KR920004030B1 - Protecting method of deteriorating of high-temperature super-conductors - Google Patents

Protecting method of deteriorating of high-temperature super-conductors Download PDF

Info

Publication number
KR920004030B1
KR920004030B1 KR1019890018687A KR890018687A KR920004030B1 KR 920004030 B1 KR920004030 B1 KR 920004030B1 KR 1019890018687 A KR1019890018687 A KR 1019890018687A KR 890018687 A KR890018687 A KR 890018687A KR 920004030 B1 KR920004030 B1 KR 920004030B1
Authority
KR
South Korea
Prior art keywords
coating
superconductor
high temperature
oxide
silicon nitride
Prior art date
Application number
KR1019890018687A
Other languages
Korean (ko)
Other versions
KR910013602A (en
Inventor
한택상
염상섭
최상삼
Original Assignee
한국과학기술 연구원
박원희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술 연구원, 박원희 filed Critical 한국과학기술 연구원
Priority to KR1019890018687A priority Critical patent/KR920004030B1/en
Publication of KR910013602A publication Critical patent/KR910013602A/en
Application granted granted Critical
Publication of KR920004030B1 publication Critical patent/KR920004030B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices

Abstract

A high temperature super conductor degradation is protected by coating the superconductor bulk or film circuit with one ceramic material of Si3N4, TiO2 or SiO2 to isolate the bulk or film circuit from atmosphere water by the plasma chemical vacuum deposition (CVD). The process is no film damage because of ion collision or heat and no structural transition.

Description

고온 초전도체의 열화(劣化)방지방법How to prevent deterioration of high temperature superconductor

제 1 도는 산화물 고온 초전도체 벌크를 세라믹재료로 피복하는 과정도.1 is a process for coating an oxide high temperature superconductor bulk with a ceramic material.

제 2 도는 산화물 고온 초전도체 박막으로 만든 초전도 소자를 상기 세라믹 재료로 피복하는 과정도.2 is a process diagram of coating a superconducting element made of an oxide high temperature superconductor thin film with the ceramic material.

제 3 도는 질화규소로 피복했을 때와 피복하지 않았을때의 수분 처리 시간에 따른 임계 전류 밀도의 변화를 나타낸 도면으로, 피복한 초전도체에서 현저한 수분침투 방지 효과가 있음을 보여줌.3 is a diagram showing the change of the critical current density according to the moisture treatment time with and without silicon nitride coating, showing that there is a significant moisture penetration prevention effect in the coated superconductor.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 고온 초전도체 2 : 전극1: high temperature superconductor 2: electrode

3 : 리드(Lead)선 4 : 세라믹 피막3: lead wire 4: ceramic coating

10 : 기판 11 : 고온 초전도체 박막10 substrate 11 high temperature superconductor thin film

12 : 고온 초전도 회로12: high temperature superconducting circuit

본 발명은 고온 초전도체의 열화(劣化)방지 방법에 관한 것으로, 더욱 구체적으로 말하자면, 산화물 고온 초전도체를 질화규소(Si3N4), 산화티타늄(TiO3), 산화규소(SiO2)와 같은 세라믹 재료를 사용하여 통상의 플라즈마 화학 증착법(PE-CVD)에 의하여 피복하여 외부와의 접촉을 차단함으로써 수분의 침투를 방지하고 외부의 충격에 의한 흠집등이 생기지 않도록 초전도체를 화학적 물리적으로 보호할 수 있는 방법에 관한 것이다.The present invention relates to a method for preventing deterioration of a high temperature superconductor. More specifically, the oxide high temperature superconductor may be a ceramic material such as silicon nitride (Si 3 N 4 ), titanium oxide (TiO 3 ), and silicon oxide (SiO 2 ). Method to cover the surface by conventional plasma chemical vapor deposition (PE-CVD) to prevent contact with the outside to prevent the penetration of moisture and to protect the superconductor chemically and physically to prevent scratches caused by external impact. It is about.

산화물 고온 초전도체는 물질계에 따라 정도의 차이는 있으나 공기중에서 불안정하여 장시간 노출되면 특성이 저하되고 초전도성을 점차로 상실하게 된다. 산화물 고온 초전도체의 이와 같은 초전도성 열화현상은 초전도체가 공기 중에 있는 수분과 민감하게 반응하기 때문인데, 이러한 반응의 결과 초전도체는 절연체 혹은 반도체로 분해되어 초전도성을 상실하게 된다.Oxide high temperature superconductor has a degree of difference depending on the material system, but it is unstable in air, and if exposed for a long time, its properties are deteriorated and superconductivity is gradually lost. This superconducting degradation of the oxide high temperature superconductor is because the superconductor reacts sensitively with moisture in the air. As a result of this reaction, the superconductor decomposes into an insulator or a semiconductor and loses superconductivity.

산화물 고온 초전도체가 그 임계온도는 액체질소의 비등점(절대 온도 77도)을 훨씬 능가하여 크게 주목을 받고 있으나, 이와 같이 화학적으로 불안정하기 때문에 실용화 측면에서는 가장 큰 장애요인 중의 하나로 지적되고 있다. 이와 같은 문제점을 해결하기 위하여 폴리 플루오르카이본(테프론)을 피복하는 방법[K.Sato, S.Omae, K.Kojima, T.Hashimoto and H.Koinuam, Jpn.J.Appl.Phys., 제 27 권(1988년) L2088페이지 참조]과 산화알루미늄이나 산화 니오니움등의 유전체를 스퍼트링으로 피복하는 방법(Y.Ichigawa, H.Adachi, T.Mitsuyu and K.Wasa, Jpn.J.Appl.Phys., 제 27 권(1988년) L381페이지 참조]등이 시도되었다.The critical temperature of the oxide high temperature superconductor has attracted much attention by far exceeding the boiling point of liquid nitrogen (absolute temperature of 77 degrees), but it is pointed out as one of the biggest obstacles in practical use because of its chemical instability. In order to solve this problem, a method of coating polyfluorocarbon (teflon) [K.Sato, S.Omae, K.Kojima, T.Hashimoto and H.Koinuam, Jpn.J.Appl.Phys., No. 27 Kwon (1988), page L2088] and a method of coating a dielectric such as aluminum oxide or niobium oxide by sputtering (Y. Ichigawa, H. Adachi, T. Mitsuyu and K. Wasa, Jpn. J. Appl. Phys., Vol. 27 (1988), see page L381].

그러나 테프론을 피복하는 방법은 테프론을 중합하면서 피복해야 하기 때문에 공정이 까다롭고 복잡하며, 유전체를 스퍼터링 방법으로 피복할 경우 이온의 충돌에 의한 박막의 손상, 열에 의한 손상, 스퍼터링 도중에 일어나는 결정구조의 변화 등으로 초전도체 자체의 특성을 저하시키는 단점이 있다. 질화규소는 경도가 9도로서 다이아몬드에 버금갈 정도로 단단한 물질이며 구조가 치밀하고 화학적으로 매우 안정하기 때문에 현재 반도체 제조 공정에서 소자의 보호 피막층 혹은 절연층으로 사용하고 있는데 본 발명에서는 이 기술을 초전도체에 적용한 것이다. 질화규소와 산화규소를 피복하는 방법은 큐.엑스.지아 등에 의해서도 시도된 바있으나, 본 발명에서와는 달리 스퍼터링 방법을 사용하여 피복하였기 때문에 앞에서 설명한 바와 같은 문제점을 가지고 있다[Q.X.Jia and W.A.Anderson, J.Appl Phys., 제 66 권 1호, 452-454페이지(1989년) 참조].However, Teflon coating method is difficult and complicated because Teflon should be coated while polymerizing. If coating dielectric by sputtering method, damage of thin film by collision of ions, damage by heat, and change of crystal structure during sputtering There is a disadvantage in reducing the characteristics of the superconductor itself. Silicon nitride has a hardness of 9 degrees and is hardly equivalent to diamond. Because of its compact structure and chemical stability, it is currently used as a protective film or insulation layer of a device in a semiconductor manufacturing process. In the present invention, this technique is applied to a superconductor. will be. The method of coating silicon nitride and silicon oxide has also been attempted by Q. X. J. et al., But has the same problem as described above because the coating was performed using a sputtering method unlike in the present invention [QXJia and WAAnderson, J. Appl Phys., Vol. 66, no. 1, pp. 452-454 (1989)].

본 발명의 방법은 선재나 판재와 같은 초전도체 벌크(1)에 적용할 수 있는 동시에 박막에도 적용할 수 있다. 제 1 도는 본 발명의 일실시예를 도시한 것으로서 초전도체벌크(1)에 질화규소 등의 세라믹 피막(4)을 코팅하는 과정도이다. 우선 원하는 형태의 초전도체 벌크(1)를 제조하여 초음파 세척기 등으로 표면을 세척한다. 은이나 금 등으로 전극(2)을 진공 증착하여 입히고 리드선(3)을 용접하여 부착한다. 이렇게 준비한 초전도체 벌크(1)를 잘 알려져 있는 플라즈마 화학증착(PE-CVD)방법으로 표면전체를 피복한다. 이와 같은 방법으로 세라믹 박막(4)을 피복하면 스퍼터링하는 방법을 사용할 때와는 달리 피복하는 과정에서 초전도성의 저하를 전혀 초래하지 않고, 제 1 도에 도시된 바와 같이 표면 전체가 질화규소로 둘러싸이게 되어 주위 분위기와 완전히 차단되고 주위의 수분이 침투하지 못하여 시간이 경과하여도 초전도성이 변질되지 않는다.The method of the present invention can be applied to a superconductor bulk 1 such as a wire rod or a plate, and also to a thin film. FIG. 1 is a view illustrating an embodiment of the present invention, in which a ceramic film 4 such as silicon nitride is coated on a superconductor bulk 1. First, the superconductor bulk 1 of the desired shape is prepared and the surface is cleaned by an ultrasonic cleaner or the like. The electrode 2 is vacuum-deposited and coated with silver or gold, and the lead wire 3 is welded and attached. The superconductor bulk 1 thus prepared is covered by the well-known plasma chemical vapor deposition (PE-CVD) method. Coating the ceramic thin film 4 in this manner does not cause superconductivity deterioration in the coating process unlike when using the sputtering method, and the entire surface is surrounded by silicon nitride as shown in FIG. It is completely blocked from the surrounding atmosphere and the moisture of the surroundings can not penetrate, so the superconductivity does not deteriorate over time.

제 2 도는 본 발명의 또 다른 실시에를 도시한 것으로서, 초전도체 박막(11)을 세라믹 재료로 피복하는 방법을 나타낸 것이다. 적절한 기판(10)에 적절한 방법으로 초전도체 박막(11)을 형성시켜 제조한다. 이렇게 제조한 박막(11)에 습식법 또는 건식법으로 원하는 형태의 회로(12)를 만들고 앞에서 설명한 바와 같이 플라즈마 화학증착법으로 질화 규소 박막(4)을 형성시켜 회로(12)전체를 피복한다. 초전도체 박막회로(12)는 두께 1미크론 미만의 미세한 선이므로 수분과의 반응에 의한 열화 현상 외에, 부주의한 취급으로 인한 회로의 손상이 우려되나, 이와 같이 고경도의 세라믹으로 피복하면 수분과의 반응을 완전히 차단할 수 있고 기계적인 손상으로부터 완벽하게 보호할 수 있다.FIG. 2 shows yet another embodiment of the present invention and shows a method of coating the superconductor thin film 11 with a ceramic material. It is produced by forming the superconductor thin film 11 on a suitable substrate 10 by a suitable method. The circuit 12 having a desired shape is formed on the thus prepared thin film 11 by a wet method or a dry method, and the silicon nitride thin film 4 is formed by plasma chemical vapor deposition as described above to cover the entire circuit 12. Since the superconductor thin film circuit 12 is a fine line having a thickness of less than 1 micron, in addition to deterioration due to reaction with moisture, damage to the circuit due to inadvertent handling may be caused. Can be completely blocked and completely protected from mechanical damage.

제 3 도는 본 발명에 따른 질화규소의 피복효과를 나타낸 도면으로서 질화규소를 피복한 시료와 피복하지 않은 시료를 60℃의 증류수에 담구어 수분 처리를 하고 수분처리 시간에 따른 임게 전류 밀도의 변화를 보여주고 있다. 질화 규소를 피복하지 않았을 때는 15분 이상 수분 처리를 하면 임계 전류 밀도가 10% 미만으로 현저히 감소하는데 반하여 질화규소를 피복한 시편에서는 임계 전류 밀도의 감소 속도가 훨씬 완만한 것을 볼 수 있어서 질화규소에 의한 피복효과가 탁월함을 알 수 있다.3 is a view showing the coating effect of the silicon nitride according to the present invention, the sample coated with silicon nitride and the uncoated sample is immersed in 60 ℃ of distilled water and treated with water and shows the change in the current density according to the water treatment time. have. When the silicon nitride coating is not coated, the critical current density decreases significantly to less than 10% after 15 minutes of moisture treatment, whereas the reduction rate of the critical current density is much slower in the silicon nitride coated specimen. It can be seen that the effect is excellent.

Claims (2)

산화물 고온 초전도체 벌크 또는 박막 초전도 소자를 통상의 플라즈마 화학증착법(PE-CVD)에 의하여 세라믹 재료로 피복함을 특징으로 하는 고온 초전도체의 열화 방지 방법.A method for preventing deterioration of a high temperature superconductor, characterized by coating an oxide high temperature superconductor bulk or thin film superconducting element with a ceramic material by conventional plasma chemical vapor deposition (PE-CVD). 제 1 항에 있어서, 세락믹 재료가 질화규소(Si3N4), 산화티타늄(TiO2), 산화규소(SiO2)중에서 선택됨을 특징으로 하는 고온 초전도에의 열화 방지 방법.The method of claim 1, wherein the ceramic material is selected from silicon nitride (Si 3 N 4 ), titanium oxide (TiO 2 ), and silicon oxide (SiO 2 ).
KR1019890018687A 1989-12-15 1989-12-15 Protecting method of deteriorating of high-temperature super-conductors KR920004030B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019890018687A KR920004030B1 (en) 1989-12-15 1989-12-15 Protecting method of deteriorating of high-temperature super-conductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019890018687A KR920004030B1 (en) 1989-12-15 1989-12-15 Protecting method of deteriorating of high-temperature super-conductors

Publications (2)

Publication Number Publication Date
KR910013602A KR910013602A (en) 1991-08-08
KR920004030B1 true KR920004030B1 (en) 1992-05-22

Family

ID=19292982

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890018687A KR920004030B1 (en) 1989-12-15 1989-12-15 Protecting method of deteriorating of high-temperature super-conductors

Country Status (1)

Country Link
KR (1) KR920004030B1 (en)

Also Published As

Publication number Publication date
KR910013602A (en) 1991-08-08

Similar Documents

Publication Publication Date Title
US4882312A (en) Evaporation of high Tc Y-Ba-Cu-O superconducting thin film on Si and SiO2 with a zirconia buffer layer
CA1283490C (en) Method for passivating a compound semiconductor surface and device having improved semiconductor- insulator interface
Santoro Thermal cycling and surface reconstruction in aluminum thin films
US4608097A (en) Method for producing an electronically passivated surface on crystalline silicon using a fluorination treatment and an organic overlayer
Jiang et al. Deposition and characterization of ferroelectric Pb [(Mg1/3Nb2/3) xTi1-x] O3 thin films by RF magnetron sputtering
Salama RF sputtered aluminum oxide films on silicon
EP0301646B1 (en) Superconductive thin layer
US4631633A (en) Thin film capacitors and method of making the same
US3760242A (en) Coated semiconductor structures and methods of forming protective coverings on such structures
Miyahara Characterization of sputtered yttria‐stabilized zirconia thin film and its application to a metal‐insulator‐semiconductor structure
KR920004030B1 (en) Protecting method of deteriorating of high-temperature super-conductors
US4959346A (en) Composite with Y-BA-CU-O superconductive film
US4309460A (en) Process for producing gold films
JPH01305580A (en) Monocrystalline wafer material for forming superconductive ceramic thin film for manufacturing semiconductor element
Badcock et al. Stability and surface charge in the MOS system
JPS5893273A (en) Thin film semiconductor device
Szmidt Diamond-like layers as passivation coatings for power bipolar transistors
Aoki et al. Formation of reliable Pb (Ti, Zr) O 3 thin-film capacitors for read/write endurance of ferroelectric non-volatile memories
CA2212473C (en) Method for preparing layered structure including oxide superconductor thin film
Temple et al. Mechanical Stress in SiO2 Films Obtained by Remote Plasma‐Enhanced Chemical Vapor Deposition
Aoqui et al. Diamond-like carbon film preparation and surface coatings of oxide superconducting and ferroelectric films
JP2969273B2 (en) Surface stabilization method for oxide superconducting bulk
Yun et al. Thin film CaF2 stabilizing effect on single-crystal diamond surface
US3924321A (en) Radiation hardened mis devices
Waffenschmidt et al. Passivation of YBaCuO coplanar microwave structures

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19961204

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee