graft polymerization.

[표 1]TABLE 1

Figure kpo00028
Figure kpo00028

[비교예 1.][Comparative Example 1.]

실시예 1에서 사용한

Figure kpo00029
-1 라텍스를 넣지 않고 동일한 방법으로 그라프트 중합을 실시하여 고무질 함량이 40%인 ABS 수지를 얻었다. 이를 동일한 SAN 수지로 혼합하여 고무함량을 각각 15,20,25%로 희석시켜 사출 후 물성측정용 시편을 얻었다. 그 측정물성은 표 2와 같다.Used in Example 1
Figure kpo00029
Graft polymerization was carried out in the same manner without adding -1 latex, thereby obtaining an ABS resin having a rubbery content of 40%. This was mixed with the same SAN resin to dilute the rubber content to 15, 20, 25%, respectively, to obtain a specimen for measurement of physical properties after injection. The measured physical properties are shown in Table 2.

비교예2.Comparative Example 2.

Figure kpo00030
-1 라텍스 대신에 제조예 4의
Figure kpo00031
-4 라텍스를 사용하여 실시예 1과 동일하게 중합하였다. 그 측정물성은 표 2와 같다.
Figure kpo00030
-1 instead of latex of Preparation Example 4
Figure kpo00031
The polymerization was carried out in the same manner as in Example 1 using -4 latex. The measured physical properties are shown in Table 2.

[표 2]TABLE 2

Figure kpo00032
Figure kpo00032

이상의 실시예와 비교예를 살펴보면,

Figure kpo00033
-라텍스를 사용치 않은 것은 충격강도는 비교적 우수하지만 기계적 강도가
Figure kpo00034
-라텍스를 사용한 것보다 작다. 특히
Figure kpo00035
-라텍스의 분자량이 40,000이상 될때는 충격강도의 향상을 기대할 수 없다.Looking at the above Examples and Comparative Examples,
Figure kpo00033
-Latex is not used, the impact strength is relatively good, but the mechanical strength is
Figure kpo00034
-Smaller than using latex Especially
Figure kpo00035
-When the molecular weight of latex is over 40,000, the improvement of impact strength cannot be expected.

Claims (3)

중량 평균 입경이 0.03~0.2㎛이고, 중량 평균분자량이 300~40,000이며, 중량 평균분자량대 수평균분자량의 비가 1.0~5.0인
Figure kpo00036
-라텍스와 중량 평균 입경이 0.03~0.2㎛이고, 겔 함량이 40~95%인 고무질 라텍스가 혼합된 라텍스를 비대화하여 중량 평균 입경이 0.25~0.5㎛인 라텍스를 제조한 후, 제조된 라텍스 5~80중량%와 방향족 비닐화합물 단량체 60중량% 이상, 방향족 비닐화합물과 이와 공중합 가능한 비닐화합물 40중량% 이하로 구성된 혼합단량체 20~95중량%를 개시제, 연쇄이동제와 함께 첨가하여 유화중합법으로 그라프트 중합을 실시함을 특징으로 하는 열가소성 수지의 제조방법.
The weight average particle diameter is 0.03 to 0.2 µm, the weight average molecular weight is 300 to 40,000, and the ratio of the weight average molecular weight to the number average molecular weight is 1.0 to 5.0
Figure kpo00036
Latexes having a weight average particle diameter of 0.25-0.5 μm were prepared by enlarging a latex containing a latex and a rubber-containing latex having a weight average particle diameter of 0.03 to 0.2 μm and a gel content of 40 to 95%. 20 to 95% by weight of a mixed monomer consisting of 80% by weight and at least 60% by weight of an aromatic vinyl compound monomer and 40% by weight or less of an aromatic vinyl compound and a copolymerizable vinyl compound is added together with an initiator and a chain transfer agent to graf by emulsion polymerization. A method for producing a thermoplastic resin, characterized in that the polymerization is carried out.
제 1 항에 있어서,
Figure kpo00037
-라텍스와 고무질 라텍스의 혼합비는 고무질 라텍스 100중량부당 0.01~20중량부임을 특징으로 하는 열가소성 수지의 제조방법.
The method of claim 1,
Figure kpo00037
The mixing ratio of latex and rubber latex is 0.01 to 20 parts by weight per 100 parts by weight of rubber latex.
제 1 항에 있어서,
Figure kpo00038
-라텍스는 방향족 비닐단량체 단독 또는 방향족 비닐단량체와 이와 공중합 가능한 비닐단량체 혼합물이고, 혼합물중 방향족 비닐단량체가 50중량% 이상인 것을 특징으로 하는 열가소성 수지의 제조방법.
The method of claim 1,
Figure kpo00038
The latex is an aromatic vinyl monomer alone or a mixture of aromatic vinyl monomers and vinyl monomers copolymerizable therewith, wherein the aromatic vinyl monomer is 50% by weight or more in the mixture.
KR1019900002529A 1990-02-27 1990-02-27 Process for preparing a thermoplastic resin having a good impact resistance and mechanical strength KR930002705B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900002529A KR930002705B1 (en) 1990-02-27 1990-02-27 Process for preparing a thermoplastic resin having a good impact resistance and mechanical strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900002529A KR930002705B1 (en) 1990-02-27 1990-02-27 Process for preparing a thermoplastic resin having a good impact resistance and mechanical strength

Publications (2)

Publication Number Publication Date
KR910015609A KR910015609A (en) 1991-09-30
KR930002705B1 true KR930002705B1 (en) 1993-04-09

Family

ID=19296484

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900002529A KR930002705B1 (en) 1990-02-27 1990-02-27 Process for preparing a thermoplastic resin having a good impact resistance and mechanical strength

Country Status (1)

Country Link
KR (1) KR930002705B1 (en)

Also Published As

Publication number Publication date
KR910015609A (en) 1991-09-30

Similar Documents

Publication Publication Date Title
KR20160071250A (en) Method for preparing of acrylonitrile-butadiene-styrene graft copolymer and acrylonitrile-butadiene-styrene thermoplastic resin comprising the same
KR20200011701A (en) Method for preparing large particle sized rubber latex, and method for preparing abs graft copolymer
KR100988962B1 (en) Method for preparing rubber latex of a small diameter with a high polymerization rate together with reduced coagulum contents
US11932709B2 (en) Diene-based rubber latex, method for preparing thereof and graft copolymer with core-shell structure comprising the same
CA1162679A (en) Process for producing impact-resistant resins
KR920005677B1 (en) A manufacturing process for excellent impact-resistant & surface luster thermoplastic resin
JP3191942B2 (en) Method for producing thermoplastic resin having high impact strength
KR930002705B1 (en) Process for preparing a thermoplastic resin having a good impact resistance and mechanical strength
JPS63245414A (en) Production of graft polymer
KR100426122B1 (en) Method for preparing of acrylonitrile-butadiene-styrene latex graft latex havng superior stability
KR940004852B1 (en) Preparation of thermoplastic resin composition
US4740560A (en) ABS resins and process for making them
KR100379318B1 (en) Thermoplastic Resin Composition with Good Transparent and Impact Strength Characteristics, and Method for Preparing Same
KR20020031171A (en) Transparent impact-resistant thermoplastic resin composition
KR0166399B1 (en) Process for high impact resistant graft polymer
US3629370A (en) Process for the production of thermoplastic-elastic moulding compositions of high impact and notched impact strength
KR20200111466A (en) Method for preparing graft copolymer
KR940010341B1 (en) Process for producing rubber latex
US3849358A (en) Method of preparing highly concentrated resinous latex
US3751526A (en) Process for producing impact resistant thermoplastic resins
KR102331303B1 (en) Diene based rubber latex, method for preparing thereof and core-shell structured graft copolymer comprising the same
KR100188529B1 (en) The preparation of thermoplastic resin composition having high glossness and high impact strength at low temperature
KR100380016B1 (en) Process for Producing Rubber Latices
KR100657741B1 (en) Method for Preparing Rubber Latex
KR100394268B1 (en) Thermoplastic resin composition excellent in gloss and low temperature impact resistance and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19990401

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee