KR910003881B1 - Making process for sintered ore - Google Patents

Making process for sintered ore Download PDF

Info

Publication number
KR910003881B1
KR910003881B1 KR1019880017927A KR880017927A KR910003881B1 KR 910003881 B1 KR910003881 B1 KR 910003881B1 KR 1019880017927 A KR1019880017927 A KR 1019880017927A KR 880017927 A KR880017927 A KR 880017927A KR 910003881 B1 KR910003881 B1 KR 910003881B1
Authority
KR
South Korea
Prior art keywords
iron ore
ore
magnetite
sintered
sintered ore
Prior art date
Application number
KR1019880017927A
Other languages
Korean (ko)
Other versions
KR900010024A (en
Inventor
최용훈
박문덕
Original Assignee
포항종합제철 주식회사
정명식
재단법인 산업과학기술연구소
박태준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 정명식, 재단법인 산업과학기술연구소, 박태준 filed Critical 포항종합제철 주식회사
Priority to KR1019880017927A priority Critical patent/KR910003881B1/en
Publication of KR900010024A publication Critical patent/KR900010024A/en
Application granted granted Critical
Publication of KR910003881B1 publication Critical patent/KR910003881B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating

Abstract

The dried iron ore is divided into the classes of porous iron ore having over 13% volume porosity ratio and dense iron ore having up to 13% volume porosity ratio. A pseudonoise particle consists of nuclear grain and adhesion layer. The porous iron ore as nuclear grain heightens components of limestone and magnetite, and lowes components of cokes and quicklime. The dense iron ore as nuclear grain heightens components of cokes and quicklime, and lowers componets of limestone and magnetite.

Description

소결광의 제조방법Manufacturing method of sintered ore

제 1 도는 본 발명에 부합되는 소결광제조공정을 나타내는 공정도.1 is a process diagram showing a sintered ore manufacturing process according to the present invention.

제 2a 도는 종래방법에 의한 소결광제조시 의사입자의 형태도, (b)는 본 발명에의한 소결광제조시 의사입자의 형태도.Figure 2a is a shape of the pseudo particle in the sintered ore production according to the conventional method, (b) is a shape of the pseudo particle in the sintered ore production according to the present invention.

제 3 도는 종래방법 및 본 발명에 의해 제조된 소결광의 품질 및 회수율을 나타내는 그래프.3 is a graph showing the quality and recovery of the sintered ore produced by the conventional method and the present invention.

본 발명은 고토장입원료로 사용되는 소결광을 제조하는 방법, 보다 상세하게는, 우수한 저온환원분화율(Reduction Degradtion Index : RDI)을 갖는 소결광을 제조하는 방법에 관한것이다. 고토장입원료로서 적합한 성상을 갖추기위한 소결광의 품질로서 상온강도와 저온환원분화율 및 환원율이 관리되고 있는데, 이 중에서도 저온환원분화율을 행상시키기위해 스래그량 및 마그네타이트(magnetite)량을 증가시켜왔는데, 이러한 경우에는 소결광제조비용이 상승할뿐 아니라 환원율이 악화되어 고로 연료비상승의 원인이 된다. 따라서 소결광제조에 있어서 저온환원부화율의 관리는 중요하며 이의 개선방법이 요구되고 있다.The present invention relates to a method for producing a sintered ore used as a high soil charge feedstock, and more particularly, to a method for producing a sintered ore having an excellent Reduction Degradation Index (RDI). As the quality of the sintered ore to obtain suitable properties as a high soil charge raw material, room temperature intensity, low temperature reduction rate and reduction rate are managed. Among them, the amount of slag and magnetite has been increased to raise the temperature rate of low temperature reduction. In this case, not only the cost of sintering ore manufacturing increases, but also the reduction rate is deteriorated, which causes the blast furnace fuel rise. Therefore, in the manufacture of sintered ore, the management of low temperature reduction hatching rate is important and a method of improvement thereof is required.

