KR900000844B1 - 핵자기 공명 영상용 차폐 경도 코일 - Google Patents

핵자기 공명 영상용 차폐 경도 코일 Download PDF

Info

Publication number
KR900000844B1
KR900000844B1 KR1019870000914A KR870000914A KR900000844B1 KR 900000844 B1 KR900000844 B1 KR 900000844B1 KR 1019870000914 A KR1019870000914 A KR 1019870000914A KR 870000914 A KR870000914 A KR 870000914A KR 900000844 B1 KR900000844 B1 KR 900000844B1
Authority
KR
South Korea
Prior art keywords
coil
hardness
magnetic field
coils
cylinder
Prior art date
Application number
KR1019870000914A
Other languages
English (en)
Other versions
KR870007686A (ko
Inventor
버나드 로머 피터
스미스 히키 죤
Original Assignee
제너럴 일렉트릭 캄파니
아더 엠.킹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제너럴 일렉트릭 캄파니, 아더 엠.킹 filed Critical 제너럴 일렉트릭 캄파니
Publication of KR870007686A publication Critical patent/KR870007686A/ko
Application granted granted Critical
Publication of KR900000844B1 publication Critical patent/KR900000844B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/42Screening
    • G01R33/421Screening of main or gradient magnetic field
    • G01R33/4215Screening of main or gradient magnetic field of the gradient magnetic field, e.g. using passive or active shielding of the gradient magnetic field

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

내용 없음.

