KR880002060B1 - A magnetron - Google Patents

A magnetron Download PDF

Info

Publication number
KR880002060B1
KR880002060B1 KR1019850009458A KR850009458A KR880002060B1 KR 880002060 B1 KR880002060 B1 KR 880002060B1 KR 1019850009458 A KR1019850009458 A KR 1019850009458A KR 850009458 A KR850009458 A KR 850009458A KR 880002060 B1 KR880002060 B1 KR 880002060B1
Authority
KR
South Korea
Prior art keywords
magnetron
filament
vane
present
electric field
Prior art date
Application number
KR1019850009458A
Other languages
Korean (ko)
Other versions
KR870006615A (en
Inventor
시석곤
Original Assignee
주식회사 금성사
허신구
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 금성사, 허신구 filed Critical 주식회사 금성사
Priority to KR1019850009458A priority Critical patent/KR880002060B1/en
Publication of KR870006615A publication Critical patent/KR870006615A/en
Application granted granted Critical
Publication of KR880002060B1 publication Critical patent/KR880002060B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/50Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field

Landscapes

  • Microwave Tubes (AREA)

Abstract

The magnetron for improving efficiency and the oscillation characteristic by adjusting gap between vane and filament satisfies following equations. 2 ra/N and 0.95 X 2 ra/N <= ra-rf <= 1.05 X 2 ra/ N where ra is a distance from the center point of the magnetron to the inner end of the vane, rf is a distance from the center point of the magnetron to the outer end of the filament, and N is the number of vanes of the magnetron.

Description

마그네트론magnetron

제 1 도는 마그네트론의 구성을 보인 횡단면도.1 is a cross-sectional view showing the configuration of the magnetron.

제 2 도는 마그네트론의 구성을 보인 부분 절결사시도 및 본 발명의 계산에 사용한 좌표계.2 is a partial cutaway perspective view showing the structure of a magnetron and a coordinate system used in the calculation of the present invention.

제 3 도는 본 발명에서 구한 마그네트론 내부의 등 포텐셜 분포를 보인 단면도.3 is a cross-sectional view showing the equipotential distribution in the magnetron obtained in the present invention.

제 4 도는 본 발명에서 구한 마그네트론 내부의 AC 전기장분포.4 is an AC electric field distribution inside a magnetron obtained in the present invention.

본 발명은 마그네트론에 관한 것으로, 특히 전자레인지용 마그네트론에서 에너지 변환이 이루어지는 베인의 단부와 필라멘트 사이의 작용공간 간격을 정확하게 설정하여 발진특성과 효율을 향상할 수 있게한 마그네트론에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetron. More particularly, the present invention relates to a magnetron in which an oscillation characteristic and efficiency can be improved by accurately setting a working space gap between an end of a vane and a filament in which energy conversion is performed in a microwave oven.

일반적으로 전기적 포텐셜 에너지(Potential Energy)를 고주파 에너지로 변환시키는 장치로서 전자레인지등에 사용되는 마그네트론에 있어서 AC 전기장 분포는 베인의 단부와 필라멘트 사이의 간격에 의하여 종속적으로 결정되며 필라멘트로 부터 방출되는 열전자는 이러한 AC 전기장에 동기(Synchronize)되어 제동복사 형식으로 고주파 에너지를 방출하게 되므로 마그네트론에 있어서 베인의 단부와 필라멘트 사이의 공간, 즉 에너지 변환이 이루어지는 작용공간의 설계는 매우 중요하다. 그러나 종래에 사용되는 마그네트론을 AC 전기장 분포가 필라멘트로 부터 방출되는 열전자를 동기시키에 적합한 분포를 이루지 못하여 고효율의 안정된 발진을 기하지 못하는 문제점이 있었다.In general, in the magnetron used in microwave ovens as a device that converts electrical potential energy into high frequency energy, the AC electric field distribution is dependent on the gap between the end of the vane and the filament, and the hot electrons emitted from the filament Since the high frequency energy is emitted in the form of braking radiation by synchronizing with the AC electric field, it is very important to design the space between the end of the vane and the filament, that is, the working space where the energy conversion takes place. However, there is a problem that the magnetron used in the prior art does not achieve a suitable distribution for synchronizing the hot electrons emitted from the filament with the AC electric field distribution, and thus does not provide stable oscillation with high efficiency.

본 발명은 이와 같은 종래기술의 문제점을 해소하기 위하여 창안한 것으로 필라멘트의 외경과 베인의 단부가 이루는 가상원의 치수를 변경하여 우수한 발진특성과 효율을 발휘하는 마그네트론을 제공하고자 함에 목적이 있다.The present invention has been made to solve the problems of the prior art, and an object of the present invention is to provide a magnetron exhibiting excellent oscillation characteristics and efficiency by changing the dimensions of the virtual circle formed by the outer diameter of the filament and the end of the vane.

이와같은 본 발명은 필라멘트의 외경과 베인단부의 가상원의 치수를 변경하면서 마그네트론 작용공간내에서의 등 포텐셜선 및 전기력선을 컴퓨터 시물레이션(Computer Simulation)하여 AC 전기장 분포를 얻는 방법으로 필라멘트에서 방출된 전자들이 주변의 AC 전기장과 가장 적합하게 동기하는 조건을 구할 수 있었다. 또한 본 발명에서는 작용공간내에서의 등 포텐셜선(Equipotential line)분포를 구하기 위하여 지배방정식As described above, the present invention is a method of computer simulation of equipotential lines and electric force lines in a magnetron working space while changing the outer diameter of the filament and the dimensions of the virtual circle of the vane end to obtain an AC electric field distribution. Conditions were found to best synchronize with the surrounding AC electric field. In addition, in the present invention, the governing equation to obtain the equipotential line distribution in the working space.

V2V=

Figure kpo00001
……………………………………………………(1)V 2 V =
Figure kpo00001
… … … … … … … … … … … … … … … … … … … … (One)

여기서, ρ : 전하밀도, ε : 유전율, V2: 라플라시안, V : 포텐셜을 유한요소법 적용에 의하여 해를 구하였으며, 필라멘트로 부터 방출된 열전자가 주변의 AC 전기장과 동기를 잘 이루는지의 여부를 알기 위하여 운동 방정식Here, ρ: charge density, ε: permittivity, V 2 : Laplacian, V: potential were solved by applying the finite element method, and it is understood whether the hot electrons emitted from the filament are well synchronized with the surrounding AC electric field. Motion equation

m

Figure kpo00002
-mr(
Figure kpo00003
)2=e
Figure kpo00004
-eBr
Figure kpo00005
…… (2)m
Figure kpo00002
-mr (
Figure kpo00003
) 2 = e
Figure kpo00004
-eBr
Figure kpo00005
… … (2)

m

Figure kpo00006
[r2(
Figure kpo00007
)]e
Figure kpo00008
+eBr
Figure kpo00009
… (3)m
Figure kpo00006
[r 2 (
Figure kpo00007
)] e
Figure kpo00008
+ eBr
Figure kpo00009
… (3)

여기서, m : 전자의 질량, e : 전하량, B : 자기장의 세기, V : 포텐셜을 적용하여 전자의 궤적을 구하였다.Here, the locus of the electrons was obtained by applying m: mass of electrons, e: amount of charge, B: strength of magnetic field, and V: potential.

이하, 본 발명을 첨부한 예시도면에 의하여 보다 상세히 설명하면 다음과 같다.Hereinafter, described in more detail by the accompanying drawings of the present invention.

마그네트론 에노드는 제 1 도와 제 2 도에 도시된 바와같이 다수개의 베인(1)을 가지며 그 중심에는 나선형 필라멘트(2)가 착설되어 있고, 반경방향으로는 약 4.0KV의 전압이 인가되어 축방향(Z)으로는 약 1700 가우스의 자기장이 인가되고 있다. 한편, 본 발명에서 등 포텐셜 분포를 컴퓨터 시뮬레이션할때 마그네트론이 각 방향(Θ)에 대해 완전대칭인 관계로 제 3 도와 같이 전체 작용공간의 1/6만 계산하였다.The magnetron anode has a plurality of vanes 1 as shown in Figs. 1 and 2, and a spiral filament 2 is installed at the center thereof, and a voltage of about 4.0 KV is applied in the radial direction so that the magnetron anode As Z), a magnetic field of about 1700 gauss is applied. On the other hand, in the present invention, when the computer simulation of the equipotential distribution, the magnetron is completely symmetric about each direction (Θ) so that only one sixth of the total working space is calculated as in the third degree.

도면에 도시한 바와 같이 베인(1)의 내측단부를 연결한 가상적인 원의 반경을 ra, 필라멘트(2)의 외반경을 rf라 하면 베인(1)간의 분리간격은 베인(1)의 수가 n이라하면,As shown in the drawing, if the radius of the imaginary circle connecting the inner end of the vane 1 is r a and the outer radius of the filament 2 is r f , the separation interval between the vanes 1 is If the number is n,

Figure kpo00010
Figure kpo00010

이며, 베인(1)의 내측단과 필라멘트(2)의 외경간의 간격은 (ra-rf)가 된다. 본 발명에서는 (rz-rf)를 변화 시키면서 제 3 도에 도시한 등 포텐셜선(3)과 제 4 도의 전기력선(4) 분포를 구하였고, 제 2 도와 같은 원통형 좌표계(r,Θ,Z)를 사용하여 운동방정식(2)(3)으로 부터 전자의 궤도(5)를 추적하였으며(제 4 도 참조), 그 결과로서 베인(1)의 단부와 필라멘트(2)의 외반경간의 간격(ra-rf)이 베인(1)간의 분리간격(

Figure kpo00011
)과 거의 동일할때, 즉 다음식The interval between the inner end of the vane 1 and the outer diameter of the filament 2 is (r a -r f ). In the present invention, the distribution of the equipotential lines 3 and the electric force lines 4 of FIG. 4 is obtained by varying (r z -r f ), and the cylindrical coordinate system r, Θ, Z as shown in FIG. T tracks the electron trajectory (5) from the equation (2) (3) (see Figure 4), and as a result the distance between the end of the vane (1) and the outer radius of the filament (2) r a -r f is the separation gap between vanes (1)
Figure kpo00011
Nearly equal to), i.e.

ra-rf

Figure kpo00012
r a -r f
Figure kpo00012

의 조건을 만족하는 다음의 값이었을 때When the following values satisfy the condition

Figure kpo00013
Figure kpo00013

필라멘트(2)로 부터 방출된 열전자가 주변의 AC 전기장분포(4)와 가장 적합하게 동기됨을 알 수 있었다.It can be seen that the hot electrons emitted from the filament 2 are most suitably synchronized with the surrounding AC electric field distribution 4.

따라서, 이와같은 결과를 적용하여Therefore, applying these results

0.95(

Figure kpo00014
)
Figure kpo00015
ra-rf
Figure kpo00016
1.05(
Figure kpo00017
)의 조건을 만족하는 마그네트론을 제작한 결과 그 효율이 종래기술에 비하여 1-2%이상 우수하며 동작특성이 우수한 것으로 밝혀졌다.0.95 (
Figure kpo00014
)
Figure kpo00015
r a -r f
Figure kpo00016
1.05 (
Figure kpo00017
As a result of manufacturing the magnetron satisfying the condition of), the efficiency was found to be 1-2% or more superior to the prior art, and the operation characteristics were excellent.

Claims (1)

나선형 필라멘트(2)의 주위에 N개의 베인(1)이 구비된 에노드로 구성되는 마그네트론에 있어서, 베인(1)의 내측단부를 연결한 가상적 원의 반경을 ra, 필라멘트(2)의 외반경을 rf라 할때 필라멘트(2)와 베인(1)의 간격(ra-rf)이 베인(1)간의 분리간격
Figure kpo00018
과, 다음관계 0.95(
Figure kpo00019
)
Figure kpo00020
ra-rf
Figure kpo00021
1.05(
Figure kpo00022
)를 만족하는 것을 특징으로 하는 전자레인지용 마그네트론.
In a magnetron composed of an anode provided with N vanes 1 around the helical filament 2, the radius of the imaginary circle connecting the inner end of the vane 1 is r a , the outer radius of the filament 2. separation distance between the r f La when the filament 2 and the vane spacing (1) (r a -r f) the vane (1)
Figure kpo00018
And the next relationship 0.95 (
Figure kpo00019
)
Figure kpo00020
r a -r f
Figure kpo00021
1.05 (
Figure kpo00022
The magnetron for a microwave oven characterized by the above.
KR1019850009458A 1985-12-16 1985-12-16 A magnetron KR880002060B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019850009458A KR880002060B1 (en) 1985-12-16 1985-12-16 A magnetron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019850009458A KR880002060B1 (en) 1985-12-16 1985-12-16 A magnetron

Publications (2)

Publication Number Publication Date
KR870006615A KR870006615A (en) 1987-07-13
KR880002060B1 true KR880002060B1 (en) 1988-10-14

Family

ID=19244175

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019850009458A KR880002060B1 (en) 1985-12-16 1985-12-16 A magnetron

Country Status (1)

Country Link
KR (1) KR880002060B1 (en)

Also Published As

Publication number Publication date
KR870006615A (en) 1987-07-13

Similar Documents

Publication Publication Date Title
US4032810A (en) Electrostatic accelerators
Vlieks et al. Breakdown phenomena in high-power klystrons
KR100485725B1 (en) Magnetron
US5136625A (en) Metal center x-ray tube
KR880002060B1 (en) A magnetron
US5159241A (en) Single body relativistic magnetron
GB1475268A (en) High power helix travelling wave tubes
Xun et al. A high-vacuum high-electric-field pulsed power interface based on a ceramic insulator
US4200821A (en) Relativistic electron beam crossed-field device
US2916664A (en) Electron discharge device
US2523406A (en) Insulated anode for cathode-ray tubes
GB772001A (en) Improvements in or relating to electron discharge devices of the travelling wave type
US3273006A (en) Traveling wave tube having a contoured anode collecting surface
Grow et al. Impedance calculations for travelling wave gyrotrons operating at harmonics of the cyclotron frequency in magnetron-type circuits
JPH0487138A (en) Conductive cooling type multistage collector
CN112582241A (en) Power supply device for grid-control electron gun, electron gun system and power supply method
US2896117A (en) Linear magnetron traveling wave tube
KR100210065B1 (en) Cathode structure of magnetron
US3683235A (en) Electron discharge devices
US3054018A (en) Traveling wave amplifier tube
JP2988764B2 (en) Accelerator tube of DC voltage accelerator
US2668929A (en) Magnetron
GB2045518A (en) Travelling wave tube collectors
JPS58106745A (en) High voltage insulating vacuum enclosure
Qian et al. Two-dimensional analysis of the relativistic parapotential electron flow in a magnetically insulated transmission line oscillator (MILO)

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050929

Year of fee payment: 18

EXPY Expiration of term