종래에는 저온환원분화율을 개선시키기 위하여 석회석사용비를 증가시켜 calcium-ferrite를 다량으로 생성시킴으로써 2차 헤마타이트(hematite)의 양을 감소시키거나, 생석회에 의해 소결층의 통기성을 개선시켜 냉각시 마그네타이트가 산화되는것을 억제하며, 또 자철비 및 코우크스비를 높여 마그네타이트의 양을 증가시키고 소결광의 조직을 강화하는 방법들이 사용되었다. 그러나 이들종래의 방법에서는 비교적가격이 높은 원료의 사용량이 많아지므로 소결광의 제조비용이 상승하며, 마그네타이트와 같은 강도가 높은 조직의 난환원성에의해 상대적으로 환원율이 저하하는 문제점이 있었다.Conventionally, in order to improve the low temperature reduction rate, limestone is increased to generate calcium-ferrite in a large amount, thereby reducing the amount of secondary hematite, or improving the air permeability of the sintered layer by quicklime to cool. Methods have been used to suppress the oxidation of magnetite and to increase magnetite and coke ratio to increase the amount of magnetite and to strengthen the structure of the sintered ore. However, these conventional methods have a problem in that the production cost of the sintered ore is increased because the amount of the raw material having a relatively high price is increased, and the reduction rate is relatively decreased due to the hard reducing ability of a high-strength structure such as magnetite.

따라서, 본 발명은 다공질철광석과 치밀질철광석을 분류하고 이들 각각의 광석을 핵입자로 하는 의사립자와 부착층내원료조성을 달리하여 소결하므로서 동일한 소결원료배합비로 소결광의 환원율을 유지하면서 저온환원분화율을 향상시키고자하는 것이다. 즉, 소결광의 환원분화는 소결광의 2차헤마타이트와 취약한 조직이 원인이 되는것으로 알려져 있으므로, 이를 방지하기위하여 소결과정에서 헤마타이트가 마그네타이트로 환원되는 것을 억게하거나 Calcium-ferrite를 다량으로 생성시켜 2차헤마타이트의 양을 감소시키고, 취약한 부위의 용융을 증진시킴으로써 소결광조작을 강화시키고자하는 것이다.Therefore, the present invention classifies the porous iron ore and dense iron ore and sinters each of the ore as nucleus particles with different particle sizes and the composition of the raw material in the adhesion layer, thereby maintaining the reduction rate of the sintered ore at the same sintering raw material blending ratio. It is to improve. That is, reduction reduction of sintered ore is known to be caused by secondary hematite and fragile structure of sintered ore. Therefore, in order to prevent this, the reduction of hematite to magnetite is suppressed or Calcium-ferrite is produced in large quantities. The purpose of the present invention is to enhance the sintering ore operation by reducing the amount of chahematite and promoting the melting of weak areas.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 철광석을 핵입자로하여 소결광을 제조하는 방법에 있어서, 고온건조후의 부피기공율을 기준으로 13%이상인 다공징철광석과 13%이하인 치밀질 철광석으로 분류하고, 상기 다공질철광석을 핵입자로 하는 의사입자의 부착층에 석회석과 자철광의 조성을 크게하고, 코우크스와 생석회의 조성을 작게하며, 치밀질철광석을 핵입자로하는 의사립자의 부착층은 다공질철광석의 경우와 역의 형태로 조성되도록하여 소결시키는 소결광제조방법에 관한것이다.According to the present invention, in the method for producing sintered ore using iron ore as a nuclear particle, it is classified into a porous iron ore of 13% or more and a dense iron ore of 13% or less based on the volume porosity after high temperature drying, and the porous iron ore is a nuclear particle. The composition of limestone and magnetite is increased in the adhesion layer of pseudo-particles, the composition of coke and quicklime is made small, and the adhesion layer of pseudoparticles with dense iron ore as nucleus particles is sintered so as to be formed in the reverse form of the case of porous iron ore. It relates to a sintered ore manufacturing method.

본 발명은 상기에서 다공질철광석부위와 치밀질철광석부위의 석회석양의 비는 3.57 : 1, 자철광양의 비는 3.61 : 1, 생석회양의 비는 0.38 : 1, 그리고 코우크스양의 비는 0.4 : 1이되도록 의사립자의 부착층을 형성하므로서 보다 바람직한 효과를 얻을 수 있다. 본 발명을 공정도를 통하여 상세히 설명한다.In the present invention, the ratio of the limestone amount of the porous iron ore portion and the dense iron ore portion is 3.57: 1, the ratio of the magnetite amount is 3.61: 1, the ratio of the quicklime amount is 0.38: 1, and the amount of coke is 0.4: A more preferable effect can be obtained by forming the adhesion layer of a pseudoparticle so that it may become 1. The present invention will be described in detail through a flowchart.

소결광제조시 적철광으로 사용되는 IBG(under) 광석, Riodoce(fine) 광석 Harmersley(fine) 광석, Mountain newman(fine) 광석 및 MBR(fine) 광석을 450℃에서 2시간동안 건조시킨후 냉각시켜 기공율 측정장치(Autoscan-33 Porosimeter)에의해 부피기공을(이하, "고온부피기공율"이라칭함)을 측정하여 하기 표 1에 나타내었다.IBG (under) or Riodoce (fine) ore Harmersley (fine) or Mountain newman (fine) or MBR (fine) ore used for hematite in sintered ore is dried at 450 ° C for 2 hours and then cooled to measure porosity The volume pores (hereinafter referred to as "hot volume porosity") were measured by an apparatus (Autoscan-33 Porosimeter) and are shown in Table 1 below.

[표 1]TABLE 1

Figure kpo00001
Figure kpo00001

상기 표 1에 나타난 바와같이, 기공율이 13%이하인 IBG(under)광석과 Riodoce(fine)광석을 치밀질광석으로, 그리고 기공율이 13%이상인 Harmersley(fine) 광석, Mountain Newman(fine) 광석 및 MBR(fine) 광석을 다공질철광석으로 분류한다. 소결원료의 처리과정을 나타낸 제 1 도에서 알 수 있는 바와같이, 치밀질철광석이 주종인 B부류의 원료를 별도로 조립하고, 다공질 철광석이 주종인 A부류의 원료조립이 완료되면 B부류의 원료조립물을 첨가, 혼합하여 소결장입원료로 사용한다.As shown in Table 1, IBG (under) or Riodoce (fine) ore having a porosity of 13% or less as a dense ore, and Harmersley (fine) ore, Mountain Newman (fine) ore and MBR having a porosity of 13% or more (fine) Ore is classified as porous iron ore. As can be seen in FIG. 1 showing the process of sintering raw materials, the raw material of class B mainly composed of dense iron ore is assembled separately, and when the raw material assembly of class A mainly composed of porous iron ore is completed, the raw material of class B is completed. Add and mix to use as sintered feedstock.

여기서, A부류의 원료를 다공질철광석이 주종으로 구성되어있는 것으로서, 치밀질철광석이 주종인 B부류의 원료에 비해 석회석과 자철광의 배합비가 크고 코우크스와 생석회의 배합비가 작으며, 그외의 부원료배합비는 양쪽이 동일하다.Here, the raw material of class A is composed mainly of porous iron ore, and the mixing ratio of limestone and magnetite is smaller, the mixing ratio of coke and quicklime is smaller than that of class B, which is mainly composed of dense iron ore, and the other raw material mixing ratio is Both are the same.

본 발명에 부합되는 방법에따라 원료를 조립시키면 제 2b 도와 같이 다공질철광석을 핵입자로하는 의사입자의 부착층에는 석회석과 자철광이 많게되고, 치밀질철광석을 핵입자로하는 의사입자의 부착층에는 코우크스와 생석회가 많게된다.When the raw materials are assembled in accordance with the method according to the present invention, as shown in FIG. 2b, there are many limestones and magnetite in the attachment layer of the pseudo-particles having the porous iron ore as the nuclear particles, There is a lot of coke and quicklime.

이때 치밀질철광석을 다공질철광석에비해 조립시 의사입화성이 낮으므로 이를 보완하기위해 치밀질철광석이 포함된 B부류의 원료에 생석회비를 크게하였다.At this time, as the granular iron ore is less granulated than the porous iron ore, in order to compensate for this, the quicklime ratio is increased in the B-type raw material containing the dense iron ore.

제 2a 도는 종래의 소결광제조시 조립화된 의사입자로서, 다공질 철광석과 치밀질철광석의 구별없이 부착층의 조성이 동일한상태를 나타내고 있다. 제 2b 도와 같은 의사입자를 혼합하여 소결시키게 되면, 치밀질철광석에 비해 환원이 용이한 다공질철광석주위의 코우크스비가 낮으므로 소결전반부의 승온과정에서 다공질철광석내의 헤마타이트가 마그네타이트로 환원되는 것을 억제하게 되어, 제 2a 도와 같은 종래의 의사입자에 비해 2차 헤마타이트의 총생성량을 감소시킬수 있다. 또한 반응성이 우수한 다공질철광석주위의 석회석비가 높으므로, 종래의 의사입자에비하여 소결시 calcium-ferrite의 생성효율이 증가되어 역시 환원마그네타이트의 감소에 의해 2차헤마타이트의 생성을 억제하는효과가 있으며, 이부위에서 용융이 용이한 자철광비가 높으므로 저융점 FeO에 의해 calcium-ferrite의 용융이 증진되어, 종래의 의사입자가 소결되어 생성되는 calcium-ferrite보다 상대적으로 강한조직이 형성된다. 따라서 본 발명에 의해 제조된 소결광은 2차 헤마타이트및 취약한 소결조직이 적어지므로 종래의 방법에의해 제조된 소결광에비해 저온 환원분화율이 개선되는 것이다. 한편, 제 2b 도에서 치밀질철광석이 핵으로되는 의사입자는 부착층의 자철광 및 석회석비가 낮으므로 용융성의 저하에 의해 결합조직이 취약하게될 가능성이있지만, 이는 코우크스의 부착량이 현저하게 높은데 따른 용융량의 증가에의해 보상되는 것이다.Figure 2a is a pseudo-particle granulated during conventional sintered ore manufacturing, showing the same composition of the adhesion layer without distinguishing between the porous iron ore and dense iron ore. In the case of sintering by mixing the pseudoparticles as shown in FIG. As a result, the total amount of secondary hematite produced can be reduced as compared with conventional pseudoparticles such as 2a. In addition, since the limestone ratio around the porous iron ore with excellent reactivity is high, the production efficiency of calcium-ferrite is increased during sintering compared to the conventional pseudo-particles, which also has the effect of suppressing the production of secondary hematite by reducing the reduced magnetite. Since the magnetite ratio is easy to be melted at this site, the melting of calcium-ferrite is enhanced by low melting point FeO, thereby forming a relatively stronger structure than the calcium-ferrite produced by sintering conventional pseudoparticles. Therefore, the sintered ore produced by the present invention has less secondary hematite and fragile sintered structure, so that the low temperature reduction differentiation rate is improved compared to the sintered ore produced by the conventional method. On the other hand, in FIG. 2B, the pseudo-particles having the dense iron ore as the nucleus have low magnetite and limestone ratios in the adhesion layer, so that the connective tissue may be vulnerable due to the deterioration of the meltability. It is compensated by the increase in the melt amount.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

소결와(200mmø×500mmH)실험에 사용된 원료의 입도는 통상적으로 소결조업에서 사용하고있는 크기의 것을 사용하였으며, 다공질 철광석과 치밀질철광석에 의해 각각 분류된 A부류 및 B부류의 원료배합형태를 하기표 2와같이 변화시켜 소결광을 제조하고 각 소결광의 환원율과 저온환원분화율 회전강도 및 회수율을 측정하고 측정값을 제 3 도에 나타내었다.The particle size of the raw materials used in the sintering and (200mmø × 500mmH) experiments was the same as those used in the sintering industry, and the raw material mixing types of Class A and B classified by porous iron ore and dense iron ore, respectively, are as follows. The sintered ore was prepared by changing as shown in Table 2, and the reduction rate, low-temperature reduction rate, rotational strength and recovery rate of each sintered ore were measured, and the measured values are shown in FIG.

[표 2]TABLE 2

Figure kpo00002
Figure kpo00002

* 적철광은 상기 표1의 기공율을 나타냄* Hematite shows the porosity of Table 1 above

* * 코우크스비는 총배합량을 기준으로 나타낸것임.* * Coke's ratio is based on total formulation.

상기 표2에 나타난 바와같이, 비교재 a의 의사입자는 종래의 소결광제조과정에서의 의사입자와 유사한 형태에 해당하며, A1과 B1의 원료배합조성이 동일하고, 비교재 b는 석회서의 전체 사용량이 비교재 a와 동일하지만, 치밀질철광석을 핵입자로하는 B부류 원료의 부착층에 비하여, 다공질철광석을 핵입자로하는 A부류 원료의 부착층에 석회석배합비가 크게되도록 조절한것이고, 비교재 c와 비교재 d는 각각 자철광과 코우크스의 배합형태를 달리한것이며 발명재는 석회석과 자철광 및 코우크스의 배합형태를 모두 다르게 한 것이다.As shown in Table 2, the pseudo particle of the comparative material a corresponds to a form similar to the pseudo particle in the conventional sintered ore manufacturing process, the raw material composition of the A1 and B1 is the same, the comparative material b is the whole of the lime sheet Although the amount of use is the same as that of comparative material a, the ratio of limestone mixture is controlled to be greater in the adhesion layer of class A raw material containing porous iron ore as the nuclear particles than in the adhesion layer of raw material B which uses dense iron ore as the nuclear particles. c and the comparative material d is different from the combination of magnetite and coke, respectively, and the invention material is different from the combination of limestone, magnetite and coke.

제 3 도에 나타난 바와같이, 종래의 방법과 동일한 의사입자형태를 가진 비교재 a의 저온환원분화율은 42.3%이었음에 반하여 비교재 b와 비교재 c 및 비교재 d의 저온환원분화율은 각각 38.9%와 39.5% 및 40.2%이었고, 본 발명의 방법에의한 발명재의 저온환원분화율은 36.6%이었다. 이때 다공질 철광석을 핵입자로 하는 A부류의 원료와 치밀질철광석을 핵입자로하는 B부류의 원료 부착층에 있어서, 석회석과 자철광 및 코우크스의 배합형태중 어느 하나만을 다르게한 비교재 b와 c 및 d보다 3가지를 모두 변화시킨 발명재의 저온환원분화율이 현저하게 개선되었다.As shown in FIG. 3, the low temperature reduction differentiation rate of the comparative material a having the same pseudoparticle form as that of the conventional method was 42.3%, while the low temperature reduction differentiation rate of the comparative material b, the comparative material c and the comparative material d was respectively 38.9% and 39.5% and 40.2%, respectively. The low temperature reduction rate of the inventive material by the method of the present invention was 36.6%. At this time, in the raw material adhesion layer of class A of porous iron ore as a nuclear particle and of class B of dense iron ore as nuclear particle, comparative materials b and c which differed in only one combination of limestone, magnetite and coke are different. And the low temperature reduction differentiation rate of the invention material which changed all three than d was remarkably improved.

비교재 b와 c및 d의 환원율은 70.4%, 69.7%, 69.2%로 비교재 a의 73.0%에 비하여 약간 저하하였으나, 발명재는 74.3%로 비교재 a와 비슷한값을 나타내고있으며, 회수율과 회전강도도 발명재의 경우는 각각 77.2%와 52.8%로 비교재 a의 77.2%와 55.8%에 비해 큰 차이가없다. 결국 본 발명에의해 제조된 소결광은 회수율 및 다른품질의 큰 변동없이 종래의 방법에 의해 제조된 소결광에 비해 13-14%의 저온환원분화율 개선효과가 있다.The reduction rates of comparative materials b, c and d were 70.4%, 69.7%, and 69.2%, which were slightly lower than 73.0% of comparative material a, but the invention material was 74.3%, showing similar values to comparative material a. In the case of the invention material, 77.2% and 52.8%, respectively, compared with 77.2% and 55.8% of comparative material a. As a result, the sintered ore produced by the present invention has an effect of improving the low-temperature reduction differentiation rate of 13-14% compared to the sintered ore manufactured by the conventional method without large variation in recovery and other qualities.

상술한 바와같이 본 발명은 철광석의 고온부피기공율을 기준으로 다공질 철광석과 치밀질철광석으로 분류하고, 각각의 원료배합형태를 달리하여 별도로 조립을 행하여 의사입자의 구조를 개선시킴으로서 소결광의 저온환원분화율을 크게 개선시킬 수 있는 유용한 것이다.As described above, the present invention is classified into porous iron ore and dense iron ore on the basis of the high-temperature volume porosity of iron ore, and the low temperature reduction differentiation rate of sintered ore is improved by improving the structure of pseudo particles by differently assembling each raw material mixing form. This can be a great improvement.

Claims (1)

철광석을 핵입자로하여 소결광을 제조하는 방법에 있어서, 고온건조후의 부피기공율을 기준으로 13%이상인 다공질 철광석과 13%이하인 치밀질철광석으로 분류하고, 상기 다공질철광석을 핵입자로하는 의사입자의 부착층에 석회석과 자철광의 조성을 크게하고 코우크스와 생석회의 조성을 작게하며, 치밀질철광석을 핵입자로하는 의사입자의 부착층은 다공질철광석의 경우와 역의형태로 조성됨을 특징으로하는 소결광제조방법.In the method for producing sintered ore using iron ore as a nucleus particle, it is classified into a porous iron ore of 13% or more and a dense iron ore of 13% or less based on the volume porosity after high temperature drying, and the attachment of pseudo particles using the porous iron ore as a nuclear particle. A method for producing a sintered ore characterized in that the composition of limestone and magnetite is increased in the layer, the composition of coke and quicklime is made small, and the adhesion layer of the pseudoparticles having dense iron ore as a nucleus particle is formed in the reverse form of the case of porous iron ore.
KR1019880017927A 1988-12-30 1988-12-30 Making process for sintered ore KR910003881B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019880017927A KR910003881B1 (en) 1988-12-30 1988-12-30 Making process for sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019880017927A KR910003881B1 (en) 1988-12-30 1988-12-30 Making process for sintered ore

Publications (2)

Publication Number Publication Date
KR900010024A KR900010024A (en) 1990-07-06
KR910003881B1 true KR910003881B1 (en) 1991-06-15

Family

ID=19280933

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019880017927A KR910003881B1 (en) 1988-12-30 1988-12-30 Making process for sintered ore

Country Status (1)

Country Link
KR (1) KR910003881B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3830382B2 (en) * 2001-03-14 2006-10-04 日本碍子株式会社 Ceramic sintered body and method for producing the same
KR100797243B1 (en) * 2001-12-03 2008-01-23 주식회사 포스코 Method for Pretreating Sinter Ores

Also Published As

Publication number Publication date
KR900010024A (en) 1990-07-06

Similar Documents

Publication Publication Date Title
EP0271863B1 (en) Method for manufacturing agglomerates of fired pellets
CN112301215A (en) Iron ore concentrate for improving low-temperature reduction degradation rate of iron ore sinter and preparation method thereof
EP0199818A1 (en) Agglomerate and a process for producing the same
KR910003881B1 (en) Making process for sintered ore
US4326887A (en) Basic process of producing basic fluxed pellets for iron-making
CN103555966A (en) Method for producing zinc hypoxide powder in rotary kiln by taking blast furnace smoke as raw material
JP2704673B2 (en) Method for producing semi-reduced sintered ore
US4001007A (en) Material for sintering emitting a lesser amount of nitrogen oxide and a method for manufacturing the same
JPH0280522A (en) Two layer structure pellet for charging into blast furnace
KR101526451B1 (en) Method for manufacturing sintered ore
JPS5931834A (en) Production of sintered ore
DE2709327C3 (en) Burned iron ore pellets and processes for their manufacture
US4082540A (en) Material for sintering emitting a lesser amount of nitrogen oxide and a method for manufacturing the same
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
KR890004858B1 (en) Pre-treatment method of powder limestone in the manufacturing of sintered ore
KR890003134B1 (en) Manufacturing method of sintering materials
JP3746842B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
SU602576A1 (en) Method of obtaining iron flux
KR100383271B1 (en) Sintered ore manufacturing method with improved recovery
CN117721302A (en) Method for solidifying iron ore pellets by solid-liquid coupling
KR100299325B1 (en) Method for manufacturing sintered ore with low slag
JPH0586458B2 (en)
JPS60100634A (en) Manufacture of sintered ore
JPS61110727A (en) Manufacture of sintered ore
JPS58213837A (en) Method for sintering chrome ore

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19990601

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee