KR920005400B1 - Preparation method of fireproofing adiabatic material - Google Patents

Preparation method of fireproofing adiabatic material Download PDF

Info

Publication number
KR920005400B1
KR920005400B1 KR1019890020402A KR890020402A KR920005400B1 KR 920005400 B1 KR920005400 B1 KR 920005400B1 KR 1019890020402 A KR1019890020402 A KR 1019890020402A KR 890020402 A KR890020402 A KR 890020402A KR 920005400 B1 KR920005400 B1 KR 920005400B1
Authority
KR
South Korea
Prior art keywords
blast furnace
sludge
weight
mixture
slag
Prior art date
Application number
KR1019890020402A
Other languages
Korean (ko)
Other versions
KR910011674A (en
Inventor
박대규
조종민
정영채
Original Assignee
포항종합제철 주식회사
정명식
재단법인 산업과학기술연구소
박태준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 정명식, 재단법인 산업과학기술연구소, 박태준 filed Critical 포항종합제철 주식회사
Priority to KR1019890020402A priority Critical patent/KR920005400B1/en
Publication of KR910011674A publication Critical patent/KR910011674A/en
Application granted granted Critical
Publication of KR920005400B1 publication Critical patent/KR920005400B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

A refractory thermal insulator comprises blast furnace discharged water granulation slag of 57-60 wt.% having the particle size of 0.5-1.0 mm, blast furnace sludge of 30-35 wt.%, and bentonite of 3-5 wt.%. The mixture contains an organic binder which consists of sodium carboxylmethyl cellulose and the water with the ratio 1:1. The amount of binder and water is 10-20 wt.% against thermal insulating mixture. Refractory thermal insulator is manufactured by firing the mixture at 1,100-1,150 deg.C.

Description

내화단열재의 제조방법Manufacturing method of fireproof insulation

제1도는 슬래그의 입자크기에 따라 부피비중 변화를 나타내는 그래프.1 is a graph showing the change in volume specific gravity according to the particle size of the slag.

제2도는 소성온도와 첨가제에 따른 부피비중 변화를 나타내는 그래프.2 is a graph showing the change in volume specific gravity depending on the firing temperature and the additive.

제3도는 소성온도와 첨가제에 따른 압축강도의 변화를 나타내는 그래프.3 is a graph showing changes in compressive strength according to firing temperature and additives.

제4도는 무기질 결합재의 첨가량에 따른 부피비중의 변화를 나타내는 그래프.4 is a graph showing the change in volume specific gravity according to the amount of the inorganic binder added.

제5도는 무기질 결합재의 첨가량에 따른 압축강도의 변화를 나타내는 그래프.5 is a graph showing the change in compressive strength according to the amount of the inorganic binder added.

본 발명의 내화단열재를 제조하는 방법에 관한 것으로서, 보다 상세하게는, 철강제조공정에서 부생하는 고로 수쇄슬래그와 고로 슬러지를 주성분으로 활용하여 노체 또는 건축물의 열효율을 높일 수 있는 내화 단열재의 제조에 관한 것이다. 종래의 내화단열재의 제조방법으로는 천연의 원료를 가열하여 함유 결정수와 같은 저융점물질의 분해에 기인된 팽창현상을 이용 제조하는 방법, 원료내에 가연성 또는 승화성 물질을 첨가시켜 소성함으로 제조하는 방법, 그밖에 발포성 물질을 첨가시키는 방법이 공지되어 있으며, 사용원료의 특성별로는 규조토, 진주암, 흑요석, 내화점토, 질석등을 사용하고 있다. 현재 고로 슬래그와 고로 슬러지는 제철공업에 있어서 선철제조와 더불어 다량 부산되고 있다. 그러나 고로 슬래그의 경우 잠재 수경성을 갖고 있기 때문에, 종래에는 도료용 재료, 시멘트, 콘트리트용 조골재, 세골재, 비료등의 유효이용 방법이 공지되어 있으며, 고로 슬래그를 시멘트 또는 물유리와 혼합하여 200℃이하에서 건조 시키거나, 수쇄 슬래그의 물을 건조시키고 10-15% 정도 석회석을 가해 벽돌을 만든후 1-2개월 야적하면서 가끔 물을 뿌려 경화시켜 강도가 높은 건축용 자재로 활용하는 방법이 공지되어 있다.The present invention relates to a method of manufacturing a fireproof insulation material, and more particularly, to the manufacture of a fireproof insulation material which can improve the thermal efficiency of a furnace body or a building by utilizing blast furnace crushing slag and blast furnace sludge as by-products in the steel manufacturing process as main components. will be. Conventional methods for producing fireproof insulation include heating a natural raw material to produce a swelling phenomenon caused by decomposition of low melting point materials such as crystalline water, and adding a flammable or sublimable material to the raw material to be fired. Method and other methods of adding a foaming material are known, and diatomaceous earth, pearlite, obsidian, refractory clay, vermiculite and the like are used according to the characteristics of the raw materials. Currently, blast furnace slag and blast furnace sludge are being used in the iron and steel industry together with pig iron production. However, since blast furnace slag has latent hydraulic properties, effective methods of coating materials, cement, concrete coarse aggregate, fine aggregate, and fertilizer are known in the art, and blast furnace slag is mixed with cement or water glass at 200 ° C. or lower. It is known to dry or to dry the water of the crushed slag and to apply 10-15% limestone to make bricks.

그리고 내화 단열벽돌 제조에 있어서 고로 슬래그의 이용은 한국특허공보 제 88-2431호에 공지되어 있으며, 이 방법의 경우 입경 1-2mm 고로 수쇄 슬래그를 주성분으로 하여, 여기에 유기질 결합재료 카아복시 메틸 셀룰로오즈 무기질 결합재로 벤토나이트, 내화점토를 첨가하여 1150-1300℃의 온도에서 소성 제조한다. 그러나 고로 슬래그와는 달리 고로슬러지의 경우 고로공정에서 다량 부산되고 있으나, 유해성분의 함유로 상당량의 유용성분(탄소 : 30-40%)의 함유에도 불구하고 거의 활용되지 못하고 폐기되고 있는 실정이다.And the use of blast furnace slag in the production of refractory insulating bricks is known from Korean Patent Publication No. 88-2431, in this case, the blast furnace slag with a particle diameter of 1-2mm, as the main component, the organic bonding material carboxymethyl cellulose Bentonite and refractory clay are added as an inorganic binder and fired at a temperature of 1150-1300 ° C. However, unlike blast furnace slag, blast furnace sludge has been abundantly produced in the blast furnace process, but despite the fact that it contains a considerable amount of useful components (carbon: 30-40%) due to the inclusion of harmful components, it has been discarded.

따라서, 본 발명의 목적은 고로공정에서의 부산물인 고로 슬래그와 고로 슬러지를 일정비율로 혼합하여 각종 로체 또는 건축물의 열효율 증대에 이용 가능한 내화단열재 및 보온재를 제조하는데 있다. 이하, 본 발명을 상세히 설명한다.Accordingly, an object of the present invention is to produce a refractory insulation and thermal insulation material that can be used to increase the thermal efficiency of various furnaces or buildings by mixing blast furnace slag and blast furnace sludge as by-products in the blast furnace process at a constant ratio. Hereinafter, the present invention will be described in detail.

본 발명은 입자직경이 0.5-1.0mm인 통상의 고로수쇄 슬래그 : 50-60중량%, 고로슬러지 : 30-35중량%, 및 벤토나이트 : 3-5중량%을 함유한 혼합물에 유기질결합재인 카아복시메틸 셀룰로오즈 나트륨과 물을 50 : 50 중량비로 균일하게 섞어 상기 혼합물의 중량에 대하여 10-20중량% 첨가하여 성형한후 1100-1150℃의 온도에서 소성하여 내화단열재를 제조하는 방법에 관한 것으로서 이를 보다 상세히 설명하면 다음과 같다. 고로수쇄 슬래그와 통상 고로 슬러지를 일정배율로 혼합하고, 여기에 무기질 결합재를 바람직하게는 벤토나이트를 3-5%함께 혼합한후, 저온강도와 성형을 향상시키기 위하여 유기질 결합재인 카아복시메칠 셀룰로오스 나트륨에 물을 중량비 50 : 50으로 섞어 미세하게 분쇄하여 상기 혼합물에 혼합물중량에 대하여 10-12중량% 첨가시킨다. 또한 제1도에 나타난 바와같이, 슬래그 입도에 따라 부피비중이 크게 차이가 있으므로, 슬래그 입자크기는 0.5mm이상 1mm이하의 입도를 갖는 시료를 사용하여 고로 슬러지와 함께 상기 결합재를 첨가하여 균일하게 혼합한 후 모울드(mold)에 넣고 가압 성형하며, 이 성형체를 110℃의 일정온도에서 1시간 30분동안 건조시킨후 전기로등에서 1100-1150℃의 온도로 2시간 유지하여 소성하므로서 본 발명에 부합되는 내화단열재가 제조되는데, 상기 소성온도까지의 승온은 상온에서 400℃까지는 30분간, 400℃에서 800℃까지는 1시간, 그리고 800℃에서 소성온도까지는 1시간 30분간 순차적으로 승온하는 것이 바람직하다.The present invention relates to carboxy, which is an organic binder, in a mixture containing a conventional blast furnace chain slag having a particle diameter of 0.5-1.0 mm: 50-60% by weight, blast furnace sludge: 30-35% by weight, and bentonite: 3-5% by weight. Methyl cellulose sodium and water are uniformly mixed in a 50: 50 weight ratio by adding 10-20% by weight to the weight of the mixture and then molded and fired at a temperature of 1100-1150 ℃ to more than this It will be described in detail as follows. The blast furnace chain slag and the blast furnace sludge are usually mixed at a constant ratio, and an inorganic binder is preferably mixed with 3-5% of bentonite, and then carboxymethyl cellulose sodium, which is an organic binder, is used to improve low temperature strength and molding. Water is mixed in a 50: 50 weight ratio and finely ground to add 10-12 wt% of the mixture to the mixture weight. In addition, as shown in FIG. 1, since the volume specific gravity varies greatly depending on the particle size of the slag, the slag particle size is uniformly mixed by adding the binder with the blast furnace sludge using a sample having a particle size of 0.5 mm or more and 1 mm or less. It is then put into a mold and press-molded, and the molded body is dried for 1 hour and 30 minutes at a constant temperature of 110 ℃ and then fired by maintaining for 2 hours at a temperature of 1100-1150 ℃ in an electric furnace, etc. Insulating material is prepared, the temperature rise to the firing temperature is preferably raised in order sequentially for 30 minutes from room temperature to 400 ℃, 1 hour from 400 ℃ to 800 ℃, and 1 hour 30 minutes from 800 ℃ to the firing temperature.

고로슬래그를 고온에서 소성할 경우 성분중 알루미나의 결정화에 따른 열적 부피 팽창 특성을 가지게 되며, 또한 고로 슬러지의 경우 일정비율로 첨가시 산화성 분위기하에서 다량 함유된 탄소의 산화 반응에 따른 발열반응열로 인하여 국소적인 소성특성의 향상과 더불어 연소가스의 확산과 함유 저융점 성분의 휘발에 기인한 시료내 기공조직의 발달을 가져오게 되므로 내화 단열성 구조를 형성할 수 있다. 이하, 실시예를 통하여 본 발명을 상세히 설명한다.When the blast furnace slag is calcined at high temperature, it has thermal volume expansion characteristics according to the crystallization of alumina in the components, and in the case of blast furnace sludge, it is localized due to the exothermic reaction heat due to the oxidation reaction of a large amount of carbon in an oxidizing atmosphere when added at a constant ratio In addition to the improvement of the plasticity characteristics and the development of the pore structure in the sample due to the diffusion of the combustion gas and the volatilization of the low melting point component, it is possible to form a refractory insulating structure. Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

하기표 1과 같은 비율로 고로슬래그와 슬러지를 혼합한 경우와 고로슬래그와 코크스를 혼합한 경우에 대하여 혼합된 비율에 따른 구조적 소성특성 및 압축강도를 측정하고 그 결과를 하기 표1에 나타내었다.The structural plasticity characteristics and compressive strengths of the mixed ratios of the blast furnace slag and the sludge and the blast furnace slag and the coke in the same ratio as shown in Table 1 were measured and the results are shown in Table 1 below.

