KR890002034B1 - Producing method of high tension steel - Google Patents

Producing method of high tension steel Download PDF

Info

Publication number
KR890002034B1
KR890002034B1 KR1019850006822A KR850006822A KR890002034B1 KR 890002034 B1 KR890002034 B1 KR 890002034B1 KR 1019850006822 A KR1019850006822 A KR 1019850006822A KR 850006822 A KR850006822 A KR 850006822A KR 890002034 B1 KR890002034 B1 KR 890002034B1
Authority
KR
South Korea
Prior art keywords
steel
welding
tin
toughness
heat input
Prior art date
Application number
KR1019850006822A
Other languages
Korean (ko)
Other versions
KR870003211A (en
Inventor
방극수
이종봉
소문섭
Original Assignee
포항종합제철 주식회사
정명식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 정명식 filed Critical 포항종합제철 주식회사
Priority to KR1019850006822A priority Critical patent/KR890002034B1/en
Publication of KR870003211A publication Critical patent/KR870003211A/en
Application granted granted Critical
Publication of KR890002034B1 publication Critical patent/KR890002034B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

High tension steel with 50 kg/mm2 grade tensile strength is manufactured by hot rolling the steel slab, which consists of 0.05- 0.20 wt.% C, 0.20-0.50 wt.% Si, 1.0-1.6 wt.% Mn, 0.010-0.025 wt.% P, 0.002-0.01 wt.% S, 0.015-0.050 wt.% V, 0.010-0.020 wt.% Ti, 0.0005- 0.0050 wt.% Ca, 0.01-0.080 wt.% Al, 0.0030-0.0070 wt.% N and balance Fe, on condition of a rolling temperature lower than 900 deg.C, total reduction rate more than 50% and finishing rolling temperature lower than 800 deg.C.

Description

인장강도 50kg/mm2급 비조질고장력강의 제조방법Manufacturing method of 50kg / mm2 grade non-tensionable high tensile strength steel

제1도는 용접입열량 178KJ/cm의 단층용접본드부 상당의 재현 열사이클 곡선도.1 is a regenerated thermal cycle curve diagram corresponding to a single layer welding bond portion having a welding heat input amount of 178 KJ / cm.

제2도는 용접입열량 190KJ/cm의 일렉트로 가스용접의 용접조건.2 shows welding conditions for electrogas welding with a welding heat input of 190 KJ / cm.

제3도는 모재에 있어서 압연방향 및 암연직각방향의 2mm브이샤피천이곡선.3 is a 2 mm V-shape transition curve in the rolling direction and the dark vertical direction in the base material.

본 발며은 비조질고장력강의 제조방법보다 상세하게는, 대입열 용접특성이 우수하고 충격인성이방성이 없는 인장강도 50kg/㎟급 비조질고장력강의 제조방법에 관한 것이다.More specifically, the present invention relates to a method of manufacturing a non-coarse high tensile steel having a tensile strength of 50kg / mm2, which is superior in heat input welding characteristics and has no impact toughness.

최근 공업기술의 진보와 함께 선박, 원유탱크등의 강구조물은 점점 대형화되어가고 있으며 이들 구조물의 용접가공시 고능률시공을 목적으로 강판의 전두께를 단층으로 용접하는 대입열자동용접법(편면 SAW, EGW, ESW 등)의 채택이 점점 증대하고 있다.With recent advances in industrial technology, steel structures such as ships and crude oil tanks are becoming larger and larger, and high-temperature heat welding methods for welding the entire thickness of steel sheets in a single layer for the purpose of high efficiency construction during welding processing of these structures (one-sided SAW, EGW). Adoption, ESW, etc.) is increasing.

그러나, 종래의 고장력강판에 대입열 용접을 적용하면 용접열 영향부, 특히 본드부의 인성이 저하하여 구조물의 안전상 문제점이 발생된다. 이것은 과도한 용접입열량으로 인하여 본드부의 오스테나이트 결정립이 극히 조대화하고 용접후의 냉각속도가 늦어 조직이 취약한 중간단계조직으로 되기 때문이다.However, when the high heat input welding is applied to a conventional high tensile steel sheet, the toughness of the weld heat affecting part, in particular, the bond part is reduced, resulting in a safety problem of the structure. This is because the austenite grains in the bond portion become extremely coarse due to excessive heat input of the weld, and the cooling rate after welding is low, resulting in an intermediate structure having a weak structure.

따라서 본드부 인성확보를 위하여 종래는 용접부냉각속도의 제한, 즉 용접입열량을 제한하여 왔으나 용접시공의 고능률화의 면으로부터 대입열 용접을 행하여도 본드부 인성이 저하하지않는 대입열 용접용강의 개발이 시급히 요청되어왔다.Therefore, in order to secure bond toughness, development of large heat input welding steel that has limited the welding cooling rate, that is, the amount of heat input for welding, does not deteriorate the bond part toughness even if the heat input welding is performed from the aspect of high efficiency of welding construction. This has been urgently requested.

지금까지 공지된 기술을 보면 대입열 용접용강의 기본적은 제조사상은고온에서도 안정한 석출물을 이용하여 오스테나이트결정립의 성장을 억제시키며 동시에 냉각시 이들 석출물들을 페라이트핵생성장소로 하여 페라이트 변태를 촉진시켜 조직을 취약한 중간단계 조직대신 페라이트 +퍼얼라이트조직으로 전환하는 것이다.According to the known technology, the basic manufacturer of high heat input welding steel suppresses the growth of austenite grains by using stable precipitates even at high temperature, and at the same time, these precipitates are used as ferrite nucleus growth plant to promote the ferrite transformation by cooling. Instead of vulnerable mid-level tissues, they are switching to ferrite + pearlite tissues.

이와같은 대입열 용접용강에 대하여 현재 Tin, BN등을 이용하고 압연조건으로는 압연된 상태로 소둔 혹은 소입-소려등의 처리를 하고 있으나, 이 경우에는 용접시 용접본드부가 1350℃ 이상의 극히 고온으로 가열되기 때문에 Tin, BN등의 안정한 질화물이 일부 용해되면서 그 성능을 잃게되므로, 우수하고 안정된 대입역 용접특성을 얻을 수 없는 단점이 있게 된다.For such high heat input welding steels, Tin, BN, etc. are currently used, and in the rolling condition, annealing or quenching is performed in a rolled state, but in this case, the welding bond part is extremely hot at 1350 ° C or higher. Since it loses its performance due to partial dissolution of stable nitrides such as Tin and BN due to heating, there is a disadvantage in that it is not possible to obtain excellent and stable high-input welding properties.

따라서, 본 발명은 V, Ti, Ca, Al 및 N의 성분 및 열간압연조건을 적절히 제어하므로서, Tin, BN등의 질화물이외에 고온에서도 용해되지 않는 보다 안정한 석출물을 형성하고, 충격인성이방성에 악영향을 주는 MnS의 양을 감소시킴으로써 대입역 용접 특성이 우수하며 충격인성이방성이 없는 인장강도 50kg/㎟급 비조질고장력강을 제조하고자 하는 것이다.Accordingly, the present invention forms a more stable precipitate that does not dissolve even at high temperatures in addition to nitrides such as Tin and BN by adversely affecting the components of V, Ti, Ca, Al and N and hot rolling conditions, and adversely affects impact toughness. The main purpose is to produce 50kg / mm2 non-tensioned high tensile strength steel with excellent high-intensity welding characteristics and no impact toughness by reducing the amount of MnS.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 인장강도 50kg/㎟급 비조질고장력강을 제조하는 방법에 있어서, 중량 %로 V : 0.015-0.052%, Ti : 0.010-0.020%, Ca : 0.0005-0.0050%, Al : 0.01-0.080% 및 N : 0.0030-0.0070%을 함유하는 고장력강의 슬라브를 900℃이하의 열간압연온도에서 50%이상의 누적압하율을 갖고 800℃ 이하의 마무리온도로 열간압연하는 인장강도 50kg/㎟급 비조질고장력강을 제조방법에 관한 것이다.The present invention is a method for producing a tensile strength 50kg / mm-class non-tensile high strength steel, the weight% V: 0.015-0.052%, Ti: 0.010-0.020%, Ca: 0.0005-0.0050%, Al: 0.01-0.080% and N: Slab of high tensile strength steel containing 0.0030-0.0070% with 50% cumulative reduction rate at hot rolling temperature below 900 ℃ and hot rolling at finishing temperature below 800 ℃ It is about a method.

통상, 인장강도 50kg/㎟급 비조질고장력강은 중량 %로 C : 0.05-0.20%, Si : 0.20-0.50%, Mn : 1.0-1.6%, P : 0.010-0.025%, 및 S : 0.002-0.01%를 기본적으로 포함하고 있는데, 본 발명은 V, Ti, Ca, Al 및 N을 적절하게 첨가하는 것으로서 이들 각 성분의 수치한정이유에 대하여 설명하면 다음과 같다.In general, the tensile strength of 50kg / mm2 non-coarse high tensile steel is C: 0.05-0.20%, Si: 0.20-0.50%, Mn: 1.0-1.6%, P: 0.010-0.025%, and S: 0.002-0.01% Although the present invention basically includes, V, Ti, Ca, Al and N as appropriately described as to explain the reason for numerical limitation of each of these components as follows.

상기 V은 제어압연을 전체로 하는 본 발명에 있어서 필요 불가결의 원소로서 제어압연에 의한 세립화효과를 얻기 위하여 취소 0.015중량%(이하, "%"라 칭함) 이상의 첨가가 필요하며 0.05%를 초과하면 용접경화성이 증가하기때문에 0.015-0.052%로 한정하는 것이 바람직하다.V is an indispensable element in the present invention with controlled rolling as a whole, and in order to obtain a finer effect by controlled rolling, at least 0.015% by weight (hereinafter referred to as "%") is required to be added, and exceeds 0.05%. If it is lower in weld hardenability, it is preferable to limit it to 0.015-0.052%.

상기 Ti는 강중에 TiN을 설출시켜 용접가열시에 오스테나이트결정립의 성장을 억제시키기때문에 미세한 TiN을 가능한한 많이 분산시키는 것이 필요한데 미세 TiN의 석출량을 확보하기 위해서는적어도 0.010%이상의 첨가가 필요하고 0.020%를 초과하면 조대한 TiN이 석출하여 인성을 해치기때문에 성분범위를 0010-0.020%로 한정하는 것이 바람직하다.Since Ti inhibits the growth of austenite grains in welding by heating TiN in steel, it is necessary to disperse the fine TiN as much as possible.Addition of at least 0.010% is required to secure the deposition amount of fine TiN. If it exceeds%, coarse TiN precipitates and damages toughness, so it is preferable to limit the component range to 0010-0.020%.

상기 Ca는 강중에 CaO나 CaS등의 고온에서도 극히 안정한 화합물을 만들어 오스테나이트결정립성장을 억제시킴과 동시에 냉각시 이들 미세개재물을 핵생성장소로하여 페라이트변태를 촉진시키며, 특히 MnS 개재물대신 형성된 CaS 기재물은 압연가공시 압연방향으로 늘어나지않고 구형의 형상을 유지하여 충격인성의 이방성을 감소 시킨다. 그러나 0.0005%미만에서는 CaO 형성에 의한 용접시 본드부조직미세화의 효과 및 S계 개재물의 개선효과가 없고 0.0005%을 초과하면 개재물의 량이 현저히 증가하여 강판의 인성 및 청정도를 해치기때문에 성분범위를 0.0005-0.0050%로 한정하는 것이 바람직하다.Ca makes extremely stable compounds at high temperatures such as CaO and CaS in steel to inhibit austenite grain growth, and at the same time, promotes ferrite transformation by using these micro-inclusions as nucleation-growing elements during cooling, and in particular, CaS substrates formed instead of MnS inclusions. Water does not stretch in the rolling direction during rolling and maintains a spherical shape to reduce the anisotropy of impact toughness. However, if it is less than 0.0005%, there is no effect of microstructure of bonded part during welding by CaO formation and improvement effect of S-type inclusions. If it exceeds 0.0005%, the amount of inclusions increases significantly, which damages the toughness and cleanliness of the steel sheet. It is preferable to limit to%.

상기 Al은 탈산상 본 발명강과 같은 킬드강에 필수적으로 함유되는 원소로서 0.01%미만에서는 탈산이 불충분하여 모재인성이 저하하기 때문에 하한을 0.01%로 하였으며 0.08%를 초과하면 강의 청정도 및 용접열영향부 인성이 저하하기때문에 상한을 0.08%로 하였다.Al is a deoxidation phase element which is essentially contained in the same steel as the present invention steel, and less than 0.01% deoxidation is insufficient, so the toughness of the base material decreases, so the lower limit is 0.01%. Since the toughness decreased, the upper limit was made 0.08%.

상기 N은 Ti와 결합하여 TiN으로서 석출하여 용접가열시의 오스테나이트결성립성장을 억제하는데 미세한 TiN 석출을 위하여서는 본 발명강의 Ti 성분범위인 0.010-0.020%의 범위에서는 N의 성분범위가 0.0030-0.0070%인 것이 바람직하다.N is combined with Ti to precipitate as TiN to inhibit austenite formation growth during welding heating. For fine TiN deposition, the content of N is 0.0030- in the Ti component range of 0.010-0.020% of the present invention steel. It is preferable that it is 0.0070%.

이하, 열간압연조건에 대하여 설명한다.Hereinafter, the hot rolling conditions will be described.

본 발명의 열간압연은 900℃ 이하에서 누적압하율이 50%이상되도록하는 것으로서 900℃이하에서의 누적압하율이 클수록 페라이트결정립의 미세화가 촉진되어 인성이 향상되기 때문에 그 하한을 50%로 제한한 것이며, 그 상한은 압연기의 부하 및 표면결함발생등에 근거하여 제한된다.In the hot rolling of the present invention, the cumulative reduction rate is 50% or more at 900 ° C. or lower. As the cumulative reduction ratio at 900 ° C. or lower is increased, the fineness of the ferrite grains is promoted and the toughness is improved, so the lower limit thereof is limited to 50%. The upper limit is limited based on the load of the rolling mill and the occurrence of surface defects.

여기서, 누적압하율이라하는 것은 900℃에서 판두께를 to, 마무리압연와료후 즉, 최종제품상태에서의 판두께를 t라고 하였을때 [(to-t)/t]×100(%)로 표시된다.Here, the cumulative reduction ratio is expressed as [(to-t) / t] × 100 (%) when the plate thickness is at 900 ° C. and the plate thickness in the final product state is t after finishing rolled paint. do.

또한, 마무리온도는 될 수 있는 한 낮은쪽이 페라이트결정립이 세립화되어 저온인성이 향상되므로 상한을 800℃로 하였으며, 그 하한은 열간압연이 페라이트와 오스테나이트 2상영역에서 행하여지도록 한정되는 것이다.In addition, the finishing temperature is as low as possible, the ferrite grains are fine grained to improve the low-temperature toughness, so the upper limit is set to 800 ℃, the lower limit is limited so that hot rolling is carried out in the ferrite and austenite two-phase region.

상기와같이 제조되는 본 발명의 강은 고온영역(1,350℃이상)에서 일부 용해되어버리는 TiN 석출물의 보완인자로서 Ca첨가에 의한 Ca계 개재물을 이용하는 것으로서 용강중에 CaC2또는 Ca-Si로서 Ca를 첨가하면 첨가된 Ca는 먼저 용강의 탈산, 슬랙환원에 사용되어 Ca를 생성시키고, Ca기포(용강온도에서 Ca중기압은 대기압보다 높다. 1600℃에서 Pca=1.8tm)가 용강중을 부상하는 과정에서 탈황반응이 일어나 최종적으로 CaO, CaS 개재물을 형성한다.The steel of the present invention manufactured as described above uses Ca-based inclusions by adding Ca as a complement factor of TiN precipitates partially dissolved in the high temperature region (1,350 ° C or higher), and Ca is added as CaC 2 or Ca-Si in molten steel. If Ca is added first, it is used for deoxidation and slack reduction of molten steel to produce Ca, and Ca bubble (Ca medium atmospheric pressure is higher than atmospheric pressure at molten steel. Pca = 1.8tm at 1600 ° C) is desulfurized while floating The reaction takes place and finally forms CaO and CaS inclusions.

이 개재물들은 열간압연시 늘어나지 않고 구형으로 잔존하며 크기는 10μ 이하로 미세하다.These inclusions do not elongate during hot rolling and remain spherical and fine in size up to 10μ.

이러한 CaO 개재물의 고온에서의 안정성은 표준생성자유에너지로서 설명되어질 수 있다.The stability at high temperatures of these CaO inclusions can be described as standard free energy.

즉, 1000℃-1500℃ 사이에서의 표준생성자유에너지는 TiN의 경우 -51--41Kcal/mol인데 반하여 CaO는 -120--106Kcal/mol로서 CaO가 TiN에 비하여 2.4-2.6배정도 작은 값을 가짐을 알 수 있다.In other words, standard free energy between 1000 ℃ and 1500 ℃ is -51--41Kcal / mol for TiN, whereas CaO is -120--106Kcal / mol, which is about 2.4-2.6 times smaller than TiN. It can be seen.

따라서, N과 O 및 Ti와 Ca의 활량계수가 각각 서로 같다고 가정하면, CaO의 용해도적=(TiN의 용해도적 2.4-2.6)으로 된다.Therefore, assuming that the N, O and Ti and Ca activity coefficients are the same, the solubility of CaO = (Solubility of TiN 2.4-2.6).

앞서 1350℃에서의 TiN의 용해도적은 10-6정도이기때문에 그 온도에서의 CaO 용해도적은 10-12정도로 극히 작아 고온에서 TiN에 비하여 안정함을 알 수 있다.Since the solubility of TiN at 1350 ° C. is about 10 −6 , the CaO solubility at that temperature is very small at about 10 −12, which is more stable than that of TiN at high temperatures.

따라서, 1350℃ 이상으로 가열되는 용접본드부에서도 CaO는 용해되지 않고 잔존하여 일부 용해되어버리는 TiN을 보완하여 오스테나이트결정립성장을 억제하고 동시에 냉각시 페라이트변태의 핵으로 작용하여 페라이트 변태를 촉진시킨다.Therefore, even in the weld bond portion heated to 1350 ° C. or more, CaO does not dissolve but complements TiN, which partially dissolves, thereby suppressing austenite grain growth and simultaneously acting as a nucleus of ferrite transformation during cooling to promote ferrite transformation.

또한 통상의 강에서 황화물계 개재물은 대부분 MnS로서 존재하며 이 MnS계 개재물은 강판의 압연시 압연방향으로 길게 늘어나 최종적으로 압연직각방향의 충격인성을 현저하게 저하시켜 충격인성이방성을 나타나게 하는 가장 큰 요인으로 작용한다.In general steel, sulfide inclusions are mostly present as MnS, and the MnS inclusions are elongated in the rolling direction when the steel sheet is rolled, and finally the impact toughness in the perpendicular direction of rolling is significantly lowered, resulting in the impact toughness. Acts as.

따라서, 본 발명강의 충격인성이방성의 개선은 Ca 첨가로 MnS 개재물을 CaS 개재물로 변환시켜 MnS의 개재물을 저감시킴으로서 달성된다.Therefore, improvement of the impact toughness anisotropy of the steel of the present invention is achieved by converting the MnS inclusions into CaS inclusions by adding Ca, thereby reducing the inclusions of MnS.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

하기 표 1의 조성을 강종을 하기 표 2의 열간압연조건으로 열간압연하고 기계적특성을 측정하여 하기 표 2에 나타내었다.The composition of Table 1 is hot-rolled under the hot rolling conditions of Table 2 and measured mechanical properties are shown in Table 2 below.

[표 1]TABLE 1

Figure kpo00001
Figure kpo00001

[표 2]TABLE 2

Figure kpo00002
Figure kpo00002

상기에서, 각 강재의 용접부충력인성시험은 모재의 충격인성을 측정한 후, 발명재 및 비교재 1, 2, 3의 경우에는, 용접열사이클재현장치를 이용하여 용접본드부에 상당하는 1350℃로 급속가열한 후 용접입열량 178KJ/cm에 상당하는 냉각속도로 냉각시켜 대입열용접을 재현하고 비교재 4, 5의 경우에는 일렉트로가스용접에 의하여 용접입열량 190KJ/cm로 실제 대입열 용접을 행한 다음, 각각의 강제로부터 2mm브이샤르피 충격시험편을 제작하여 충격시험을 실시하여 얻은 것이다.In the above, the welding part impact toughness test of each steel material is measured after the impact toughness of the base material, in the case of the invention material and comparative materials 1, 2, 3, 1350 ℃ corresponding to the weld bond part by using the welding heat cycle reproducing apparatus After rapid heating, it cools at the cooling rate equivalent to 178KJ / cm of welding heat input, and reproduces the heat input welding.In the case of comparative materials 4 and 5, the actual heat input welding is performed with the welding heat input of 190KJ / cm by electrogas welding. After the test, a 2 mm Vyscharpy impact specimen was produced from each steel and subjected to an impact test.

발명재 및 비교재 1, 2, 3에 부여한 용접열사이클 및 비교재 4, 5에 적용한 용접조건이 제1도 및 제2도에 각각 나타나있다.The welding heat cycles applied to the invention and the comparative materials 1, 2 and 3 and the welding conditions applied to the comparative materials 4 and 5 are shown in FIGS. 1 and 2, respectively.

상기 표 2에 나타난 바와같이, 본 발명재는 50kg/㎟ 이상의 인장강도를 가지며, 비교재에 비하여 모재의 충격인성 및 용접부충격 인성이 우수함을 알수있다.As shown in Table 2, the present invention has a tensile strength of 50kg / ㎜ or more, it can be seen that the impact toughness and the weld impact impact toughness of the base material compared to the comparative material.

또한 상기 표 2의 강재중에서 발명재 및 비교재 4, 5의 압연방향 및 압연직각방향의 2mm의 브이샤르피천이곡선을 측정하여 제3도에 나타내었다.In addition, the V Charpy transition curve of 2 mm in the rolling direction and the rolling right direction of the invention and the comparative materials 4 and 5 in the steel of Table 2 was measured and shown in FIG.

제3도에 나타난, 비교재 4 및 5는 커다란 이방성을 나타내고 있는 반면에 본 발명재는 이방성이 거의 없음을 알수있다.Comparative materials 4 and 5 shown in FIG. 3 show great anisotropy, while the present invention has little anisotropy.

상술한 바와같이, 본 발명은 강의 성분 및 열간압연조건을 제어하므로서 인장강도 50kg/㎟ 이상이면서도 대입열 용접 특성이 우수하며 충격인성이방성이 없는 비조질고장력강을 제조할 수 있는 효과를 갖는것이다.As described above, the present invention is to control the composition of the steel and the hot rolling conditions, the tensile strength of 50kg / ㎜ or more, but also has excellent effects of heat input welding characteristics and has the effect of producing non-tensioned high tensile strength steel without impact toughness.

Claims (1)

인장강도 50kg/㎟급 비조질고장력강의 제조방법에 있어서, 중량%로, C : 0.05-0.20%, Si : 0.20-0.50%, Mn : 1.0-1.6%, P : 0.010-0.025% 및 S : 0.002-0.01%을 포함하는 통상의 고장력강에 V : 0.015-0.050%, Ti : 0.010-0.020%, Ca : 0.0005-0.0050%, Al : 0.01-0.080% 및 N : 0.0030-0.0070%을 첨가하여 조성되는 고장력강의 슬라브를 900℃이하의 열간압연온도에서 50%이상의 누적압하율을 갖고 800℃이하의 마무리온도로 열간압연하는 것을 특징으로 인장강도 50kg/㎟급 비조질고장력강의 제조방법.Tensile strength 50kg / mm2 class of non-coarse high tensile steel, in weight%, C: 0.05-0.20%, Si: 0.20-0.50%, Mn: 1.0-1.6%, P: 0.010-0.025% and S: 0.002 High tensile steel formed by adding V: 0.015-0.050%, Ti: 0.010-0.020%, Ca: 0.0005-0.0050%, Al: 0.01-0.080%, and N: 0.0030-0.0070% to a common high tensile steel including -0.01% The slab of the hot rolling temperature of 900 ℃ or less has a cumulative reduction rate of more than 50% and hot rolling to a finishing temperature of 800 ℃ or less, characterized in that the tensile strength 50kg / ㎠ class non-coarse high strength steel manufacturing method.
KR1019850006822A 1985-09-18 1985-09-18 Producing method of high tension steel KR890002034B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019850006822A KR890002034B1 (en) 1985-09-18 1985-09-18 Producing method of high tension steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019850006822A KR890002034B1 (en) 1985-09-18 1985-09-18 Producing method of high tension steel

Publications (2)

Publication Number Publication Date
KR870003211A KR870003211A (en) 1987-04-16
KR890002034B1 true KR890002034B1 (en) 1989-06-08

Family

ID=19242755

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019850006822A KR890002034B1 (en) 1985-09-18 1985-09-18 Producing method of high tension steel

Country Status (1)

Country Link
KR (1) KR890002034B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101253852B1 (en) * 2009-08-04 2013-04-12 주식회사 포스코 Non-heat Treatment Rolled Steel and Drawn Wire Rod Having High Toughness and Method Of Manufacturing The Same

Also Published As

Publication number Publication date
KR870003211A (en) 1987-04-16

Similar Documents

Publication Publication Date Title
US5876521A (en) Ultra high strength, secondary hardening steels with superior toughness and weldability
US5900075A (en) Ultra high strength, secondary hardening steels with superior toughness and weldability
RU2210603C2 (en) Method of production of superstrength weldable steels
CA2295582C (en) Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
EP1025271B1 (en) Ultra-high strength, weldable, essentially boron-free steels wit h superior toughness
JP5085364B2 (en) Manufacturing method of thick high-strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness, and thick high strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness
JP7219882B2 (en) Steel material for pressure vessel and its manufacturing method
CN108342655B (en) Quenched and tempered acid-resistant pipeline steel and manufacturing method thereof
KR20090097167A (en) Proccess for producing thick high-strength steel plate excellent in brittle fracture arrestability and toughness of zone affected by heat in large-heat-input welding and thick high-strength steel plate excellent in brittle fracture arrestability and toughness of zone affected by heat in large-heat-input welding
AU8676998A (en) Ultra-high strength, weldable, boron-containing steels with superior toughness
KR0142274B1 (en) Sheet steel excellent in flanging capability and process for producing the same
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
JPH11140580A (en) Continuously cast slab for high strength steel excellent in toughness at low temperature, its production, and high strength steel excellent in toughness at low temperature
KR100256350B1 (en) The manufacturing method for yield strength 50kgf/mm2 steel with excellent anti hydrogen cracking and stress corrosion cracking property
JPH0453929B2 (en)
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
KR101758481B1 (en) Steel sheet for pipe having excellent corrosion resistance and low-temperature toughness, and method for manufacturing the same
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
KR890002034B1 (en) Producing method of high tension steel
JPS647138B2 (en)
JPS58210125A (en) Production of strong and tough high tensile steel plate by direct hardening method
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JPH05295434A (en) Production of high tensile strength steel plate excellent in hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance, and toughness at low temperature
JPH03236420A (en) Production of steel plate excellent in hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance, and toughness at low temperature
KR100325714B1 (en) A bainitic steel with good low temperature toughness and a method of manufacturing thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19971229

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee