KR810000879B1 - Process for preparing diaceton-2-keto-l-gulonic acid - Google Patents
Process for preparing diaceton-2-keto-l-gulonic acid Download PDFInfo
- Publication number
- KR810000879B1 KR810000879B1 KR1019800001242A KR800001242A KR810000879B1 KR 810000879 B1 KR810000879 B1 KR 810000879B1 KR 1019800001242 A KR1019800001242 A KR 1019800001242A KR 800001242 A KR800001242 A KR 800001242A KR 810000879 B1 KR810000879 B1 KR 810000879B1
- Authority
- KR
- South Korea
- Prior art keywords
- keto
- catalyst
- diacetone
- gulonic acid
- yield
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
본 발명은 바타민C의 합성에 있어서 중간 원료로 이용되는 다음 구조식(Ⅰ)의 디아세톤-2-케토-L-굴론산을 제조하는데 사용되는 촉매에 관한 것이다.The present invention relates to a catalyst used to prepare diacetone-2-keto-L-gulonic acid of the following structural formula (I) which is used as an intermediate raw material in the synthesis of batamine C.
현재까지의 디아세톤-2-케토-L-굴론산은 디아세톤-L-소르보즈를 알카리성 차아염소산소다 용액에서 니켈염 또는 코발트염을 촉매로 하여 산화시켜 제조하여 왔으나, 이러한 공지의 제조방법에 의하면 촉매로써 사용되는 닉켈염이나 코발트염들은 차아염소산소다 용액에서 흑색의 과산화물로 되어 촉매작용을 나타내는 것으로 알려져 있다.To date, diacetone-2-keto-L-gulonic acid has been prepared by oxidizing diacetone-L-sorbose in alkaline sodium hypochlorite solution using a nickel salt or a cobalt salt as a catalyst. Nickel salts and cobalt salts used as catalysts are known to be catalyzed by black peroxide in sodium hypochlorite solution.
그러나 이러한 촉매를 사용하는 경우 동일한 반응 조건하에서 실험한 결과 표 1에 나타난 바와 같이 반응시간이 길고 수율도 낮아지는 결점이 있었다.However, when the catalyst was used under the same reaction conditions, as shown in Table 1, the reaction time was long and the yield was low.
[표 1]TABLE 1
※ 주 : 반응온도 50-60℃, 촉매농도 0.2% 외의 반응조건은 실시예 1과 동일※ Note: The reaction conditions other than the reaction temperature 50-60 ℃, catalyst concentration 0.2% are the same as in Example 1
본 발명자들은 종래의 이러한 결점을 보완하기 위해 연구 실험한 결과, 질산니켈을 약 20-50%(W/W)함유하는 염화니켈의 혼합촉매를 제조하여 사용하였던 바, 종래의 촉매를 사용하였을 때보다 표 2에 나타난 바와 같이 동일한 반응조건하에서도 반응시간이 단축될 뿐만 아니라 수율도 높일 수 있는 강력한 촉매를 발명하게 되었다.The present inventors have conducted research experiments to compensate for these drawbacks of the prior art, and have prepared and used a mixed catalyst of nickel chloride containing about 20-50% (W / W) of nickel nitrate, compared to when using a conventional catalyst. As shown in Table 2, under the same reaction conditions, not only the reaction time was shortened, but also a powerful catalyst capable of increasing the yield was invented.
이를 좀더 상세히 설명하면, 동일한 촉매농도(0.2%, 농도%=In more detail, the same catalyst concentration (0.2%, concentration =
에서 질산니켈 및 염화니켈의 혼합비율을 변화하여 디아세톤-L-소르보즈에 반응시키면, 같은 촉매농도(0.2%)의 질산니켈이나 염화니켈을 각각 단독으로 디아세톤-L-소르보즈에 사용했을 경우보다 더 짧은 시간 내에 더 높은 수율로 디아세톤-2-케토-L-굴론산을 얻을 수 있었던 것이다.When the mixed ratio of nickel nitrate and nickel chloride was changed to diacetone-L-sorbose at, the nickel nitrate or nickel chloride of the same catalyst concentration (0.2%) was used alone for diacetone-L-sorbose. It was possible to obtain diacetone-2-keto-L-gulonic acid in a higher yield in a shorter time than the case.
[표 2]TABLE 2
※ 주 : 촉매조성 및 반응시간 외의 반응조건은 실시예 1과 동일.※ Note: Reaction conditions other than catalyst composition and reaction time are the same as in Example 1.
표 2에 나타난 바와 같이 질산니켈 40%, 염화니켈 60%의 혼합촉매를 사용하면 단독촉매를 사용할 때 보다(표 2. 시험 No. 1,8 참조) 동일한 반응조건에서 반응시간은 약1/4로 단축되고 수율도 95%로 높아지므로 경제적 및 공업적으로도 대단히 유리한 방법인 것이다.As shown in Table 2, when a mixed catalyst of 40% nickel nitrate and 60% nickel chloride is used, the reaction time is about 1/4 of the same reaction conditions as that of using a single catalyst (see Table 2. Test Nos. 1 and 8). It is shortened and the yield is increased to 95%, which is a very advantageous method both economically and industrially.
본 발명을 실시예를 들어 좀더 구체적으로 설명하면 다음과 같다.The present invention will be described in more detail with reference to Examples.
[실시예 1]Example 1
먼저 디아세톤-L-소르보즈 100g을 물 500ml에 녹이고, 여기에 염화니켈(NiCl2.6H2O) 1.92g과 질산니켈(NiNO3.6H2O) 1.28g을 가하여 용액을 만든다. 그 다음 9%의 차아염소산소다용액 1.1ℓ에 가성소다 33g을 녹인 용액을 3ℓ 삼구환저 프라스크에 넣고 교반하면서 온도를 50-60℃로 유지한다.First, 100 g of diacetone-L-sorbose is dissolved in 500 ml of water, and 1.92 g of nickel chloride (NiCl 2 .6H 2 O) and 1.28 g of nickel nitrate (NiNO 3 .6H 2 O) are added thereto to make a solution. Then, a solution of 33 g of caustic soda dissolved in 1.1 L of 9% sodium hypochlorite solution was added to a 3 L three-neck round bottom flask, and the temperature was maintained at 50-60 ° C. while stirring.
여기에 앞에서 만든 디아세톤-L-소르보즈와 촉매를 녹인 용액 500ml를 분당 50ml속도로 10분간 가한후 50-60℃에서 반응시킨다. 반응은 촉매를 가한후 14-16분 정도로 완료되며 반응완료 후 촉매를 여과하여 제거한 다음 진한 염산용액으로 중화하고 500ml까지 농축하면 염화나트륨이 생성된다. 이 용액을 여과하여 염화나트륨을 제거한 다음 진한 염산으로 pH 1.0으로 산성화시키면, 디아세톤-2-케토-L-굴론산의 미세한 결정이 석출된다. 이것을 다시 여과, 세척 후 진공 건조시키면 순도 99.5%의 디아세톤-2-케토-L-굴론산(녹는점 98-99℃)을 106.75g얻는다. 수율 95%Here, 500 ml of a solution of diacetone-L-sorbose and the catalyst dissolved in the above was added at a rate of 50 ml per minute for 10 minutes, and then reacted at 50-60 ° C. The reaction is completed in about 14-16 minutes after the addition of the catalyst. After completion of the reaction, the catalyst is filtered off, neutralized with concentrated hydrochloric acid solution and concentrated to 500 ml to produce sodium chloride. The solution was filtered to remove sodium chloride and then acidified to pH 1.0 with concentrated hydrochloric acid to precipitate fine crystals of diacetone-2-keto-L-gulonic acid. This was filtered again, washed and dried in vacuo to give 106.75 g of diacetone-2-keto-L-gulonic acid (melting point 98-99 ° C.) having a purity of 99.5%. Yield 95%
[실시예 2]Example 2
실시예 1에서의 염화니켈 2.4g과 질산니켈 0.8g을 촉매로 사용하여 실시예 1과 동일한 방법으로 조작 30분간 반응시킨 후, 이를 중화. 농축.산성화시키면 디아세톤-2-케톤-L-굴론산을 102.3g얻는다.2.4 g of nickel chloride in Example 1 and 0.8 g of nickel nitrate were used as catalysts and allowed to react for 30 minutes in the same manner as in Example 1, followed by neutralization. Concentration and acidification yield 102.3 g of diacetone-2-ketone-L-gulonic acid.
수율 91%, 순도 99.5%91% yield, 99.5% purity
[실시예 3]Example 3
염화니켈 2.88g과 질산니켈 0.32g을 촉매로 하여 실시예 1과 동일한 방법으로 조작 60분간 반응시킨 후 이를 다시 중화.농축.산성화시키면 디아세톤-2-케토-L-굴론산을 103.38g얻는다.The reaction was carried out for 60 minutes in the same manner as in Example 1 using 2.88 g of nickel chloride and 0.32 g of nickel nitrate as a catalyst, followed by neutralization, concentration and acidification to obtain 103.38 g of diacetone-2-keto-L-gulonic acid.
수율 92%, 순도 99.4%Yield 92%, Purity 99.4%
[실시예 4]Example 4
염화니켈 2.56g과 질산니켈 0.64g을 촉매로 하여 실시예 1과 동일한 방법으로 조작 30분간 반응시킨 후 중화.농축.산성화시키면 녹는 점이 98-99℃인 디아세톤-2-케토-L-굴론산을 101.13g얻는다.Diacetone-2-keto-L-gulonic acid having a melting point of 98-99 ° C after neutralization, concentration and acidification after reacting for 30 minutes in the same manner as in Example 1 using 2.56 g of nickel chloride and 0.64 g of nickel nitrate as a catalyst. Get 101.13g.
수율 90%, 순도 99.4%90% yield, 99.4% purity
[실시예 5]Example 5
실시예 1에서와 염화니켈 2.24g과 질산니켈 0.96g을 촉매로 사용해서 실시예 1과 동일한 방법으로 조작 30분간 반응시킨 후 이를 다시 중화.농축.산성화 시키면 순도 99.5%의 디아세톤-2-케토-L-굴론산을 103.38g을 얻는다. 수율 92%In Example 1, using 2.24 g of nickel chloride and 0.96 g of nickel nitrate as catalysts, the reaction was carried out in the same manner as in Example 1 for 30 minutes, and then neutralized. Concentrated and acidified. Diacetone-2-keto with a purity of 99.5% was obtained. 103.38 g of -L-gulonic acid is obtained. Yield 92%
[실시예 6]Example 6
염화니켈 1.6g과 질산니켈 1.6g을 촉매로 사용하여 실시예 1과 동일한 방법으로 조작 20분간 반응시킨후 중화.농축.산성화시키면 디아세톤-2-케토-L-굴론산을 101.1g얻는다. 수율 90%, 순도 99.5%Using 1.6 g of nickel chloride and 1.6 g of nickel nitrate as catalysts, the reaction was carried out in the same manner as in Example 1 for 20 minutes, and then neutralized, concentrated and acidified to obtain 101.1 g of diacetone-2-keto-L-gulonic acid. 90% yield, 99.5% purity
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019800001242A KR810000879B1 (en) | 1980-03-26 | 1980-03-26 | Process for preparing diaceton-2-keto-l-gulonic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019800001242A KR810000879B1 (en) | 1980-03-26 | 1980-03-26 | Process for preparing diaceton-2-keto-l-gulonic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
KR810000879B1 true KR810000879B1 (en) | 1981-08-12 |
Family
ID=19216017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019800001242A KR810000879B1 (en) | 1980-03-26 | 1980-03-26 | Process for preparing diaceton-2-keto-l-gulonic acid |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR810000879B1 (en) |
-
1980
- 1980-03-26 KR KR1019800001242A patent/KR810000879B1/en active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1183160A (en) | Process for the preparation of thiuram disulfides | |
CA1182478A (en) | Process for the preparation of thiuram disulfides | |
SK8997A3 (en) | Process for the preparation of 5-amino-2,4,6-triiodine-1,3- -benzenedicarboxylic acid | |
KR810000879B1 (en) | Process for preparing diaceton-2-keto-l-gulonic acid | |
JPS6339843A (en) | Manufacture of 5-aminosalicylic acid | |
GB1561047A (en) | Process for preparing pantethine and pantetheine | |
KR950008205B1 (en) | Method for preparing 3-aminopropyl-2-sulphatoethylsulphone | |
JPS63130588A (en) | Catalytic hydrogenation of 2, 4-diamino-6-hydroxy-5-nitrosopyrimidine and production of 2, 4-diamino-5 formylamino-6-hydroxypyrimidine | |
EP0110559A1 (en) | Process for the preparation of 4-chloro-2-nitrobenzonitrile | |
US4091013A (en) | Process for preparing 1-amino-naphthalene-7-sulphonic acid | |
EP0151835B1 (en) | Process for producing pentachloronitrobenzene from hexachlorobenzene | |
US3838136A (en) | Preparation of 2-chloro-3-aminopyridine | |
JPH06228081A (en) | Production of sodium salt of nitro-containing aromatic sulfinic acid | |
KR900003370B1 (en) | Process for preparing n-tetra-thiodimorpholine | |
US4454362A (en) | Process for producing pentachloronitrobenzene | |
US4719305A (en) | Process for the preparation of N,N-diisopropylbenzothiazyl-2-sulfenamide | |
JPS60169493A (en) | Preparation of 5-deoxy-l-arabinose | |
US3617297A (en) | Process for the production of dl-methionine composition | |
US4892969A (en) | Process for the preparation of 1-amino-2-naphthol-4-sulfonic acid | |
GB2140420A (en) | Process for producing 2-quinoxalinols | |
JPH0524897B2 (en) | ||
US4173581A (en) | Process for the preparation of alkylthiosemicarbazides | |
JPS599533B2 (en) | Production method of dioxydiphenyl | |
DE3067461D1 (en) | Method for producing 4-chloro-5-amino-2-phenyl-3(2h)-pyridazinone from 4,5-dichloro-2-phenyl-3(2h)-pyridazinone and ammonia | |
KR910003638B1 (en) | Process for the preparation of 3-aminomethane sulfone anilide |