[표 1]TABLE 1

Figure kpo00001
Figure kpo00001

상기 표1에 나타난 바와같이, 고로슬래그와 고로슬러지의 혼합비율에 따라 구조적 소성특성 및 압축강도측면에서 상당히 차이를 보이며, 이것은 고로슬러지의 함유 성분중 일부 저융점 성분의 휘발 또는 함유 탄소의 산화과정에 상당히 영향을 받는 것으로 추정되며, 육안관찰 결과 2 : 1의 혼합비율만이 균일한 기공분포를 나타냄을 알 수 있다.As shown in Table 1, the structural plasticity characteristics and compressive strengths of the blast furnace slag and the blast furnace sludge were significantly different, which is due to the volatilization of some low melting components of the blast furnace sludge or oxidation of carbon. It is estimated to be significantly affected by the visual observation, and the visual observation shows that only the mixing ratio of 2: 1 shows uniform pore distribution.

그리고 슬러지 대신 코크스를 첨가하는 경우 상당히 치밀한 반응특성을 보였으며, 부피비중 또한 슬러지 첨가시 보다 상당히 높은 결과를 나타냄을 알 수 있다.And the addition of coke instead of sludge showed a very dense reaction characteristics, it can be seen that the volumetric ratio also shows a significantly higher result than the addition of sludge.

상기 표1에 나타난 혼합물 중에서 고로 슬래그 : 슬러지의 비가 2 : 1인 고로슬래그와 슬러지의 혼합물에 점결제로 무기질 결합재인 벤토나이트 또는 내화점토를 하기표2와 같은 비율로 첨가하여 혼합한 다음, 고로 슬래그, 슬러지와 무기결합재의 총중량에 대하여 12%의 카아복시 메칠 셀룰로오즈 나트륨을 유기질결합재로 첨가하여 성형한 후 1150℃로 소성하여 내화 단열재를 제조하고, 그 물성치를 측정하여 하기 표2에 나타내었다.Among the mixtures shown in Table 1 above, blast furnace slag: sludge ratio of 2: 1 is added to the mixture of blast furnace slag and sludge with inorganic binders such as bentonite or refractory clay in a proportion as shown in Table 2 below, and then mixed with blast furnace slag. , 12% by weight of carboxy methyl cellulose sodium as an organic binder was added to the total weight of the sludge and the inorganic binder, and then fired at 1150 ℃ to prepare a refractory heat insulating material, and the physical properties are shown in Table 2 below.

[표 2]TABLE 2

Figure kpo00002
Figure kpo00002

상기 표2에 나타난 바와같이, 발명재는 1310℃이상의 연화온도를 가지며, 발명재의 가열후 열적팽창 특성을 나타내는 하기 3에서 알수 있는 바와같이, 1310℃이하의 온도 영역에서는 약간의 부피 팽창을 가져오는바 종래 단열재에 있어서 발생되는 재가열 수축 문제점은 보완됨을 알 수 있다.As shown in Table 2, the invention material has a softening temperature of 1310 ℃ or more, as can be seen in the following 3 showing the thermal expansion characteristics of the invention material, it causes a slight volume expansion in the temperature region below 1310 ℃. It can be seen that the reheat shrinkage problem generated in the conventional heat insulator is compensated.

[표 3]TABLE 3

Figure kpo00003
Figure kpo00003

[실시예 2]Example 2

상기 실시예 1의 표2에 나타난 발명재, 비교재 B 및 종래재에 대하여 소성온도에 따른 부피비중 및 압축강도를 측정하고, 그 결과를 제2도 및 제3도에 나타내었다. 제2도 및 제3도에 나타난 바와같이, 본 발명재만이 소성온도 1150℃에서 1.1이하의 부피비중을 나타내었으며, 또한, 본 발명재는 압축강도에 있어서도 소성온도 1150℃이상일때 50이상으로 나타남을 알 수 있다.For the invention material, comparative material B and the conventional material shown in Table 2 of Example 1, the volume specific gravity and the compressive strength according to the firing temperature were measured, and the results are shown in FIGS. 2 and 3. As shown in FIG. 2 and FIG. 3, only the present invention exhibited a specific gravity of less than 1.1 at a firing temperature of 1150 ° C., and the present invention also exhibited more than 50 when the firing temperature was above 1150 ° C. even in compressive strength. Able to know.

여기서 저온 강도유지를 목적으로 첨가한 유기질 결합재인 카아복시메칠 셀룰로오즈 나트륨을 첨가하지 않은 경우에는 실험온도범위에서 모두 1.1이상의 부피비중을 나타내었다. 이것은 유기질 결합재가 300℃이상의 온도영역에서 분해되어 점결력은 없어지나 탄화과정에서 기공구조를 발달시켜 주게되어 뒤이은 탄소의 산화반응에 유리하게 영향을 미치는 것으로 추정된다.In the case where the carboxymethyl cellulose sodium, which is an organic binder added for the purpose of maintaining the low temperature strength, was not added, all of them exhibited a specific gravity of 1.1 or more in the experimental temperature range. It is assumed that organic binders are decomposed in the temperature range of 300 ℃ or higher, so that the coking force disappears, but the pore structure is developed during the carbonization process.

[실시예 3]Example 3

상기 실시예1의 표2에 나타난 발명재 및 비교재 B에 대하여 벤토나이트 및 내화점토의 첨가량에 따른 부피비중 및 압축강도를 측정하고 그 결과를 제4도 및 제5도에 나타내었다. 제4도 및 제5도에 나타난 바와같이, 벤토나이트의 첨가량이 증가할 수록 전체적으로 부피비중이 커졌으며, 1.1미만의 부피비중은 벤토나이트 첨가범위가 3-5%인 경우에만 얻어짐을 알 수 있다. 일반적으로 내화벽돌의 특성은 규격상으로 부피비중과 열전도율이 낮고 압축강도가 높으며, 재가열 수축율의 2% 미만인 조건으로 규정하고 있다.For the inventive material and the comparative material B shown in Table 2 of Example 1, the volume specific gravity and the compressive strength according to the addition amount of bentonite and refractory clay were measured, and the results are shown in FIGS. 4 and 5. As shown in FIG. 4 and FIG. 5, as the addition amount of bentonite increases, the overall weight ratio is increased, and the volume specific gravity of less than 1.1 is obtained only when the bentonite addition range is 3-5%. In general, the characteristics of refractory bricks are defined in terms of low specific gravity, high thermal conductivity, high compressive strength, and less than 2% of reheat shrinkage.

본 발명의 고로 슬래그와 고로 슬러지의 혼합물을 성형 소성하기 위해 벤토나이트를 결합제로 첨가하여 제조하고 특성실험을 수행한 결과 KSL 3301에서 규정한 C-1급의 내화단열 벽돌로 평가되었으며, 기 공지된 점토질 내화단열 벽돌이나 고로 슬래그 벽돌과 동일한 특성을 가지면서 원료의 사용입도 범위를 확장하고 소성온도를 낮출수 있으며 제철공업에서 다량 부생되는 고로슬래그와 전량 폐기되고 있는 고로 슬러지를 활용 부가가치를 높인데 그 효과가 있다.In order to form and fire the mixture of blast furnace slag and blast furnace sludge of the present invention, it was prepared by adding bentonite as a binder and subjected to a characteristic test. As a result, it was evaluated as a C-1 grade fireproof insulation brick prescribed in KSL 3301. It has the same characteristics as refractory insulation bricks or blast furnace slag bricks, which can extend the use particle size of raw materials, lower the firing temperature, and increase the added value by utilizing the blast furnace slag that is a by-product of the steel industry and the blast furnace sludge that is entirely discarded. There is.

상술한 바와같이, 본 발명은 고로 슬래그의 고온 팽창특성과 슬러지중 함유탄소의 산화반응과 저융점 물질의 휘발특성을 이용하여 내화단열재를 제조하게 되므로 본 발명의 내화단열재는 표2에서 제시한 바와같이 1310℃이상의 연화온도를 가지며, 표3에 제시된 바와같이 그 이하온도 영역에서는 약간의 부피팽창을 가져오는바, 종래의 내화단열재(점토질 또는 규소 토질)에서 발생되는 재가열 수축의 문제점은 보완되며 원료의 예비처리 또한 생략할 수 있으므로 제조공정의 단순화를 기할 수 있으며, 제철공업에서 다량 부생되는 폐기물을 원료로 하므로 원가절감과 폐기물활용의 효과를 가져오게 된다.As described above, the present invention uses the high temperature expansion characteristics of the blast furnace slag, the oxidation reaction of the carbon contained in the sludge and the volatilization characteristics of the low melting point material, so that the refractory insulation material of the present invention is shown in Table 2. As shown in Table 3, it has a softening temperature of more than 1310 ℃, and as shown in Table 3, there is a slight volume expansion, and the problem of reheating shrinkage caused by the conventional refractory insulation material (clay or silicon soil) is compensated. The pretreatment can also be omitted, which simplifies the manufacturing process and, as a raw material is produced by waste in the iron and steel industry, it brings cost saving and waste utilization effects.

Claims (1)

입자직경이 0.5-1.0mm인 통상의 고로 수쇄슬래그 ; 57-60중량%, 고로슬러지 : 30-35중량%, 및 벤토나이트 ; 3-5중량%를 함유한 혼합물에 유기질 결합재인 카아복시메틸 셀룰로오즈 나트륨과 물을 50 : 50 중량비로 균일하게 섞어 상기 혼합물의 중량에 대하여 10-20중량% 첨가하여 성형한 후 1100-1150℃의 온도에서 소성하는 것을 특징으로 하는 내화단열재의 제조방법.Ordinary blast furnace slag having a particle diameter of 0.5-1.0 mm; 57-60% by weight, blast furnace sludge: 30-35% by weight, and bentonite; The mixture containing 3-5% by weight of carboxymethyl cellulose sodium as an organic binder and water were uniformly mixed in a 50:50 weight ratio, and then molded by adding 10-20% by weight of the mixture to 1100-1150 ° C. Process for producing a refractory insulating material, characterized in that the firing at a temperature.
KR1019890020402A 1989-12-30 1989-12-30 Preparation method of fireproofing adiabatic material KR920005400B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019890020402A KR920005400B1 (en) 1989-12-30 1989-12-30 Preparation method of fireproofing adiabatic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019890020402A KR920005400B1 (en) 1989-12-30 1989-12-30 Preparation method of fireproofing adiabatic material

Publications (2)

Publication Number Publication Date
KR910011674A KR910011674A (en) 1991-08-07
KR920005400B1 true KR920005400B1 (en) 1992-07-03

Family

ID=19294427

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890020402A KR920005400B1 (en) 1989-12-30 1989-12-30 Preparation method of fireproofing adiabatic material

Country Status (1)

Country Link
KR (1) KR920005400B1 (en)

Also Published As

Publication number Publication date
KR910011674A (en) 1991-08-07

Similar Documents

Publication Publication Date Title
US5601643A (en) Fly ash cementitious material and method of making a product
WO2017122916A1 (en) Cement-free binder and application thereof
Farooque et al. Characterization and utilization of rice husk ash (RHA) from rice mill of Bangladesh
US2684913A (en) Refractories and bonding agents therefor
CN104609817A (en) High temperature-resistant and high-toughness aerated brick and preparation method thereof
US20110074069A1 (en) The method of manufacturing building brick
CN113173725A (en) Efficient concrete expansion anti-cracking waterproof agent and preparation method thereof
KR0153376B1 (en) Process for the preparation of a brick
Kapur Thermal insulations from rice husk ash, an agricultural waste
RU2183208C2 (en) Charge for brick making
KR920005400B1 (en) Preparation method of fireproofing adiabatic material
EP0148869A4 (en) Ceramic material.
KR20000072111A (en) Composition for lightweight aggregate and method for manufacturing the same
CN111732388B (en) Coal gangue high-temperature-resistant concrete and preparation method thereof
CN111056757B (en) Quick-hardening cement prepared from waste residues and preparation method thereof
US4328035A (en) Construction of building materials
CN114394805A (en) Ferronickel slag-based heat-resistant concrete composition, ferronickel slag-based heat-resistant concrete and preparation method thereof
KR930011260B1 (en) Method of firebrick use with fly ash
JPH04275966A (en) Production of ceramic products for construction and building
US3784385A (en) Method of preparing mix for producing refractory gas concrete and the product obtained thereby
KR880002431B1 (en) Refractory brick for used slag
CN108101498B (en) High-heat-resistance phosphoaluminate cement-based foam concrete material
KR100392933B1 (en) Composition for lightweight aggregate
KR20020044899A (en) Composition for lightweight aggregate and method for manufacturing the same
CN112456937A (en) High-performance autoclaved aerated concrete plate and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19970630

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee