KR880000286B1 - Method of producting black plate - Google Patents

Method of producting black plate Download PDF

Info

Publication number
KR880000286B1
KR880000286B1 KR1019840008537A KR840008537A KR880000286B1 KR 880000286 B1 KR880000286 B1 KR 880000286B1 KR 1019840008537 A KR1019840008537 A KR 1019840008537A KR 840008537 A KR840008537 A KR 840008537A KR 880000286 B1 KR880000286 B1 KR 880000286B1
Authority
KR
South Korea
Prior art keywords
annealing
temperature
carbon
less
black plate
Prior art date
Application number
KR1019840008537A
Other languages
Korean (ko)
Other versions
KR860005037A (en
Inventor
전현철
윤정봉
이준정
Original Assignee
포항종합제철 주식회사
고준식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 고준식 filed Critical 포항종합제철 주식회사
Priority to KR1019840008537A priority Critical patent/KR880000286B1/en
Publication of KR860005037A publication Critical patent/KR860005037A/en
Application granted granted Critical
Publication of KR880000286B1 publication Critical patent/KR880000286B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A method for producing soft black plate comprises steps to; (i) eat slab that is obtd. by addn. of Cr(Cr/C=1.5-2) to steel having c:0.03- 0.06%, Mn:below 0.40%, Al:below 0.02%, Si: below 0.06%, P and S:below 0.015% up to 1250 deg.C; (ii) hot-rolling at the temp. (880 deg.C) and to wind at 650-720 deg.C; (iii) coldrolling by pressure fall-off rate of 80-90% and (iv) recrystallize -anneal in the continuous annealing furnace (for hand black plate) at 720-740 deg.C.

Description

연질석도 원판의 제조방법Method for producing soft stone disc

제1도는 C, Mn, Si 함량에 따른 훼라이트 결정립도 번호 변화를 나타낸 그래프.1 is a graph showing the ferrite grain size number change according to the C, Mn, Si content.

제2도는 권취온도 및 소둔온도에 따른 훼라이트 결정립도 변화를 나타낸 그래프.2 is a graph showing the change in ferrite grain size according to the coiling temperature and the annealing temperature.

본 발명은 Si 약탈산강을 연속주조에 의해 제조된 소재를 조질도 T-4 이상의 경질 석도원판 제조용 연속소둔로를 이용하여 조질도 T-3의 연질 석도원판을 제조하는 방법에 관한 것이다. 일반적으로 석도원판(Black plate : BP)에 주석을 도금한 석도강판(tin plate)는 내식성이 우수하고 인체에도 무해하므로 식품·음료 등의 용기로 널리 사용되고 있다. 따라서 BP의 품질특성을 결정하는 요소로서는 가공성을 나타내는 조질도와 내식성 등이 있으며 그 용도에 따라 여러가지 등급의 제품이 만들어 진다. 석도원판을 조절도에 따라 분류하면 디-프 드로잉(deef drawing)용의 T-1급부터 강도를 요구하는 맥주캔(Beer can) 뚜껑용 등의 T-6급 까지가 있다. 조질도 T-3급이하의 연질석도 원판을 제조하기 위해서는 결정립을 성장시키고 결정립내의 고용 탄소 함량을 낮취야하는데 경질 석도 원판용 연속 소둔로에서는 균열후 냉각속도가 빠르기 때문에 고용탄소가 충분히 석출하지 못하므로 일반 저탄소강을 소재로 하여 조질도 T-3의 연질석도 원판제조가 곤란한 반면에, 상자 소둔 방식에서는 냉각속도가 느리므로 냉각시 충분한 양의 고용탄소가 석출되어 연질의 석도원판 제조가 가능하다. 그러나 상자소둔 방식에서는 코일(coil)을 적재한 상태에서 소둔하는 방법으로서 적재상태의 코일의 열용량이 크기 때문에 이들 코일 전체를 소정의 소둔온도에 도달시키기 위하여는 10시간 전후의 소둔시간을 요하며 또, 균열후 냉각도 극히 완만하여 600℃ 전후의 균열온도로 부터 실온까지 냉각시키는데는 2일 이상이 소요되므로 생산성 측면에서 비능률적이다.The present invention relates to a method for producing a soft stone fine plate of the fineness T-3 using a continuous annealing furnace for the production of hard stone discs with a fineness T-4 or more of the raw material produced by continuous casting of the Si attenuated steel. Generally, tin plate plated with tin on black plate (BP) is widely used as a container for food and beverage because it has excellent corrosion resistance and harmless to human body. Therefore, the factors that determine the quality characteristics of BP include processability and corrosion resistance, and various grades of products are made according to their use. Dividing stone discs according to the degree of control ranges from grade T-1 for deef drawing to grade T-6 for beer can lids requiring strength. In order to manufacture a soft stone disc of below T-3 grade, it is necessary to grow crystal grains and lower the dissolved carbon content in the crystal grains.In the continuous annealing furnace for hard stone discs, the cooling rate after cracking is not fast enough to precipitate solid carbon. As a result, it is difficult to manufacture a disc of soft stone having a T-3 of roughness using general low carbon steel as a material. On the other hand, in the case of box annealing, a sufficient cooling carbon is precipitated during cooling, so that a soft stone disc can be manufactured. . However, the box annealing method is an annealing method in which a coil is loaded. Since the heat capacity of the loaded coil is large, an annealing time of about 10 hours is required to reach the predetermined annealing temperature. In addition, the cooling after cracking is extremely slow, and it takes more than 2 days to cool the temperature from the cracking temperature around 600 ℃ to room temperature, which is inefficient in terms of productivity.

따라서, 최근에는 극 저탄소강을 소재로하여 고용탄소를 무해한 범위로 감소시키므로써 소둔후 급냉한 상태에서도 고용탄소에 의한 경도 상승을 방지하는 방법과 종래의 경질 석도원판용 연속소둔로에 급냉대와 과시효대를 설치하여 냉각중에 고용탄소를 충분히 석출시키는 방법 등이 실용화 되고 있다. 그러나 극 저탄소강을 제조하기 위해서는 출강후 부가적으로 RH-OB의 진공탈가스 처리공정을 거쳐야하므로 제조 단가가 상승하게 되고 또한, 일반 저탄소강으로 조질도 T-3의 연질 석도원판을 연속소둔으로 제조할 경우 기존 연속소둔 공정중 과시 효대의 설치를 포함하는 설비개조가 요구되었다.Therefore, in recent years, by using ultra-low carbon steel as a material to reduce the dissolved carbon to a harmless range, the method of preventing hardness increase by solid carbon even in the state of quenching after annealing and in the conventional continuous annealing furnace for hard stone disc A method of installing an overaging zone to sufficiently precipitate solid solution carbon during cooling has been put into practical use. However, in order to manufacture ultra-low carbon steel, it is required to go through vacuum degassing process of RH-OB after tapping, which increases the manufacturing cost. Also, it is a general low-carbon steel. In manufacturing, a retrofit to the plant was required, including the installation of a aging band during the existing continuous annealing process.

따라서, 본 발명은 종래의 상기와 같은 문제점을 해결할 수 있는 방법을 제공코져하는 것으로 일반 저탄소강 소재를 종래의 연속소둔 공정을 이용하여 조질도 T-3의 연질석도 원판을 안정적으로 제조할 수 있다. 본 발명은 C : 0.03-0.06%, Mn : 0.40%이하, Al : 0.02%이하, Si : 0.05%이하, P, S : 0.015%이하의 조성을 갖는 약탈산강에 Cr/C=1.5-2의 Cr을 첨가시켜 제조된 슬라브(slab)를 1250℃이상으로 가열한 후 사상압연온도 880℃에서 열간압연 하여 650-720℃ 범위에서 권취하고, 압하율 80-90%로 냉간압연한후 경질용 석도원판 연속 소둔로에서 가열온도 720-740℃의 고온으로 재결정 소둔시키는 것을 특징으로 한다.Therefore, the present invention is to provide a method that can solve the conventional problems as described above, it is possible to stably produce a soft stone degree of fineness T-3 disc of general low carbon steel material using a conventional continuous annealing process. . In the present invention, Cr / C = 1.5-2 Cr in a weakly oxidized steel having a composition of C: 0.03-0.06%, Mn: 0.40% or less, Al: 0.02% or less, Si: 0.05% or less, P, S: 0.015% or less The slab prepared by the addition of the above was heated to more than 1250 ℃, hot rolled at the finishing rolling temperature of 880 ℃ and wound in the range of 650-720 ℃, cold rolled to 80-90% reduction rate and then hard stone disc It characterized in that the recrystallized annealing at a high temperature of 720-740 ℃ heating temperature in a continuous annealing furnace.

이하 본 발명에 대하여 상술하기로 한다.Hereinafter, the present invention will be described in detail.

제1도는 도표 1의 조건으로 석도원판을 제조한후 훼라이트(Ferrite) 결정립의 크기를 측정하여 나타낸것으로서, 도표 1에서 시험편 A-D, E-H 및 G-I는 각각 결정립도에 미치는 C 및 Mn, Si의 영향을 측정키위한 것이다.Figure 1 shows the measurement of the size of the ferrite grains after manufacturing the stone disk under the conditions of Table 1, the test specimen AD, EH and GI in Table 1 shows the effect of C, Mn, Si on the grain size, respectively It is for measuring key.

Figure kpo00001
Figure kpo00001

본 발명에서 탄소함량을 0.03-0.05%로 한정한 이유는 다음과 같다.The reason for limiting the carbon content to 0.03-0.05% in the present invention is as follows.

즉 C: 0.03%는 일반상취 전로에서 얻어질 수 있는 하한치이며, 탄소량이 0.05%를 초과하면 재결정소둔시 결정립이 미세화되어 경도가 상승하기 때문이다. 제1도에 의하면 탄소량이 증가함에 따라 훼라이트의 결정립도 번호가 커지면서 0.05%이상에서 급격히 증가하고 있음을 알 수 있다.That is, C: 0.03% is a lower limit that can be obtained in a normal deodorizing converter. If the carbon content exceeds 0.05%, the grain size becomes finer upon recrystallization annealing and the hardness increases. According to FIG. 1, it can be seen that as the amount of carbon increases, the grain size of ferrite increases rapidly at 0.05% or more.

한편 Mn의 경우 0.40%까지는 훼라이트의 결정립도 변화가 적으나 그 이상에서는 급격히 증가하고 있음을 보여주고 있다. 따라서 Mn의 함량이 0.40%을 초과하게 되는 것은 바람직하지 않다.In the case of Mn, the grain size change of ferrite is small up to 0.40%, but it is rapidly increasing above that. Therefore, it is not preferable that the content of Mn exceeds 0.40%.

Si 경우에 있어서는 0.05% 이상에서 부터 훼라이트의 결정립도 번호가 큰폭으로 감소하고 있음을 보여주고 있다. 그러나 Si의 함량이 0.06% 이상을 초과하게 되면 고용강화에 의해서 경도가 목표치를 초과하게 된다. 따라서 Si은 0.06% 이하가 바람직하다.In the case of Si, the grain size number of the ferrite decreases significantly from 0.05% or more. However, when the content of Si exceeds 0.06% or more, the hardness exceeds the target due to solid solution strengthening. Therefore, Si is preferably 0.06% or less.

Al은 탄산조정용으로 0.02%를 사용한다.Al uses 0.02% for carbonation adjustment.

한편 석도 원판의 재질을 연화시키기 위해서는 훼라이트 결정립내에 고용되는 탄소를 탄화물로 석출시켜 고용량을 감소시키는 것이 바람직하다. 일반적으로 상소둔 방식에서는 냉각속도가 극히 완만하며 냉각중에 훼라이트에 고용된 탄소가 충분히 탄화물로 석출하지만 냉각속도가 빠른 연속 소둔 과정에서는 고용탄소가 충분히 석출되지 못함으로써 고용강화에 경도 상승이 발생하게 된다.On the other hand, in order to soften the material of the stone master disc, it is preferable to precipitate the carbon dissolved in the ferrite grains as carbide to reduce the high capacity. In general, in the annealing method, the cooling rate is very slow, and the carbon employed in ferrite precipitates sufficiently as carbide during cooling, but in the continuous annealing process with high cooling speed, the solid solution carbon is not sufficiently precipitated, causing a hardness increase in solid solution strengthening. do.

따라서, 본 발명은 연속 소둔시 고용탄소를 충분히 제어할 수 있도록 Cr/C=1.5-2의 범위에서 Cr을 첨가시키는 것으로서, 본 발명에 있어서 Cr은 열연 고온권취 과정에서 세멘타이트(cementite) 중에 고용되어 소둔중 세멘타이트의 분해를 방지하게 된다.Therefore, the present invention is to add Cr in the range of Cr / C = 1.5-2 to sufficiently control the solid solution carbon during continuous annealing, in the present invention, Cr is dissolved in cementite during hot rolling This prevents the decomposition of cementite during annealing.

따라서 본 발명은 크롬첨가량을 소둔과정중에서 고용탄소 함량이 증가되는 것을 억제해주는 효과를 가질정도로 첨가해주는 것으로서 그 첨가량은 탄소함량에 대한 중량비로 1.5-2.0 범위에서 경도치가 조질도 T-3의 범위에 있게된다.Therefore, the present invention is to add the amount of chromium added to have an effect of suppressing the increase in the dissolved carbon content during the annealing process, the addition amount is in the weight ratio to the carbon content in the range of 1.5 to 2.0 hardness value in the range of fineness T-3 Will be.

제2도는 C : 0.04%, Si : 0.05%, Mn : 0.43%, Cr : 0.06%, P 및 S : 0.02% 이하인 시료강을 열연권취온도가 소둔온도에 따른 훼라이트 결정입도 번호를 나타낸 것이다.2 shows ferrite grain size numbers according to the hot-rolled coiling temperature of annealing temperature of sample steel having C: 0.04%, Si: 0.05%, Mn: 0.43%, Cr: 0.06%, P and S: 0.02%.

제2도에 의하면 열연권취 온도가 증가함에 따라 훼라이트 결정립도 번호가 작아지면서 650℃ 부군부터 최저수둔에 도달함을 알 수 있다. 또한, 소둔온도의 중가에 따라서도 훼라이트 결정립도 번호가 작아짐을 보여주고 있다.According to FIG. 2, it can be seen that the ferrite grain size decreases as the hot rolled coil temperature increases, reaching the lowest annealing from the 650 ° C subgroup. In addition, the number of ferrite grain size decreases with increasing the annealing temperature.

한편, 권취온도가 높아지면 열연조직의 훼라이트 입계에서 탄화물 조대화 현상이 발생하게 되는데 조대화된 탄화물을 냉간압연후 고온소둔 과정에서도 쉽게 용해되지 않아 훼하이트내의 고용탄소를 감소시키고 결정립을 성장시키는 효과가 있다. 그러나 열간압연중 권취온도의 상승은 코일 표면에 스케일 생성량을 증가시켜 산세성을 악화시키므로 권취온도의 상한은 통상 조업에서 720℃로 한정한다.On the other hand, when the coiling temperature is increased, carbide coarsening occurs at the ferrite grain boundary of the hot rolled tissue. Coarse carbides are not easily dissolved in the hot annealing process after cold rolling, thereby reducing the dissolved carbon in the ferrite and growing grains. It works. However, the increase in the coiling temperature during hot rolling increases the amount of scale produced on the coil surface, which deteriorates pickling, so the upper limit of the coiling temperature is limited to 720 ° C in normal operation.

다음 소둔조건에 대하여 설명하기로 한다.Next, the annealing condition will be described.

고온권취에 의해 형성된 조대화된 Cr 탄화물은 강력한 탄화물이므로 냉연후 소둔온도 720-750℃ 소둔시간 40-60초 정도의 소둔조건에서도 쉽게 용해되지 않아 A1변태를 일으키지 않고 훼라이트 결정립이 성장하게 된다.Coarse Cr carbide formed by high temperature winding is a strong carbide, so it does not dissolve easily under annealing conditions of annealing temperature of 720-750 ℃ and annealing time of 40-60 seconds after cold rolling, so ferrite grains grow without causing A 1 transformation. .

그러나 750℃ 이상의 온도에서는 강판의 강도가 하락하므로 하트 벅클(heat buckle)이 발생할 위험이 높아지게 되므로 소둔온도 상한은 750℃로 한다.However, at temperatures above 750 ° C., the strength of the steel sheet decreases, thereby increasing the risk of heat buckles. Therefore, the upper limit of the annealing temperature is 750 ° C.

[실시예 1]Example 1

탄소 : 0.04%, 실리콘 : 0.05%, 망간 : 0.34 미량 함유한 강을 스라브로 제조하여 1250℃, 2시간 균열후 열간마무리 압연온도, 권취온도를 변화시켜 열연판을 제조하였으며 이를 냉간압연하여 0.5mm 두께의 냉연판으로 제조하여 연속소둔온도 변화에 따른 제품의 특성을 조사하였다. 이때 경도측정은 록크웰 경도 하중 30kg조건으로 각기 30회 실시한 결과이고 인장시험은 표점거리 50mm의 표준시험편으로 5회 실시한 평균치를 구하였다.A steel sheet containing 0.04% carbon, 0.05% manganese, and 0.34 traces of manganese was made of slab, and hot-rolled sheets were manufactured by changing the hot finish rolling temperature and winding temperature after cracking at 1250 ℃ for 2 hours. The cold rolled sheet was fabricated to investigate the characteristics of the product according to the continuous annealing temperature. At this time, the hardness measurement was performed 30 times each under the rockwell hardness load of 30kg, and the tensile test was carried out five times with a standard test piece having a gauge length of 50mm.

Figure kpo00002
Figure kpo00002

[실시예 2]Example 2

탄소 : 0.05%, 실리콘 : 0.06%, 망간 : 0.26%, 크롬 : 0.08%, 기타 P, S의 불순물을 미량 함유한 강을 실시예 1과 동일한 방법으로 시험한 결과 다음표과 같은 특성을 얻었다.Carbon: 0.05%, silicon: 0.06%, manganese: 0.26%, chromium: 0.08%, and other steels containing a small amount of impurities of P and S were tested in the same manner as in Example 1 to obtain the characteristics shown in the following table.

Figure kpo00003
Figure kpo00003

이상의 실시 결과에서 알 수 있듯이 시험편들의 경도치는 54이하로 조질 압연시 경도상승을 약 3으로 기준하여도 조질도 T-3의 연질 석도 원판의 경도범위 57±3을 충분히 만족하고 있음을 알 수 있다.As can be seen from the above results, it can be seen that the hardness values of the test specimens are 54 or less, satisfactorily satisfying the hardness range 57 ± 3 of the soft stone master plate having a roughness T-3, even when the hardness increase is roughly about 3. .

Claims (1)

C : 0.03-0.06%, Mn : 0.40%이하, Al : 0.02%이하, Si : 0.06%이하, P 및 S : 0.015% 이하의 조성을 갖는 약탈산강에 Cr/C=1.5-2의 Cr을 첨가시켜 제조된 슬라브를 1250℃ 이상으로 가열한 후, 사상압연온도 880℃에서 열간압연하여 650-720℃ 범위에서 권취하고, 압하율 80-90%로 냉간압연한후 경질용 석도원판 연속 소둔로에서 가열온도 720-740℃의 고온으로 재결정 소둔시키는 것을 특징으로 하는 연질석도 원판의 제조방법.Cr / C = 1.5-2 Cr is added to the attenuated steel having a composition of C: 0.03-0.06%, Mn: 0.40% or less, Al: 0.02% or less, Si: 0.06% or less, P and S: 0.015% or less After heating the produced slab to more than 1250 ℃, hot rolling at the finishing rolling temperature of 880 ℃ and wound in the range of 650-720 ℃, cold-rolled to a reduction ratio of 80-90% and then heated in a hard stone master disc continuous annealing furnace A method for producing a soft stone master disc, characterized in that the recrystallization annealing at a high temperature of 720-740 ℃.
KR1019840008537A 1984-12-29 1984-12-29 Method of producting black plate KR880000286B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019840008537A KR880000286B1 (en) 1984-12-29 1984-12-29 Method of producting black plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019840008537A KR880000286B1 (en) 1984-12-29 1984-12-29 Method of producting black plate

Publications (2)

Publication Number Publication Date
KR860005037A KR860005037A (en) 1986-07-16
KR880000286B1 true KR880000286B1 (en) 1988-03-19

Family

ID=19236946

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019840008537A KR880000286B1 (en) 1984-12-29 1984-12-29 Method of producting black plate

Country Status (1)

Country Link
KR (1) KR880000286B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100338701B1 (en) * 1997-11-11 2002-09-19 주식회사 포스코 Method for manufacturing continuous annealing style low carbon steel for container

Also Published As

Publication number Publication date
KR860005037A (en) 1986-07-16

Similar Documents

Publication Publication Date Title
CA2204473C (en) Steel sheet for excellent panel appearance and dent resistance after panel-forming
US3522110A (en) Process for the production of coldrolled steel sheets having excellent press workability
US3607456A (en) Deep drawing steel and method of manufacture
US5314549A (en) High strength and high toughness stainless steel sheet and method for producing thereof
KR880000286B1 (en) Method of producting black plate
JPS5959827A (en) Manufacture of hot-rolled steel plate with superior processability
US3939013A (en) Process for producing rimmed enameling steel
US4551182A (en) Process for producing deep-drawing cold rolled steel sheets and strips
US3709744A (en) Method for producing low carbon steel with exceptionally high drawability
KR850000930B1 (en) Process for the production of ferritic stainless steel sheets or strip
US3335036A (en) Deep drawing steel sheet and method for producing the same
JPS63100134A (en) Manufacture of cold rolled steel sheet for extra deep drawing of thick product
US3814636A (en) Method for production of low carbon steel with high drawability and retarded aging characteristics
JPH0756050B2 (en) Manufacturing method of high strength cold rolled steel sheet for non-aging, high bake hardening and press working by continuous annealing
JPS589816B2 (en) Manufacturing method of non-thermal rolled steel bar
US3404047A (en) Method for producing deep-drawing low-carbon steel sheet
KR20000039137A (en) Method for producing non-aged cold rolled steel sheets with excellent ductility
KR100415666B1 (en) A ferritic stainless steel having improved formability, ridging resistance and a method for manufacturing it
JPH09256064A (en) Production of ferritic stainless steel thin sheet excellent in roping characteristic
KR960007425B1 (en) Making method of soft surface treatment steel sheet
JPS6234803B2 (en)
JPH01191748A (en) Manufacture of cold rolled steel sheet for press forming excellent in material homogeneity in coil
CN109957725B (en) High-carbon wire with uniform internal material and manufacturing method thereof
JPH05171351A (en) Cold rolled steel sheet for deep drawing having non-aging characteristic and excellent in baking hardenability and its production
JPH0617140A (en) Production of cold rolled steel sheet for deep drawing

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19960229

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee