KR920001390B1 - Surface-coated cemented carbide and a process therefor - Google Patents

Surface-coated cemented carbide and a process therefor Download PDF

Info

Publication number
KR920001390B1
KR920001390B1 KR1019890004859A KR890004859A KR920001390B1 KR 920001390 B1 KR920001390 B1 KR 920001390B1 KR 1019890004859 A KR1019890004859 A KR 1019890004859A KR 890004859 A KR890004859 A KR 890004859A KR 920001390 B1 KR920001390 B1 KR 920001390B1
Authority
KR
South Korea
Prior art keywords
cemented carbide
range
coated cemented
carbide substrate
coated
Prior art date
Application number
KR1019890004859A
Other languages
Korean (ko)
Other versions
KR900016498A (en
Inventor
미노루 나가노
마사아끼 도비오까
도시오 노무라
Original Assignee
스미도모덴기 고오교오 가부시기가이샤
나까하라 쯔네오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27306671&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR920001390(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 스미도모덴기 고오교오 가부시기가이샤, 나까하라 쯔네오 filed Critical 스미도모덴기 고오교오 가부시기가이샤
Publication of KR900016498A publication Critical patent/KR900016498A/en
Application granted granted Critical
Publication of KR920001390B1 publication Critical patent/KR920001390B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/04Electrophoretic coating characterised by the process with organic material
    • C25D13/06Electrophoretic coating characterised by the process with organic material with polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12021All metal or with adjacent metals having metal particles having composition or density gradient or differential porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12049Nonmetal component
    • Y10T428/12056Entirely inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12458All metal or with adjacent metals having composition, density, or hardness gradient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Powder Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

내용 없음.No content.

Description

피복초경합금 및 그 제조법Coated cemented carbide and its manufacturing method

제1도는 본 발명의 바람직한 실시예에 의한 합금샘플 제1∼4의 표면경도분포를 도시한 그래프.1 is a graph showing the surface hardness distribution of alloy samples 1 to 4 according to a preferred embodiment of the present invention.

제2도는 본 발명의 바람직한 실시예에 의한 합금샘플 제8∼11의 표면의 CO분포를 도시한 그래프.2 is a graph showing the distribution of CO on the surfaces of alloy samples 8 to 11 according to a preferred embodiment of the present invention.

본 발명의 절삭공구 등에 사용되는 매우 높은 강인성을 지니는 피복초경합금에 관한 것으로 특히, 탄화티타늄과 같은 박막으로 증착피복된 초경합금기판으로 이루어져 기판의 고강인성과 표면코팅의 고내마모성을 겸비하는 고효율의 절삭공구에 관한 것이다.The present invention relates to a coated cemented carbide alloy having a very high toughness used in cutting tools of the present invention. It is about.

최근, 절삭가공분야에 N/C기계가 도입되어 공장자동화(FA)를 현저하게 진행시키고 있다. 이러한 경우, 절삭공구의 신뢰성이 매우 중요하게 되므로 종래보다 더 높은 강인성을 지니는 절삭공구의 개발이 요구된다. 이 요구조건을 만족시키기 위해, 단지 표면층만이 WC-CO로 이루어진 초경합금(일본국 특개소 제159299/1977 및 194239/1982)과, 합금표면을 CO로 풍부하게 하는(enriching)방법(일본국 특개소 제105628/1987, 187678/1985 및 194239/1982, 즉 미합중국 특허 제4, 610, 931) 그리고 코팅층 바로 아래에 생기는 탈탄층의 형성을 방지하기 위하여 유리탄소를 합금내에 존재시키는 방법(일본국 특개소 제155190/1977) 등이 제안되어 있다.Recently, N / C machines have been introduced into the field of cutting, and factory automation (FA) has been advanced significantly. In this case, since the reliability of the cutting tool becomes very important, the development of a cutting tool having a higher toughness than the conventional one is required. In order to satisfy this requirement, cemented carbide (WP 159299/1977 and 194239/1982) consisting of WC-CO only with a surface layer, and a method of enriching the alloy surface with CO (Japanese special) Points 105628/1987, 187678/1985 and 194239/1982, i.e. U.S. Patent Nos. 4, 610, 931) and a method for the presence of free carbon in the alloy to prevent the formation of a decarburized layer underneath the coating layer. 155190/1977) and the like have been proposed.

그러나, 표면상에만 WC-CO층을 지니거나 또는 표면위에 CO로 풍부하게한 층(CO-enriched layer)을 지니는 초경합금은 향상된 강인성을 지니지만 내마모성에 문제가 있다. 특히, 절삭속도가 높은 조건에서는 CO로 풍부하게한 층을 지니는 합금을 지니는 합금은 경사면(rake face)의 마모속도가 빨라 실사용에 견딜수 없는 경우가 있다. 유리탄소 [FC]를 포함하는 합금의 경우에, 강인성을 탄소량의 증가로 향상되나, 0.2중량%를 초과하게 되면 합금은 응집화되어 합금자체의 강도를 저하시킨다.However, cemented carbides with a WC-CO layer only on the surface or a CO-enriched layer on the surface have improved toughness but are problematic for wear resistance. Particularly, under conditions of high cutting speed, an alloy having an alloy enriched with CO may not be able to withstand actual use due to the fast wear rate of the rake face. In the case of an alloy containing free carbon [FC], the toughness is improved by increasing the amount of carbon, but when it exceeds 0.2% by weight, the alloy is agglomerated to lower the strength of the alloy itself.

본 발명의 목적은 새로운 피복초경합금을 제공하여 상기한 종래 기술의 문제점을 해결하는 것이다.It is an object of the present invention to provide a novel coated cemented carbide to solve the above problems of the prior art.

본 발명의 다른 목적은 고강인성과 고내마모성을 겸비하는 초경합금기판을 제공하는 것이다.Another object of the present invention is to provide a cemented carbide substrate having high toughness and high wear resistance.

본 발명의 또다른 목적은 탄화티타늄 등의 경질박막으로 피복된 피복초경합금으로 구성된 고효율의 절삭공구를 제공한다.Another object of the present invention is to provide a highly efficient cutting tool composed of a coated cemented carbide coated with a hard thin film such as titanium carbide.

본 발명의 그외의 목적은 피복초경합금의 제조법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a coated cemented carbide.

이들 목적은 주기율표의 IVa, Va, VIa족 금속의 탄화물, 질화물 및 탄질화물로 이루어진 군에서 선택된 최소한 1종의 경질성과 철족금속에서 선택된 최소한 1종의 결합상으로 이루어진 초경합금기판상에 주기율표들의 IVa, Va, VIa족 금속의 탄화물, 질화물, 산화물 및 붕화물로 이루어진 군에서 선택된 최소한 1종 및 이들의 고체용액, 산화알루미늄으로된 단층 또는 다층으로 표면피복된 초경합금에 의해 달성되며, 여기서, 코팅층과 기판사이의 계면으로부터 2∼5㎛ 범위내, 초경합금기판의 경도는 500g 하중의 비커즈경도로 800∼1300㎏/㎟이며 기판내부를 향해 일정하게 증가하여 계면으로부터 대략 500∼100㎛ 범위내에서 일정하게 된다.These objectives are based on at least one hard phase selected from the group consisting of carbides, nitrides and carbonitrides of the Group IVa, Va, and VIa metals of the periodic table and the IVa of the periodic tables on a cemented carbide substrate composed of at least one bond phase selected from the iron group metal It is achieved by at least one selected from the group consisting of carbides, nitrides, oxides and borides of Group Va, Group VIa metals and their cemented carbides surface-coated with a single layer or multiple layers of a solid solution, aluminum oxide, wherein the coating layer and the substrate The hardness of the cemented carbide substrate is in the range of 2 to 5 µm from the interface between them, and the hardness of the cemented carbide substrate is 800 to 1300 kg / mm2 with the beaker hardness of 500 g load, and increases uniformly toward the inside of the substrate, and is constant within the range of approximately 500 to 100 µm from the interface. do.

이하 첨부도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명자들은 가장 우수한 특성, 즉, 코팅층에 의해 우수한 내마모성을 유지하면서 종래기술의 합금보다 높은 강인성을 지니는 절삭공구용 표면피복초경합금재료를 개발하기 위한 다양한 노력결과 이를 위하여 다음의 요구조건을 만족해야 된다는 것을 발견하였다.The present inventors have made various efforts to develop the surface coated cemented carbide material for cutting tools having the highest properties, i.e., the wear resistance by the coating layer, and having higher toughness than the alloy of the prior art. I found that.

(Ⅰ) 기판(Substrate)으로서, 주기율표의 IVa, Va, VIa족 금속의 탄화물, 질화물 및 탄질화물로 이루어진 군에서 선택된 최소한 1종의 경질상과 철족금속에서, 선택된 최소한 1종의 결합상으로 구성되거나, 바람직하게는 WC와 CO로 구성되거나, 또는 W, Ti, Nb 및/또는 Ta의 혼합탄화물 또는 혼합탄질화물과 CO로 구성되거나, 더욱 바람직하게는, 10∼96중량%의 WC, 1∼70중량%의 Ti, W, Ta 및/또는 Nb의 혼합탄질화물 및 3∼20중량%의 CO로 구성되는 초경합금을 사용한다.(I) A substrate comprising at least one hard phase selected from the group consisting of carbides, nitrides and carbonitrides of the Group IVa, Va, and VIa metals of the periodic table, and at least one bond phase selected from the iron group metals. Or preferably consisting of WC and CO, or a mixed carbide or mixed carbonitride of W, Ti, Nb and / or Ta and CO, or more preferably 10 to 96% by weight of WC, 1 to A cemented carbide composed of 70% by weight of Ti, W, Ta and / or Nb mixed carbonitrides and 3 to 20% by weight of CO is used.

(Ⅱ) 주로 WC와 CO로 구성되고 5∼10㎛의 두께를 지니는 층으로 이루어진 초경합금기판의 표면부근에 있어서, 계면으로부터 2∼20㎛의 범위, 바람직하게는 5∼5㎛ 내지 5∼100㎛의 범위의 초경합금기판의 결합상의 양은 합금내부에 존재하는 결합상의 평균량에 대하여 1.5∼7중량배이며, 특히, 계면바로밑의 2∼20㎛, 바람직하게는 2∼10㎛ 범위내에 초경합금기판의 결합상 CO량은 대략 50∼100㎛ 범위에 대하여 1.5∼7중량배이다. 계면으로부터 5㎛까지 범위의 결합상의 양은 초경합금기판의 내부보다 작고, 더욱 바람직하게 계면으로부터 3㎛까지 범위의 초경합금기판의 CO함량은 계면으로부터 3㎛ 보다 아래의 범위 보다 작다.(II) In the vicinity of the surface of a cemented carbide substrate composed mainly of WC and CO and having a thickness of 5 to 10 탆, the range of 2 to 20 탆 from the interface, preferably 5 to 5 to 5 to 100 탆. The amount of the bonded phase of the cemented carbide substrate in the range is 1.5 to 7 times the weight of the average amount of the bonded phase present in the alloy, and in particular, the cemented carbide substrate within the range of 2 to 20 µm, preferably 2 to 10 µm, immediately below the interface. The amount of binding phase CO is 1.5 to 7 weight times for the range of approximately 50 to 100 mu m. The amount of bonding phase in the range from the interface to 5 mu m is smaller than the inside of the cemented carbide substrate, and more preferably the CO content of the cemented carbide substrate in the range from the interface to 3 mu m is smaller than the range below 3 mu m from the interface.

(Ⅲ) 초경합금기판 표면부근의 주로 WC와 CO로 구성된 층, 특히, 계면으로부터 2∼5㎛ 범위내의 경도는 500g 하중하의 비커스(Hv) 경도에 의하여, 700∼1300㎏/㎟, 바람직하게 800∼1300㎏/㎟, 더욱 바람직하게는 950∼1250㎏/㎟, 가장 바람직하게는 1000∼1200㎏/㎟이며, 기판의 경도는 그것의 내부를 향해 일정하게 증가하여 계면으로부터 대략 50∼100㎛ 범위에서 일정하게 되어 바람직하게는 500g 하중하의 비커즈경도에 의하여 1500∼1700㎏/㎟가 된다.(III) The layer composed mainly of WC and CO near the surface of the cemented carbide substrate, in particular, the hardness within the range of 2 to 5 μm from the interface is 700 to 1300 kg / mm 2, preferably 800 to 800 Vickers (Hv) hardness under a 500 g load. 1300 kg / mm 2, more preferably 950-1250 kg / mm 2, most preferably 1000-1200 kg / mm 2, and the hardness of the substrate is constantly increasing toward its interior and is approximately 50-100 μm from the interface. It becomes constant, Preferably it is 1500-1700 kg / mm <2> by the beaker hardness under 500g load.

(Ⅳ) 결합상이 CO일때, 초경합금내의 유리탄소 [FC]의 양은 CO량을 기준으로 하여 (FC/CO+FC)가 1∼2.4중량%이며, 결합상이 Ni일때 [FC]의 양은 Ni를 기준으로하여 (FC/Ni+FC)가 0.5∼2.2중량%이다.(IV) When the bonding phase is CO, the amount of free carbon [FC] in the cemented carbide is (FC / CO + FC) of 1 to 2.4% by weight based on the amount of CO. When the bonding phase is Ni, the amount of [FC] is based on Ni. As a result, (FC / Ni + FC) is 0.5 to 2.2% by weight.

(Ⅴ) 초경합금기판내의 유리탄소 [FC]와 질소 [N]량은 다음의 관계를 지닌다.(Ⅴ) The amount of free carbon [FC] and nitrogen [N] in the cemented carbide substrate has the following relationship.

Figure kpo00001
Figure kpo00001

식중, [FC]와 [N]은 중량%로 표시된다.In formula, [FC] and [N] are represented by weight%.

상기 기술한 구조와 특징을 지니는 본 발명의 피복초경합금은, 식(Ⅰ)에 기술된 출발물질을 0.1∼10℃/min의 냉각속도로 냉각, 바람직하게 1310∼1225℃의 온도범위내에서 0.1∼10℃/min의 냉각속도로 냉각하거나 1310∼1225℃의 온도범위내에서 10분∼15시간의 시간주기로 냉각을 실행하는 공정을 포함하여 소결하고, 다음, 결과의 기판을 주기율표의 IVa, Va, VIa족 원소의 탄화물, 질화물, 산화물 및 붕화물로 이루어진 군에서 선택된 최소한 1종, 이들의 고체용액 및 산화알루미늄으로 이루어진 단층 또는 다층으로 코팅하여 제조된다.The coated cemented carbide of the present invention having the above-described structure and features, the starting material described in formula (I) is cooled at a cooling rate of 0.1 to 10 ℃ / min, preferably from 0.1 to 10 within the temperature range of 1310 to 1225 ℃ Sintering including cooling at a cooling rate of 10 ° C./min or performing cooling at a time period of 10 minutes to 15 hours within a temperature range of 1310 to 1225 ° C., and the resulting substrates are then subjected to IVa, Va, It is prepared by coating at least one selected from the group consisting of carbides, nitrides, oxides and borides of group VIa elements, with a single layer or multiple layers of a solid solution and aluminum oxide thereof.

바람직하게, 상기 기술한 소결공정으로 얻은 초경합금기판을 화학적, 기계적 또는 전기화학적 가공처리를 하여 초경합금기판의 표면부로부터 CO 또는 CO 및 C를 이동시킨다.Preferably, the cemented carbide substrate obtained by the sintering process described above is subjected to chemical, mechanical or electrochemical processing to move CO or CO and C from the surface portion of the cemented carbide substrate.

본 발명의 표면피복된 초경합금의 특성 및 구조와 그 제조방법을 이하에서 상세히 설명한다.The characteristics and structure of the surface-coated cemented carbide of the present invention and a method of manufacturing the same will be described in detail below.

본 발명의 초경합금기판은 IVa, Va, VIa족 금속의 탄화물, 질화물 및 탄질화물로 이루어진 군에서 선택된 최소한 1종의 경질상을 함유하므로, 이런 질소함유 경질상은 소결공정의 일부에서 탈질소(denitrification) 및 분해(decomposition)함에 따라 예를들면 경질상의 WC일때 주로 WC와 CO로 구성된 층을 형성한다. “주로(predominantly)”란 일반적으로, 질소함유 경질상이 완전분해하지 않아 소량의 질소가 잔존하는 것을 의미한다. 이런 경우, 바람직하게 초경합금내의 [FC]와 [N]은 다음의 관계를 만족해야 한다.The cemented carbide substrate of the present invention contains at least one hard phase selected from the group consisting of carbides, nitrides and carbonitrides of Group IVa, Va, and VIa metals, so that the nitrogen-containing hard phases are denitrified in part of the sintering process. And decomposition forms, for example, a layer of mainly WC and CO when in the hard phase WC. "Predominantly" generally means that the nitrogen-containing hard phase does not completely decompose and a small amount of nitrogen remains. In this case, preferably, [FC] and [N] in the cemented carbide should satisfy the following relationship.

Figure kpo00002
Figure kpo00002

식중, [FC]와 [N]은 중량%로 표시된다. 예를들면 합금내 [FC] 및 [N]의 분석량이 각각 0.1%와 0.03%이면, 0.1+12/14×0.03=0.12이다. 이 식에서 [FC]는 결합상에서의 유리탄소량을 표시하고 [N]은 초경합금내의 질소량을 표시한다. 소결에 의해 초경합금이 제조될 경우, CO와 C는 대략 1309℃의 공융온도(eutectic temperature)에서 공융반응을 통해 CO-C융체(melt)를 형성한다. 그러나, 실제의 초경합금에 있어서 C와 W는 CO에 용해되어 공융반응을 통해 CO-W-C 융체를 사용하는 점에 특징이 있으며 이런 융체의 효율적 사용을 상기 기술한 범위(이하 탄소 당량이라 한다)내에 실행할 수 있으며, 한편 질소는 탄소와 유사한 행동을 나타낼 것으로 기대된다.In formula, [FC] and [N] are represented by weight%. For example, if the analytical amounts of [FC] and [N] in the alloy are 0.1% and 0.03%, respectively, 0.1 + 12/14 × 0.03 = 0.12. In this formula, [FC] denotes the amount of free carbon in the bond phase and [N] denotes the amount of nitrogen in the cemented carbide. When cemented carbide is produced by sintering, CO and C form a CO-C melt through eutectic reaction at an eutectic temperature of approximately 1309 ° C. However, in actual cemented carbides, C and W are characterized by dissolving in CO to use CO-WC melt through eutectic reaction, and the efficient use of such melt is carried out within the above-described range (hereinafter referred to as carbon equivalent). While nitrogen is expected to exhibit carbon-like behavior.

상기 기술한 조성을 지니는 초경합금을 0.1∼10℃/min의 냉각속도로, 1310∼1225℃, 바람직하게는 1310∼1255℃의 범위내에서, 바람직하게는 1∼5℃/min의 냉각속도로 냉각한다. 1255℃는 CO, C 및 η상(η상은 CO, W 및 C의 화합물을 의미)이 공존하는 공융온도로서 합금표면내의 탄소함량이 현저하게 감소하는 것에 기인한다. 초경합금의 냉각은 1310∼1225℃ 온도범위내에서 10분∼15시간 유지되게 실행한다.The cemented carbide having the above-described composition is cooled at a cooling rate of 0.1 to 10 DEG C / min, 1310 to 1225 DEG C, preferably at 1310 to 1255 DEG C, and preferably at a cooling rate of 1 to 5 DEG C / min. . 1255 ° C is a eutectic temperature at which CO, C and η phase (η phase means CO, W and C compounds) coexist and are due to a significant decrease in the carbon content in the alloy surface. Cooling of the cemented carbide is performed for 10 minutes to 15 hours in the temperature range of 1310 to 1225 ° C.

결합상이 CO 또는 Ni일 경우에, 합금내의 [FC]량은 CO-C공융조성 또는 Ni-C 공융조성의 액상이 나타나는 범위내가 바람직하여 본 발명의 목적을 달성한다. 즉, CO결합상의 경우에 CO량에 대하여 [FC]량은 1∼2.4중량%이고, Ni결합상의 경우에 Ni량에 대하여 0.5∼2.2중량%이다. 상한보다 높을 경우, CO 또는 Ni와 C의 화합물은 초기결정으로서 석출되므로 피하여야 하고, 하한보다 낮을 경우 공융조성의 액상은 나타나지 않는다. 이경우 본 발명의 목적은 달성될 수 없다.In the case where the bonding phase is CO or Ni, the amount of [FC] in the alloy is preferably within the range in which the liquid phase of the CO-C eutectic composition or the Ni-C eutectic composition is exhibited, thereby achieving the object of the present invention. That is, the amount of [FC] is 1 to 2.4% by weight relative to the amount of CO in the case of a CO bond phase, and 0.5 to 2.2% by weight relative to the amount of Ni in the case of a Ni bond phase. If it is higher than the upper limit, the compound of CO or Ni and C is precipitated as an initial crystal and should be avoided. If it is lower than the lower limit, the eutectic liquid phase does not appear. In this case, the object of the present invention cannot be achieved.

(Ⅰ)에 기술된 바와같은 질화물을 함유하는 경질상을 탈질소반응을 받게하여 합금표면의 탄소당량을 감소시키므로, 합금내부의 CO-W-C융체는 이들 표면으로 이동된다. 즉 CO-W-C융체의 확산을 통하여 합금표면에 CO-W-C융체의 농도기울기를 생기계 하여 소결후 합금강도를 일정하게 증가시킨다. 특히, 합금표면은 주로 WC-CO, 일반적으로 WC-(4.5∼60중량%) CO로 구성되므로, 강도는 크게 저하되어 500g 하중의 비커즈경도는 700∼1000㎏/㎟로 된다. 상기(Ⅴ)에서 기술한 탄소량이 0.06이하일 경우, CO-W-C융체확산은 너무 작아 본 발명의 구조를 달성할 수 없으며, 한편 탄소량이 0.17이상일 경우, CO와 C의 화합물은 합금표면에 원주상의 결정으로 석출되어 부서지기 쉽게 된다. 온도가 상기 기술한 범위, 즉, 1310℃를 초과하면, CO-W-C융체의 이동속도는 크게되어 합금표면에 유출되고 경도의 일정한 변화가 주어지지 않으며, 반면에 1225℃ 이하일 경우 CO-W-C융체는 형성되지 않으므로 상기 기술한 경도변화가 주어질 수 없다. 냉각속도가 10℃/min을 초과하면, CO℃-W-C융체의 이동은 너무 작아 경도변화를 줄수 없고, 반면에 0.1℃/min 보다 작으면 상업적규모의 생산성이 저하되어 피해야 하므로 냉각속도는 1∼5℃/min 범위가 바람직하다.Since the hard phase containing nitride as described in (I) is subjected to denitrification to reduce the carbon equivalent of the alloy surface, the CO-W-C melt in the alloy is transferred to these surfaces. In other words, the concentration of CO-W-C melt is generated on the surface of the alloy through diffusion of the CO-W-C melt, and the alloy strength is increased after sintering. In particular, since the alloy surface is mainly composed of WC-CO, generally WC- (4.5 to 60% by weight) CO, the strength is greatly reduced, and the beaker hardness of 500 g load is 700 to 1000 kg / mm 2. When the carbon amount described in (V) is 0.06 or less, the diffusion of the CO-WC melt is too small to achieve the structure of the present invention. On the other hand, when the carbon amount is 0.17 or more, the compounds of CO and C are columnar on the alloy surface. Precipitates to crystals and becomes brittle. If the temperature exceeds the above-mentioned range, that is, 1310 ° C., the moving speed of the CO-WC melt becomes large so that it flows out of the alloy surface and no constant change in hardness is given, whereas if it is below 1225 ° C., the CO-WC melt The hardness change described above cannot be given because it is not formed. If the cooling rate exceeds 10 ℃ / min, the movement of the CO ℃ -WC melt is too small to give a hardness change, while if less than 0.1 ℃ / min the commercial scale productivity is to be avoided to avoid the cooling rate is 1 ~ A 5 ° C./min range is preferred.

합금을 소결하는 과정에 있어서, 합금내 탈질소반응은 1310℃에 이르기까지 예를들면 N2, CH4, H2, Ar가스등을 도입시켜 억압하는 것이 바람직하며, 1310∼1225℃ 범위내에서 고진공 또는 탈탄화 또는 예를들면 H2, H2+H2O, CO2, CO2+CO등의 산화성 분위기하에서 소결을 실행하는 것이 바람직하다.In the process of sintering the alloy, the denitrification reaction in the alloy is preferably suppressed by introducing, for example, N 2 , CH 4 , H 2 , Ar gas, etc. up to 1310 ° C., and high vacuum within the range of 1310-1225 ° C. Or decarbonization or sintering under an oxidizing atmosphere such as H 2 , H 2 + H 2 O, CO 2 , CO 2 + CO, and the like.

주로 WC와 CO로 구성된 합금표면층은 질화물함유 경질상의 분해를 통해 형성되나, 온도를 상승시키는 동안 IVa, Va 또는 VIa족 금속을 질화하고 탈질소분해를 받게하여 형성될 수 있다.The alloy surface layer, which is mainly composed of WC and CO, is formed through decomposition of the nitride-containing hard phase, but may be formed by nitriding and denitrifying the IVa, Va or VIa metal during the temperature increase.

본 발명에 있어서, 합금표면의 경도는 일반적으로 700∼1000㎏/㎟ 범위이며, 700㎏/㎟ 이하이면, 강인성은 현저하게 향상되나 내마모성은 낮아지므로 실사용에 문제가 되고, 반면에 1000㎏/㎟ 이상이면 강인성의 향상은 기대할 수 없다. 표면경도는 냉각속도 및 합금표면의 탈질소화 또는 탈탄화정도에 의해 조절될 수 있다. 만족스런 내마모성 및 강인성을 유지하기 위해, 즉, 다양한 목적으로 합금을 폭넓게 사용하는 관점으로부터, 내부로부터 2∼5㎛ 범위의 표면층의 경도를 700∼1300㎏/㎟, 바람직하게 950∼1250㎏/㎟, 더욱 바람직하게 1000∼1200㎏/㎟로 조절하고, 합금표면으로부터 대략 50-100㎛ 범위의 내부경도를 1500∼1700㎏/㎟로 조정하는 것이 바람직하며, 이런 범위이외는 광범위한 사용에 관해서 가끔 문제가 된다. 경도는 500g 하중하의 비커즈경도이며 일반적인 세라믹으로서 하중량에 의존하며 표면층의 경도는 500g 이상의 하중에서 다소 높은 값을 나타낸다.In the present invention, the hardness of the alloy surface is generally in the range of 700 to 1000 kg / mm 2, and if it is 700 kg / mm 2 or less, the toughness is remarkably improved, but the wear resistance is lowered, which is a problem in practical use, whereas 1000 kg / If it is mm <2> or more, toughness improvement cannot be expected. Surface hardness can be controlled by the cooling rate and the degree of denitrification or decarbonization of the alloy surface. In order to maintain satisfactory wear resistance and toughness, that is, from the viewpoint of widely using the alloy for various purposes, the hardness of the surface layer in the range of 2 to 5 μm from the inside is 700 to 1300 kg / mm 2, preferably 950 to 1250 kg / mm 2 And more preferably 1000 to 1200 kg / mm 2, and adjust the internal hardness in the range of approximately 50-100 μm from the alloy surface to 1500 to 1700 kg / mm 2, sometimes outside of this range with regard to widespread use. Becomes Hardness is the hardness of beakers under 500g load, and it is a general ceramic depending on the weight. The hardness of the surface layer is somewhat higher at the load of 500g or more.

본 발명의 초경합금기판을 상기 기술한 과정으로 소결하면, 합금표면과 코팅층 사이의 계면으로부터 50∼100㎛ 내지 2∼20㎛ 범위내의 합금내 결합상의 양은 결합상의 평균량에 대해 7∼1.5중량배이다. 특히, 합금표면으로부터 50㎛에 이르는 범위내의 결합상의 양은 3배를 초과하여 일본국 특개소 제199239/1982에 기재된 종래 기술보다 훨씬 많다. 본 발명에 의하면, 합금표면내의 결합상은 훨씬 풍부하게 된다.When the cemented carbide substrate of the present invention is sintered by the above-described process, the amount of the binder phase in the alloy in the range of 50 to 100 µm to 2 to 20 µm from the interface between the alloy surface and the coating layer is 7 to 1.5 weight times the average amount of the bond phase. . In particular, the amount of the bonding phase in the range of 50 mu m from the alloy surface is more than three times, much higher than the prior art described in Japanese Patent Laid-Open No. 199239/1982. According to the present invention, the bonding phase in the alloy surface becomes much richer.

본 발명에 있어서, 합금표면에 CO 또는 CO 및 C가 존재하므로, 절삭공구로서 표면피복된 초경합금을 사용하는 실제의 절삭에 있어서도 절삭공구는 더높은 절삭속도에서 다소 커다란 크레이터깊이(Crater depth)를 지니는 문제점이 발생한다. 이경우, 코팅층과 합금표면의 계면으로부터 5㎛까지, 바람직하게 1∼5㎛ 범위의 결합상을 합금내부에 존재하는 결합상의 평균량보다 작게 하거나 소멸시켜 문제를 해결할수 있는데, 범위가 5㎛를 초과하면 강인성은 크게 낮아지기 때문이다. 결합상을 소멸시키는 경우에 있어서, 범위는 많아야 3㎛가 적당하며, 3㎛를 초과하면 강인성은 크게 낮아진다. 결합상의 축소 또는 소멸은 예를들면 질산, 염산, 불산, 황산등의 산으로 화학적처리와, 배럴처리, 브러싱 등의 기계적처리 또는 전기화학적처리에 의해 실행된다.In the present invention, since CO or CO and C are present on the alloy surface, the cutting tool has a somewhat larger crater depth at higher cutting speeds even in actual cutting using the surface-coated cemented carbide as the cutting tool. A problem occurs. In this case, the problem can be solved by reducing or eliminating the bonding phase from the interface between the coating layer and the surface of the alloy to 5 µm, preferably in the range of 1 to 5 µm, smaller than the average amount of the bonding phase present in the alloy. This is because toughness is greatly lowered. In the case of dissipating the bonded phase, the range is preferably at most 3 µm, and when it exceeds 3 µm, the toughness is greatly lowered. The reduction or disappearance of the binding phase is carried out by chemical treatment with acids such as nitric acid, hydrochloric acid, hydrofluoric acid, sulfuric acid, and the like by mechanical treatment or electrochemical treatment such as barrel treatment and brushing.

본 발명에 사용된 코팅층은 주기율표의 IVa, Va, VIa족 원소의 탄화물, 질화물, 산화물 및 붕화물로 이루어진 군에서 선택된 최소한 1종, 이들의 고체용액 및 산화알루미늄으로 구성된 단층 또는 다층을 CVD방법으로 코팅하여 형성되며 1∼20㎛ 두께를 지닌다.The coating layer used in the present invention comprises at least one selected from the group consisting of carbides, nitrides, oxides and borides of elements IVa, Va, and VIa of the periodic table, and a single layer or a multilayer consisting of a solid solution and aluminum oxide thereof by CVD method. It is formed by coating and has a thickness of 1-20㎛.

본 발명의 피복초경합금은 코팅층에 의한 우수한 내마모성과 종래 기술의 합금보다 높은 강인성을 지니므로, 종래 기술의 공구와 비교하여 훨씬 신뢰성이 있는 공구를 제공한다.The coated cemented carbide of the present invention has excellent abrasion resistance by the coating layer and higher toughness than the alloy of the prior art, thus providing a tool that is much more reliable than the prior art tools.

이하 실시예는 본 발명을 상세히 설명하는 것으로, 달리 설명된 것이 없으면 퍼센트는 중량퍼센트를 나타낸다.The following examples illustrate the invention in detail, and unless otherwise indicated, percentages represent weight percentages.

[실시예 1]Example 1

2.5%의 Ti(CN), 3.0%의 TaC, 6.0%의 CO 및 WC잔부를 혼합하여 합금내 [FC]+12/14×[N](탄소당량)을 표 1에 나타낸 바와같이 되게하여, 진공에서 1400℃로 가열하고 N2분위기의 2torr에서 30분간 보유한 다음 10℃/min의 냉각속도로 1310℃까지 냉각하고, 3℃/min의 냉각속도로 진공(10-3torr)에서 1200℃까지 냉각한다. 결과의 초경합금을 통상의 CVD방법으로 5㎛ TiC의 내층과 1㎛ Al2O3의 외층으로 피복한 다음, 다음의 조건(형태 : CNMG 120408 ; 호울더형태 : PCLNR2525-43)하에서 절삭테스트를 한다.2.5% Ti (CN), 3.0% TaC, 6.0% CO and WC residues were mixed to bring [FC] + 12/14 × [N] (carbon equivalent) in the alloy as shown in Table 1, in the heating in a vacuum to 1400 ℃ 2torr and the N 2 atmosphere at a cooling speed for 30 minutes and then held at a cooling rate of 10 ℃ / min cooling to 1310 ℃, and 3 ℃ / min in a vacuum (10 -3 torr) to 1200 ℃ Cool. The resultant cemented carbide was coated with an inner layer of 5 µm TiC and an outer layer of 1 µm Al 2 O 3 by a conventional CVD method, and then subjected to a cutting test under the following conditions (type: CNMG 120408; holder type: PCLNR2525-43). .

비교를 위해서, 통상 이용가능한 M20 크레이드와 5㎛ TiC, 1㎛ Al2O3로 피복된 것을 동일하게 테스트한다.For comparison, the same M20 claddings and those coated with 5 μm TiC, 1 μm Al 2 O 3 are tested identically.

내부층으로부터 5㎛ 범위내에 500g 하중하의 기판의 테스트결과 및 Hv경도를 표 1에 나타내었다.Table 1 shows the test results and the Hv hardness of the substrate under a 500g load within a range of 5 μm from the inner layer.

절삭조건 A(내마모성 테스트)Cutting condition A (wear resistance test)

절삭속도 : 180m/minCutting speed: 180m / min

이송 : 0.36㎜/revFeed: 0.36㎜ / rev

절삭깊이 : 2.0㎜Depth of cut: 2.0㎜

피삭재 : SCM435Workpiece: SCM435

절삭시간 : 20분Cutting time: 20 minutes

절삭조건 B(강인성 테스트)Cutting condition B (toughness test)

절삭속도 : 60m/minCutting speed: 60m / min

이송 : 0.20∼0.40㎜/revFeed: 0.20 to 0.40 mm / rev

피삭재 : SCM435(10㎜×50㎜로 홈이파진)Workpiece: SCM435 (grooved into 10㎜ × 50㎜)

절삭시간 : 30초를 8회 반복Cutting time: 30 seconds 8 times

[표 1]TABLE 1

Figure kpo00003
Figure kpo00003

샘플 1∼4에 관한 합금표면의 단면구조 관찰결과 표면으로부터 대략 5㎛ 범위에서는 WC-CO층만이 형성되어 있고, 5㎛ 범위내부에는 [Ti, Ta, W][CN]의 혼합탄질화물이 존재하며, 합금의 내부에는 FC가 석출되는 것을 발견하였다. 제1도에 샘플 제1∼4의 표면층의 경도분포를 나타내었다. 합금표면 아래의 100㎛ 범위내부에서의 경도는 1500㎏/㎟이었다.As a result of observation of the cross-sectional structure of the alloy surface of Samples 1 to 4, only the WC-CO layer was formed in the range of approximately 5 µm from the surface, and mixed carbonitrides of [Ti, Ta, W] [CN] exist in the range of 5 µm. It was found that FC precipitates inside the alloy. 1 shows the hardness distribution of the surface layers of Samples 1-4. The hardness in the 100-micrometer range below the alloy surface was 1500 kg / mm 2.

다음의 실시예 2에 있어서, 20℃의 10% 질산용액에서 10분간 담가 0.5㎛ 범위내에 CO 또는 CO 및 C가 이동된 합금을 사용하였다.In the following Example 2, an alloy in which CO or CO and C were transferred in a 0.5 μm range was immersed in a 10% nitric acid solution at 20 ° C. for 10 minutes.

[실시예 2]Example 2

실시예 1의 샘플 제3을 소결하기 위해서, 그레인크기 4㎛와 2㎛의 WC분말을 1 : 1 및 1 : 2의 비율로 사용하여 소결, 코팅하고 실시예 1과 유사한 방법으로 테스트를 하였다.In order to sinter the sample 3 of Example 1, WC powders with grain sizes of 4 μm and 2 μm were sintered and coated using the ratios of 1: 1 and 1: 2 and tested in a similar manner as in Example 1.

그결과, 테스트 A에서 전자는 측면마모폭 0.18㎜를, 후자는 0.15㎜를 나타내고, 테스트 B에서 전자는 파손율 8%, 후자는 12%를 나타냈다. 전자의 경우 합금표면의 경도는 1070㎏/㎟이고 후자의 경우 1120㎏/㎟이며, 합금표면으로부터 100㎛범위에 있어서 전자의 경우는 1600㎏/㎟이고 후자는 1680㎏/㎟이었다.As a result, in the test A, the former had a side wear width of 0.18 mm, the latter showed 0.15 mm, and in the test B, the former had a breakage rate of 8% and the latter of 12%. In the former case, the hardness of the alloy surface was 1070 kg / mm 2, the latter was 1120 kg / mm 2, and in the range of 100 μm from the alloy surface, the former was 1600 kg / mm 2 and the latter was 1680 kg / mm 2.

[실시예 3]Example 3

실시예 1의 샘플 제4의 소결체를 10% 질산수용액에 10분간(ⅰ), 동일용액에 25분간(ⅱ), 및 20% 질산 수용액에 10분간(ⅲ)씩 20℃로 유지된 온도하에 담가서 합금표면의 CO 및 C를 이동시켜 샘플 제5∼7을 만든다.The fourth sintered compact of Example 1 was immersed in a 10% aqueous nitric acid solution for 10 minutes, 25 minutes in the same solution (ii), and 20 minutes in 20% nitric acid solution at a temperature maintained at 20 DEG C. Samples 5-7 are made by moving CO and C on the alloy surface.

이들 합금을 실시예 1과 유사한 방법으로 코팅하고 테스트 A, B를 한후 그 결과를 표 2에 나타내었다.These alloys were coated in a similar manner to Example 1, tested A and B, and the results are shown in Table 2.

[표 2]TABLE 2

Figure kpo00004
Figure kpo00004

샘플 제5의 경우에 표면으로부터 2㎛까지 범위내의 CO량은 내부보다 작으며, 샘플 제 6과 7의 경우에 있어서 각각, 표면으로부터 5㎛과 3㎛까지의 범위내에 CO는 소멸되어 있다.In the case of sample 5, the amount of CO in the range from the surface to 2 µm is smaller than the inside, and in the case of samples 6 and 7, CO is extinguished in the range from 5 to 3 µm from the surface, respectively.

[실시예 4]Example 4

2.0%의 Ti(CN), 3%의 TaC 5.6%의 CO 및 WC잔부로 이루어지고, 탄소당량 0.15를 지니는 합금을 실시예 1과 유사한 방법으로 소결하고 1310℃에서 냉각한 다음 제3도에 도시된 조건하에서 1200℃로 냉각했다.An alloy consisting of 2.0% Ti (CN), 3% TaC 5.6% CO and WC residue and having a carbon equivalent of 0.15 was sintered in a similar manner to Example 1 and cooled at 1310 ° C. and shown in FIG. It cooled to 1200 degreeC under the conditions.

[표 3]TABLE 3

Figure kpo00005
Figure kpo00005

합금표면 부근에 CO로 풍부하게 된 양(CO enrichment)을 EPMA(ACC : 20kv, SC : 200A, 비임직경 : 10㎛)로 분석하여 제2도에 도시된 결과를 얻는다.CO enrichment near the surface of the alloy was analyzed by EPMA (ACC: 20 kv, SC: 200 A, beam diameter: 10 μm) to obtain the results shown in FIG.

[실시예 5]Example 5

2.5%의 Ti(CN), 6.0%의 TaC, 5.6%의 CO 및 WC잔부로 구성되고 탄소당량 0.15를 지니는 합금을 진공에서 1400℃로 가열하고, CH4및 H2분위기에서 2℃/min의 냉각속도로 13108로 냉각한 다음 진공(10-5torr) 또는 CO2분위기에서 0.5℃/min의 냉각속도로 1200℃로 냉각한다. 결과의 합금은 표면경도 920㎏/㎟을 지니고, 경도는 표면아래에서 70㎛까지의 범위내에 일정하게 증가하여 일정한 값, 1600㎏/㎟로 된다. 표면으로부터 5㎛ 범위내에서, [Ti, Ta, W][CN]의 혼합탄질화물의 양은 합금의 내부와 비교하여 감소된다.An alloy consisting of 2.5% Ti (CN), 6.0% TaC, 5.6% CO and WC residue and having a carbon equivalent of 0.15 was heated to 1400 ° C. under vacuum and 2 ° C./min in a CH 4 and H 2 atmosphere. After cooling to 1310 8 at a cooling rate, it is cooled to 1200 ° C. at a cooling rate of 0.5 ° C./min in a vacuum (10 −5 torr) or CO 2 atmosphere. The resulting alloy has a surface hardness of 920 kg / mm 2, and the hardness is constantly increased within the range of 70 µm below the surface to a constant value of 1600 kg / mm 2. Within the range of 5 mu m from the surface, the amount of mixed carbonitrides of [Ti, Ta, W] [CN] is reduced compared to the inside of the alloy.

이런 합금을 3㎛ TiC, 2㎛ TiN, 1㎛ TiCN 및 1㎛의 Al2O3의 층으로 피복하여 실시예 1과 유사한 방법으로 절삭테스트를 하면, 측면마모폭은 0.23㎜이고 파손율은 3%이다.When this alloy was coated with a layer of 3 μm TiC, 2 μm TiN, 1 μm TiCN, and 1 μm of Al 2 O 3 and subjected to a cutting test in the same manner as in Example 1, the side wear width was 0.23 mm and the failure rate was 3 %to be.

[실시예 6]Example 6

2.0%의 Ti(CN), 6.0%의 TaC, 5.6%의 CO 및 WC잔부로 구성되고 탄소당량 0.15를 지니는 합금을 실시예 1과 유사한 방법으로 소결하고 1310℃로 냉각한 다음 표 4에서 제시된 조건하에 1200℃로 냉각하였다.An alloy consisting of 2.0% Ti (CN), 6.0% TaC, 5.6% CO and WC residue and having a carbon equivalent of 0.15 was sintered in a similar manner as in Example 1 and cooled to 1310 ° C., followed by the conditions shown in Table 4. Cooled to 1200 ° C.

[표 4]TABLE 4

Figure kpo00006
Figure kpo00006

[실시예 7]Example 7

실시예 6의 샘플 제16의 합금을 1.0% 질산수용액에 10분간 담근 다음 5% 수산화 나트륨수용액으로 5분간 중화시키고 물로 5분간 씻은 다음 다이아몬드그레인 No.1000을 분무시키고 강철브러쉬로 닦는다. 이렇게 처리된 합금을 5㎛ TiC, 1㎛ Al2O3층으로 피복하여 실시예 1과 유사한 방법으로 절삭테스트를 하였다. 산철리가 되지 않은 샘플은 초기에 껍질에 벗겨지고 반면에 산처리된 샘플은 통상의 마모상태를 나타내었다.The sample sixteenth alloy of Example 6 was immersed in 1.0% aqueous nitric acid solution for 10 minutes, neutralized with 5% aqueous sodium hydroxide solution for 5 minutes, washed with water for 5 minutes, sprayed with diamond grain No. 1000, and cleaned with a steel brush. The alloy thus treated was coated with a 5 μm TiC, 1 μm Al 2 O 3 layer to perform a cutting test in a similar manner to Example 1. Samples that were not iron oxide initially peeled off, while acid treated samples exhibited normal wear.

[실시예 8]Example 8

2.0%의 TiC, 6.0%의 TaC, 5.6%의 CO 및 WC잔부로 구성된 합금분말을 형상 No.SNG432로 형성하여, 진공에서 1000℃로 가열하고 N2분위기의 1000∼1450℃에서 소결하여 합금탄소당량 0.15로 만든 다음 실시예 5와 유사한 방법으로 냉각시키면 실시예 5와 실질적으로 유사한 구조와 경도분포를 지니는 합금을 얻는다.Alloy powder consisting of 2.0% TiC, 6.0% TaC, 5.6% CO and WC residue was formed in shape No.SNG432, heated to 1000 ° C. in vacuum, and sintered at 1000 to 1450 ° C. in N 2 atmosphere to produce alloy carbon. The equivalent weight of 0.15 was then cooled in a similar manner to Example 5 to obtain an alloy having a structure and hardness distribution substantially similar to that of Example 5.

[실시예 9]Example 9

2.0%의 Ti(CN), 5.0%의 TaC, 5.6%의 CO 및 WC잔부로 구성된 합금분말을 형상 No₩. SNG432로 형성하여 진공에서 가열하고 진공내 1400℃에서 소결하여 탄소당량을 0.15로 한다. 결과의 합금을 소정형상으로 가공하여 모서리형성처리를 하여 1350℃로 가열하고, N2분위기의 5torr에서 30분간 보유하고, 20℃/min의 냉각속도로 1310℃로 급속냉각한 다음 10-5의 진공에서 2℃/min의 1310℃에서 1200℃로 냉각하였다.Alloy powder consisting of 2.0% Ti (CN), 5.0% TaC, 5.6% CO and WC residue. Formed with SNG432, heated in vacuo and sintered at 1400 ° C. in vacuo to have a carbon equivalent of 0.15. The resultant alloy was processed to a predetermined shape and subjected to edge formation, heated to 1350 ° C., held at 5 torr in N 2 atmosphere for 30 minutes, rapidly cooled to 1310 ° C. at a cooling rate of 20 ° C./min, and then cooled to 10 −5 . Cooled to 1200 ° C. at 1310 ° C. at 2 ° C./min in vacuo.

결과의 합금은 합금표면으로부터 2㎛ 범위내에 WC-CO층을 지니며 표면경도는 1020㎏/㎟이다. 마찬가지로, CO2분위기의 0.5torr에서 소결을 행하면 표면경도는 990㎏/㎟였다.The resulting alloy has a WC-CO layer in the range of 2 μm from the alloy surface and has a surface hardness of 1020 kg / mm 2. Similarly, when sintering at 0.5torr in a CO 2 atmosphere, the surface hardness was 990kg / mm 2.

[실시예 10]Example 10

실시예 1과 유사한 조성을 CO량에 기초한 유리탄소량을 1, 1.5, 2, 2.4%로 하여 혼합한다. 결과의 합금을 절삭조건 B하에 테스트하면 파손율은 각각 23%, 8%, 2%, 0%이다.The composition similar to Example 1 is mixed with the amount of free carbon based on the amount of CO as 1, 1.5, 2, 2.4%. When the resulting alloy was tested under cutting condition B, the failure rates were 23%, 8%, 2% and 0%, respectively.

[실시예 11]Example 11

실시예 1의 샘플 제4의 합금을 20% 질산수용액의 20℃에 20분, 10분, 5분간 담근다. 20분간 처리된 샘플에 있어서, 표면으로부터 5㎛ 범위내에 CO상은 소멸되어 있고, 10분간 처리된 샘플의 경우는 표면으로부터 3㎛ 범위내에 CO상이 소멸되어 있고, 5분간 처리된 샘플에 있어서는 표면으로부터 1㎛ 범위내에 CO상이 소멸된다. 이들 합금을 절삭조건 A, B하에 테스트하고 그 결과를 표 5에 나타낸다.The sample fourth alloy of Example 1 was dipped in 20% aqueous nitric acid solution at 20 ° C. for 20 minutes, 10 minutes, and 5 minutes. In the sample treated for 20 minutes, the CO phase disappeared within the range of 5 µm from the surface, and in the case of the sample treated for 10 minutes, the CO phase disappeared within the range of 3 µm from the surface, and in the sample treated for 5 minutes, 1 The CO phase disappears within the micrometer range. These alloys were tested under cutting conditions A and B and the results are shown in Table 5.

[ 표 5]TABLE 5

Figure kpo00007
Figure kpo00007

[실시예 12]Example 12

2.0%의 TiC, 6.0%의 TaC, 5.6%의 CO 및 WC잔부로 구성된 합금분말을 형상 No.SNG432로 형성하고, 진공내 1450℃에서 소결한 다음 실시예 5와 유사한 방법으로 냉각하면, 실시예 5와 실질적으로 유사한 구조와 경도분포를 지니는 합금을 얻는다.An alloy powder composed of 2.0% TiC, 6.0% TaC, 5.6% CO and WC residue was formed in shape No.SNG432, sintered at 1450 ° C. in vacuum, and cooled in a similar manner to Example 5. Obtain an alloy with a structure and hardness distribution substantially similar to 5.

Claims (25)

주기율표의 IVa, Va, VIa족 금속의 탄화물, 질화물 및 탄질화물로 이루어진 군에서 선택된 최소한 1종의 경질상과 철족금속에서 선택된 최소한 1종의 결합상으로 이루어진 초경합금기판상에 주기율표의 IVa, Va, VIa족 금속의 탄화물, 질화물, 산화물 및 붕화물로 이루어진 군에서 선택된 최소한 1종 및 이들의 고체용액, 산화알루미늄으로 된 단층 또는 다층을 지닌 표면피복된 초경합금에 있어서, 코팅층과 기판사이의 계면으로부터 2∼5㎛ 범위내 초경합금기판의 경도는 500g하중의 비커즈경도로 700∼1300㎏/㎟이며 기판내부를 향해 일정하게 증가하여 계면으로부터 대략 50∼100㎛ 범위내에서 일정하게 되는 것을 특징으로 하는 피복초경합금.Periodic table IVa, Va, of the periodic table on a cemented carbide substrate composed of at least one hard phase selected from the group consisting of carbides, nitrides and carbonitrides of the Group IVa, Va, and VIa metals and at least one bond phase selected from the iron group metals. In at least one member selected from the group consisting of carbides, nitrides, oxides and borides of Group VIa metals and surface-coated cemented carbide having a single layer or multiple layers of a solid solution thereof, from the interface between the coating layer and the substrate. The hardness of the cemented carbide substrate in the range of ˜5 μm is 700-1300 kg / mm2 with a beaker hardness of 500 g load, and increases uniformly toward the inside of the substrate so as to be constant within the range of approximately 50-100 μm from the interface. Cemented carbide. 제1항에 있어서, 계면으로부터 2∼5㎛ 범위내의 초경합금기판의 경도는 비커즈경도 950∼1250㎏/㎟인 것을 특징으로 하는 피복초경합금.The coated cemented carbide alloy according to claim 1, wherein the hardness of the cemented carbide substrate within the range of 2 to 5 µm from the interface is beaker hardness of 950 to 1250 kg / mm2. 제1항에 있어서, 계면으로부터 50∼100㎛ 범위내의 초경합금기판의 경도는 비커즈경도 1500∼1700㎏/㎟인 것을 특징으로 하는 피복초경합금.The coated cemented carbide alloy according to claim 1, wherein the hardness of the cemented carbide substrate within the range of 50 to 100 µm from the interface is a beaker hardness of 1500 to 1700 kg / mm 2. 제1항에 있어서, 초경합금기판의 표면부근은 주로 WC와 CO로 이루어지고 5∼10㎛의 두께를 지니는 층으로 구성되는 것을 특징으로 하는 피복초경합금.The coated cemented carbide alloy according to claim 1, wherein the surface vicinity of the cemented carbide substrate is mainly composed of a layer composed of WC and CO and having a thickness of 5 to 10 µm. 제1항에 있어서, 계면으로부터 2∼20㎛ 내지 50∼100㎛ 범위내 초경합금기판의 결합상의 양은 합금내부에 존재하는 결합상의 평균량에 대해 1.5∼7중량배인 것을 특징으로 하는 피복초경합금.The coated cemented carbide alloy according to claim 1, wherein the amount of bonding phase of the cemented carbide substrate in the range of 2 to 20 µm to 50 to 100 µm from the interface is 1.5 to 7 weight times the average amount of the bonding phase present in the alloy. 제1항에 있어서, 계면으로부터 2∼20㎛ 범위내 초경합금기판의 결합상의 양은 대략 50∼100㎛ 범위에 대하여 1.5∼7중량배인 것을 특징으로 하는 피복초경합금.The coated cemented carbide alloy according to claim 1, wherein the amount of bonding phase of the cemented carbide substrate in the range of 2 to 20 µm from the interface is 1.5 to 7 weight times for the range of approximately 50 to 100 µm. 제1항에 있어서, 결합상이 CO로 이루어질때 유리탄소의 양은 CO를 기준으로하여 1∼2.4중량%이며, 결합상이 Ni로 이루어질때 유리탄소량은 Ni를 기준으로하여 0.5∼2.2중량%인 것을 특징으로 하는 피복초경합금.The method according to claim 1, wherein the amount of free carbon when the binding phase is made of CO is 1 to 2.4% by weight based on CO, and the amount of free carbon when the binding phase is made of Ni is 0.5 to 2.2% by weight based on Ni. Coated cemented carbide characterized by the above-mentioned. 제1항에 있어서, 초경합금기판내의 유리탄소 [FC]와 질소 [N]의 양은 다음의 관계The amount of free carbon [FC] and nitrogen [N] in the cemented carbide substrate is as follows.
Figure kpo00008
Figure kpo00008
(식중, [FC] 및 [N]은 중량%로 표시)(Wherein [FC] and [N] are expressed in weight percent) 를 지니는 것을 특징으로 하는 피복초경합금.Coated cemented carbide, characterized in that having.
제1항에 있어서, 계면으로부터 5㎛까지의 범위내에 결합상의 양은 초경합금기판내부보다 작은 것을 특징으로 하는 피복초경합금.The coated cemented carbide alloy according to claim 1, wherein the amount of the bonding phase in the range from the interface to 5 mu m is smaller than the inside of the cemented carbide substrate. 제1항에 있어서, 계면으로부터 3㎛까지의 범위내에 초경합금기판의 결합상의 함량은 계면으로부터 3㎛보다 아래의 범위보다 작은 것을 특징으로 하는 피복초경합금.The coated cemented carbide alloy according to claim 1, wherein the content of the bonded phase of the cemented carbide substrate within the range of 3 µm from the interface is smaller than the range below 3 µm from the interface. 제1항에 있어서, 초경합금기판은 10∼95중량%의 WC, 1∼70중량%의 Ti, W 및 Ta 또는 Nb의 혼합탄질화물, 3∼20중량%의 CO로 구성된 것을 특징으로 하는 피복초경합금.The cemented carbide substrate according to claim 1, wherein the cemented carbide substrate is composed of 10 to 95% by weight of WC, 1 to 70% by weight of Ti, W and Ta or Nb mixed carbonitride, and 3 to 20% by weight of CO. . 제1항에 있어서, 표면층내 CO 또는 CO 및 C는 화학적, 기계적 또는 전기화학적처리에 의해 이동되는 것을 특징으로 하는 피복초경합금.The coated cemented carbide according to claim 1, wherein the CO or CO and C in the surface layer are moved by chemical, mechanical or electrochemical treatment. 경질상 및 결합상의 성분에 상당하거나 또는 이들 성분을 원위치에 형성할 수 있는 출발물질을 분해 또는 반응을 통해 혼합소결하고, 혼합물을 0.1∼10℃/min의 냉각속도로 냉각하고, 단층 또는 다층의 성분에 상당하는 코팅물질로 결과의 초경합금기판을 코팅하는 것으로 이루어진 제1항의 피복초경합금의 제조법.Starting materials that correspond to the components of the hard and bound phases or can form these components in situ are mixed and sintered by decomposition or reaction, and the mixture is cooled at a cooling rate of 0.1 to 10 DEG C / min, A method for producing the coated cemented carbide according to claim 1, comprising coating the resulting cemented carbide substrate with a coating material corresponding to the component. 제13항에 있어서, 냉각은 1310∼1225℃의 온도범위내에서 0.1∼10℃/min의 냉각속도로 실행하는 것을 특징으로 하는 피복초경합금의 제조법.The method of manufacturing a coated cemented carbide according to claim 13, wherein the cooling is performed at a cooling rate of 0.1 to 10 DEG C / min within a temperature range of 1310 to 1225 DEG C. 제13항에 있어서, 냉각되는 혼합물은 다음의 관계,The method of claim 13 wherein the mixture to be cooled has the following relationship:
Figure kpo00009
Figure kpo00009
(식중, [FC] 및 [N]은 중량%로 표시)(Wherein [FC] and [N] are expressed in weight percent) 를 만족하는 유리탄소 [FC]와 질소 [N]함량을 지니는 것을 특징으로 하는 피복초경합금의 제조법.Method for producing a coated cemented carbide, characterized in that it has a content of free carbon [FC] and nitrogen [N] satisfying the.
제13항에 있어서, 소결은 1310℃로 냉각될때까지 탈질소반응을 억압하면서 실행하는 것을 특징으로 하는 피복초경합금의 제조법.14. The method for producing a coated cemented carbide alloy according to claim 13, wherein the sintering is carried out while suppressing the denitrification reaction until cooled to 1310 占 폚. 제16항에 있어서, 탈질소반응은 N2, CH4, H2, Ar로 이루어진 군에서 선택된 최소한 1종을 도입시켜 억압하는 것을 특징으로 하는 피복초경합금의 제조법.17. The method of claim 16, wherein the denitrification is suppressed by introducing at least one selected from the group consisting of N 2 , CH 4 , H 2 , and Ar. 제14항에 있어서, 1310℃에서 1225℃로의 냉각은 진공 또는 산화분위기에서 실행하는 것을 특징으로 하는 피복초경합금의 제조법.15. The method of claim 14, wherein the cooling from 1310 DEG C. to 1225 DEG C is carried out in a vacuum or an oxidizing atmosphere. 제13항에 있어서, 코팅전에 초경합금기판을 화학적, 기계적 또는 전기화학적처리를 받게하여 이들의 표면층에서 CO 또는 CO 및 C를 이동시키는 것을 특징으로 하는 피복초경합금의 제조법.The method of claim 13, wherein the cemented carbide substrate is subjected to chemical, mechanical or electrochemical treatment prior to coating to move CO or CO and C in their surface layer. 경질상 및 결합상의 성분에 상당하거나 또는 이들 성분을 원위치에 형성할 수 있는 출발물질을 분해 또는 반응을 통해 혼합소결하고, 혼합물을 1310∼1225℃의 온도범위내에서 10분∼15시간의 시간주기로 혼합물로 냉각시키는 것으로 이루어진 제1항의 피복초경합금의 제조법.Starting materials which correspond to the components of the hard and binding phases or which can form these components in situ are mixed and sintered by decomposition or reaction, and the mixture is subjected to a time period of 10 minutes to 15 hours within a temperature range of 1310 to 1225 ° C. A process for producing the coated cemented carbide alloy of claim 1, comprising cooling with a mixture. 제20항에 있어서, 냉각되는 혼합물은 다음의 관계,The mixture of claim 20 wherein the mixture to be cooled has the following relationship:
Figure kpo00010
Figure kpo00010
(식중, [FC] 및 [N]은 중량%로 표시)(Wherein [FC] and [N] are expressed in weight percent) 를 만족하는 유리탄소 [FC]와 질소 [N]함량을 지니는 것을 특징으로 하는 피복초경합금의 제조법.Method for producing a coated cemented carbide, characterized in that it has a content of free carbon [FC] and nitrogen [N] satisfying the.
제20항에 있어서, 소결은 1310℃로 냉각될때까지 탈질소반응을 억압하면서 실행하는 것을 특징으로 하는 피복초경합금의 제조법.21. The method of claim 20, wherein the sintering is carried out while suppressing the denitrogenation reaction until cooled to 1310 占 폚. 제22항에 있어서, 탈질소반응은 N2, CH4, H2, Ar로 이루어진 군에서 선택된 최소한 1종을 도입시켜 억압하는 것을 특징으로 하는 피복초경합금의 제조법.23. The method of claim 22, wherein the denitrification is suppressed by introducing at least one selected from the group consisting of N 2 , CH 4 , H 2 , and Ar. 제14항에 있어서, 냉각은 진공 또는 산화분위기에서 실행하는 것을 특징으로 하는 피복초경합금의 제조법.15. The method of claim 14, wherein the cooling is carried out in a vacuum or an oxidizing atmosphere. 제20항에 있어서, 코팅전에 초경합금기판을 화학적, 기계적 또는 전기화학적처리를 받게하여 이들의 표면층에서 CO 또는 CO 및 C를 이동시키는 것을 특징으로 하는 피복초경합금의 제조법.21. The method of claim 20, wherein the cemented carbide substrate is subjected to chemical, mechanical or electrochemical treatment prior to coating to move CO or CO and C in their surface layer.
KR1019890004859A 1988-04-12 1989-04-12 Surface-coated cemented carbide and a process therefor KR920001390B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP63-91183 1988-04-12
JP9118388 1988-04-12
JP27716088 1988-10-31
JP27716188 1988-10-31
JP63-277160 1988-10-31
JP63-277161 1988-10-31

Publications (2)

Publication Number Publication Date
KR900016498A KR900016498A (en) 1990-11-13
KR920001390B1 true KR920001390B1 (en) 1992-02-13

Family

ID=27306671

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890004859A KR920001390B1 (en) 1988-04-12 1989-04-12 Surface-coated cemented carbide and a process therefor

Country Status (7)

Country Link
US (1) US4911989A (en)
EP (2) EP0583853B2 (en)
JP (1) JPH07103468B2 (en)
KR (1) KR920001390B1 (en)
AU (1) AU619272B2 (en)
CA (1) CA1319497C (en)
DE (2) DE68919509T2 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131803A (en) * 1988-11-11 1990-05-21 Mitsubishi Metal Corp Cutting tool made of abrasion resistant cermet excelling in chipping resistance
AT392929B (en) * 1989-03-06 1991-07-10 Boehler Gmbh METHOD FOR THE POWDER METALLURGICAL PRODUCTION OF WORKPIECES OR TOOLS
DE69025582T3 (en) * 1989-12-27 2001-05-31 Sumitomo Electric Industries Coated carbide body and process for its manufacture
DE4037480A1 (en) * 1990-11-24 1992-05-27 Krupp Widia Gmbh METHOD FOR PRODUCING A COATED CARBIDE CUTTING BODY
SE9101469D0 (en) * 1991-05-15 1991-05-15 Sandvik Ab ETSMETOD
SE9101590D0 (en) * 1991-05-24 1991-05-24 Sandvik Ab SINTRAD CARBON Nitride Alloy with Binder Phase Enrichment
US5665431A (en) * 1991-09-03 1997-09-09 Valenite Inc. Titanium carbonitride coated stratified substrate and cutting inserts made from the same
DE69304742T3 (en) * 1992-03-05 2001-06-13 Sumitomo Electric Industries Coated carbide body
CA2092932C (en) * 1992-04-17 1996-12-31 Katsuya Uchino Coated cemented carbide member and method of manufacturing the same
SE9202142D0 (en) * 1992-07-10 1992-07-10 Sandvik Ab METHOD OF BLASTING CUTTING TOOL INSERTS
US5310605A (en) * 1992-08-25 1994-05-10 Valenite Inc. Surface-toughened cemented carbide bodies and method of manufacture
US5374471A (en) * 1992-11-27 1994-12-20 Mitsubishi Materials Corporation Multilayer coated hard alloy cutting tool
SE505425C2 (en) * 1992-12-18 1997-08-25 Sandvik Ab Carbide metal with binder phase enriched surface zone
US5494635A (en) * 1993-05-20 1996-02-27 Valenite Inc. Stratified enriched zones formed by the gas phase carburization and the slow cooling of cemented carbide substrates, and methods of manufacture
US6413628B1 (en) * 1994-05-12 2002-07-02 Valenite Inc. Titanium carbonitride coated cemented carbide and cutting inserts made from the same
US6057046A (en) * 1994-05-19 2000-05-02 Sumitomo Electric Industries, Ltd. Nitrogen-containing sintered alloy containing a hard phase
JPH09194909A (en) * 1995-11-07 1997-07-29 Sumitomo Electric Ind Ltd Composite material and its production
US5716170A (en) * 1996-05-15 1998-02-10 Kennametal Inc. Diamond coated cutting member and method of making the same
SE510778C2 (en) * 1996-07-11 1999-06-21 Sandvik Ab Coated cutting for fine casting of gray cast iron
ATE226927T1 (en) 1996-07-11 2002-11-15 Sandvik Ab SINTERING PROCESS
SE509566C2 (en) 1996-07-11 1999-02-08 Sandvik Ab sintering Method
CN1075125C (en) * 1996-12-16 2001-11-21 住友电气工业株式会社 Cemented carbide, process for production thereof, and cemented carbide tools
US6071469A (en) * 1997-06-23 2000-06-06 Sandvik Ab Sintering method with cooling from sintering temperature to below 1200° C. in a hydrogen and noble gas atmosphere
JP3402146B2 (en) * 1997-09-02 2003-04-28 三菱マテリアル株式会社 Surface-coated cemented carbide end mill with a hard coating layer with excellent adhesion
US6638474B2 (en) 2000-03-24 2003-10-28 Kennametal Inc. method of making cemented carbide tool
IL151773A0 (en) 2000-03-24 2003-04-10 Kennametal Inc Cemented carbide tool and method for making the same
SE0101241D0 (en) * 2001-04-05 2001-04-05 Sandvik Ab Tool for turning of titanium alloys
AT501801B1 (en) * 2005-05-13 2007-08-15 Boehlerit Gmbh & Co Kg Hard metal body with tough surface
JP2010524710A (en) * 2007-04-27 2010-07-22 デグテック エルティーディー Coated cemented carbide cutting tool and pretreatment and coating method for its manufacture
EP2225061B1 (en) * 2007-12-21 2019-04-24 Sandvik Intellectual Property AB Method of making cutting tools
GB201100966D0 (en) 2011-01-20 2011-03-02 Element Six Holding Gmbh Cemented carbide article
US10287824B2 (en) 2016-03-04 2019-05-14 Baker Hughes Incorporated Methods of forming polycrystalline diamond
US11292750B2 (en) 2017-05-12 2022-04-05 Baker Hughes Holdings Llc Cutting elements and structures
US11396688B2 (en) 2017-05-12 2022-07-26 Baker Hughes Holdings Llc Cutting elements, and related structures and earth-boring tools
GB201713532D0 (en) * 2017-08-23 2017-10-04 Element Six Gmbh Cemented carbide material
US11536091B2 (en) 2018-05-30 2022-12-27 Baker Hughes Holding LLC Cutting elements, and related earth-boring tools and methods
CN117904507B (en) * 2024-03-19 2024-05-31 崇义章源钨业股份有限公司 Gradient hard alloy and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US32111A (en) * 1861-04-23 Apparatus for making roofing-cloth
JPS5134363B2 (en) * 1971-08-28 1976-09-25
DE2433737C3 (en) * 1974-07-13 1980-05-14 Fried. Krupp Gmbh, 4300 Essen Carbide body, process for its manufacture and its use
DE2435989C2 (en) * 1974-07-26 1982-06-24 Fried. Krupp Gmbh, 4300 Essen Process for the production of a wear-resistant, coated hard metal body for machining purposes
JPS55154562A (en) * 1979-05-18 1980-12-02 Sumitomo Electric Ind Ltd Sintered hard alloy part for base material of surface-covered tool material and their manufacture
US4399168A (en) * 1980-01-21 1983-08-16 Santrade Ltd. Method of preparing coated cemented carbide product
USRE32111E (en) 1980-11-06 1986-04-15 Fansteel Inc. Coated cemented carbide bodies
US4610931A (en) * 1981-03-27 1986-09-09 Kennametal Inc. Preferentially binder enriched cemented carbide bodies and method of manufacture
DE3124872C2 (en) * 1981-06-24 1984-01-05 Moskovskij institut in&zcaron;enerov &zcaron;eleznodoro&zcaron;nogo transporta Process for applying wear-resistant coatings made of titanium carbide or titanium carbonitride to products made of sintered hard alloys
JPS6360280A (en) * 1986-08-29 1988-03-16 Mitsubishi Metal Corp Production of surface-coated tungsten carbide-base sintered hard alloy
JPS63169356A (en) * 1987-01-05 1988-07-13 Toshiba Tungaloy Co Ltd Surface-tempered sintered alloy and its production

Also Published As

Publication number Publication date
EP0583853B1 (en) 1996-07-31
JPH02197569A (en) 1990-08-06
EP0583853B2 (en) 2004-11-03
AU619272B2 (en) 1992-01-23
KR900016498A (en) 1990-11-13
CA1319497C (en) 1993-06-29
JPH07103468B2 (en) 1995-11-08
DE68926914T3 (en) 2005-03-10
EP0583853A3 (en) 1994-11-09
EP0337696A1 (en) 1989-10-18
DE68926914D1 (en) 1996-09-05
DE68919509T2 (en) 1995-04-06
US4911989A (en) 1990-03-27
DE68926914T2 (en) 1996-12-12
EP0583853A2 (en) 1994-02-23
DE68919509D1 (en) 1995-01-12
EP0337696B1 (en) 1994-11-30
AU3269889A (en) 1989-10-19

Similar Documents

Publication Publication Date Title
KR920001390B1 (en) Surface-coated cemented carbide and a process therefor
EP0438916B2 (en) Coated cemented carbides and processes for the production of same
US5310605A (en) Surface-toughened cemented carbide bodies and method of manufacture
KR0163654B1 (en) Coated hard alloy blade member
US5786069A (en) Coated turning insert
EP1455003B1 (en) Coated cemented carbide insert
US5283030A (en) Coated cemented carbides and processes for the production of same
JP3382781B2 (en) Multi-layer coated hard tool
EP1548154B1 (en) Surface-coated cermet cutting tool with hard coating layer having excellent chipping resistance
JPH03115571A (en) Diamond-coated sintered alloy excellent in adhesive strength and its production
JP2771337B2 (en) Coated TiCN-based cermet
JP4105410B2 (en) Multi-component carbonitride powder, method for producing the same, and sintered body using the same
Watanabe et al. Sintering properties and cutting-tool performance of Ti (C, N)-based ceramics
KR100388759B1 (en) Coated turning insert
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JP2927181B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP2828511B2 (en) Surface coated TiCN based cermet
JP2771336B2 (en) Coated TiCN-based cermet
JPH0547633B2 (en)
JP2828512B2 (en) Coated TiCN-based cermet
JPH0122344B2 (en)
JPH0219188B2 (en)
JPS63103069A (en) Surface coated sintered hard alloy
JPS63103071A (en) Surface coated sintered hard alloy
KR830000707B1 (en) Sintered hard metal

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090209

Year of fee payment: 18

EXPY Expiration of term