KR850000475B1 - Method of preparing for the glycocyl moranoline derivative - Google Patents

Method of preparing for the glycocyl moranoline derivative Download PDF

Info

Publication number
KR850000475B1
KR850000475B1 KR1019810001798A KR810001798A KR850000475B1 KR 850000475 B1 KR850000475 B1 KR 850000475B1 KR 1019810001798 A KR1019810001798 A KR 1019810001798A KR 810001798 A KR810001798 A KR 810001798A KR 850000475 B1 KR850000475 B1 KR 850000475B1
Authority
KR
South Korea
Prior art keywords
moranoline
reaction
solution
glycosyl
water
Prior art date
Application number
KR1019810001798A
Other languages
Korean (ko)
Other versions
KR830006323A (en
Inventor
마쓰무라신고
히로시 애노모또
요시아끼 아오야기
요오지 에즈래
요시아끼 요시구니
마사히로 야기
노부도시 오지마
Original Assignee
닛본 신야구 가부시기가이샤
모리시따 히로시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛본 신야구 가부시기가이샤, 모리시따 히로시 filed Critical 닛본 신야구 가부시기가이샤
Publication of KR830006323A publication Critical patent/KR830006323A/en
Application granted granted Critical
Publication of KR850000475B1 publication Critical patent/KR850000475B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/02Heterocyclic radicals containing only nitrogen as ring hetero atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

Glucosyl moranoline derivs. of formula (III) are prepd. from moranoline compds. of formula (I), compds. of formula (III) are prepd. from moranoline compds. of formula (I), compds. of formula (III), and α-1,4-glucanglucohydrolase with addn. of an acid cation exchanger. In the formulas, R is H or lower alkyl, and n is 0-20. (III) are used to control blood sugar levels.

Description

글르코시일 모라노린 유도체의 제법Preparation of Glucosyl Moranoline Derivatives

제1도는 메틸 올리고 글르코시일 모라노린에 α-1,4-글르칸글르코 하이드로라아제를 작용했을 때의 각 화합물의 분해%를 나타낸다.FIG. 1 shows the percent decomposition of each compound when α-1,4-glucanglucohydrolase is acted on methyl oligo glycosyl moranoline.

도면에서 -●-는 말토스를, -×-는 4-(α-D-글르코시일)-N-메틸모라노린을, -▲-는 4-(α-D-말트시일)-N-메틸모라노린을, -△-은 4-(α-D-말트트라오시일)-N-메틸모라노린을, -○-는 4-(α-D-만트테트라오 시일)-N-메틸모라노린을 표시한다.In the figure,-●-is maltose, -x- is 4- (α-D-glycosyl) -N-methylmoranoline,-▲-is 4- (α-D-maltyl) -N- Methylmoranoline, -Δ- is 4- (α-D-maltraosyl) -N-methylmoranoline,-○-is 4- (α-D-manttetraoyl) -N-methylmora Mark the target.

제 2도, 제3도는 실시예 2에 있어서의 α-1,4-글르카글르코하이드로라아제를 반응시키는 전후의 고속 액체크로마트그래피(워터즈 사제 ALC/GPC-244형)의 결과이다.FIG. 2 and FIG. 3 show the results of high-speed liquid chromatography (type ALC / GPC-244 manufactured by Waters) before and after reacting α-1,4-glucaglycohydrolase in Example 2. FIG.

M-본더팩-NH2컬럼을 사용하여 아세트니트릴 : 물 70 : 30, 1.5ml/분으로 전개하여, 시마즈(島津)제크마트팩 C-RIA형으로 분석했다. 종축은 시차(示差)굴절률, 횡축은 전개시간, 도면의 수자는 리텐션타임(분), S는 소르벤트, A, B, C, D, E, F, G, H, I는 N-메틸올리고 글르코시일 모라노린을 표시한다.Using an M-Bonderpack-NH 2 column, the mixture was developed with acetonitrile: water: 70: 30, 1.5 ml / min, and analyzed by Shimadzu Zekmartpak C-RIA type. The vertical axis represents the parallax refractive index, the horizontal axis represents the development time, the number in the drawing is the retention time in minutes, S is the sorbent, A, B, C, D, E, F, G, H, and I are N-methyl Oligo Glycosyl Moranoline is indicated.

본 발명은 하기의 일반식(Ⅱ)The present invention is the following general formula (II)

Figure kpo00001
Figure kpo00001

(단(Ⅱ)식중 R은 수소 또는 저급알킬기를 표시한다)으로 표시되는 4-(α-D-글르코시일)-모라노린 및 4-(α-D-글르코시일)-N-저급알킬모라노린의 제조법에 관한 것이다.4- (α-D-glycosyl) -moranoline and 4- (α-D-glycosyl) -N-lower alkyl represented by the formula (wherein R represents hydrogen or a lower alkyl group) It relates to a production method of moranorin.

본 발명자등은 안전하고 유효한 당뇨병치료약의 개발을 목적으로 예의 연구를 진행하여, 일반식(Ⅱ)로서 표시되는 4-(α-D-글르코시일)-모라노린 및 4-(α-D-글르코시일)-N-저급알킬모라노린이 당부하시에 있어서 우수한 혈당상승 억제작용이 있고, 의약, 예를 들면 당뇨병치료약으로서 극히 유용한 물질이라는 것을 발명하게 되어, 특허 출원을 한 것이다. (특원소(特願昭) 54-159417호, 및 특원소 55-76838호) 즉 하기 일반식(Ⅲ)MEANS TO SOLVE THE PROBLEM The present inventors earnestly researched in order to develop a safe and effective diabetes therapeutic drug, and 4-((alpha) -D-glucosyl) -monolarin and 4-((alpha) -D- which are represented as General formula (II). It has been patented to invent that glycosyl) -N-lower alkylmoranoline has an excellent glycemic inhibitory effect upon sugar loading and is extremely useful as a medicine, for example, a diabetes drug. (Special elements 54-159417, and special elements 55-76838), that is, the following general formula (III)

Figure kpo00002
Figure kpo00002

(R은 상기와 같다)로서 표시되는 모라노린 또는 N-저급알킬 모라노린과 사이클로덱스트린 또는 가용성 전분을 함유하는 수용액에 사이클로덱스트린 글리코시일트랭스페라아제(E.C. 2. 4. 1. 19. cyclodextrin glycosyl transferase)를 작용시키면, 하기의 일반식(Ⅰ)Cyclodextrin glycosyltransferase (EC 2. 4. 1. 19. cyclodextrin glycosyl) in an aqueous solution containing a molarin or N-lower alkyl molarin and a cyclodextrin or soluble starch represented by (R is as described above). transferase), the following general formula (I)

Figure kpo00003
Figure kpo00003

(R은 상기와 동일함. n은 0∼20까지의 정수(整數)를 표시한다.)로 표시되는 화합물의 혼합물이 생성된다. 통상 이 반응은 미반응의 모라노린 또는 N-저급알킬 모라노린, n=0의 4-(α-D-글르코시일)-모라노린 또는 4-(α-D-글르코시일)-N-저급알킬모라노린, n=1의 4-(α-D-만트시일)-모라노린 또는 4-(α-D-말트시일)-N-저급알킬모라노린, n=2의 4-(α-D-말트트리오시일)-모라노린 또는 4-(α-D-말트트리오시일)-N-저급알킬모라노린, n=3의 4-(α-D-말트테트라오시일)-모라노린, 또는 4-(α-D-말트테트라오시일)-N-저급알킬모라노린, n=4의 4-(α-D-말트펜타오시일)-모라노린, 또는 4-(α-D-말트펜타오시일)-N-저급알킬모라노린, n=5 이상의 올리고 글르코시일모라노린, 또는 N-저급알킬 올리고글르코시일모라노린의 혼합물로서 얻어진다. 각 성분의 생성비율은 반응조건에 따라 변화하지만 일반적으로 n=0, 1, 2, 3이 많고, n가 더욱 커짐에 따라 적어진다. 의약품으로서 실용에 사용하기 위해서는 n=0의 4-(α-D-글르코시일)-모라노린 또는 4-(α-D-근르코시일)-N-저급알킬모라노린이, 그 활성 및 조제가 용이한 점으로 보아서 가장 유리하다. 이들을 의약으로서 사용하려면 단일품이 아니면 아니됨으로, 혼합물보다 4-(α-D-글르코시일)-모라노린 또는 4-(α-D-클르코시일)-N- 저급알킬모라노린을 세파덱스 등을 사용해서 분자량 분획(分劃)하여, 단리(單線)해야 한다. 따라서 혼합물을 간단한 반응에 의하여 4-(α-D-글르코시일)-모라노린, 또는 4-(α-D-글르코시일)-N-저급알킬모라노린으로 할 수 있으면, 단리조작공정을 대단히 유리하게 할 수 있는 동시에 다른 생성물을 4-(α-D-글르코시일)-모라노린, 또는 4-(α-D-글르코시일)-N-저급알킬모라노린으로 변화시킬 수 있는 것이면 수량(收量)도 현저히 증대하여 생산상 대단히 유리하다. 본 발명자등은 이점에 주목하여, 예의 연구를 한 결과 혼합용액에 α-1,4-글르칸글르코하이드로라아제(E.C. 3.2.1.3.α-1.4-Glucanglucohydrolase)를 작용시키는 대단히 간단한 처리로, n=1 이상의 올리고 글르코시일 모라노린 또는 N-저급알킬올리고 글르코시일 모라노린을 각각 n=0의 4-(α-D-글르코시일)-모라노린, 또는 4-(α-D-글르코시일)-N-저급알킬 모라노린으로 극히 좋은 수량으로 변경시킬 수 있다는 것을 발견하여 본 발명을 완성하게 된 것이다. 본 발명에 사용되는 α-1,4-글르칸글르코 하이드로라아제는 리조프스. 니베우스(Rhizopus niveus), 리조프스. 델레머르Rhizopus Delemar), 아스페르길르스 니거(Aspergillus niger), 아스페르길르스 아워모리(Aspergillus awamori)등의 사상균에 의해서 주로 생산되고, 별명 글르코아밀라아제, 아밀로글르코시다아제(Amyloglucosidase) γ-아밀라이제, 타카. 아밀라아제 B등으로 호칭된다.(R is the same as above. N represents an integer of 0 to 20.) A mixture of compounds is produced. Typically this reaction is unreacted or mono- or lower alkyl moranoline, 4- (α-D-glycosyl) -moranoline or 4- (α-D-glycosyl) -N- of n = 0. Lower alkylmoranorin, n = 1 4- (α-D-mantsilyl) -moranoline or 4- (α-D-maltyl) -N-lower alkylmoranoline, n = 2 4- (α- D-Malttrioxyl) -Moranoline or 4-([alpha] -D-Malttrioxyl) -N-Lower alkylmoranoline, n = 3 4-([alpha] -D-Malttetraoxyyl) -Moranoline, or 4- (α-D-maltetraoxyl) -N-lower alkylmoranoline, n = 4 4- (α-D-malpentaosyl) -moranoline, or 4- (α-D-malpenta It is obtained as a mixture of an oxyyl) -N-lower alkylmoranoline, an oligo glucosyl monarine, n = 5 or more, or N-lower alkyl oligo glucosyl monarine. The production rate of each component varies depending on the reaction conditions, but in general, n = 0, 1, 2, 3 are large, and as n increases, the ratio decreases. For practical use as a medicament, 4- (α-D-glycosyl) -moranoline or 4- (α-D-gnorcosyl) -N-lower alkylmoranoline of n = 0, its activity and preparation It is most advantageous in terms of ease of use. Sepadex 4- (α-D-glycosyl) -moranoline or 4- (α-D-glycosyl) -N-lower alkylmoranoline than the mixture is required for use as a medicament. Molecular weight fractionation is needed to isolate and isolate. Therefore, if the mixture can be formed into 4-(?-D-glycosyl) -moranoline or 4-(?-D-glycosyl) -N-lower alkyl moranoline by a simple reaction, It can be very advantageous and at the same time can change other products to 4- (α-D-glycosyl) -monolarin, or 4- (α-D-glycosyl) -N-lower alkylmoranoline. Yield is also significantly increased, which is very advantageous in production. The present inventors pay attention to the advantages, and as a result of intensive studies, it is a very simple treatment to act α-1,4-glucan glucohydrolase (EC 3.2.1.3.α-1.4-Glucanglucohydrolase) in the mixed solution, n = 1 or more oligo glucosyl moranorin or N-lower alkyloligo glucosyl monarine, respectively, with 4- (α-D-glucosyl) -monolarin of n = 0, or 4- (α-D-glo The present invention has been accomplished by discovering that cosyl) -N-lower alkyl molarine can be changed in extremely good quantities. Α-1,4-glycanglucohydrolase used in the present invention is Resus. Rhizopus niveus, Rezos. Produced mainly by filamentous fungi such as Rhizopus Delemar, Aspergillus niger, Aspergillus awamori, and also known as Amyloglucosidase γ Amylase, Taka. Amylase B and the like.

본 발명을 실시하기 위해서는 결정효소, 조효소 리조프스. 니베우스 등의 본 효소를 포함하는 배양액등을 사용할 수가 있고, α-아밀라아제 β-아밀라아제등의 다른 탄수화물분해 효소가 공존하고 있어도 된다.In order to carry out the present invention, lyase and coenzyme residues. A culture solution containing the present enzymes such as Niveus and the like can be used, and other carbohydrate enzymes such as α-amylase β-amylase may coexist.

α-1,4-글르칸 글르코하이드로라아제의 작용은 전분의 비환원성 말단에서 글르코스단위로 분해하는 것이다. 물론, 말토스, 말트트리오스, 말트테트라오스 및 그 이상의 α-1,4로 결합한 올리고 당도 동일하게 글르코스까지 분해한다. 즉 전분(starch)+nH2O→n·글르코스 G-G--G+mH2O→mG(단 상식에서 n, m은 정수, G는 글르코스, G-G는 α-1,4결합을 뜻한다)로 표시할 수 있다. 또 본발명에 사용되는 효소의 기원이 사상균으로 한정되지 않는 것은 명백하다.The action of α-1,4-glucan glucohydrolase is to break down the glycos unit at the non-reducing end of the starch. Of course, oligosaccharides bound with maltose, malttriose, maltetraose, and more α-1,4 are also decomposed to glucose. In other words, starch + nH 2 O → n · Glucose GG--G + mH 2 O → mG (where n and m are integers, G is glucose and GG is α-1,4 bond) ) Can be displayed. It is obvious that the origin of the enzyme used in the present invention is not limited to filamentous fungi.

본 발명의 제 1의 특징은 구조식(Ⅳ)A first feature of the invention is structural formula (IV)

Figure kpo00004
Figure kpo00004

로 표시되는 말토스는 α-1,4-글르카노글르코하이드로라아제에 의하여 신속히 분해되어 글르코스로 되지만 구조식(Ⅱ)로 표시되는 4-(α-D-글르코시일)-모라노린 및 4-(α-D-글르코시일)-N-저급알킬 모라노린은 α-1.4 글르카노글르코 하이드로라아제에 의하여 거의 분해되지 아니하고, 구조식(Ⅰ)의 화합물 중 n=0를 제외하는 올리고 글르코시일모라노린 및 N-저급알킬올리고 글르코시일모라노린이 말토스 정도로 빠르지 아니하나, 실질적으로 충분한 속도로 분해된다는 종전에는 전혀 알 수 없었던 신규의 사실을 명백히 한 데에 있다. 이하 이점에 대하여 다시 상세하게 설명한다.Maltose represented by is rapidly decomposed by α-1,4-glucanoglucohydrolase into glucose, but 4- (α-D-glycosyl) -moranoline represented by the formula (II) and 4- (α-D-glycosyl) -N-lower alkyl moranoline is an oligo that is hardly degraded by α-1.4 glucanoglucohydrolase and excludes n = 0 in compounds of formula (I) It is clear from the novel fact that the prior art that glycosylmoranorin and N-lower alkyloligoglucosyylmonanorin is not as fast as maltose but degrades at substantially sufficient rate. The following will be described in detail again.

여기에서, 글르코스를 G, 모라노린 또는 N-저급알킬모라노린을 MR, m을 정수, α-1,4-글르칸글르코하이드로라아제를 G·A, 결합을 α-1.4, Km, Km-1, …, K2, K1를 각 단계의 반응속도정수로 하면, 본 발명의 반응은 일반적으로Herein, G is a G, moranorin or N-lower alkyl moranorin M R , m is an integer, α-1,4-glucan glucohydrolase G · A, the bond is α-1.4, K m , K m-1 ,... , K 2 , K 1 is the reaction rate constant of each step, the reaction of the present invention is generally

Figure kpo00005
Figure kpo00005

로 표시할 수가 있다. 실제의 반응은 글르코스 수(m)가 다른 혼합물로서 상식의 각 단계의 반응이 동시에 진행하는 것이다. 따라서 본 발명의 목적하는 G-MR이 반응액중에 축적되기 위해서는 Km, Km-1…K2는 충분히 크게, 그것에 대해서 K1은 충분히 작아야 한다. 제1도는 이점을 명백히 하고 있다. 제1도에 대해서 이하에 설명한다.Can be displayed as The actual reaction is a mixture of different glucose numbers (m) and the reaction of each step of the common sense proceeds simultaneously. Therefore, in order to accumulate GM R of the present invention in the reaction solution, K m , K m-1 . K 2 should be large enough and K 1 should be small enough for it. Figure 1 makes this clear. 1 is described below.

125ml의 3각 프라스코에 일정량의 N-메틸올리고 글르고시일 모라노린을 다웩스 50W×2(H+)1g에 흡착시켜서 이것을 50ml의 증류수에 현탁하여, α-1,4-글르칸글르코하이드로라아정 10mg을 가하여, 40℃로 인큐베이트 해서 경시적으로 500㎕을 샘플링해서 글르코스를 정량한다. 기질이 말로스의 경우에는 다웩스 50W×2(H+)를 1g혼합한 상태로 40℃로 인큐베이트한다.A fixed amount of N-methyl oligoglugosyl moranoline was adsorbed to 125 ml of a triangular flask, and then adsorbed to 1 g of Dow's 50W × 2 (H + ), suspended in 50 ml of distilled water, and α-1,4-glycanglucohydro 10 mg of LaA tablets are added, incubated at 40 ° C, and 500 µl is sampled over time to quantify glucose. When the substrate is malose, the mixture is incubated at 40 ° C with 1 g of Dow's 50 W x 2 (H + ) mixed.

글르코스의 정량 : 반응액 500㎕에 0.3NBa(OH)21ml 5% ZnSO41ml를 가하여 2000g로 10분간 원심분리한다. 맑은 윗물 30㎕에 시판의 글르코스발색액(베린거. 만하임사제, 신브레드. 슈거. 테스트) 3ml을 가하여 잘 교반한 후, 실온에서 35분 방치후 420nm로 흡광도를 측정한다. 별도로 글르코스표준시약(9.1mg/dl)을 동일하게 처리해서, 420nm로 흡광도를 측정하여, 이것으로 반응액중에 생성한 글르코스량을 정량한다.Quantification of glucose: 1 ml of 0.3NBa (OH) 2 1ml 5% ZnSO 4 was added to 500µl of the reaction solution and centrifuged at 2000g for 10 minutes. To 30 µl of clear supernatant, 3 ml of a commercially available glucos chromophore (Beringer. Mannheim Co., Sinbread. Sugar. Test) was added thereto, stirred well, and the absorbance was measured at 420 nm after standing for 35 minutes at room temperature. Separately, the same procedure was followed for treating Glucose Standard Reagent (9.1 mg / dl), and the absorbance was measured at 420 nm to quantify the amount of Glucose produced in the reaction solution.

효소 : 생화학공업(주)제, 리조프스 니베우스 유래(由來)의 α-1,4-글르칸글르코하이드로라아제(결정) 약 22유닛/mgEnzyme: About 22 units / mg of α-1,4-glucan glucohydrolase (crystal) from Biochemical Industry Co., Ltd.

효소활성 : 1ml의 효소용액을 1.0%전분용액 5ml, 0.05M 초산버퍼(pH 4.5) 4ml와 혼합, 40℃로 인큐베이트해서 생성하는 환원당(글르코스)을 펠링. 레헤만. 스크을의 방법(Fehling-Lehman-Schoorl Method)로 정량한다.Enzymatic activity: 1 ml of enzyme solution is mixed with 5 ml of 1.0% starch solution and 4 ml of 0.05 M acetate buffer (pH 4.5) and incubated at 40 ° C to reduce the reducing sugar (glucos). Reheman. The screen is quantified by the Fehling-Lehman-Schoorl Method.

효소 1유닛은 30분간에 10mg의 글르코스를 생성하는 활성. 기질 및 수지에 흡착시킨 기질량 :One unit of enzyme produces 10mg of glucos in 30 minutes. Base mass adsorbed on substrate and resin:

말토스 100(mg)Maltose 100 mg

4-(α-D-글르코시일)-N-메틸모라노린 1004- (α-D-glycosyl) -N-methylmoranoline 100

4-(α-D-말트시일)-N-메틸모라노린 504- (α-D-maltyl) -N-methylmoranoline 50

4-(α-D-말트트리오시일)-N-메틸모라노린 504- (α-D-maltrioxyl) -N-methylmoranoline 50

4-(α-D-말트테트라오시일)-N-메틸모라노린 504- (α-D-maltetraosyl) -N-methylmoranoline 50

시험결과를 제1도에 표시했다. 횡측은 반응시간이고, 종축은 생성한 글르코스를 완전히 분해했을 때에 대한 비율로 나타내고 있다. 단, N-메틸글르코시일모라노린의 분질은 제1도에서 보는 바와같이 대단히 적으므로, N-메틸올리고 글르코시일 모라노린의 경우는 말토스의 분해속도와 비교하는 뜻에서, 각각 글르코시일모라노린, N-메틸글르코 시일모라노린까지 분해했을 때를 100으로 해서%로 표시했다. 또, 글르코스정량후, 반응액을 여과해서 이온교환수지(다웩스 50W×2)를 모아서, 충분히 수세한 다음, 0.5N 암모니아수로 용출하여, 감압하에서 농축건고 후, 증류수에 용해하여, 고속액체 크로마토 그래피를 통해서, (워터즈사제 ALC/GPC-244형, M 번덕팩-NH2컬럼, 아세트니트틸 : 물=70 : 30 1.5C/분), 시마즈(島津)주식회사 제크로마트팩 C-RIA형으로 분석하여, 반응생성물을 확인했다. 이 결과로 N-메틸모라노린의 생성은 4-(α-D-글르코시일-N-메틸모리노린, 4-(α-D-말트시일)-N-메틸모리노린, 4-(α-D-말트트리오시일)-N-메틸모라노린 4-(α-D-말트테트라오시일)-N-메틸모라노린의 경우에 각각 약 3%, 2%, 2%, 1%, 2%이었다. 이것과 같은 사실이 올리고 글르코시일 모라노린의 경우에 있어서도 확인되었다. 올리고글르코시일 모라노린의 경우는 N-메틸올리고 글르코 시일모라노린의 경우보다, 효소반응은 신속하고, N-메틸올리고 글르코시일 모라노린과 같은 반응조건하에서 반응시간 1시간으로 말토스는 거의 완전히 분해했으나 4-(α-D-글르코시일)-모라노린의 분해는 약 3%, 4-(α-D-말트시일)-모라노린은 53%, 4-(α-D-말트트리오시일)-모라노린은 50%이었다. (분해%의 의미는 N-메틸올리고글르 코시일 모라노린의 경우와 동일하다).The test results are shown in FIG. The horizontal side is reaction time, and the vertical axis | shaft is represented by the ratio with respect to the decomposition | decomposition of the produced | generated glucos. However, since the powder of N-methylglycosyl moranorin is very small as shown in FIG. 1, in the case of N-methyl oligo glycosyl moranorin, it is compared with maltose decomposition rate, respectively. When it decomposed | disassembled to ilmonorine and N-methylglyco seal | monoral morin, it was expressed as% as 100. After the determination of glucose, the reaction solution was filtered to collect ion exchange resin (Daxes 50W × 2), washed with water sufficiently, eluted with 0.5N ammonia water, concentrated to dryness under reduced pressure, and then dissolved in distilled water. Through chromatography, (ALC / GPC-244 type from Waters, M Bundock Pack-NH 2 column, Acetnittil: water = 70: 30 1.5C / min), Shimadzu Corporation Zecromart Pack C- Analysis by type RIA confirmed the reaction product. As a result, the production of N-methylmoranoline is 4- (α-D-glycosyl-N-methylmonolinine, 4- (α-D-maltyl) -N-methylmonolinine, 4- (α- In the case of D-maltiooxyl) -N-methylmoranoline 4- (α-D-maltetraoxyl) -N-methylmonanoline, the concentration was about 3%, 2%, 2%, 1%, and 2%, respectively. The same facts have been confirmed in the case of oligoglucosyl moranorin, which is faster in the case of oligoglucosyl moranorin than in the case of N-methyl oligoglucoyl sylmonarine, and faster in N-methyl. Maltose was almost completely decomposed with reaction time of 1 hour under the same reaction conditions as oligo-glycosyl moranorin, but degradation of 4- (α-D-glycosyl) -monanoline was about 3% and 4- (α-D -Malt seal) -Moranoline was 53%, 4-((alpha) -D-Malttrioxyl) -Moranoline was 50% (The meaning of% decomposition is the same as for N-methyloligoglycosyl moranoline) ).

또한, 이상의 실험으로 강산성 이온교환 수지 다웩스 50W×2에 흡착(말토스일때는 혼합)시키고 있으나, 이 이유는 후에 다시 상세히 설명한다. 또, 과잉의 강산성 이온교환수지의 공존은 효소반응을 저해하나, 반응액 100ml 중에 4g 정도까지는 실질적으로 문제는 없다. 또, 모라노린, N-저급알길모라노린, 올리고글로시일 모라노린, N-저급알킬올리고 글르코시일모라노린으로 수지가 포화되면, 더 많은 수지를 첨가해도 반응은 저해되지 않는다.In addition, although the adsorption | suction (mixing in case of maltose) is strongly adsorbed to 50 Wx2 of strong acidic ion exchange resin dachsh by the above experiment, this reason is demonstrated in detail later. In addition, coexistence of excess strong acidic ion exchange resin inhibits the enzymatic reaction, but up to about 4 g in 100 ml of the reaction solution is practically no problem. In addition, if the resin is saturated with moranoline, N-lower alkylmoranine, oligoglosyl moranoline, and N-lower alkyl oligoglucosyylmonarine, the reaction is not inhibited even if more resin is added.

통상 α-1.4-글르칸 글르코하이드로라아제는 버퍼용액속에서 실시되지만, 증류수 속에서 반응해도 약간 활성이 감소되는 정도로 문제는 없다.Usually, α-1.4-glucan glucohydrolase is carried out in a buffer solution, but there is no problem that the activity is slightly reduced even when reacted in distilled water.

본 발명의 제2의 특징은 혼합물을 산 카리온이온 교환체에 흡착해서, α-1,4-글르칸글르코하이드로 라아제를 반응시키면 반응액혼합물의 농도를 현저히 높일 수 있는 동시에 반응이 혼합물의 상태에 따라 영향을 받지 않고, 또 미량 생성하는 모라노린 또는 N- 저급알킬모라노린에 의한 생성물저해(product innibition)을 받지 않게 되어, 생산에 있어서 대단히 유리하게 한 점이다.The second feature of the present invention is that by adsorbing the mixture to an acid carion ion exchanger and reacting α-1,4-glucanglycohydrolase, the concentration of the reaction mixture can be significantly increased, It is not influenced by the state, and does not suffer from product innibition due to the small amount of the mono- or mono-or lower alkylolanoline, which is very advantageous in production.

이하 이점에 대하여 더욱 상세히 설명한다.This will be described in more detail below.

모라노린 N-저급알킬모라노린, 올리고 글르코 시일모라노린, N-저급알킬올리고 글리코시일 모라노린은 α-1,4-글르칸글르코 하이드로라아제를 저해한다.Moranoline N-lower alkylmoranoline, oligo glucoyl moranorin, N-lower alkyloligo glycosyl moranoline inhibits α-1,4-glycanglucohydrolase.

그 저해의 강도를 제1표에 정리했다.The intensity of the inhibition is summarized in the first table.

저해의 측정방법은 다음과 같다.Measurement of inhibition is as follows.

효소 : 생화학공업(주)제 리조프스. 니베우스 유래의 글르코 아밀라아제(결정)을 증류수에 50㎍/ml가 되도록 용해해서 사용한다.Enzyme: Resulfs, manufactured by Biochemical Industries, Ltd. Glucoamylase (crystal) derived from Niveus is dissolved in distilled water so as to be 50 µg / ml and used.

기질 : 가용성 전분을 1.4%가 되도록 뜨거울때 버퍼용액에 용해하여 자연냉각후에 사용한다.Substrate: Soluble starch is dissolved in buffer solution when hot to 1.4% and used after natural cooling.

버퍼용액 : 0.1M 인산 버퍼(pH 5.7)Buffer solution: 0.1M phosphate buffer (pH 5.7)

반응액 :Reaction solution:

Figure kpo00006
Figure kpo00006

방법 : 반응액을 40℃, 10분 인큐베이트 후, 0.3N Ba(OH)2수용액 1ml, 5% ZnSO4수용액 1ml를 첨가하여 2000g로 10분 원심후, 맑은 윗물 30㎕을 글르코스 발색시약(베린거. 만하임사제, 신브레드. 슈거. 테스트) 3ml을 첨가하여, 35분 실내온으로 방치한 후, 420nm로 흡광도를 측정한다.Method: After the reaction solution was incubated at 40 ° C. for 10 minutes, 1 ml of 0.3N Ba (OH) 2 aqueous solution and 1 ml of 5% ZnSO 4 aqueous solution were added thereto, and centrifuged at 2000 g for 10 minutes. 3 ml of Beringer, Mannheim company, Sinbread, Sugar test) is added, and it is left to stand at room temperature for 35 minutes, and the absorbance is measured at 420 nm.

Figure kpo00007
Figure kpo00007

단 C : 콘트롤의 흡광도C: absorbance of the control

T : 테스트의 흡광도T: absorbance of the test

B' : 블랭크(Ⅰ)의 흡광도B ': absorbance of the blank (Ⅰ)

B : 블랭크(Ⅱ)의 흡광도B: absorbance of the blank (II)

희석계열의 저해%를 구하여, 50%저해하는 농도(IC50)을 구한다. 제1표에서 저해가 약할 경우는 ( )내에 표시한 농도에서의 저해%로 표시했다.The percent inhibition of the dilution series is determined and the concentration at which 50% inhibition is obtained (IC 50 ) is obtained. When the inhibition is weak in the first table, it is expressed as the percent inhibition at the concentration indicated in ().

[제1표][Table 1]

Figure kpo00008
Figure kpo00008

제1표에서 보는 바와같이 모라노린, N-저급알킬 모라노린의 저해는 대단히 강하고, 글르코시일화 되면 일반적으로 저해는 약화한다. 따라서 저농도로 반응을 실시할 때, 반응은 진행하지만 통상 수 10∼수 100(㎍/ml)의 농도에서 반응은 실질적으로 저해된다. 이 농도는 제1표에서 명백한 바와같이 혼합물중 각 성분의 혼합비, 저급알키기의 종류에 따라 다르나, 특히 모라노린, N-저급알킬모라노린은 글르코시일화된 물질에 비교해서 수 100∼수 1000배 저해가 강하기 때문에, 모라노린, N-저급 알킬모라노린이 함유되는 양에 따라 현저하게 다르다. 그러나 실제의 생산에서는 가능한 한 고농도에서 실시하는 것이 생산 코스트의 면에서 대단히 유리하고, 또, 혼합물의 상태에 따라 반응이 영향을 받지 않아야 한다. 본 발명자등은 이점에 주목하여 예의 연구를 한 결과, 혼합물을 산카티온 이온 교환체에 흡착한 상태로 효소를 작용시키면 수 1000(㎍/ml)이상의 농도로 반응이 진행하여, 또 혼합물의 상태에 따라서 반응이 영향을 받지 않는다는 놀라운 새로운 사실을 발견하여 본 발명을 완성한 것이다. 또, 실시예 1, 2, 3, 5의 반응은 강산성이온 교환수지에 흡착하지 않고 효소를 반응시켜도 반응은 전혀 진행하지 않았다.As shown in the first table, the inhibition of molarine and N-lower alkyl molarine is very strong, and the inhibition generally decreases when glucosylated. Therefore, when the reaction is carried out at low concentration, the reaction proceeds, but the reaction is substantially inhibited at a concentration of usually 10 to 100 (占 // ml). This concentration varies depending on the mixing ratio of each component in the mixture and the type of lower alkyl group, as evident from the first table, but in particular, the molar, the N-lower alkyl molar, is in the range of 100 to 1000 Since pear inhibition is strong, it differs remarkably depending on the amount of monarine and N-lower alkyl monarine. In actual production, however, it is very advantageous in terms of production cost to carry out as high a concentration as possible, and the reaction should not be affected by the state of the mixture. As a result of intensive research on the advantages of the present inventors, the reaction proceeds at a concentration of at least 1000 (占 // ml) when the enzyme is actuated while the mixture is adsorbed on the acid cationic ion exchanger. The present invention was completed by discovering a surprising new fact that the reaction is not affected. The reactions of Examples 1, 2, 3, and 5 did not proceed at all even when the enzyme was reacted without adsorption to the strong acid ion exchange resin.

이하에 실시예를 따라 보다 구체적으로 설명한다.It demonstrates more concretely according to an Example below.

[실시예 1]Example 1

바칠루스. 마세란스의 배양 : 500ml의 3각 프라스코에 콘스티플리커 1%, 가용성전분 1%, (NH4)2SO40.5%, CaCO30.5%, pH 7의 배양액 150ml을 가하여, 120℃, 15분 가열멸균한다. 펩톤 1%, 이이스트 0.5%, 글루코스 0.3%, 글리세로울 1.5%, NaCl 0.3%, 레버분만(OXOID

Figure kpo00009
neutralized liver digest) 0.1%, 한천(寒天) 1.5%의 사면배지상에서 충분히 생육하고 있는 바칠루스. 마세란스 IFO 3490주(株)를 3백금이(白金耳) 접종하여 37℃로 3일간 배양한다. 이 배양액 300ml을 같은 배지조성 9ℓ의 발효기(내용량 15ℓ)에 접종하여, 37℃에서 3일간 충분히 통기교반하면서 배양하면 원심 맑은액 약 130∼150단위(단위의 정의는 다음에 표시한다)의 효소액을 얻는다.Bacillus. Cultivation of Maseran: To 150 ml of culture solution containing 1% of conspicier, 1% of soluble starch, 0.5% of (NH 4 ) 2 SO 4, 0.5% of CaCO 3 and pH 7 was added to 500 ml of 3 square flasks. Heat sterilize in minutes. Peptone 1%, yeast 0.5%, glucose 0.3%, glycerol 1.5%, NaCl 0.3%, lever delivery (OXOID
Figure kpo00009
neutralized liver digest) A bacillus that is fully grown on slope media of 0.1% and 1.5% agar. 3490 strains of maserans IFO were inoculated with platinum and incubated at 37 ° C. for 3 days. 300 ml of this culture solution was inoculated into a fermenter (15 liters capacity) of 9 L in the same medium composition, and the culture solution was incubated at 37 ° C. for 3 days with sufficient aeration for about 130 to 150 units of centrifuged clear solution (the definition of the unit is shown next). Get

사이클로덱스트린 글르코시일 트랜스 페라아제의 활성의 단위 : 0.05M 초산 완충액 pH 5.5에 가용성 전분(한센(半井)화학, 생화학 연구용) 0.7%를 용해하여 기질용액으로 한다. 기질용액 950㎕에 효소액 50㎕을 첨가하여, 40℃, 10분 반응시켜서 0.5N 초산 0.5ml을 첨가하여 반응을 중지시킨다. 반응액 100㎕를 취하여 0.25MKI 수용액에 0.01M이 되도록 요오드를 용해시킨 요오드용액 0.8ml와 물 3ml을 첨가해서 교반후 660nm를 흡광도로 측정한다. (AT)와 동일하게 기질용액 950㎕, 물 50㎕, 0.5N 초산 0.5ml 첨가한 용액 100㎕을 취하여 요오드용액을 첨가하여 660nm로 흡광도를 측정한다. (AR)Unit of Activity of Cyclodextrin Glycosyl Transferase: Dissolve 0.7% of Soluble Starch (for Hansen Chemical, Biochemical Research) in 0.05 M Acetate Buffer pH 5.5 to prepare a substrate solution. 50 µl of the enzyme solution is added to 950 µl of the substrate solution, and the reaction is stopped by adding 40 ml of 0.5 N acetic acid for 10 minutes. 100 µl of the reaction solution is taken, 0.8 ml of iodine solution in which iodine is dissolved in a 0.25 MKI aqueous solution and 3 ml of water are added, and after stirring, 660 nm is measured by absorbance. In the same manner as in (A T ), 950 µl of the substrate solution, 50 µl of water, and 100 µl of 0.5 ml of 0.5N acetic acid were added to the solution, and iodine solution was added to measure absorbance at 660 nm. (A R )

이때

Figure kpo00010
At this time
Figure kpo00010

로서, 이것은 효소용액 1ml이 40℃, 1분간에 1%의 흡광도의 감소를 발생하게 하는 활성이다.This is an activity in which 1 ml of enzyme solution causes a decrease in absorbance of 1% at 40 ° C. for 1 minute.

조효소액의 조제 : 바칠루스. 마세란스 IFO 3490의 배양액을 원심분리해서 맑은 윗물을 얻는다. 이것을 동결(凍結)건조해서 소량의 물에 용해시켜서 효소의 농축액을 얻는다. 5℃의 외액(外液)에 증류수를 사용해서 충분히 투석(透析)하여 저분자를 제거한 내액을 조효소액으로서 사용한다. 다음에 모라노린 6.5g을 소량의 물에 용해하여 3N염산으로 pH를 5.7에 조정한다. (조정후 32.5ml) 460유닛/ml의 사이클로덱스트린글리코시일트랜스페라아제의 조효소액 1300ml에 α-사이클로덱스트린 26g을 용해하여, 이것에 모라노린 수용액을 첨가하고, pH를 5.67로 재조정한다. 39℃로 3일간 진탕(振湯)해서 반음시킨다. 반응액을 원심분리해서 맑은 윗물을 다웩스 50W×2(H+)의 컬럽(수지량 50ml)에 통과시켜서 염기성물질을 흡착시킨다.Preparation of coenzyme solution: Bacillus. Centrifuge the culture of Maserans IFO 3490 to obtain a clear supernatant. This is freeze-dried and dissolved in a small amount of water to obtain a concentrated solution of the enzyme. Distilled water is sufficiently dialyzed in the external solution at 5 ° C to remove low molecules, and an internal solution is used as the crude enzyme solution. Next, 6.5 g of moranoline is dissolved in a small amount of water, and the pH is adjusted to 5.7 with 3N hydrochloric acid. (32.5 ml after adjustment) 26 g of (alpha)-cyclodextrins are melt | dissolved in 1300 ml of co-enzyme liquids of 460 units / ml of cyclodextrin glycosyltransferases, aqueous solution of moranoline is added to this, and pH is adjusted to 5.67. Shake for 3 days at 39 ° C to make a semitone. The reaction solution is centrifuged and the clear upper water is passed through a dopants 50W × 2 (H + ) lump (50 ml of resin) to adsorb the basic substance.

충분히 수세한 후, 수지의4일부(약 2ml)를 취하여, 0.5N암모니아수로 용출하여, 용출액을 감압하에서 농축건고 한다. 얻어진 분말을 소량의 물에 용해하여 워터즈사제 고속액체 크로마트그래피(ALC/GPC-244형, μ-본더팩-NH2컬럼, 아세트니트릴 : 물=70 : 30, 1.5ml/분)를 거쳐서, 시마즈(島津)(주)크로마트 팩(C-RIA형)으로 분석했다. (α-1.4-글르카노 글르코하이드로라아제를 반응시키기 전의 혼합물의 조성) 나머지의 수지 약 48ml을 물 1200ml에 현탁하여 리조프스 니베우스 유래(由來)의 α-1,4-글르칸 글로코하이드로라아제(약 22유닛/mg) 120mg을 첨가하고, 40℃로 인큐베이튜해서, 경시적으로 샘플링해서 반응액속에 발생한 글르코스를 정량하여, 반응진행상태를 추적했다. 글르코스는 반응후 급속도로 증가하여, 반응 5시간으로 반응종점인 89%에 도달했다. 다시 반응을 계속하여, 25hr로 반응을 중지했다. 반응후 수지를 여별(濾別)하여 충분히 수세한 후 0.5N 암모니아수로 용출하여 용출액을 감압하여 농축건조하여 얻어진 분말을 동일하게고 속액체크로마트그래피를 거쳐서 크로마트팩으로 반응후의 혼합물의 상태를 분석했다. 이 결과를 이하에 표시한다.After sufficiently washing with water, 4 parts (about 2 ml) of the resin was taken out, eluted with 0.5 N ammonia water, and the eluate was concentrated to dryness under reduced pressure. The obtained powder was dissolved in a small amount of water and subjected to Water Liquid Chromatography (ALC / GPC-244 type, μ-Bonderpack-NH 2 column, acetonitrile: water = 70: 30, 1.5 ml / min). And Shimazu Corporation chromamart pack (C-RIA type). (Composition of the mixture before reacting α-1.4-glucano glucohydrolase) Approximately 48 ml of the remaining resin is suspended in 1200 ml of water to form α-1,4-glucanes derived from Reusph niebeus. 120 mg of locohydrolase (approximately 22 units / mg) was added, incubated at 40 ° C, sampled over time to quantify the glucose generated in the reaction solution, and the reaction progress was tracked. Glucose increased rapidly after the reaction, reaching the end point 89% in 5 hours. The reaction was continued again, and the reaction was stopped at 25 hrs. After the reaction, the resin was filtered and washed with water sufficiently, eluted with 0.5 N ammonia water, the eluate was concentrated under reduced pressure, and the resultant powder was dried. Analyzed. This result is shown below.

Figure kpo00011
Figure kpo00011

[실시예 2]Example 2

제2도로서 표시되는 혼합물 2g을 다웩스 50W×2(H+)10ml에 흡착시켜서, 50ml의 물에 현탁하여 α-1,4-글르카글르코하이드로 라아제(약 22유닛/mg) 50mg를 첨가한다. 40℃로 17시간반응후, 반응액을 여과하여 수지를 모아서, 0.5N 암모니아수로 용출하여, 용출액을 감압하에 농축건고해서, 워타즈사제 고속액체 코라마트그래피(ALC/GPC-244형)에 거쳐서, 시마즈제클로마트팩(C-RIA형)으로 분석했다. 그것을 도면 3에 표시했다.2 g of the mixture shown in FIG. 2 was adsorbed onto 10 ml of Dow's 50 W × 2 (H + ), suspended in 50 ml of water, and 50 mg of α-1,4-glucaglycohydrolase (about 22 units / mg) was obtained. Add. After 17 hours of reaction at 40 DEG C, the reaction solution was filtered to collect the resin, eluted with 0.5 N ammonia water, and the eluate was concentrated to dryness under reduced pressure, followed by high performance liquid chromatography (ALC / GPC-244 type) manufactured by Wotaz Corporation. And Shimazu Klomart Pack (C-RIA type). It is shown in figure 3.

도면 2, 도면 3에 있어서의 각 성분의 혼합비는 이하에 표시했다.The mixing ratio of each component in FIG. 2, FIG. 3 was shown below.

Figure kpo00012
Figure kpo00012

[실시예 3]Example 3

실시예 2의 조건하에서 40℃로 26시간 반응시켰다.The reaction was carried out at 40 ° C. for 26 hours under the conditions of Example 2.

이 결과, 모라노린 5.8%, 4-(α-D-글르코시일)-모라노린 93.2%로, 다른 성분은 볼 수 없었다.As a result, monarine 5.8% and 4-((alpha) -D-glycosyl) -monarine 93.2%, and the other component was not seen.

[실시예 4]Example 4

도면 2로 표시되는 혼합물 200mg을 4ℓ의 물에 용해하여, pH를 0.5N HCl으로 5.7을 조정해서 α-1,4-글르칸글르코하이드로라아제(약 22유닛/mg) 200mg을 첨가한다. 40℃에서 41시간 반응시킨 후, 반응액을 다웩스 50W×2(H+)10ml의 컬럼을 거쳐서, 충분히 수세한 후, 0.5N 암모니아수로 용출한다. 용출액을 감압하에서 농축건고하여 소량의 물에 용해하여, 실시예 1과 같은 조건하에서 고속액체크로마토그래피에 통과시킨다. 이 결과로 모라노린 6%, 4-(α-D-글르코시일)-모라노린 93.4%로 다른 성분은 볼 수 없었다.200 mg of the mixture represented in FIG. 2 is dissolved in 4 L of water, and the pH is adjusted to 5.7 with 0.5 N HCl, and 200 mg of α-1,4-glycanglucohydrolase (about 22 units / mg) is added. After reacting at 40 ° C for 41 hours, the reaction solution is washed with water through a column of 50 Wx 2 (H + ) 10 ml of Dax, and then eluted with 0.5N ammonia water. The eluate is concentrated to dryness under reduced pressure, dissolved in a small amount of water, and passed through high performance liquid chromatography under the same conditions as in Example 1. As a result, 6% of the molarin and 93.4% of 4-((alpha) -D-glycosyl) -moranoline did not show other components.

[실시예 5]Example 5

N-메틸모라노린 1g을 소량을 물에 용해하여, 1N의 염산으로 pH를 5.7로 조정한다. (조정후 10ml)별도로 336유닛/ml의 사이클로 덱스트린 글리코시일 트랜스페라아제 조효소액 790ml에 α-사이클로 덱스트린 16g을 용해한다. 양액을 혼합하여 pH를 5.6로재 조정후, 39℃에서 2일 진탕(振

Figure kpo00013
)하여 반응시킨다. 반응액을 원심분리하여 맑은 윗물을 다웩스 50W×2(H+)의 컬럼(수지량 8ml)에 통과시켜서, 염기성물질을 흡착시킨다. 충분히 수세후, 수지의 일부(약 2ml)을 취하여, 0.5N 암모니아수로 용출하여 감압하에 농축건조하여, 실시예 1과 동일조건으로 액체크로마토그래피에 통과시켜서 클로마트팩으로 분석한다. (α-1,4-글르칸글르코 하이드로라아제를 반응시키기 전의 혼합물의 조성)나머지 수지 약 6ml을 물 150ml에 현탁하여, α-1,4-글르칸글르코하이드로라아제(약 22유닛/mg) 90mg을 첨가하여 40℃에서 48시간 반응시켜서 반응액을 여과하여 수지를 모아서, 충분히 수세한 후, 0.5N암모니아수로 용출하여, 용출액을 감압하에 농축건고하여 액체크로마트그래피에 통과시켜서 분석한다.A small amount of 1 g of N-methyl moranoline is dissolved in water, and the pH is adjusted to 5.7 with 1 N hydrochloric acid. (10 ml after adjustment) 16 g of α-cyclodextrin is dissolved in 790 ml of cyclodextrin glycosyl transferase coenzyme solution of 336 units / ml separately. After mixing the nutrient solution to adjust the pH to 5.6, shake for 2 days at 39 ℃
Figure kpo00013
To react. The reaction solution is centrifuged and the clear upper water is passed through a column of Dowex 50 W × 2 (H + ) (8 ml of resin) to adsorb the basic substance. After sufficiently washing with water, a portion of the resin (about 2 ml) was taken out, eluted with 0.5 N ammonia water, concentrated to dryness under reduced pressure, and passed through liquid chromatography under the same conditions as in Example 1 to be analyzed by clomatpack. (Composition of the mixture before reacting α-1,4-glucagonglucose hydrolysis) Approximately 6 ml of the remaining resin was suspended in 150 ml of water, and α-1,4-glucagonglucohydrolase (about 22 units / mg ) 90 mg is added and reacted at 40 ° C. for 48 hours. The reaction solution is filtered, the resin is collected, washed with water sufficiently, eluted with 0.5 N ammonia water, the eluate is concentrated to dryness under reduced pressure, and passed through liquid chromatography for analysis.

이 결과를 이하에 표시한다.This result is shown below.

Figure kpo00014
Figure kpo00014

[실시예 6]Example 6

N-프로필모라노린 1g을 소량을 물에 용해하여 1N의 염산으로 pH를 5.7로 조정한다. (조정후 20ml) 별도로 260μ/ml의 조효소액 760ml에 16g의 α-사이클로 덱스트린을 용해한다. 양액을 혼합하여, pH를 5.7로 재조정후, 39℃에서 3일간 진탕하여 반응시킨다. 반응액을 원심분리하여 맑은 윗물을 다웩스 50W×2(H+)의 컬럼(수지량 8ml)에 통과시켜서 염기성 물질을 흡착시킨다. 충분히 수세한 후, 수지의 일부(약 2ml)를 취하여, 0.5N 암모니아수로 용출하여 감압하에 농축건고해서 실시예 1과 같은 조건으로 액체 크로마트 그래피를 거쳐서 크로마트팩으로 분석한다. (α-1,4-글르칸글르코하이드로라아제를 반응시키기 전의 혼합물의 조성)나머지 수지 약 6ml을 물 150ml에 현탁하여, α-1,4-글르칸글르코 하이드로라아제(약 22유닛/mg) 15mg을 첨가하여 40℃로 26시간 반응시킨다. 반응액을 여과해서 수지를 모아, 충분히 수세한 후, 0.5N 암모니아수로 용출해서, 용출액을 감압하에 농축건고하여 액체크로마트그래피에 거쳐서 그로마트팩으로 분석한다. 이 결과를 이하에 표시한다.A small amount of 1 g of N-propylmonaranoline is dissolved in water and the pH is adjusted to 5.7 with 1 N hydrochloric acid. (20 ml after adjustment) Separately, 16 g of α-cyclodextrin is dissolved in 760 ml of 260 μ / ml coenzyme solution. The nutrient solution is mixed and the pH is adjusted to 5.7, followed by shaking for 3 days at 39 ° C. The reaction solution is centrifuged and the clear upper water is passed through a column of Dowex 50 W × 2 (H + ) (8 ml of resin) to adsorb the basic substance. After sufficiently washing with water, a part of the resin (about 2 ml) was taken out, eluted with 0.5 N ammonia water, concentrated to dryness under reduced pressure, and analyzed by chromatographic pack through liquid chromatography under the same conditions as in Example 1. (Composition of the mixture before reacting α-1,4-glycanglucohydrolase) Approximately 6 ml of the remaining resin was suspended in 150 ml of water, and α-1,4-glycanglycohydrolase (about 22 units / mg ) 15 mg is added and reacted at 40 ° C. for 26 hours. The reaction solution is filtered, the resin is collected, washed with water sufficiently, eluted with 0.5 N ammonia water, the eluate is concentrated to dryness under reduced pressure, and analyzed by gromatpack through liquid chromatography. This result is shown below.

Figure kpo00015
Figure kpo00015

Claims (1)

다음의 일반식(Ⅰ)General formula (Ⅰ)
Figure kpo00016
Figure kpo00016
(R은 수소 또는 저급알킬기를 나타내고 n은 정수를 나타낸다.)(R represents hydrogen or lower alkyl group and n represents an integer.) 로 나타낼 수 있는 것중, n이 0∼20의 화합물 및 다음의 일반식(Ⅲ)Among the compounds which can be represented by n is 0 to 20 and the following general formula (III)
Figure kpo00017
Figure kpo00017
(R는 상기와 동일)으로 표시되는 화합물을 함유한 혼합물(단(Ⅰ)에 있어서 n=0의 화합물만을 함유하는 경우를 제외한다.)을 함유하는용액에 직접 또는 필요에 따라 산 카티온 교환체를 첨가한 후, α-1,4-글르칸글르코 하이드로 라아제를 작용시키는 것을 특징으로 하는 다음의 일반식(Ⅱ)Acid cationic exchange directly or as needed with a solution containing a mixture containing the compound represented by (R is the same as above) except that only the compound of n = 0 is contained in (I). After addition of a sieve, the following general formula (II) characterized in that α-1,4-glycanglucohydrolase is reacted
Figure kpo00018
Figure kpo00018
(R는 상기와 동일함)로 표시되는 글르코시일모라노린 유도체의 제법.(R is the same as the above) A method for producing a glycosyl moranoline derivative.
KR1019810001798A 1980-09-22 1981-05-23 Method of preparing for the glycocyl moranoline derivative KR850000475B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP55131949A JPS602038B2 (en) 1980-09-22 1980-09-22 Method for producing glucosylmoranoline derivatives
JP131949 1980-09-22

Publications (2)

Publication Number Publication Date
KR830006323A KR830006323A (en) 1983-09-20
KR850000475B1 true KR850000475B1 (en) 1985-04-08

Family

ID=15069970

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019810001798A KR850000475B1 (en) 1980-09-22 1981-05-23 Method of preparing for the glycocyl moranoline derivative

Country Status (2)

Country Link
JP (1) JPS602038B2 (en)
KR (1) KR850000475B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242692A (en) * 1986-04-15 1987-10-23 Nippon Shinyaku Co Ltd Production of moranoline derivative
JPS62242691A (en) * 1986-04-15 1987-10-23 Nippon Shinyaku Co Ltd Production of moranoline derivative

Also Published As

Publication number Publication date
JPS5758890A (en) 1982-04-08
KR830006323A (en) 1983-09-20
JPS602038B2 (en) 1985-01-18

Similar Documents

Publication Publication Date Title
Yu et al. α-1, 4-Glucan lyase, a new class of starch/glycogen degrading enzyme. III. Substrate specificity, mode of action, and cleavage mechanism
Kitahata et al. Formation of 6-O-α-maltosylcyclomalto-oligosaccharides from α-maltosyl fluoride and cyclomalto-oligosaccharides by pullulanase
CN108707634B (en) Method for producing trehalose by multi-enzyme coupling and application thereof
US7033800B2 (en) Glycosyl transfer product
EP0611152A1 (en) Novel chromanol glycoside and method for production thereof
US4338433A (en) Moranoline derivatives and process for preparation thereof
JPH0649715B2 (en) Gluco-oligosaccharide having inositol residue bound to the terminal and method for producing the same
Usui et al. Enzymatic synthesis of p-nitrophenyl α-maltopentaoside in an aqueous-methanol solvent system by maltotetraose-forming amylase: a substrate for human amylase in serum
Schlesselmann et al. Factors determining steric course of enzymic glycosylation reactions: glycosyl transfer products formed from 2, 6-anhydro-1-deoxy-D-gluco-hept-1-enitol by. alpha.-glucosidases and an inverting exo-. alpha.-glucanase
KR850000475B1 (en) Method of preparing for the glycocyl moranoline derivative
Horaguchi et al. Nigero-oligosaccharide production by enzymatic hydrolysis from alkaline-pretreated α-1, 3-glucan
Lee et al. Production and characterization of branched oligosaccharides from liquefied starch by the action of B. licheniformis amylase
US4910137A (en) Twig branched cyclodextrin
KAINUMA Starch oligosaccharides: linear, branched, and cyclic
JP3490481B2 (en) Method for producing oligosaccharide
JPH0736758B2 (en) Method for producing polyphenol glycoside
Arai et al. Isolation and characterization of amylase inhibitors,(glucose) n· deoxynojirimycin
JPH01202294A (en) Increased production of glucose
JP2880573B2 (en) Method for enzymatic conversion of starch to cyclodextrin
JP2001112496A (en) Production of cellooligosaccharide
Shibuya et al. Transglycosylation of glycosyl residues to cyclic tetrasaccharide by Bacillus stearothermophilus cyclomaltodextrin glucanotransferase using cyclomaltodextrin as the glycosyl donor
Nilsson et al. Synthesis of disaccharide derivatives employing β-N-acetyl-d-hexosaminidase, β-d-galactosidase and β-d-glucuronidase
Maruo et al. Enzymatic synthesis of high purity maltotetraose using moranoline (1-deoxynojirimycin)
JP3812954B2 (en) Method for producing isomaltosyl fructoside
Ogawa et al. Enzymatic synthesis of p-nitrophenyl α-maltoheptaoside by transglycosylation of maltohexaose-forming amylase