Description

핵자기 공명 영상용 차폐 경도 코일
제1a도는 경도 자계를 발생시키도록 인쇄회로 기판상에 있는 단일 코일의 사시도.
제1b도는 권선의 배열을 나타내기 위하여 펼처진 제1a도의 코일의 다이어그램.
제2a도는 제1a도의 코일의 단면도.
제2b도는 본 발명에 따르는 코일 사스템의 단면도.
제3도는 종래 경도 코일에 대한 권선 패턴도.
제4도는 제3도의 패턴에 사용되도록 적용되는 코일의 권선 패턴.
제5도는 제2b도의 내부 코일 부분의 예증적인 권선 배열의 다이어그램.
제6도는 제5도의 권선 배열이 사용될 때 외부 자계가 제로가 되도록 제2b도의 외부 코일의 부분의 권선 배열의 다이어그램.
제7도는 본 발명에 사용되는 자기 공명 시스템의 단면도.
제8도는 Z-경도 코일 셋트의 내부 코일에 대한 흐름선도.
제9도는 제8도의 내부 코일에 대응하는 외부 코일에 대한 흐름선도.
제10 내지 13도는 차폐 코일에 의해 성취된 개선을 도시하는 경도 코일에 대한 자계선도.
* 도면의 주요부분에 대한 부호의 설명
10, 20, 30 : 코일 11 : 기판
본 발명은 자기 공명 영상 및 스펙트로스코피에 사용되는 경도 자계를 발생시키는 코일 시스템에 관한 것으로, 특히 코일 시스템의 내부에 선형 경도를 가지며 코일 시스템의 외부에는 실제적으로 제로값을 가지는 자계를 발생하는 코일 시스템에 관한 것이다.
자기 공명(MR) 영상 시스템은 단층 사진 영상을 구성하는데 사용된다. 그러한 시스템에서 환자는 정자계내에 놓여지며, 무선 주파수 전자기 펄스의 지배를 받는다. 환자의 원자핵의 자기 공명은 이 핵을 포함하는 환자의 부위를 형성하는 영상으로부터 정보를 제공하기 위하여 안테나에 검출된다. 자계는 3공간 디멘죤의 각각에서 선형 경도를 점유하여 공진 핵의 위치가 결정된다. 이 동일한 현상은 핵의 특성을 분석하기 위하여 자기 공명 스펙트로스코피에 사용된다.
통상적으로 주자석은 고강도의 균일한 자계를 설정하며 선형 경도는 주자석 내부에 위치한 경도 코일에 의해 그 자계상에 중첩된다. 주자석은 초전도체 코일, 저항성 코일 또는 영구자석 셋트를 포함한다. 경도 코일은 원통을 형성하도록 휘어진 유연한 인쇄회로 기판상에 엣칭된 권선을 포함하거나 그들의 적절한 위치에서 프레임에 의해 지지되는 도전체를 포함한다.
주자석의 내부 구멍이 영상 볼륨에 가까와지게 하고 따라서 경도 코일에 가까와지면 영구자석과 전력 소비를 제외한 재료, 가격면에서 자석의 효율이 증가된다. 하지만 경도 코일에 자석의 근접성이 이들 사이에 불필요한 상호 작용을 초래한다.
예를 들어, 주자석이 전기 도전물질(즉, 초전도체 자석의 항냉기 또는 네오디뭄 영구자석)을 포함할 때, 경도 코일의 변화자계는 도전물질에 전류를 유도한다. 이 전류는 시간-공간적으로 영상 볼륨의 자계를 왜곡시킨다. 더구나 영구자석이 사용될 때, 와류는 열로써 나타나는 전력을 방출하여 자계를 더 왜곡시킨다. 경도 코일과 자석 사이에 도전 차폐를 배치하는 해결책은 차폐에 대하여 와전류를 조금 이동시켜 경도 자계의 왜곡을 지속된다.
주자석과 경도 코일 사이의 자기 상호 작용은 성가신 가청 음향을 발생하는 친화력과 반발력을 초래한다. 높은 강도 및 강성을 가진 구조 지지체가 경도 코일로부터 가청 음향을 감소시키기 위하여 사용되어 왔으나 그 성공은 제한되어 있다.
따라서, 본 발명의 주목적은 MR 영상 시스템의 경도 코일과 주자석 사이의 상호 작용을 감소시키는 것이다.
본 발명의 다른 목적은 코일 시스템의 내부에서 실제적으로 선형의 경도를 가지며 코일 시스템의 외부에서 실제적으로 제로값을 가지는 코일 시스템을 제공하기 위한 것이다.
본 발명의 다른 목적은 경도 코일의 자계에 의해 유도된 주자석의 전류를 제거하는 것이다.
본 발명의 또 다른 목적은 핵자기 공명 영상 시스템의 경도 코일로부터 가청 음향을 감소시키기 위한 것이다.
이러한 목적은 제1 및 제2 코일을 포함하는 자계를 발생시키는 코일 시스템에서 성취된다. 제1 코일은 반경(r1)과 축길이(z1)를 가지는 제1 원통의 표면상에 제1 표면 전류를 제공하도록 전류원에 접속되도록 적용된다. 제2 코일을 r1보다 더 큰 반경(r0)과 축길이(z0)를 가지며 제1 원통과 동축인 제2 원통의 표면에 제2 표면 전류를 제공하도록 전류원에 접속된다. 제1 및 제2 표면 전류는 제2 코일의 외부에서 볼륨에서 제로값을 가지며 제1 코일에 의해 밀봉도 볼륨내에 다른 2디멘죤에 걸쳐서 상수값을 가지며 예정된 디멘죤에서 예정된 경도를 가지는 자계를 제공하도록 적용된다.
본 발명의 새로운 특징은 첨부된 청구범위에 상세히 기재된다. 하지만 본 발명의 작동방법과 구성 및 그들의 목적이나 다른 특징은 이하 첨부된 도면을 참조로 하여 상세히 설명된다.
도면을 참조하면, 제1a도는 그의 내부에 경도 자계를 발생시키도록 길이(L) 및 중심축(A)을 가지는 원통형 경도 코일(10)을 도시한다. 3개의 공간 디멘죤 X, Y 및 Z는 원점(O)에서 연장되며 z좌표는 축 A에 평행 연장되고, x좌표는 수평으로 연장되고 y좌표는 수직으로 연장된다. 또한 다음과 같이 정의되는 원통좌표 r, θ 및 z가 도시된다. z=z, r=(x2+y2)1/2θ=arc tan(y/x) 좌표계는 그의 내부와 외부에서 원통형 코일(10)상에 지점을 한정한다.
코일(10)의 권선은 제1b에 도시된 바와 같이 유연한 인쇄회로 기판상에 형성된다. 권선(12a 내지 12b) (지문처럼 도시됨)은 기판(11)상에 엣칭되며 기판(11)이 원통으로 말려 들어가고 전류가 권선(12a 내지 12b)에 인가될 때 소정의 경도 자계를 제공하는 배열을 가진다. 제1b도에 도시된 권선 패턴(즉, 표면 전류)은 여기에 참조되며 쉔크등이 1983년 11월 2일 출원한 미국 특허출원 제 548.174호 명칭 '핵 자기 공명 영상용 횡 경도 가계 코일'에 따르는 것이다. 유연한 회로 기판의 엣칭은 에델스타인이 1985년 11월 4일 출원한 미국 특허출원 '코일 구성용 전류 흐름선 방법'에 기재된다.
원통형 코일(10)은 제2a도에 단면이 도시된다. 이 경우에, 표면 전류는 반경 r1을 가지는 원통으로 제한된다. 영역(I)의 소정의 경도 자계의 명세는 영역(Ⅱ)의 코일(10) 외측의 비-제로 자계뿐만 아니라 코일(10)의 소정의 표면 전류 분포를 결정한다. 따라서, 영역(Ⅱ)에서의 구조는(예를 들어, 주자석) 코일(10)으로 부터의 시변장 자계에 지배된다. 따라서 영역(I)에서 경도를 왜곡시키는 와류를 인도한다.
본 발명의 코일 셋트는 제2b도에 단면도로 도시된다. 반경(r1)을 가진 제1코일(20)은 반경(r0)을 가진 제2 코일(30)과 동축이다. 코일(20), (30)은 직렬로 접속되어 단일 전원이 각 코일에 동일한 전류를 공급할 수 있게 된다. 제1 표면 전류
Figure kpo00002
는 코일(20)에 흐르며 제2 표면 전류
Figure kpo00003
는 코일(30)에 흐른다. 이 경우에, 영역(Ⅰ)에서 소정의 경도 자계의 명세는 2전류 분포를 고르게 결정하지 않는다. 한 표면 전류를 고정시키고 코일의 반경이 다른 표면 전류를 결정하는 경우에 자계가 영역(Ⅲ)의 어디에서나 제로가 되게 하는 조건의 부과도 가능하다. 영역(Ⅰ)에서 소정의 경도를 가지며 영역(Ⅲ)에서 제로 자계를 가지는 한쌍의 원통형 표면 전류를 찾는 예증적인 방법이 다음에 기술된다. 하지만, 원통 이외의 다른 표면이 사용될 수 있으며 자계의 합계가 내부에서 소정의 경도를 가지며 실제적으로 코일 셋트의 외부에서 제로값을 가지는 한 2이상의 코일이 제공될 수 있다는 것은 숙련자에게 명백하다.
경도 코일의 표면 전류를 기술하는 편리한 방법은 스트림 함수에 의한다. 스트림 함수(S)는 흐름의 각 영역이 소스 또는 싱크(즉, 흐름이 생기거나 없어지는 점)로부터 자유로운 흐름을 기술한다. 상수(S)의 선은 흐름(표면 전류
Figure kpo00004
의 흐름)과 평행하다. 표면 전류
Figure kpo00005
(z,θ)는 스트림 함수 S(z,θ) 도함수에 관련되며
Figure kpo00006
Figure kpo00007
유니트 백터는 다음과 같다.
Figure kpo00008
스트림 함수에 의해 산출된 스트림 라인(즉, 상수(S)의 선)은 표면 전류
Figure kpo00009
의 이상화 형태인 일련의 동심 폐쇄 곡선이다. 실제 표면 전류는 나선형 권선 패턴을 구성하기 위해 인접한 곡선과 각 곡선을 연결하고 한 지점에서 폐쇄된 각 곡선을 파괴하는 예정된 S의 단계 크기만큼 분리된 다수의 스트림 라인을 도시하여 얻어진다. 파괴점은 실제적으로 공동 선형이어서 나선형 권선 패턴의 가장 내부를 연결시키기 위해 코일 외부로부터 유출된 리드는 스트림 라인을 파괴하는 효과를 취소하는 병렬 배열로 대체될 수 있다.
제3도는 X방향 또는 Y방향 경도를 제공하도록 상업용 NMR 시스템에 현재 사용되는 경도 코일 권선 패턴과 유사한 권선 패턴이다. 도면은 경도 코일에서 4회 반복된 지문에 대응한다. 경도 코일은 길이(L)와 반경(r1)을 갖는다. 각 지문은 전류 I를 가지며, N회, 길이 L/2의 z, π라디안의 θ높이를 가진다.
제3도의 권선 패턴을 사용하는 코일은 제2b도에 내부 코일(20)로 사용될 수 있다. 이 경우에, 외부 코일에 대한 권선 패턴은 내부 및 외부 코일의 자계의 합이 영역(I)에서 선형 경도 자계와 같고 영역(Ⅲ)에서 제로값을 갖도록 결정된다.
소정의 권선 패턴에서 발견되는 제1 단계는 스트림 함수의 항목으로 내부 코일의 예정된 표면 전류를 기입하기 위한 것이다. 제3도의 예를 들면, 스트림 함수(S1)는
Figure kpo00010
내부 코일 스트림 함수(S1)의 퓨리에 분해는 다음과 같다.
Figure kpo00011
내부 및 외부 코일에 의해 발생된 자계의 분석은 다음식을 산출하며 이것은 영역(Ⅲ)에서 제로 자계를 가지도록 선택되는 외부 코일 스트림 함수(S2)에 대한 것이다.
Figure kpo00012
이때 I1는 제1차의 수정된 베셀함수이며, 는 전체 독립 변수에 대한 도함수를 나타낸다. 스트림 함수(S2)는 무한 길이의 패턴을 산출하며, 하지만 내부 코일 길이보다 더 큰 z값에서 전류의 중요성은 z의 증가에 따라 급격히 감소한다. 유한 길이 코일을 얻기 위한 방법은 패턴을 간단히 절두하는 것이다. 절두의 영향을 부분적으로 보상하는 다른 방법은 코일의 길이에 걸쳐서 영이 되도록 외부 코일에 대해 직각인 자계를 인가하는 것이다. 코일 길이가 증가함에 따라, 이 조건은 S2에 접근하는 권선 패턴을 발생한다. 하지만 주어진 어떠한 유한 길이 코일에 대하여 이 조건은 S2의 절두보다 더 나온 차폐 특성을 가진 코일을 생성하다.
외부 코일에 대하여 수직인 자계가 코일의 길이에 걸쳐서 제로가 되도록 인가되는 조건에 의해 수정된 함수(S2)에 대응하는 권선 패턴은 제4도에 도시된다. 외부 코일 반경 r0대 내부 코일 반경 r1의 비율은 약 1 : 3이다.
본 발명의 다른 특징에서, 내부 및 외부 코일의 권선 패턴은 표면 전류를 기술하도록 다른 스트림 함수를 선택하도록 하여 동시에 설정된다. x경도 또는 y경도 내부 코일에 대한 예증적인 스트림 함수(S1)는 :
Figure kpo00013
이때 계수 An은 최적화 파라메터이고 z1는 코일 길이의 1/2이며 마찬가지로 외부 코일 스트림 함수(S2)는 :
Figure kpo00014
이때 Bm은 최적화 계수이며 z0는 외부 코일의 절두된 길이의 1/2이다. 좀더 일반적인 형태의 이 스트림 함수로는 소정의 자계를 발생하는 표면 전류를 기술하는 스트림 함수 계수를 찾기 위하여 진행된다.
공간에서의 일련의 점은 원점 가까이의 영상 볼륨에서 경도 자계의 표시로서 선택된다. 초기 내부 코일 길이(2·z1)와 함께 사용될 계수의 초기 셋트의 선택 후에, 자계는 각 계수에 대한 영상 볼륨에서의 각 지점에서 계산된다. 그러면 계수는 소정의 경도와 계산된 경도 사이의 차이 제곱의 합을 최소화시키고, 코일 셋트 외부의 자계가 실제적으로 제로가 되도록 차폐를 제공하기 위하여 수정된다. 반복은 내부 코일의 길이를 증가 또는 감소시켜서 이루어지고, 선형성, 전류 밀도, 전력 요구 및 전체 길이의 적절한 결합이 얻어질 때까지 다수 또는 소수의 계수를 포함하여 이루어진다.
일반적으로 가능하면 작은 셋트의 계수와 가능하면 짧은 길이를 사용하는 것이 바람직하다. 짧은 길이는 선형성을 전복하지만 자계에 저장된 에너지를 감소시킨다. 큰 셋트의 계수는 선형을 개선하지만 저장된 에너지를 증가시키고 전류 밀도에서 큰 편차를 초래한다.
제5 및 6도는 이러한 대체방법에 의해 유도되어 x경도 또는 y경도 코일 시스템에 대한 내부 및 외부 코일 권선을 엣칭시키기 위하여 사용되는 권선 패턴을 도시한다. Z경도용 코일도 유사한 방법으로 사용될 수 있으며 제로 차수에 대하여 해답해서 사용된 베셀 함수의 차수를 변화시켜 상기 방법에 따라 유출될 수 있는 형태를 가진다. 이러한 Z경도 코일 시스템의 내부 및 외부 코일에 대한 예증적인 스트림 라인 도식은 제8, 9도에 각각 도시된다. 스트림 라인은 소정의 권선 패턴을 형성하기 위하여 먼저 예와 같이 연속 통로를 형성하도록 연결된다.
제10 내지 13도는 전류가 제공될때 먼저 기술된 여러 경도 코일에 의해 발생된 일정한 자계 크기의 라인 도시도이다. 도면은 자기 차폐를 제공하는 본 발명의 코일 셋트의 효율성을 도시한다. 중요한 자계가 0.33미터인 코일 반경의 2배를 초과한다는 것은 명백하다. 제2 코일이 제4도의 권선 패턴을 가지는 0.44미터의 반경에서 첨가되면, 제11도의 자계가 된다. 비교를 위하여, 내부 및 외부 코일의 전류가 제10도에 도시된 경우와 같이 원점 가까이의 동일한 경도 자계를 산출하도록 조정된다. 내부 코일의 내측에 유사한 자계가 있더라도 외부 코일 밖의 자계는 코일 셋트로부터 방사상으로 멀어져서 빨리 제로가 된다.
제12, 13도는 Z경도 코일에 대한 유사한 결과를 도시한다. 종래의 권선 패턴을 가지며 0.33미터의 반경을 가지는 단일 Z경도 코일은 제12도에 도시된 자계를 발생한다. 제13도는 0.33미터 및 0.44미터의 반격을 가지는 제8, 9도의 스트림 라인으로부터 유출된 권선 패턴을 가지는 내부 및 외부 Z경도 코일이 사용될때 초래하는 자계를 도시한다.
제7도는 주자석(40)을 가지는 자기 공명 시스템의 횡단면도이다. 본 발명에 따르는 경도 코일 셋트(41)는 주자석(40)내에 위치된다. RF 코일(42)은 영상 볼륨에서 위치한 주체(44)의 공명을 자극시키도록 전자기 펄스를 발생시킨다. 주체(44)의 자기 공명은 안테나(43)에 의해 검출된다. 안테나(43)로부터의 신호는 주체의 영상을 구성하도록 사용된다.
상술한 내용은 주자석과의 상호 작용이 감소된 경도 코일 시스템을 기재한다. 코일 시스템은 그 내부에서 선형 경도를 가지며 외부에서 실제적으로 제로값을 가지는 자계를 발생한다. 유도된 와류를 제거하는 것은 경도 자계의 안정성을 개선한다. 함께 고착된 내.외부 경도 코일 셋트는 경도 코일 셋트와 주자석 사이의 힘을 제거하여 가청 음향을 감소시킨다.
본 발명의 양호한 실시예가 여기에 기술되었으나, 이러한 실시예는 한 예로서 제공된다는 사실이 명백하다. 숙련자에게는 다양한 변화 및 수정이 가능하다. 따라서 청구범위가 본 발명의 배경 및 정신을 카버한다.

Claims (12)

  1. 복수의 코일을 포함하는 MR 장치용 경도 코일 셋트에서, 상기 각 코일은 각 표면 전류 분배를 제공하도록 적용되며, 상기 표면 전류 분배로부터의 자계는 상기 코일 셋트의 내부에서 예정된 영역에서 예정된 경도를 표시하며 상기 코일의 외부에서는 실제적으로 제로값을 표시하는 것을 특징으로 하는 핵자기 공명 영상용 코일 셋트.
  2. 제1항에 있어서, 상기 각 코일이 원통형태인 것을 특징으로 하는 경도 코일 셋트.
  3. 제2항에 있어서, 상기 각 코일이 각 인쇄회로 기판상에 엣칭된 권선을 포함하는 것을 특징으로 하는 경도 코일 셋트.
  4. 제1항에 있어서, 상기 코일은 직렬로 접속되고 상기 코일 셋트는 단일 전원으로부터 작동 전류를 수신하도록 적용된 것을 특징으로 하는 경도 코일 셋트.
  5. 자계를 발생시키는 코일 시스템이, 반경(r1)과 축길이(z1)를 가지는 제1 원통의 표면상에 제1 표면 전류를 제공하도록 전류원에 접속되는 제1 코일과, 축길이(z0)와 r1보다 더 큰 반경(r0)을 가지며 상기 제1 원통과 실제적으로 동축인 제2 원통의 표면상에 제2 표면 전류를 제공하도록 전류원에 접속된 제2 코일을 포함하며, 상기 제1 및 제2 표면 전류는 예정된 디멘죤에 예정된 경도를 가지며, 상기 제1 코일내에 밀봉된 볼륨내에서 다른 2디멘죤에 걸쳐서 일정한 값을 가지며 제2 코일의 외부 볼륨에서 제로값을 가지는 자계를 상호 제공하는 것을 특징으로 하는 경도 코일 시스템.
  6. 제5항에 있어서, 상기 축길이(z0)가 축길이 (z1)보다 큰 것을 특징으로 하는 경도 코일 시스템.
  7. 제6항에 있어서, 상기 제1 및 제2 코일은 제1 및 제2 인쇄회로 기판상에 엣칭된 권선을 포함하며, 상기 각 인쇄회로 기판은 상기 원통을 형성하도록 휘어진 것을 특징으로 하는 경도 코일 시스템.
  8. 제5항에 있어서, 상기 코일이 직렬로 접속된 것을 특징으로 하는 코일 시스템.
  9. 자계를 발생시키는 코일 시스템이, 제1 스트림 함수의 도함수와 동일한 내부 표면 전류 분배를 제공하도록 반경(r1)과 축길이(2·z1)를 가지며 전류원내 접속된 내부 코일을 포함하며, 상기 제1 스트림 함수는 z가 -z1에서 +z1까지 변하는 축좌표이고, θ가 0에서 2π까지 변하는 주변 좌표일때 변수 z와 θ에 의해 한정되며, 상기 제1 스트림 함수는 n이 1에서 예정된 N까지의 전체 수일때, 복수의 계수 An을 포함하며 상기 제1 스트림 함수는 다음의 방적식에 의해 정의되고 :
    Figure kpo00015
    상기 내부 코일 동축인 전류원에 접속되고 -z0에서 +z0까지 z가 변하는 제2 스트림 함수와 동일한 외부표면 전류 분배를 제공하도록 반경(r0)과 축길이(2·z0)를가지는 외부 코일을 포함하며, 상기 제2 스트림 함수는 m이 1에서 예정된 수 M까지의 전체 수일때 복수의 계수 Bm을 포함하고, 상기 제2 스트림 함수는
    Figure kpo00016
    에 의해 정의된고 : 상기 내부 및 외부 표면 전류 분배는 예정된 디멘죤에서 경도를 가지고 상기 내부 코일에 의해 밀봉된 볼륨내에서 다른 2디멘죤에 걸쳐서 일정한 값을 가지며, 상기 외부 코일의 외측 볼륨에서 제로값을 가지는 자계를 발생하도록 적용되고, 상기 계수는 상기 자계의 경도와 발생된 경도 사이의 차의 제곱의 합을 예정된 한계내에서 최소화하는 값을 가지는 것을 특징으로 하는 코일 시스템.
  10. 제9항에 있어서, 상기 내부 및 외부 코일은 제1 및 제2 인쇄회로 기판상에 엣칭된 권선을 포함하며, 상기 각 제1 및 제2 인쇄회로 기판은 원통을 형성하기 위하여 휘어진 것을 특징으로 하는 코일 시스템.
  11. 주자석의 내부의 영상 볼륨에서 균일한 자계를 형성하는 주자석과; 상기 영상 볼륨에서 핵의 핵자기 공명을 자극하도록 전자기 에너지로 상기 영상 볼륨을 파동시키는 무선 주파수 수단과; 상기 영상 볼륨에서 핵의 핵자기 공명을 감지하는 검출수단과; 상기 주자석의 균일한 자계내에 위치한 제1 경도 코일 셋트를 포함하며, 상기 제1 코일 셋트는 내부 및 외부 코일로 이루어지고, 상기 내부 코일은 반경(r1)과 축길이(z1)를 가지는 제1 원통의 표면상에 제1 표면 전류 분배를 제공하도록 전류원에 접속되고, 상기 외부 코일은 반경이 r1보다 더큰 r0를 가지며 축길이(z0)를 가지며 상기 제1 원통과 동축인 제2 원통의 표면상에 제2 표면 전류 분배를 제공하도록 전류원에 접속되며, 상기 제1 및 제2 전류는 제1 코일 셋트의 외부에서 제로값을 가지며 제1 코일 셋트의 내부에서 다른 2개의 디멘죤에 걸쳐서 일정한 값을 가지며 제1 디멘죤에서 경도를 가지는 자계를 발생시키도록 적용되는 것을 특징으로 하는 자기 공명 코일 시스템.
  12. 제11항에 있어서, 각 코일 셋트에서 제로값을 가지며 각 코일 셋트의 나머지 2개의 디멘죤에서 경도를 가지는 자계를 형성하도록 제2 및 제3 경도 코일 셋트를 포함하는 것을 특징으로 하는 자기 공명 시스템.
KR1019870000914A 1986-02-06 1987-02-05 핵자기 공명 영상용 차폐 경도 코일 KR900000844B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US06/826,650 US4737716A (en) 1986-02-06 1986-02-06 Self-shielded gradient coils for nuclear magnetic resonance imaging
US826,650 1986-02-06
US826.650 1986-02-06

Publications (2)

Publication Number Publication Date
KR870007686A KR870007686A (ko) 1987-09-21
KR900000844B1 true KR900000844B1 (ko) 1990-02-17

Family

ID=25247175

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019870000914A KR900000844B1 (ko) 1986-02-06 1987-02-05 핵자기 공명 영상용 차폐 경도 코일

Country Status (7)

Country Link
US (1) US4737716A (ko)
EP (2) EP0231879B1 (ko)
JP (1) JPH07114765B2 (ko)
KR (1) KR900000844B1 (ko)
DE (1) DE3752332T2 (ko)
FI (1) FI95624C (ko)
IL (1) IL80813A (ko)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE36782E (en) * 1983-11-11 2000-07-18 Oxford Medical Limited Magnet assembly for use in NMR apparatus
EP0216590B2 (en) * 1985-09-20 2001-06-06 Btg International Limited Magnetic field screens
GB8615854D0 (en) * 1986-06-28 1986-08-06 Turner R Magnetic field coils
US4924186A (en) * 1986-09-29 1990-05-08 Kabushiki Kaisha Toshiba Magnetic resonance imaging system with auxiliary compensation coil
NL8701948A (nl) * 1987-08-19 1989-03-16 Philips Nv Magnetisch resonantie-apparaat met verbeterd gradient spoelenstelsel.
FR2621125B1 (fr) * 1987-09-28 1989-12-08 Thomson Cgr Systeme de bobines de gradient pour machine de rmn
US4881035A (en) * 1987-11-24 1989-11-14 Siemens Aktiengesellschaft Magnetic structural arrangement of an installation for nuclear magnetic resonance tomography with superconducting background field coils and normal-conducting gradient coils
US4794338A (en) * 1987-11-25 1988-12-27 General Electric Company Balanced self-shielded gradient coils
JPH0687447B2 (ja) * 1988-07-27 1994-11-02 三菱電機株式会社 超電導マグネツト装置
US4926125A (en) * 1988-08-22 1990-05-15 General Electric Company Surface gradient assembly for high speed nuclear magnetic resonance imaging
US4985678A (en) * 1988-10-14 1991-01-15 Picker International, Inc. Horizontal field iron core magnetic resonance scanner
US4881032A (en) * 1988-10-21 1989-11-14 General Electric Company Method of, and apparatus for, NMR spectroscopic metabolite imaging and quantification
US5077524A (en) * 1988-11-25 1991-12-31 General Elecric Gradient enhanced NMR correlation spectroscopy
IL89743A0 (en) * 1989-03-26 1989-09-28 Elscint Ltd Compact shielded gradient coil system
US4920316A (en) * 1989-03-30 1990-04-24 Siemens Medical Systems, Inc. Method and apparatus for reducing base field shifts in a magnetic resonance device due to pulsed magnetic field gradients
JP2752156B2 (ja) * 1989-05-30 1998-05-18 株式会社東芝 Mri装置用コイル部品の製造方法
US5424643A (en) * 1989-06-16 1995-06-13 Picker International, Inc. Magnetic resonance gradient sheet coils
US5177441A (en) * 1989-06-16 1993-01-05 Picker International, Inc. Elliptical cross section gradient oil
US5296810A (en) * 1992-03-27 1994-03-22 Picker International, Inc. MRI self-shielded gradient coils
US5036282A (en) * 1989-06-16 1991-07-30 Picker International, Inc. Biplanar gradient coil for magnetic resonance imaging systems
US4980641A (en) * 1989-08-11 1990-12-25 General Atomics Method and apparatus of reducing magnetic hysteresis in MRI systems
US5313945A (en) * 1989-09-18 1994-05-24 Noise Cancellation Technologies, Inc. Active attenuation system for medical patients
JPH03182232A (ja) * 1989-12-11 1991-08-08 Toshiba Corp 磁気共鳴イメージング装置
NL9000163A (nl) * 1990-01-23 1991-08-16 Datawell Nv Hoeksnelheidsmeter in combinatie met hoekstand uit magneetveld.
US5481191A (en) * 1990-06-29 1996-01-02 Advanced Nmr Systems, Inc. Shielded gradient coil for nuclear magnetic resonance imaging
US5243286A (en) * 1990-06-06 1993-09-07 Advanced Nmr Systems, Inc. Split shield for magnetic resonance imaging
US5159929A (en) * 1990-06-14 1992-11-03 Morris G Ronald Insulated rf shield
JPH04144543A (ja) * 1990-10-04 1992-05-19 Yokogawa Medical Syst Ltd Mri用2重形コイル
DE4139420A1 (de) * 1990-11-30 1992-06-04 Toshiba Kawasaki Kk Magnetresonanz-abbildungsgeraet
JPH04337614A (ja) * 1991-05-15 1992-11-25 Toshiba Corp 傾斜磁場コイルの製造方法
US5177442A (en) * 1991-07-01 1993-01-05 General Electric Company Transverse gradient coils for imaging the head
US5266913A (en) * 1991-08-27 1993-11-30 British Technology Group Usa Inc. Screened electromagnetic coil of restricted length having optimized field and method
US5179338A (en) * 1991-09-13 1993-01-12 General Electric Company Refrigerated superconducting MR magnet with integrated gradient coils
US5278502A (en) * 1991-09-13 1994-01-11 General Electric Company Refrigerated superconducting MR magnet with integrated cryogenic gradient coils
US5225782A (en) * 1991-09-13 1993-07-06 General Electric Company Eddy current free MRI magnet with integrated gradient coils
EP0560396B1 (en) * 1992-03-13 2001-11-07 Kabushiki Kaisha Toshiba Nuclear magnetic resonance imaging with improved image quality and operation efficiency
US5349297A (en) * 1992-03-27 1994-09-20 Picker International Inc. Combined self shielded gradient coil and shimset
US5406204A (en) * 1992-03-27 1995-04-11 Picker International, Inc. Integrated MRI gradient coil and RF screen
US5568051A (en) * 1992-05-12 1996-10-22 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus having superimposed gradient coil
US5760582A (en) * 1992-07-23 1998-06-02 Fonar Corporation Optimized gradient coils and shim coils for magnetic resonance scanning systems
US5365173A (en) * 1992-07-24 1994-11-15 Picker International, Inc. Technique for driving quadrature dual frequency RF resonators for magnetic resonance spectroscopy/imaging by four-inductive loop over coupling
US5379767A (en) * 1992-09-02 1995-01-10 The Regents Of The University Of California MRI RF coil using zero-pitch solenoidal winding
US5289129A (en) * 1992-10-13 1994-02-22 The Trustees Of The University Of Pennsylvania Multiple winding MRI gradient coil
US5311135A (en) * 1992-12-11 1994-05-10 General Electric Company Multiple tap gradient field coil for magnetic resonance imaging
US5554929A (en) * 1993-03-12 1996-09-10 Doty Scientific, Inc. Crescent gradient coils
US5530355A (en) * 1993-05-13 1996-06-25 Doty Scientific, Inc. Solenoidal, octopolar, transverse gradient coils
US5485087A (en) * 1994-08-05 1996-01-16 Picker International, Inc. Magnetic resonance insert gradient coils with parabolic returns for improved access
US5545996A (en) * 1994-03-15 1996-08-13 Picker International, Inc. Gradient coil with cancelled net thrust force
US5581185A (en) * 1994-03-15 1996-12-03 Picker International, Inc. Torque-balanced gradient coils for magnetic resonance imaging
US5655533A (en) * 1994-06-30 1997-08-12 Picker International, Inc. Actively shielded orthogonal gradient coils for wrist imaging
US5635839A (en) * 1994-11-04 1997-06-03 Picker International, Inc. High order passive shimming assembly for MRI magnets
US5532597A (en) * 1994-11-04 1996-07-02 Picker International, Inc. Passive shimming technique for MRI magnets
JPH08196518A (ja) * 1995-01-20 1996-08-06 Toshiba Corp Mri装置
JPH08252235A (ja) * 1995-03-16 1996-10-01 Toshiba Corp 磁気共鳴映像装置
US5550472A (en) * 1995-04-13 1996-08-27 Picker International, Inc. Combined radio frequency coil with integral magnetic field shim set
JP3556052B2 (ja) * 1995-07-27 2004-08-18 株式会社東芝 磁気共鳴イメージング装置
US5570021A (en) * 1995-10-10 1996-10-29 General Electric Company MR gradient set coil support assembly
US5742164A (en) * 1995-12-28 1998-04-21 General Electric Company Misalignment compensation for MR gradient coil assembly
US6311389B1 (en) * 1998-07-01 2001-11-06 Kabushiki Kaisha Toshiba Gradient magnetic coil apparatus and method of manufacturing the same
US6236203B1 (en) * 1998-09-28 2001-05-22 Picker International, Inc. Super shielding of finite length structures in open magnetic and electric systems
JP2002528204A (ja) * 1998-10-28 2002-09-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 勾配システム内に機械的に一体化された渦電流遮蔽を具備するmri装置
US6441614B1 (en) 1999-12-02 2002-08-27 General Electric Company Filler material for magnet resonant system self-shielded gradient coil assemblies
US6954068B1 (en) 2000-01-21 2005-10-11 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus
US6556012B2 (en) 2000-01-21 2003-04-29 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus
US6456076B1 (en) 2001-01-31 2002-09-24 The Trustees Of The University Of Pennsylvania Z gradient shielding coil for canceling eddy currents
GB0204023D0 (en) * 2002-02-20 2002-04-03 Tesla Engineering Ltd Gradient coil structure for magnetic resonance imaging
US7030611B2 (en) * 2002-12-27 2006-04-18 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and method incorporating multi-mode gradient coil unit
US6982552B2 (en) * 2003-05-27 2006-01-03 General Electric Company Methods and systems for fabricating magnetic resonance gradient coils
US7068033B2 (en) * 2003-08-18 2006-06-27 Ge Medical Systems Global Technology Company, Llc Acoustically damped gradient coil
JP2008532681A (ja) * 2005-03-17 2008-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁気共鳴用の最小エネルギーのシムコイル
US7382133B1 (en) 2005-04-29 2008-06-03 Fonar Corporation Self-shielded gradients and method of designing and producing self-shielded gradients
CN101563023B (zh) * 2006-12-20 2012-09-05 皇家飞利浦电子股份有限公司 用于影响和/或检测作用区域中的磁性粒子的布置和方法
US7482809B1 (en) * 2007-07-18 2009-01-27 Hitachi Medical Systems America, Inc. Method of optimized gradient coil design
US8523429B2 (en) * 2009-10-19 2013-09-03 Tsi Technologies Llc Eddy current thermometer
CN102665543B (zh) * 2009-11-27 2015-08-26 株式会社日立医疗器械 倾斜磁场线圈、核磁共振成像装置以及线圈图形的设计方法
US20110166438A1 (en) * 2009-12-17 2011-07-07 Emerson Jane F Rf field shaping and attenuation for emai induction elements
DE102012203343B8 (de) 2012-03-02 2013-10-24 Bruker Biospin Ag Gradientenspulensystem mit Korrekturwicklungen und Verfahren zu deren Herstellung
DE102013225274A1 (de) 2013-12-09 2015-06-11 Albert-Ludwigs-Universität Freiburg Gradientensystem für die Magnetresonanzbildgebung
WO2016168249A1 (en) 2015-04-13 2016-10-20 Hyperfine Research, Inc. Magnetic coil power methods and apparatus
CN104849681B (zh) * 2015-06-10 2018-04-03 武汉中科波谱技术有限公司 一种核磁共振波谱仪梯度线圈
JP7320218B2 (ja) * 2019-12-19 2023-08-03 国立大学法人京都大学 傾斜磁場コイルの設計方法および傾斜磁場コイル

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3466499A (en) * 1967-03-27 1969-09-09 Atomic Energy Commission Cancellation of external magnetic fields by inner and outer cylindrical current sheets
US3671902A (en) * 1971-05-25 1972-06-20 Gen Electric Shielded inductive device
US4126781A (en) * 1977-05-10 1978-11-21 Extranuclear Laboratories, Inc. Method and apparatus for producing electrostatic fields by surface currents on resistive materials with applications to charged particle optics and energy analysis
GB2034123B (en) * 1978-10-17 1982-11-10 Edelstein W Coil winding for quadrupolar fields
US4398149A (en) * 1981-02-02 1983-08-09 Varian Associates, Inc. NMR Probe coil system
US4456881A (en) * 1982-01-18 1984-06-26 Technicare Corporation Gradient-coil apparatus for a magnetic resonance system
US4617516A (en) * 1983-09-06 1986-10-14 General Electric Company Axial magnetic field gradient coil suitable for use with NMR apparatus
NL8303535A (nl) * 1983-10-14 1985-05-01 Philips Nv Kernspinresonantie apparaat.
NL8303534A (nl) * 1983-10-14 1985-05-01 Philips Nv Kernspinresonantie apparaat.
US4646024A (en) * 1983-11-02 1987-02-24 General Electric Company Transverse gradient field coils for nuclear magnetic resonance imaging
FI88079C (fi) * 1983-11-02 1993-03-25 Gen Electric Tvaer gradientspole, speciellt en spole foer bruk i nukleaera magnetiska resonansavbildningssystem
US4587504A (en) * 1983-11-11 1986-05-06 Oxford Magnet Technology Limited Magnet assembly for use in NMR apparatus
IL70211A (en) * 1983-11-13 1989-03-31 Elscint Ltd Gradient field coils for nmr imaging
JPS60128339A (ja) * 1983-12-15 1985-07-09 Mitsubishi Electric Corp Νmr−ct用磁界コイル
US4509030A (en) * 1984-07-05 1985-04-02 General Electric Company Correction coil assembly for NMR magnets
AU579530B2 (en) * 1984-07-06 1988-11-24 Board Of Trustees Of The Leland Stanford Junior University Magnetic structure for NMR applications and the like
US4595899A (en) * 1984-07-06 1986-06-17 The Board Of Trustees Of The Leland Stanford Junior University Magnetic structure for NMR applications and the like
US4621236A (en) * 1985-02-11 1986-11-04 Field Effects, Inc. Cylindrical electromagnet for an NMR imaging system
US4791370A (en) * 1985-08-23 1988-12-13 Resonex, Inc. Gradient field structure and method for use with magnetic resonance imaging apparatus
EP0216590B2 (en) * 1985-09-20 2001-06-06 Btg International Limited Magnetic field screens

Also Published As

Publication number Publication date
US4737716B1 (ko) 1989-01-24
DE3752332D1 (de) 2001-07-05
KR870007686A (ko) 1987-09-21
IL80813A (en) 1991-11-21
JPS62194842A (ja) 1987-08-27
EP0231879B1 (en) 2001-05-30
EP0749017A1 (en) 1996-12-18
FI95624B (fi) 1995-11-15
FI870009A0 (fi) 1987-01-02
EP0231879A2 (en) 1987-08-12
US4737716A (en) 1988-04-12
JPH07114765B2 (ja) 1995-12-13
FI870009A (fi) 1987-08-07
EP0231879A3 (en) 1987-10-21
IL80813A0 (en) 1987-02-27
DE3752332T2 (de) 2002-04-18
FI95624C (fi) 1996-02-26

Similar Documents

Publication Publication Date Title
KR900000844B1 (ko) 핵자기 공명 영상용 차폐 경도 코일
US4926125A (en) Surface gradient assembly for high speed nuclear magnetic resonance imaging
US5378989A (en) Open gradient coils for magnetic resonance imaging
US4733189A (en) Magnetic resonance imaging systems
EP0084946B1 (en) Apparatus for generating or detecting field components in a magnetic resonance system
JP2584005B2 (ja) 磁場勾配コイル装置およびそれを用いる磁気共鳴イメージングシステム
US5177442A (en) Transverse gradient coils for imaging the head
EP1061379A3 (en) Gradient coils
KR910001860B1 (ko) 핵자기 공명 영상화용 횡 그레디언트 자계코일구성 및 그 제조방법
KR870002447A (ko) 자기공진 영상장치
EP0307981A1 (en) Magnetic resonance apparatus comprising integrated gradient r.f. coils
US5083085A (en) Compact shielded gradient coil system
JPH07299048A (ja) 磁気共鳴撮像装置
JPH08238230A (ja) 磁気共鳴装置および方法
US4728895A (en) System of coils for producing additional fields for obtaining polarization fields with constant gradients in a magnet having polarization pole pieces for image production by nuclear magnetic resonance
JPS6073473A (ja) Rfスペクトロメ−タにおける磁化率の摂動を幾何学的に補償する装置
EP0620922A1 (en) Local transverse gradient coil
US4906934A (en) Shim coil for nuclear magnetic resonance imaging apparatus
EP0430104A2 (en) Magnetic resonance imaging apparatus
US6812703B2 (en) Radio frequency NMR resonator with split axial shields
Rath et al. Opposed coil magnet calculations for large sample and unilateral nuclear‐magnetic resonance
JP3836196B2 (ja) Mri用rfコイル
JPH03254733A (ja) 磁気共鳴イメージング装置
Renhart et al. Investigation of the resonance behavior of a MR-birdcage applying a 3-D-FEM code
US6661230B1 (en) Microstructured RF flux return yoke for increased sensitivity in NMR experiments

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060210

Year of fee payment: 17

EXPY Expiration of term