KR930002060B1 - Stack cell manufacturing method of t-type gate - Google Patents

Stack cell manufacturing method of t-type gate Download PDF

Info

Publication number
KR930002060B1
KR930002060B1 KR1019900010599A KR900010599A KR930002060B1 KR 930002060 B1 KR930002060 B1 KR 930002060B1 KR 1019900010599 A KR1019900010599 A KR 1019900010599A KR 900010599 A KR900010599 A KR 900010599A KR 930002060 B1 KR930002060 B1 KR 930002060B1
Authority
KR
South Korea
Prior art keywords
poly
depositing
forming
gate
oxide film
Prior art date
Application number
KR1019900010599A
Other languages
Korean (ko)
Other versions
KR920003471A (en
Inventor
김홍선
Original Assignee
금성일렉트론 주식회사
문정환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금성일렉트론 주식회사, 문정환 filed Critical 금성일렉트론 주식회사
Priority to KR1019900010599A priority Critical patent/KR930002060B1/en
Publication of KR920003471A publication Critical patent/KR920003471A/en
Application granted granted Critical
Publication of KR930002060B1 publication Critical patent/KR930002060B1/en

Links

Images

Abstract

The method comprises (a) forming field oxide on the substrate, (b) depositing buffer oxide and poly into which N+ ions are implanted, (c) etching it using N+ S/D region as a mask, (d) depositing poly into which ions are not implanted and etching it vertically to form side walls, (e) depositing gate oxide, (f) depositing gate poly between N+ S/D regions, on which side walls are formed, to form T-type gate, (f) forming oxide for cap gate, (g) forming contact region with depression layer on N+ S/D region, (h) forming storage node poly, dielectric layer and plate poly thereon, (i) depositing oxide and doped on the plate poly and flowing, (j) forming bit line on N+ S/D region and depositing metal.

Description

T형 게이트의 스택셀 제조방법Stack cell manufacturing method of T-type gate

제1도는 종래의 공정단면도.1 is a conventional cross-sectional view of the process.

제2도는 본 발명의 설계도.2 is a schematic view of the present invention.

제3도는 본 발명의 공정 단면도.3 is a cross-sectional view of the process of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 필드산화막 2 : 버퍼산화막1: field oxide film 2: buffer oxide film

3 : N+S/D이온이 도핑된 폴리 4 : 측멱폴리3: Poly doped with N + S / D ions 4: Polyurethane

5 : 게이트 산화막 6 : 게이트폴리5: gate oxide film 6: gate poly

7 : HTO 8 : 스토리지노드 폴리7: HTO 8: Storage Node Poly

9 : 유전체 10 : 플레이트 폴리9: dielectric 10: plate poly

11 : BPSG 12 : 메탈11: BPSG 12: Metal

본 발명은 T형 게이트의 스택셀(Stacked Cell)제조방법에 관한 것으로, 특히 게이트를 T형으로 형성하여 많은 토포러지(Topology)를 주므로써 커패시터의 용량을 증대시킬 수 있도록 한 것이다.The present invention relates to a method for manufacturing a stacked cell of a T-type gate. In particular, the gate is formed in a T-type to increase the capacity of a capacitor by giving a lot of topology.

종래의 공정과정을 첨부된 제1도(A) 내지 (E)를 참조하여 상술하면 다음과 같다.A detailed description of the conventional process is given below with reference to FIGS. 1A to 1E.

먼저(A)와 같이 게이트폴리(Poly)(6)를 형성한 다음 N+소오스/드레인(이하 S/D라 한다)이온을 주입한다. 이어 (B)와 같이 메몰층 접촉영역을 형성하고 스토리지노드 폴리(8)를 증착한 다음 한정하고 에치한다.First, as shown in (A), a gate poly 6 is formed, and then N + source / drain ions (hereinafter referred to as S / D) ions are implanted. Subsequently, as shown in (B), a buried layer contact region is formed and the storage node poly 8 is deposited, then defined and etched.

이어 (C)와 같이 커패시터의 유전체(9)인 산화막/질화막/산화막(이하 ONO라 한다)을 형성하기 위해 산화막을 형성하고 플레이트 폴리(10)를 증착한 후 이를 한정하여 에치한다.Subsequently, in order to form an oxide film / nitride film / oxide film (hereinafter referred to as ONO), which is the dielectric 9 of the capacitor, as shown in (C), an oxide film is formed, the plate poly 10 is deposited, and then limited and etched.

그리고 (D)와 같이 도우프된(Doped)산화막인 BPSG(11)를 증착하고 플로우잉(Flowing)한다.Then, as shown in (D), the BPSG 11, which is a doped oxide film, is deposited and flowed.

마지막으로 (E)와 같이 N+S/D접촉영역을 형성한 다음 메탈(12)을 증착시켜 비트라인(Bit Line)을 형성한다.Finally, as shown in (E), the N + S / D contact region is formed, and then the metal 12 is deposited to form a bit line.

이와 같이 제조되는 스택셀은 게이트가 "-"자 형으로 형성되어 토포러지가 적어 커패시터의 면적이 작으므로 커패시터 용량이 작다는 단점이 있다.The stack cell manufactured as described above has a disadvantage in that the gate capacity is formed in a “-” shape so that the topography is small and the area of the capacitor is small.

또한 N+S/D영역이 실리콘기판에 존재하므로 접합 커패시턴스가 증가하여 메모리에서 스피드를 감소시키도록 영향을 미치게되며 접합 누설전류가 증가되는 단점이 있다.In addition, since the N + S / D region is present on the silicon substrate, the junction capacitance increases, which affects the speed of the memory and reduces the junction leakage current.

본 발명은 상기 단점을 제거키 위한 것으로 이의 공정과정을 첨부된 제2도와 제3도(A) 내지 (I)를 참조하여 상술하면 다음과 같다. 먼저 (A)와 같이 실리콘 기판 위에 필드산화막(1)을 형성하고 버퍼 산화막(2)과 N+S/D이온이 도핑된 도핑폴리(3)를 차례로 증착한다.The present invention is to eliminate the above disadvantages and the process thereof will be described below with reference to FIGS. 2 and 3 (A) to (I). First, as shown in (A), a field oxide film 1 is formed on a silicon substrate, and a buffer oxide film 2 and a doped poly 3 doped with N + S / D ions are sequentially deposited.

다음으로 (B)와 같이 N+S/D를 마스크로하여 도핑폴리(3) 및 버퍼산화막(2)을 에치한다. 이어 (C)(D)와 같이 도우프되지 않은 측벽폴리(4)를 증착하고 이를 수직식각하여 측벽을 형성한 다음 게이트 산화막(5)을 형성한다.Next, as shown in (B), the doped poly 3 and the buffer oxide film 2 are etched using N + S / D as a mask. Next, as shown in (C) (D), the undoped sidewall poly 4 is deposited and vertically etched to form sidewalls, and then the gate oxide film 5 is formed.

이어 (E)(F)와 같이 게이트폴리(6)를 증착하고 이를 한정하여 에치한 다음 HTO(High Temperature Oxide)(7)를 증착하고 메몰층 접촉부위를 마스크로 이용하여 상기 HTO(7)를 에치한다. 여기서 HTO(7)는 LTO(Low Temperature Oxide)로 대신 사용될 수 있다.Subsequently, as shown in (E) (F), the gate poly (6) is deposited and etched to limit it. Then, the HTO (7) is deposited using the buried layer contact portion as a mask. Etch. In this case, the HTO 7 may be used as a low temperature oxide (LTO) instead.

그리고 (G)와 같이 스토리지노드 폴리(8)를 증착한 후 이를 한정하여 에치하고 커패시터의 유전체(9)인 ONO를 형성한 다음 플레이트 폴리(10)를 증착하고 이를 한정하여 에치한다.Then, as shown in (G), the storage node poly 8 is deposited and then etched by defining it. Then, the dielectric 9 of the capacitor is formed by forming an ONO, and then the plate poly 10 is deposited and limited by the etching.

마지막으로 (H)(I)와 같이 HTO(7a)와 BPSG(11)를 차례로 증착하고 플로우잉한 다음 N+S/D접촉영역을 형성하고 여기에 메탈(12)을 증착하여 공정을 완료한다. 이상과 같이 제조되는 본 발명에 의한 스택셀은 다음과 같은 효과가 있다.Finally, the HTO 7a and the BPSG 11 are sequentially deposited and flowed as in (H) (I), and then an N + S / D contact region is formed and the metal 12 is deposited thereon to complete the process. . The stack cell according to the present invention manufactured as described above has the following effects.

첫째, 제2도(I)와 같이 게이트가 "T"형으로 형성되므로써 토포러지를 크게 할 수 있으므로 커패시터의 면적을 증가시킬 수 있다.First, as shown in FIG. 2, the gate is formed in a “T” shape, thereby increasing the topology, thereby increasing the area of the capacitor.

둘째, N+S/D의 일부분이 버퍼산화막(2)위에 존재하므로써 접합 누설 전류 및 접합 커패시턴스가 감소되어 메모리에서의 스피드 감소를 줄일 수 있다.Second, since a portion of N + S / D is present on the buffer oxide film 2, the junction leakage current and junction capacitance are reduced, thereby reducing the speed reduction in the memory.

셋째, 실리콘기판에 드러난 접합면적이 적으므로 소프트에러(Soft error)측면에서도 개선된다.Third, since the bonding area exposed to the silicon substrate is small, it is also improved in terms of soft error.

넷째, 스토리지노드 폴리(8)나 메탈(12)이 N+S/D에 연결될때 접촉면적이 증가하므로 접촉저항을 줄일수 있다.Fourth, the contact area is increased when the storage node poly 8 or the metal 12 is connected to N + S / D, it is possible to reduce the contact resistance.

다섯째, N+S/D일부가 실리콘 기판 윗쪽에 위치하므로 메탈(12)증착시 에스팩트 비(Aspect Ratio)를 개선시킬 수 있다.Fifth, since a portion of N + S / D is located above the silicon substrate, the aspect ratio may be improved when the metal 12 is deposited.

여섯째, N+S/D이온이 도핑된 도핑폴리(3)가 두껍게 할 수록 셀커패시터의 용량을 증가시킬 수 있으며 이때 메몰층의 접촉영역 및 메탈 접촉영역의 에스팩트비는 이와 무관하게 동일하다.Sixth, the thicker the doped poly (3) doped with N + S / D ions can increase the capacity of the cell capacitor, wherein the aspect ratio of the buried layer and the metal contact region is the same regardless.

Claims (1)

기판위에 필드산화막을 형성하고 버퍼산화막 및 N+S/D이온이 주입된 폴리를 차례로 증착한 다음 N+S/D영역을 마스크로 하여 에치하는 단계와, 이온이 주입되지 않은 폴리를 증착하고 이를 수직식각하여 측벽을 형성하고 게이트 산화막을 증착하는 단계, 상기 측벽이 형성된 N+S/D영역 사이에 게이트 폴리를 증착하여 T형 게이트를 형성하고 그위에 캡게이트용 고온산화막을 형성하는 단계, N+S/D영역에 메몰층접촉영역을 형성하고 이 위에 스토리지 노드 폴리와 유전체층 및 플레이트 폴리를 형성하는 단계, 이 플레이트 폴리위에 절연체인 고온산화막과 도우프된 산화막을 차례로 증착한 다음 플로우잉 하는 단계, 커패시터가 형성되지 않은 N+S/D영역위에 비트라인 접촉영역을 형성하고 메탈을 증착하는 단계로 이루어짐을 특징으로 하는 T형 게이트의 스택셀 제조방법.Forming a field oxide film on the substrate, depositing a buffer oxide film and polyimplanted N + S / D ions in turn, and then etching the N + S / D region as a mask; Vertical etching to form a sidewall and depositing a gate oxide film, depositing a gate poly between the N + S / D regions where the sidewall is formed to form a T-type gate, and forming a high temperature oxide film for a capgate thereon; Forming a buried layer contact region in the N + S / D region, and forming a storage node poly, a dielectric layer, and a plate poly on the plate poly; phase, T-shaped gate, characterized by made of an step of forming a bit line contact region on that capacitor is not formed N + S / D regions, and depositing a metal Cell stack manufacturing method.
KR1019900010599A 1990-07-12 1990-07-12 Stack cell manufacturing method of t-type gate KR930002060B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900010599A KR930002060B1 (en) 1990-07-12 1990-07-12 Stack cell manufacturing method of t-type gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900010599A KR930002060B1 (en) 1990-07-12 1990-07-12 Stack cell manufacturing method of t-type gate

Publications (2)

Publication Number Publication Date
KR920003471A KR920003471A (en) 1992-02-29
KR930002060B1 true KR930002060B1 (en) 1993-03-22

Family

ID=19301196

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900010599A KR930002060B1 (en) 1990-07-12 1990-07-12 Stack cell manufacturing method of t-type gate

Country Status (1)

Country Link
KR (1) KR930002060B1 (en)

Also Published As

Publication number Publication date
KR920003471A (en) 1992-02-29

Similar Documents

Publication Publication Date Title
KR910010167B1 (en) Stack capacitor dram cell and its manufacturing method
US5523542A (en) Method for making dynamic random access memory cell capacitor
US5482885A (en) Method for forming most capacitor using poly spacer technique
KR940003021A (en) Semiconductor Memory and Manufacturing Method
KR0151197B1 (en) Semconductor device & its manufacturing method
JPS60152056A (en) Semiconductor memory device
US5104821A (en) Method for fabricating stacked capacitors in a DRAM cell
US5459095A (en) Method for making capacitor for use in DRAM cell using triple layers of photoresist
KR930002060B1 (en) Stack cell manufacturing method of t-type gate
JP2712926B2 (en) Method for manufacturing semiconductor memory device
JPH06120446A (en) Semiconductor storage device and manufacture thereof
KR940009631B1 (en) Manufacturing method of dram with trench capacitor
KR19990071384A (en) Semiconductor device and manufacturing method thereof
JPH0370381B2 (en)
KR100239690B1 (en) Method for forming field oxide film of semiconductor memory cell
KR100355607B1 (en) Method for fabricating a semiconductor memory device having an inverse "T"type capacitor
US5242852A (en) Method for manufacturing a semiconductor memory device
KR930000883B1 (en) Method of fabricating dram cell
US4794091A (en) Method of making high-performance dram arrays including trench capacitors
KR0151126B1 (en) Method for fabricating a shallow trench stacked capacitor with high integrated dram cell
JPH0399473A (en) Semiconductor memory device and manufacture thereof
US5564180A (en) Method of fabricating DRAM cell capacitor
KR0164152B1 (en) Capacitor fabrication method of semiconductor device
KR0178995B1 (en) Method for manufacturing the capacitor of semiconductor memory device
KR960005570B1 (en) Semiconductor memory device fabrication process

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050221

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee