KR920006363B1 - A constant measuring method for inverter apparatus - Google Patents

A constant measuring method for inverter apparatus Download PDF

Info

Publication number
KR920006363B1
KR920006363B1 KR1019890006759A KR890006759A KR920006363B1 KR 920006363 B1 KR920006363 B1 KR 920006363B1 KR 1019890006759 A KR1019890006759 A KR 1019890006759A KR 890006759 A KR890006759 A KR 890006759A KR 920006363 B1 KR920006363 B1 KR 920006363B1
Authority
KR
South Korea
Prior art keywords
motor
constant
current
inverter
inverter device
Prior art date
Application number
KR1019890006759A
Other languages
Korean (ko)
Other versions
KR900019333A (en
Inventor
권봉현
설승기
강준구
Original Assignee
금성계전 주식회사
백중영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금성계전 주식회사, 백중영 filed Critical 금성계전 주식회사
Priority to KR1019890006759A priority Critical patent/KR920006363B1/en
Publication of KR900019333A publication Critical patent/KR900019333A/en
Application granted granted Critical
Publication of KR920006363B1 publication Critical patent/KR920006363B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/01Asynchronous machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/907Specific control circuit element or device
    • Y10S388/9072Bridge circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

The method is for detecting parameters of an induction motor during operation. The method comprises: (A) turning off other switching devices of the inverter except one switching device the moment that a current of certain phase rises from zero; (B) detecting the counter electromotive force, speed and current decrement at the moment to calculate the equivalent inductance of the motor; (C) detecting the period and magnitude of the decreasing counter electromotive force; (D) calculating the second time constant of the motor from the equivalent circuit; (E) applying DC voltage to the motor instantaneously to calculate the primary resistance of the motor; and (F) setting the calculated inductance, the time constant, and the resistance as a parameter of the inverter.

Description

인버터장치의 상수설정방법Constant setting method of inverter device

제1도는 종래의 인버터장치의 상수설정에 대한 회로구성도.1 is a circuit diagram of constant setting of a conventional inverter device.

제2도는 본 발명 인버터장치의 상수설정에 대한 회로구성도.2 is a circuit diagram of constant setting of the inverter device of the present invention.

제3도는 본 발명 인버터장치의 상수설정에 있어서, 연산내용의 전체신호 흐름도.3 is an overall signal flow chart of the calculation contents in the constant setting of the inverter device of the present invention.

제4도는 본 발명 인버터장치의 상수설정에 있어서, 등가인덕턴스 연산에 대한 신호흐름도.4 is a signal flow diagram for an equivalent inductance calculation in setting a constant of the inverter device of the present invention.

제5도는 본 발명 인버터장치의 상수설정에 있어서, 2차측 시정수 연산에 대한 신호흐름도.5 is a signal flow chart for the secondary time constant calculation in the constant setting of the inverter device of the present invention.

제6도는 본 발명 인버터장치의 상수설정에 있어서 1차측 저항연산에 대한 신호흐름도.6 is a signal flow chart for the primary side resistance operation in the constant setting of the inverter device of the present invention.

제7 (a)(b)도는 본 발명 인버터장치의 상수설정에 있어서, 등가 인덕턴스 연산시의 등가회로도.7 (a) and (b) are equivalent circuit diagrams at the time of equivalent inductance calculation in the constant setting of the inverter device of the present invention.

제8 (a)(b)도는 본 발명 인버터장치의 상수설정에 있어서, 2차측 시정수 연산시의 등가회로도.8 (a) and (b) are equivalent circuit diagrams at the time of calculating the secondary side time constant in the constant setting of the inverter device of the present invention.

* 도면의 주요부분에 대한 부호의 설명 .* Explanation of symbols for the main parts of the drawings.

2 : 3상 유도전동기 9 : 1차 전류검출기2: 3 Phase Induction Motor 9: Primary Current Detector

20 : 정류기 21 : 평활용 콘덴서20: rectifier 21: smoothing capacitor

22 : 인버터 23 : 전압측정용 변압기22: inverter 23: voltage measuring transformer

24 : 상수연산부 25 : 기준축 변환기24: constant calculation unit 25: reference axis converter

본 발명은 유도전동기 제어용 인버터장치에 관한 것으로, 특히 인버터장치를 통해 전동기상수를 자동측정하여 그결과를 인버터장치의 제어정수로 설정하도록 한 인버터장치의 상수설정방법에 관한 것이다.The present invention relates to an inverter device for controlling an induction motor, and more particularly, to a constant setting method of an inverter device for automatically measuring the motor constant through the inverter device and setting the result to the control constant of the inverter device.

일반적으로 전동기의 상수측정에는 무부하시험 및 구속시험이 행해져 왔으나 이러한 방법은 그 정확도가 매우 떨어지고, 시행시 전동기를 구속해야하는 어려움이 발생되는 문제점이 있었다.In general, no load test and restraint test have been performed for constant measurement of the motor, but this method has a problem that the accuracy of the method is very poor, and that the motor must be restrained during implementation.

여기서 유도전동기릍 고정밀도로 제어하는 장치에는 벡터제어가 이용되며, 이의 벡더제어는 전동기의 등가회로를 기준으로 하여 제어하므로 등가회로의 상수를 정확히 설정해야 할 필요가 있다. 따라서 이와 같은 등가회로 상수측정을 위해서 일본 공개특허공보 소 61-231890호의 "인버터장치의 정수설정방법"에서는 일부상수를 자동측정하는 방법을 사용하였다.Here, vector control is used for the induction motor 릍 control with high accuracy, and since the vector control is controlled based on the equivalent circuit of the motor, it is necessary to accurately set the constant of the equivalent circuit. Therefore, in order to measure the equivalent circuit constant, Japanese Patent Laid-Open No. 61-231890 uses a method of automatically measuring some constants in the "constant setting method of inverter device".

제1도는 상기 인버터장치의 정수설정 방법의 일실시예를 나타낸 벡터제어형 인버터장치의 회로구성도로서, 이에 도시된 바와 같이, 1점쇄선으로 표시된 부분은 마이크로프로세서 내부의 연산 및 제어를 간략하게 나타낸 부분이며, 점선으로 표시된 부분이 이 특허에 해당하는 부분이다.FIG. 1 is a circuit configuration diagram of a vector controlled inverter device showing an embodiment of the parameter setting method of the inverter device. As shown therein, a portion indicated by a dashed line indicates a calculation and control inside the microprocessor. Part, and the part indicated by a dotted line corresponds to this patent.

여기서, 2차 저항연산기(14)는 전류조절기(10)의 출력인 출력전압신호(Vu*)와 1차 전류검출기(9)로 부터의 전류검출신호(iu*)를 이용하하여 2차 권선저항(r2)을 연산한 후 이 결과를 슬립 주파수 연산기(13)에 설정함에 따라 슬립 주파수 연산기(13)에서는Here, the secondary resistance calculator 14 uses the output voltage signal (Vu * ), which is the output of the current regulator 10, and the current winding signal (iu * ) from the primary current detector 9. After calculating (r 2 ), the result is set in the slip frequency calculator 13 so that the slip frequency calculator 13

Figure kpo00001
Figure kpo00001

Figure kpo00002
Figure kpo00002

로 되는 식(1)을 통해 전동기 스립각 주파수(ωs)를 산출하며, 이의 주파수가 회전속도 검출기(3)의 출력인전동기 회전 주파수 검출신호(ωr)와 합성하여 입력신호(ω1)를 발생한 후 1차 주파수 발생기(8)에 인가된다.The motor slip angle frequency ωs is calculated through Equation (1), and the frequency is combined with the motor rotation frequency detection signal ω r, which is the output of the rotation speed detector 3, to generate an input signal ω 1 . It is then applied to the primary frequency generator 8.

이때 2차 저항연산기(14)의 연산기능은 전동기가 돌지 않는 조건에서 자속 지령신호(

Figure kpo00003
*)를 0으로 하고, 토오크전류 지령신호(iq *), 1차 주파수 지령신호(ω1 *)를 적정치로 설정한 후 출력전압 지령신호(Vu *)와 출력전류신호(iu)를 취입하여 전동기에 가해지는 최대치로 되는 전압(Vur *), 전류(ipeak)를 측정기억한다.At this time, the operation function of the secondary resistance calculator 14 is a flux command signal (
Figure kpo00003
Set * ) to 0, set the torque current command signal (i q * ) and the primary frequency command signal (ω 1 * ) to the appropriate values, and then output voltage command signal (V u * ) and output current signal (i u). ) And memorize and store the voltage (V ur * ) and the current (i peak ) which are the maximum values applied to the motor.

이후 다시 전동기에 직류전압을 인가하여 출력전류신호(iu)가 최대치의 전류(ipeak)로 될때의 전압(Vuri)을 측정한다.After that, a direct current voltage is applied to the motor to measure the voltage V uri when the output current signal i u becomes the maximum current i peak .

이와 같이하여 상기 변수(Vur *, Vur1 *, ipeak)를 통해

Figure kpo00004
로 되는 연산을 수행하여 2차 권선 저항(r2)을 연산 후 슬립 주파수 연산기(13)에 설정한다.In this way through the variables (V ur * , V ur1 * , i peak )
Figure kpo00004
The secondary winding resistance r 2 is set in the slip frequency calculator 13 after the calculation.

그런데, 상기와 같은 종래 인버터장치의 상수설정에 있어서는 전동기 상수중 2차 저항만을 측정하였을뿐 다른 상수 즉 1차 누설인덕턴스, 2차 누설인덕턴스등을 측정하지 않았으며, 전동기가 돌지 않아야 하는 제약조건으로 인하여 토오크전루 지령신호(iq *)를 아주 작게 실정하여야 하므로 측정값자체에 오차가 매우 크게 발생되는 문제점이 있었다.However, in the constant setting of the conventional inverter device as described above, only the secondary resistance of the motor constants was measured, but other constants, such as primary leakage inductance and secondary leakage inductance, were not measured. Therefore, the torque transmission command signal (i q * ) has to be very small, which causes a problem that the error is very large.

또한 전동기의 구속시험등으로 전동기의 상수를 측정하는 방법등이 있으나 실제 현장에서 전동기를 구속하는 시험에는 특수한 전동기 구속장치가 필요하게 되므로 실현성에 제약 조건으로 되는 문제점이 있었다.In addition, there is a method of measuring the constant of the motor by the restraint test of the motor, etc., but the test for restraining the motor in the actual field requires a special motor restraint device, there was a problem that is a constraint on the practicality.

본 발명의 목적은 이와 같은 종래의 문제점을 개선하기 위해 전동기를 회전시키면서 통상 운전시에 필요한 정확한 상수를 측정하도록 하는데 있다.An object of the present invention is to measure the exact constant required during normal operation while rotating the motor to improve such a conventional problem.

본 발명의 다른 목적은 전동기의 구속시험이나 무부하시험을 하지 않고 측정하여 측정시 특수한 전동기 구속장치의 필요성을 제거하는데 있다.Another object of the present invention is to eliminate the need for a special motor restraint device when measuring by measuring without restraint test or no load test of the motor.

이와 같은 목적을 실행하기 위한 본 발명은 전동기를 회전시킨 상태에서The present invention for carrying out such an object in a state in which the electric motor is rotated

Figure kpo00005
Figure kpo00005

Figure kpo00006
Figure kpo00006

로 되는 식(2)을 이용하여 등가인덕턴스(L1)를 연산하고,Equivalent inductance L1 is calculated using Equation (2),

Figure kpo00007
Figure kpo00007

단 R2 : 2차 권선저항 으로 되는 식(3)을 이용하여 2차 시정수(T2)를 연산하고,전동기에 직류전압을 인가하여 1차 권선저항(R1)을 연산하는 것을 특징으로 하는 것으로, 이하 첨부한 도면에 의해 상세히 설명한다.R2: The secondary time constant (T2) is calculated using Equation (3), which is the secondary winding resistance, and the primary winding resistance (R1) is calculated by applying a DC voltage to the motor. It will be described below in detail by the accompanying drawings.

제 2도는 본 발명 인버터장치의 상수설정에 대한 회로구성도로서 도시한 바와 같이, 3상 전원을 정류하는 정류기(20)와, 상기 정류기(20)의 전압을 직류로 평활하는 평활용 콘덴서(21)와, 상기 평활용 콘덴서(21)의 직류로 각각의 다이오드(D1-D6)와 접속된 스위칭 소자(Q1-Q6)를 제어하여 3상 유도전동기(2)를 구동하는 인버터(22)와, 상기 3상 유도전동기(2)의 입력전류(ia, ib, ic)를 검출하는 1차 전류검출기(9)와, 상기 3상 유도전동기(2)의 단자전압(Va, Vb, Vc)을 측정하는 전압측정용변압기(23)와, 상기 3상으로 되는 검출 3전류(ia, ib, ic), 검출전압(Va, Vb, Vc)을 2상으로 되는 전류(ids, iqs), 전압(Vds, Vqs)으로 변환하는 기준축변환기(25)와, 마이크로프로세서 내부에서 상기 2상으로 되는 전류(ids, iqs), 전압(Vds, Vqs)을 입력하여 상수(L1, T2, R1)를 측정하고, 인버터장치의 상수로 이용하는 상수연산부(24)로 구성한다.2 is a circuit configuration diagram for setting constants of the inverter device of the present invention, the rectifier 20 for rectifying a three-phase power supply, and the smoothing capacitor 21 for smoothing the voltage of the rectifier 20 to DC. And an inverter 22 for driving the three-phase induction motor 2 by controlling the switching elements Q1 to Q6 connected to the respective diodes D1 to D6 by the direct current of the smoothing capacitor 21; The primary current detector 9 which detects the input currents ia, ib and ic of the three-phase induction motor 2 and the terminal voltages Va, Vb and Vc of the three-phase induction motor 2 are measured. The voltage measuring transformer 23, the detected three currents (ia, ib, ic) and the detected voltages Va, Vb, and Vc, which become the three phases, the currents (ids, iqs) and the voltage Vds, which become two phases. And the constant axis (L1, T2, R1) by inputting the reference axis converter 25 to convert to Vqs, and the currents (ids, iqs) and voltages (Vds, Vqs) which become the two phases inside the microprocessor. As a constant of inverter device Constitute a constant computing section 24 which for.

이와 같이 구성된 본 발명의 기준축 변환기(25)는 q축을 a축에 일치시킨 상태에서The reference axis transducer 25 of the present invention configured as described above has the q-axis coincident with the a-axis.

Figure kpo00008
Figure kpo00008

Figure kpo00009
Figure kpo00009

로 되는 연산을 수행하여 2상으로 되는 전류(ids, iqs), 전압(Vds, Vqs)을 산출한후 상수 연산부(24)에 인가한다.The calculations are performed to calculate currents (ids, iqs) and voltages (Vds, Vqs), which become two phases, and are then applied to the constant calculation unit 24.

이와 같이 하여 상수 연산부(24)는 제3도에 도시한 바와 같이, 상수가 이미 결정되어 있는가를 판별(30)하여 상수가 결정되지 않았으면 1차측으로 환산한 등가인덕턴스(L1)의 측정연산(31), 2차 시정수(T2)의 측정연산(32), 1차측저항(R1)의 측정연산(33), 측정연산치의 저장(34)을 순차적으로 수행하여 전동기 제어에 필요한 상수를 측정한다.Thus, as shown in FIG. 3, the constant calculating unit 24 determines whether the constant has already been determined (30), and if the constant is not determined, the measurement operation of the equivalent inductance L1 converted to the primary side (31). ), The measurement operation 32 of the secondary time constant T2, the measurement operation 33 of the primary side resistance R1, and the storage 34 of the measurement operation value are sequentially performed to measure constants necessary for controlling the motor.

여기서, 제4도는 본 발명 인버터장치의 상수설정에 있어서, 1차측 등가인덕턴스(L1) 연산에 대한 신호흐름도로서 이에 도시한 바와 같이, 인버터(22)의 제어를 통해 3상 유도전동기(2)에 3상 전류(ia , ib, ic)를 공급하면서 전류(ia)가 0보다 커지는 순간 스위칭 소자(Q1-Q4, Q6)를 전부 오프시킨 후 스위칭소자(Q5)만을 온시킨다. 이때 2상 전류(iqs)를 3상전류(ia )와 같은 축으로 잡으면 3상 전류(ia)가 0으로 되고, 3상 전류(ib, ic)는 스위칭소자(Q5)와 다이오드(D6)를 통해 폐회로를 형성하게 되어 제7a, b도에 도시한 바와같은 2상축(d, q)의 등가회로가 형성된다.4 is a signal flow diagram for the calculation of the primary equivalent inductance L1 in the constant setting of the inverter device according to the present invention. As shown in FIG. 4, the three-phase induction motor 2 is controlled through the control of the inverter 22. While switching off the switching elements Q1 to Q4 and Q6 at the moment when the current ia becomes greater than 0 while supplying the three-phase currents ia, ib and ic, only the switching element Q5 is turned on. At this time, if the two-phase current (iqs) is held at the same axis as the three-phase current (ia), the three-phase current (ia) becomes zero, and the three-phase current (ib, ic) is passed through the switching element Q5 and the diode D6. The closed circuit is formed to form an equivalent circuit of the two-phase shafts d and q as shown in Figs. 7A and 7B.

이때 q축 1차전류(iqs)를 0으로 하면 제7a도에 도시한 바와 같은 등가회로에 의해At this time, if the q-axis primary current iqs is 0, an equivalent circuit as shown in FIG.

Figure kpo00010
Figure kpo00010

로 되는 식(6)이 유도되고, d축 1차측전압(Vds)을 0으로 하면 제7도b에 도시한 바와 같은 등가회로에 의해Equation (6) is derived. When the d-axis primary side voltage Vds is set to 0, an equivalent circuit as shown in FIG.

Figure kpo00011
Figure kpo00011

Figure kpo00012
Figure kpo00012

로 되는식(7)(8)이 유도되는 것으로, ωrλ dr, ωrλ qr은 d, q축의 2차측 유도기전력, p는 미분자연산자

Figure kpo00013
, Ls는 1차측 인덕턴스, Lr은 2차측 인덕턱스로 각각 설정한다.Equation (7) (8) is derived, where ωrλ dr, ωrλ qr is d, the secondary side electromotive force on the q-axis, and p is the derivative
Figure kpo00013
, Ls is the primary inductance, and Lr is the secondary inductance.

이와 같이하여 상기 식(6-8)에서 저항성분을 무시한 상태에서 전류(iqr)에 관하여 풀면Thus solve for the current (iqr) in the state of ignoring the resistance component in the above formula (6-8)

Figure kpo00014
Figure kpo00014

Figure kpo00015
Figure kpo00015

Iqro : iqr의 초기값, Iqr'o : iqr의 미분치의 초기값으로 되어 독립된 사인함수로 된다.The initial value of Iqro: iqr and the initial value of Iqr'o: iqr are independent sine functions.

이때 q축 1차전압(Vqs)은 제7a도 에 도시한 등가회로에서의 측정치로서At this time, the q-axis primary voltage Vqs is a measured value in the equivalent circuit shown in FIG.

Figure kpo00016
Figure kpo00016

으로 되고, q측 1차전류(ids)는 제7도(b)에 도시한 등가회로에서의 측정치로서The q-side primary current ids is a measured value in the equivalent circuit shown in FIG. 7 (b).

Figure kpo00017
Figure kpo00017

로 되어 식(10)을 식(11)에 대입하여 Im을 소거하면And substituting Eq. (10) into Eq. (11)

Figure kpo00018
Figure kpo00018

으로 된다.Becomes

단, Idso=ids의 초기값With the initial value of Idso = ids

따라서 1차측으로 환산한 등가인덕턴스(L1)는 Idso, ids, Vqs, ωr의 측정으로Therefore, equivalent inductance L1 converted to the primary side is measured by Idso, ids, Vqs, ωr.

Figure kpo00019
Figure kpo00019

와 같이 연산가능하다.Can be calculated as

한편 제5도는 본 발명 인버터장치의 상수설정에 있어서, 2차측 시정수 연산에 대한 신호흐름도로서 이에도시한 바와 같이, 상기에서 설명한 스위칭소자(Q5)만을 온시킨 상태에서 스위칭소자(Q1-Q6)를 모두 오프시킴에 따라 제8a b도에 도시한 바와 같은 등가회로가 형성된다.FIG. 5 is a signal flow diagram for the secondary side time constant calculation in the constant setting of the inverter device according to the present invention. As shown in FIG. 5, only the switching elements Q5 described above are turned on and the switching elements Q1-Q6 are turned on. By turning off both of them, an equivalent circuit as shown in FIG. 8A b is formed.

이때 제8도a 에 도시한 q축 등가회로에 의해At this time, by the q-axis equivalent circuit shown in FIG.

Figure kpo00020
Figure kpo00020

로 되는 식(14)이 유도되고, 제8b도에 도시한 d축 등가회로에 의해Equation (14) is derived and the d-axis equivalent circuit shown in FIG.

Figure kpo00021
Figure kpo00021

이후 상기 식(14)(15)에 의해Then by equations (14) (15)

Figure kpo00022
Figure kpo00022

Figure kpo00023
로 되는 식(16)이 유도된다.
Figure kpo00023
Equation (16) is derived.

또한 d측 1차전압(Vds)은 제8도b에 도시한 등가회로에서의 측정치로서The primary voltage Vds on the d side is a measured value in the equivalent circuit shown in FIG.

Figure kpo00024
Figure kpo00024

Figure kpo00025
Figure kpo00025

로 되는 식(17)이 유도된다.Equation (17) is derived.

이와 같이하여 상기식 (17)에서 Vds는 감쇠하는 사인파형으로 나타나므로 Vds의 값중 두 사이클을 선정하여 각 구간에 피크치를 읽어들이고, 측정시간을 알게되면In this way, Vds in Equation (17) is represented as a sinusoidal waveform that is attenuated. Therefore, by selecting two cycles of the values of Vds and reading the peak value in each section, the measurement time is known.

Figure kpo00026
Figure kpo00026

단, t1, t2는 측정시간, Vdt1은 t1에서의 Vds값, Vdt2는 t2에서의 Vds값로 되는 연산을 통해 2차측 시정수(T2)가 설정되는 것이다.The secondary time constant T2 is set by calculating t1 and t2 as the measurement time, Vdt1 as the Vds value at t1, and Vdt2 as the Vds value at t2.

또한 제6도는 본 발명 인버터장치의 상수설정에 있어서, 1차측 저항연산에 대한 신호흐름도로서 이에 도시한 바와 같이, 스위칭소자(Q1-Q6)를 구동시켜 직류를 가하게 되면 정상상태에서 전압(Vds), 전류(ids)를 측정하여6 is a signal flow chart for the primary side resistance operation in the constant setting of the inverter device according to the present invention. As shown in FIG. 6, when the direct current is applied by driving the switching elements Q1-Q6, the voltage Vds is normal. , By measuring the currents (ids)

Figure kpo00027
Figure kpo00027

로 되는 연산을 통해 1차측 저항(R1)을 산출한다.The primary resistance R1 is calculated through the operation of.

따라서 상기에서 산출한 1차측저항(R1), 1차측으로 환산한 등가인덕턴스(L1), 2차 시정수(T2)를 인버터장치의 상수로서 사용된다.Therefore, the primary side resistance R1 calculated above, the equivalent inductance L1 converted to the primary side, and the secondary time constant T2 are used as constants of the inverter device.

이상에서 상세히 설명한 바와 같이 본 발명은 전동기 제어에 필요한 상수들을 전동기의 구속시험이나 무부하시험을 하지 않고 측정하게 되어 특수한 장치가 필요없으며, 전동기를 회전시키면서 상수을을 측정하여 통상 운전시에 필요한 정확한 상수를 측정하므로 인버터장치의 제어성능을 향상시킬 수 있는 효과가 있다.As described in detail above, the present invention measures the constants necessary for controlling the motor without performing the restraint test or the no-load test of the motor, and thus does not require a special device, and measures the constant while rotating the motor to determine the exact constant necessary for normal operation. Since the measurement, the control performance of the inverter device can be improved.

Claims (1)

유도전동기를 구동하는 인버터장치에 있어서, 전류제어에 의해 상기 유도전동기에 3상 전류를 공급한상태에서 한 상전류가 "0"에서 상승하는 순간 상기 인버터의 스위칭 소자중 하나만을 남기고 오프시키고, 그 순간의 역기전력 및 속도, 그때 부터의 전류감소량을 측정한 후 그때의 전동기 상태를 고려한 등가회로에 의해 등가인덕턴스를 연산하고, 아울러 사인파형으로 감쇠하는 역기전력의 주기 및 크기의 변화를 측정한 후 그때 전동기상태를 고려한 등가회로에 의해 이차 시정수를 연산하며, 상기 인버터로 상기 유도전동기에 일정직류전압을 순간적으로 가한 후 그때의 전류의 양과 인가전압으로 부터 일차저항을 연산하여, 상기연산한 각 값을 상기 인버터장치의 상수로 설정하는 것을 특징으로 하는 인버터장치의 상수 설정방법.In an inverter device for driving an induction motor, at the moment when one phase current rises from " 0 " while supplying three-phase current to the induction motor by current control, only one of the switching elements of the inverter is turned off. After measuring the counter electromotive force and speed, and the amount of current decrease from then, calculate the equivalent inductance by the equivalent circuit considering the motor state at that time, and measure the change of the period and magnitude of the counter electromotive force that is attenuated by a sinusoidal wave. The secondary time constant is calculated by the equivalent circuit, and the inverter is instantaneously applied a constant DC voltage to the induction motor, and then the primary resistance is calculated from the amount of current and the applied voltage. A constant setting method for an inverter device, characterized in that the setting of the constant device.
KR1019890006759A 1989-05-19 1989-05-19 A constant measuring method for inverter apparatus KR920006363B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019890006759A KR920006363B1 (en) 1989-05-19 1989-05-19 A constant measuring method for inverter apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019890006759A KR920006363B1 (en) 1989-05-19 1989-05-19 A constant measuring method for inverter apparatus

Publications (2)

Publication Number Publication Date
KR900019333A KR900019333A (en) 1990-12-24
KR920006363B1 true KR920006363B1 (en) 1992-08-03

Family

ID=19286342

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890006759A KR920006363B1 (en) 1989-05-19 1989-05-19 A constant measuring method for inverter apparatus

Country Status (1)

Country Link
KR (1) KR920006363B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102065884B1 (en) * 2019-07-02 2020-01-13 한전케이피에스 주식회사 Device and method for testing of Low-voltage motor no-load

Also Published As

Publication number Publication date
KR900019333A (en) 1990-12-24

Similar Documents

Publication Publication Date Title
EP0588213B1 (en) Method for measuring characteristic constants of alternating current motor and controller thereof based on said method
JP2708408B2 (en) Control device of voltage control type vector control inverter
EP0515469B1 (en) Method and apparatus for controlling an ac induction motor by indirect measurement of the air-gap voltage
JP6194718B2 (en) Constant measuring apparatus and constant measuring method for induction motor
WO1987001250A1 (en) Method of controlling a three-phase induction motor
JP3099159B2 (en) Method and apparatus for measuring motor constants
JP2929344B2 (en) Method and apparatus for measuring motor constants
JP2580101B2 (en) Method of setting control operation constants for induction motor control system
KR920006363B1 (en) A constant measuring method for inverter apparatus
JPH0775399A (en) Variable speed device
JP3019653B2 (en) Control device for AC motor and method for measuring constants of AC motor
CN107615641B (en) Power conversion device, secondary time constant measurement method, and speed control method for induction motor
EP2757683A1 (en) Determining inductances in synchronous machines
JP2634959B2 (en) Speed sensorless speed control method
JP3677144B2 (en) Induction motor controller
JP3849857B2 (en) AC motor resistance measurement method
JP3609098B2 (en) Motor constant identification method in vector controller for induction motor
JP3231553B2 (en) Inverter control device control parameter setting method
JPH06315291A (en) Computing method for position of magnetic flux of induction motor, and its control method using the same
JP3118940B2 (en) Induction motor vector control device
JP3144075B2 (en) AC motor constant measurement method
JPS62114487A (en) Automatic setting method of slip-frequency computing apparatus
KR920006362B1 (en) A constant measuring method for inverter apparatus
JP3153654B2 (en) Induction motor control device
KR100351299B1 (en) Measuring method for mutual inductance of induction motor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030701

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee