KR920019058A - Rotating Machine Diagnosis Method - Google Patents

Rotating Machine Diagnosis Method Download PDF

Info

Publication number
KR920019058A
KR920019058A KR1019920003544A KR920003544A KR920019058A KR 920019058 A KR920019058 A KR 920019058A KR 1019920003544 A KR1019920003544 A KR 1019920003544A KR 920003544 A KR920003544 A KR 920003544A KR 920019058 A KR920019058 A KR 920019058A
Authority
KR
South Korea
Prior art keywords
virtual
rotating machine
abnormality
machine
range
Prior art date
Application number
KR1019920003544A
Other languages
Korean (ko)
Other versions
KR960000803B1 (en
Inventor
야마쟈키 미쯔마사
토다 모토히데
히라노 토시오
Original Assignee
야스오 시미쯔
우베 인더스트리스 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 야스오 시미쯔, 우베 인더스트리스 리미티드 filed Critical 야스오 시미쯔
Publication of KR920019058A publication Critical patent/KR920019058A/en
Application granted granted Critical
Publication of KR960000803B1 publication Critical patent/KR960000803B1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

내용 없음No content

Description

회전기계 진단방법Rotating Machine Diagnosis Method

본 내용은 요부공개 건이므로 전문내용을 수록하지 않았음Since this is an open matter, no full text was included.

제1도는 본 발명의 일실시예에 따른 회전기계를 진단하는 방법을 적용한 시스템의 블록 다이어그램,1 is a block diagram of a system to which a method for diagnosing a rotating machine according to an embodiment of the present invention is applied;

제2도는 변동범위에 따라 저장된 각 가상 회전기계의 특징 매트릭스를 보여주는 도면.2 shows a feature matrix of each virtual rotary machine stored according to the variation range.

Claims (5)

설정된 시간 구간내에서 운전될 수 있고 회전기계의 상태를 나타내는 검출신호에 대해 회전기계의 부하 및 속도의 크기중 최소한 하나의 것이 변동영향이 경미하게 작용하는 복수개의 변동 범위를 셋팅하는 스텝, 복수개의 변동영역에 상응하는 복수개의 가상 회전기계들을 정상 운전상태에서의 속도와 부하중 최소한 하나의 것이 큰 범위에서 변동하는 하나의 회전기계로서 간주하는 스텝, 검출데이터를 토대로 복수개의 변동범위중 하나의 것에 상응하는 복수개의 가상회전기계중 하나의 것을 결정하는 스텝, 그리고 일정속도와 일정부하를 갖는 회전기계를 진단하는 방법에 따라서 결정된 가상 회전기계의 이상 진단을 수행하는 스텝을 구비함을 특징으로 하는 회전기계 진단방법.At least one of the magnitude of the load and speed of the rotating machine for the detection signal which can be operated within a set time interval and which indicates the state of the rotating machine, sets a plurality of fluctuation ranges in which the fluctuation effect is slight; A plurality of virtual rotary machines corresponding to the fluctuating region are regarded as one rotary machine in which at least one of the speed and the load in the normal operating state fluctuates in a large range. Determining one of a plurality of corresponding virtual rotary machines, and performing abnormality diagnosis of the virtual rotary machine determined according to a method for diagnosing a rotary machine having a constant speed and a constant load. Machine diagnostic method. 제1항에 있어서, 상기 복수개의 기상 회전기계중 하나의 것을 결정하는 스텝은 상기 복수개의 가상 회전기계의 복수개의 변동범위중 회전기계의 검출된 속도및 부하의 크기에 상응하는 하나의 특정 변동영역을 탐색하기 위한 스탭과, 그리고 그 탐색된 변동범위에 상응하는 가상 회전기계를 결정하는 스텝을 구비하는 것을 특징으로 하는 회전기계 진단방법.The method of claim 1, wherein the step of determining one of the plurality of meteorological rotary machines comprises one specific variation area corresponding to the detected speed and the magnitude of the load of the rotary machine among the plurality of fluctuation ranges of the plurality of virtual rotary machines. And a step for determining a virtual rotating machine corresponding to the searched fluctuation range. 제1항에 있어서, 이상진단을 수행하는 스텝은 일정속도와 일정 부하를 갖는 회전기계를 진단하는 방법이 적용되어 결정된 변동범위에 상응하는 가상 회전기계들의 각 이상에 대한 시간-계열 특정 데이터를 계산하기 위한 스텝과, 그리고 상기 계산결과를 토대로 가상 회전기계 시간-계열 특징 매트릭스를 형성하는 스텝을 구비하는 것을 특징으로 하는 회전기계 진단방법.The method of claim 1, wherein the step of performing the abnormal diagnosis comprises calculating a time-series specific data for each abnormality of the virtual rotary machines corresponding to the determined range by applying a method of diagnosing a rotary machine having a constant speed and a constant load. And a step of forming a virtual rotating machine time-series feature matrix based on the calculation result. 제3항에 있어서, 시간-계열 특정 데이터를 계산하는 스텝은 그 결정된 변동범위내의 속도 변동을 토대로 속도정정을 수행하는 스텝, 정정된 속도를 토대로 하여 결정된 변동범위에 상응하는 가상 회전기계의 진동주파수와 연관된 각 특정주파수의 스펙트럼 콤포넌트 값들을 계산하는 스텝, 그리고 계산된 스펙트럼 콤포넌트 값들을 토대로 상기 각 특정 주파수에 상응하는 시간-계열적 스펙트럼 비를 계산하는 스텝을 구비하는 것을 특징으로 하는 회전기계 진단방법.The vibration frequency of the virtual rotating machine according to claim 3, wherein the step of calculating the time-series specific data comprises: performing speed correction based on speed variation within the determined range of variation, and vibration frequency of the virtual rotating machine corresponding to the range of variation determined based on the corrected velocity. And calculating the spectral component values of each particular frequency associated with and calculating the time-series spectral ratio corresponding to each particular frequency based on the calculated spectral component values. . 제3항에 있어서, 미리 저장된 결정된 변동범위에 상응하는 가상 회전기계의 가준값군을 토대로 하여 상기 가상 회전기계 시간-계열 특징 매트릭스로 부터 이상 징후가 설정된 레벨을 초과하는 데이터만을 추출하기 위한 스텝과, 그리고 결정된 변동범위에 상응하는 가상 회전기계에 해당하는 이상 징후 매트릭스를 형성하기 위하여 이상의 종류와, 이상 부위, 이상에 상응하는 스펙트럼 주파수 및 그것의 상관관계 데이터를 추출된 데이터에 가산하기 위한 스텝을 추가로 구비하는 것을 특징으로 하는 회전기계 진단방법.4. The method according to claim 3, further comprising the steps of: extracting only the data from which the abnormality exceeds a set level from the virtual rotary machine time-series feature matrix based on a group of values of the virtual rotary machine corresponding to a predetermined stored variation range; And in order to form an abnormality indication matrix corresponding to the virtual rotating machine corresponding to the determined variation range, a step for adding an abnormality type, an abnormality portion, a spectral frequency corresponding to the abnormality, and its correlation data to the extracted data. Rotating machine diagnostic method comprising the. ※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.※ Note: The disclosure is based on the initial application.
KR1019920003544A 1991-03-05 1992-03-04 The method for checking a rotary machine KR960000803B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3062452A JP2924242B2 (en) 1991-03-05 1991-03-05 Diagnosis method for fluctuating rotating machinery
JP91-62452 1991-03-05
JP91-062452 1991-03-05

Publications (2)

Publication Number Publication Date
KR920019058A true KR920019058A (en) 1992-10-22
KR960000803B1 KR960000803B1 (en) 1996-01-12

Family

ID=13200614

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920003544A KR960000803B1 (en) 1991-03-05 1992-03-04 The method for checking a rotary machine

Country Status (2)

Country Link
JP (1) JP2924242B2 (en)
KR (1) KR960000803B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010026772A (en) * 1999-09-08 2001-04-06 이구택 Monitoring and diagnosis method for facility with variable operating condition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4174968B2 (en) 1997-08-19 2008-11-05 日本ゼオン株式会社 Norbornene polymer and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010026772A (en) * 1999-09-08 2001-04-06 이구택 Monitoring and diagnosis method for facility with variable operating condition

Also Published As

Publication number Publication date
JP2924242B2 (en) 1999-07-26
KR960000803B1 (en) 1996-01-12
JPH04276537A (en) 1992-10-01

Similar Documents

Publication Publication Date Title
EP0096510B1 (en) Control system primarily responsive to signals from digital computers
KR900001952A (en) Turbine Braid Vibration Detection System
US4669315A (en) Rotating machinery diagnosis system with acoustic emission technique
KR830008163A (en) Method and device for automatic diagnosis of system dysfunction
EP0085570A2 (en) Vibration monitoring system for aircraft engines
KR900000689A (en) Asynchronous Turbine Blade Vibration Monitoring System
KR900013411A (en) How to correlate text in an autodiagnosis system that automatically generates prescriptions
KR920015021A (en) System and method for monitoring synchronous blade vibration
CN109540482B (en) Method and device for analyzing keyless synchronous vibration parameters of turbine blade
JP2962368B2 (en) Method and apparatus for monitoring the motion of a rotating part of a machine
KR920019058A (en) Rotating Machine Diagnosis Method
EP0105600B1 (en) Apparatus for selecting a signal representing vibrations
JPH04204021A (en) Apparatus for diagnosing vibration and sound of rotating machine
CN107436244B (en) Equipment fault alarm method based on frequency segmentation vibration data acquisition
JPH06264704A (en) Vibration diagnostic device for rotational machine
US4272992A (en) Torsional vibration monitoring method for rotating shaft system
KR900018661A (en) Turbine Generator Shaft Torsion Monitoring
JPH0450731A (en) Rotary machine fault diagnostic system
KR960705124A (en) PROCESS AND DEVICE FOR IMAGING THE OPERATIONAL CONDITION OF A TURBINE DURING THE STARTING PROCESS
JPS5674632A (en) Abnormality diagnostic method of bearing
JPH0236141Y2 (en)
JP3032592B2 (en) Signal feature component analyzer
JPH04276555A (en) Method for detecting number of rotation of rotary machine
JPS56133617A (en) Vibration monitoring method of rotary machine
JPS63167222A (en) Abnormality diagnosing device for rotary machine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20031211

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee