KR20240093136A - Method for producing catalyst for carbon dioxide-epoxide reaction, catalyst for carbon dioxide-epoxide reaction and method for synthesizing polymer - Google Patents

Method for producing catalyst for carbon dioxide-epoxide reaction, catalyst for carbon dioxide-epoxide reaction and method for synthesizing polymer Download PDF

Info

Publication number
KR20240093136A
KR20240093136A KR1020220176108A KR20220176108A KR20240093136A KR 20240093136 A KR20240093136 A KR 20240093136A KR 1020220176108 A KR1020220176108 A KR 1020220176108A KR 20220176108 A KR20220176108 A KR 20220176108A KR 20240093136 A KR20240093136 A KR 20240093136A
Authority
KR
South Korea
Prior art keywords
carbon dioxide
phenol
reaction catalyst
based compound
epoxide
Prior art date
Application number
KR1020220176108A
Other languages
Korean (ko)
Inventor
장혜영
손성욱
양용문
Original Assignee
아주대학교산학협력단
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교산학협력단, 성균관대학교산학협력단 filed Critical 아주대학교산학협력단
Priority to KR1020220176108A priority Critical patent/KR20240093136A/en
Priority to PCT/KR2023/017721 priority patent/WO2024128554A1/en
Publication of KR20240093136A publication Critical patent/KR20240093136A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2663Metal cyanide catalysts, i.e. DMC's
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/26Cyanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0202Alcohols or phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

이산화탄소-에폭사이드 반응 촉매 제조 방법, 이산화탄소-에폭사이드 반응 촉매 및 폴리머 합성 방법이 개시된다. 상기 이산화탄소-에폭사이드 반응 촉매 제조 방법은 아연(Ⅱ)계 염을 페놀계 화합물 용액 내에서 반응하는 제1 단계; 및 상기 용액 내 H3Co(CN)6를 포함하는 코발트계 화합물을 첨가하여 반응하는 제2 단계;를 포함할 수 있다.A method for producing a carbon dioxide-epoxide reaction catalyst, a carbon dioxide-epoxide reaction catalyst, and a polymer synthesis method are disclosed. The carbon dioxide-epoxide reaction catalyst manufacturing method includes a first step of reacting a zinc(II)-based salt in a phenol-based compound solution; And a second step of reacting by adding a cobalt-based compound containing H 3 Co(CN) 6 in the solution.

Description

이산화탄소-에폭사이드 반응 촉매 제조 방법, 이산화탄소-에폭사이드 반응 촉매 및 폴리머 합성 방법{METHOD FOR PRODUCING CATALYST FOR CARBON DIOXIDE-EPOXIDE REACTION, CATALYST FOR CARBON DIOXIDE-EPOXIDE REACTION AND METHOD FOR SYNTHESIZING POLYMER}Method for producing a carbon dioxide-epoxide reaction catalyst, carbon dioxide-epoxide reaction catalyst, and polymer synthesis method

본 발명은 이산화탄소-에폭사이드 반응 촉매 제조 방법, 이산화탄소-에폭사이드 반응 촉매 및 폴리머 합성 방법에 관한 것이다.The present invention relates to a method for producing a carbon dioxide-epoxide reaction catalyst, a carbon dioxide-epoxide reaction catalyst, and a polymer synthesis method.

지구 온난화 가스인 이산화탄소를 탄소원으로 이용하여 환경문제를 해결함과 동시에 탈석유기반 화학 공정을 개발할 수 있다. 비화석원료 유래, 지속가능한 원료를 이용한 고부가가치 화학물질의 합성은 탄소-중립을 달성할 수 있는 기술로 환경적, 상업적으로 가치있다. 특히 이산화탄소와 에폭사이드(epoxide)의 반응은 폴리머화 반응을 통해 해당 고분자가 시장진출 시 대량의 이산화탄소를 고분자 내에 저장할 수 있는 친환경 기술이다. By using carbon dioxide, a global warming gas, as a carbon source, environmental problems can be solved and at the same time, a petroleum-based chemical process can be developed. The synthesis of high value-added chemicals using non-fossil-derived, sustainable raw materials is a technology that can achieve carbon neutrality and is environmentally and commercially valuable. In particular, the reaction between carbon dioxide and epoxide is an eco-friendly technology that can store a large amount of carbon dioxide within the polymer when the polymer enters the market through a polymerization reaction.

이산화탄소와 에폭사이드의 반응에 사용되고 있는 double metal cyanide (DMC) 촉매는 프러시안 블루 (Prussian blues)와 유사한 구조이다. DMC 촉매는 두 가지 금속으로 이루어져 있으며 cyanide 리간드를 포함하고 있는 무기 배위 폴리머 (inorganic coordination polymer)로 알려져 있따. Co와 Zn으로 이루어진 DMC촉매, Fe-Zn로 이루어진 DMC 촉매들이 에폭사이드의 homopolymerization과 이산화탄소와 에폭사이드 폴리머화 반응에 이용되어 왔다. 이산화탄소와 에폭사이드 공중합에는 ZnCl2와 K3Co(CN)6를 조합한 DMC 촉매가 주로 이용되어 왔으며 이들 촉매의 결정구조 (cubic, monoclinic, rhombohedral)에 따라 활성이 다르다. Co-Zn기반의 DMC 촉매는 경제적인 촉매이며 촉매 활성이 매우 높지만 이산화탄소의 첨가 비율이 낮은 문제점이 있다. 이산화탄소 함량을 높여서 대량의 이산화탄소를 저장할 수 있는 고활성 촉매 개발이 필요하다. The double metal cyanide (DMC) catalyst used in the reaction between carbon dioxide and epoxide has a structure similar to Prussian blues. The DMC catalyst is known as an inorganic coordination polymer that consists of two metals and contains a cyanide ligand. DMC catalysts made of Co and Zn, and DMC catalysts made of Fe-Zn have been used for the homopolymerization of epoxide and the polymerization reaction of carbon dioxide and epoxide. For copolymerization of carbon dioxide and epoxide, DMC catalysts combining ZnCl 2 and K 3 Co(CN) 6 have been mainly used, and their activities vary depending on the crystal structure (cubic, monoclinic, rhombohedral) of these catalysts. Co-Zn-based DMC catalyst is an economical catalyst and has very high catalytic activity, but has the problem of low carbon dioxide addition rate. There is a need to develop a highly active catalyst that can store large amounts of carbon dioxide by increasing the carbon dioxide content.

본 발명의 일 목적은 높은 이산화탄소 첨가 비율을 가지는 폴리머의 합성 반응에 사용되는 이산화탄소-에폭사이드 반응 촉매 제조 방법을 제공하는 것이다.One object of the present invention is to provide a method for producing a carbon dioxide-epoxide reaction catalyst used in the synthesis reaction of a polymer having a high carbon dioxide addition ratio.

본 발명의 다른 목적은 상기 이산화탄소-에폭사이드 반응 촉매 제조 방법을 통해 제조될 수 있는 이산화탄소-에폭사이드 반응 촉매를 제공하는 것이다.Another object of the present invention is to provide a carbon dioxide-epoxide reaction catalyst that can be produced through the carbon dioxide-epoxide reaction catalyst production method.

본 발명의 또 다른 목적은 상기 이산화탄소-에폭사이드 반응 촉매 제조 방법에 의해 제조된 촉매를 이용하는 폴리머 합성 방법을 제공하는 것이다.Another object of the present invention is to provide a polymer synthesis method using the catalyst prepared by the carbon dioxide-epoxide reaction catalyst preparation method.

본 발명의 또 다른 목적은 상기 이산화탄소-에폭사이드 반응 촉매를 이용하는 폴리머 합성 방법을 제공하는 것이다.Another object of the present invention is to provide a polymer synthesis method using the carbon dioxide-epoxide reaction catalyst.

본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매 제조 방법은 아연(Ⅱ)계 염을 페놀계 화합물 용액 내에서 반응하는 제1 단계; 및 상기 용액 내 H3Co(CN)6를 포함하는 코발트계 화합물을 첨가하여 반응하는 제2 단계;를 포함할 수 있다.The method for producing a carbon dioxide-epoxide reaction catalyst according to an embodiment of the present invention includes a first step of reacting a zinc (II)-based salt in a phenol-based compound solution; And a second step of reacting by adding a cobalt-based compound containing H 3 Co(CN) 6 in the solution.

일 실시예에 있어서, 상기 아연(Ⅱ)계 염은 Zn(OAc)2, ZnO, Zn(OH)2, Zn(NO3)2, Zn(OTf)2, Zn(2-ethylhexanoate)2를 포함하는 Zn(carboxylate)2계 염, ZnEt2를 포함하는 Zn(alkyl)2계 염 및 ZnCl2를 포함하는 Zn(halide)2계 염을 포함하는 군에서 선택된 하나 이상의 물질을 포함할 수 있다.In one embodiment, the zinc(II)-based salt includes Zn(OAc) 2 , ZnO, Zn(OH) 2 , Zn(NO 3 ) 2 , Zn(OTf) 2 , and Zn(2-ethylhexanoate) 2 It may include one or more substances selected from the group including a Zn (carboxylate) 2 -based salt, a Zn (alkyl) 2 -based salt containing ZnEt 2 , and a Zn (halide) 2 -based salt containing ZnCl 2 .

일 실시예에 있어서, 상기 폐놀계 화합물은 페놀(phenol), 페놀 유도체, 카테콜(catecol), 레조르시놀(resorcinol), 하이드로퀴논(hydroquinone), 피로갈롤(pyrogallol), 갈산(gallic acid), 알킬 갈레이트(alkyl gallate), 4-(4-히드록시벤질)벤젠-1,2,3-트리올(4-(4-hydroxybenzyl)benzene-1,2,3-triol), (4-히드록시페닐)(2,3,4-트리히드록시페닐)메타논((4-hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone), 4-히드록시벤조산(4-hydroxybenzoic acid), 2,3,4-히드록시벤조산(2,3,4-hydroxybenzoic acid), 프로토카테츄산(protocatechuic acid), 아릴 갈레이트(aryl gallate), 4-[(4-히드록시페닐)메틸]-1,2,3-트리히드록시벤젠(4-[(4-hydroxyphenyl)methyl]-1,2,3-trihydroxybenzene), 갈라세톤페논(gallacetonphenone), 2,3,4-트리히드록시디페닐메탄(2,3,4-trihydroxydiphenylmethane), 트리히드록시벤조페논(trihydroxybenzophenone), 테트라히드록시벤조페논(tetrahydroxybenzophenone), 헥사하이드록시벤조페논(hexahydroxybenzophenone), 디히드록시벤조페논(dihydroxybenzophenone), 하이드록시벤조산(hydroxybenzoic acid), 디히드록시벤조산(dihydroxybenzoic acid), 트리하이드록시벤조산(trihydroxybenzoic acid), 카페인산(caffeic acid), p-쿠마르산(p-coumaric acid), 엘라그산(ellagic acid), 타닌산(tannic acid), 케르세틴(quercetin), 세테킨(cetechin), 에피카테킨(epicatechin), 에피갈로카테킨(epigallocatechin), 에피칼로카테킨 갈레이트(epicallocatechin gallate), 레스베라트롤(resveratrol), 모린(morin), 루틴(rutin), 케르시트린(quercitrin), 캠페롤(kaempferol), 타마리세틴(tamarixetin), 루테올린(luteolin), 텍시폴린(taxifolin) 및 폴리페놀(polyphenol)을 포함하는 군에서 선택된 하나 이상의 물질을 포함할 수 있다.In one embodiment, the phenol-based compounds include phenol, phenol derivatives, catecol, resorcinol, hydroquinone, pyrogallol, gallic acid, Alkyl gallate, 4-(4-hydroxybenzyl)benzene-1,2,3-triol (4-(4-hydroxybenzyl)benzene-1,2,3-triol), (4-hydroxybenzyl) Roxyphenyl)(2,3,4-trihydroxyphenyl)methanone ((4-hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone), 4-hydroxybenzoic acid, 2,3 , 4-hydroxybenzoic acid (2,3,4-hydroxybenzoic acid), protocatechuic acid, aryl gallate, 4-[(4-hydroxyphenyl)methyl]-1,2, 3-trihydroxybenzene (4-[(4-hydroxyphenyl)methyl]-1,2,3-trihydroxybenzene), gallacetonphenone, 2,3,4-trihydroxydiphenylmethane (2,3 ,4-trihydroxydiphenylmethane), trihydroxybenzophenone, tetrahydroxybenzophenone, hexahydroxybenzophenone, dihydroxybenzophenone, hydroxybenzoic acid, dihydroxybenzoic acid, trihydroxybenzoic acid, caffeic acid, p-coumaric acid, ellagic acid, tannic acid, quercetin (quercetin), cetechin, epicatechin, epigallocatechin, epicallocatechin gallate, resveratrol, morin, rutin, quercitrin It may contain one or more substances selected from the group including quercitrin, kaempferol, tamarixetin, luteolin, taxifolin, and polyphenol.

일 실시예에 있어서, 상기 제1 단계에서, 상기 아연(Ⅱ)계 염과 상기 페놀계 화합물의 당량비는 약 1:1 내지 5:1일 수 있다.In one embodiment, in the first step, the equivalent ratio of the zinc (II)-based salt and the phenol-based compound may be about 1:1 to 5:1.

일 실시예에 있어서, 상기 제1 단계에서, 상기 아연(Ⅱ)계 염의 용액상 농도는 약 0.05 내지 0.2 M일 수 있다.In one embodiment, in the first step, the solution concentration of the zinc(II)-based salt may be about 0.05 to 0.2 M.

일 실시예에 있어서, 상기 제1 단계는, 약 0 내지 80 ℃의 온도에서 반응할 수 있다.In one embodiment, the first step may be performed at a temperature of about 0 to 80 °C.

일 실시예에 있어서, 상기 제1 단계는, 약 18 내지 48 시간 반응할 수 있다.In one embodiment, the first step may take about 18 to 48 hours.

일 실시예에 있어서, 상기 제2 단계에서, 상기 페놀계 화합물과 상기 코발트계 화합물의 당량비는 약 1:1 내지 5:1일 수 있다.In one embodiment, in the second step, the equivalent ratio of the phenol-based compound and the cobalt-based compound may be about 1:1 to 5:1.

일 실시예에 있어서, 상기 제2 단계는, 상온에서 약 18 내지 48 시간 반응할 수 있다.In one embodiment, the second step may be performed at room temperature for about 18 to 48 hours.

본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매는 아연(Ⅱ)계 염을 페놀계 화합물 용액 내에서 반응한 후, 상기 용액 내 H3Co(CN)6를 포함하는 코발트계 화합물을 첨가하여 반응하여 제조될 수 있다.The carbon dioxide-epoxide reaction catalyst according to an embodiment of the present invention reacts a zinc(II)-based salt in a phenol-based compound solution, and then adds a cobalt-based compound containing H 3 Co(CN) 6 in the solution. It can be produced by reaction.

일 실시예에 있어서, 상기 이산화탄소-에폭사이드 반응 촉매에 포함된 아연(Ⅱ) 이온 주변에 [H2Co(CN)6]-, [HCo(CN)6]2-, [Co(CN)6]3- 또는 페놀계 화합물이 위치할 수 있다.In one embodiment, [H 2 Co(CN) 6 ] - , [HCo(CN) 6 ] 2- , [Co(CN) 6 around the zinc(II) ions contained in the carbon dioxide-epoxide reaction catalyst. ] 3- or phenolic compounds may be located.

일 실시예에 있어서, 상기 이산화탄소-에폭사이드 반응 촉매 하에 이산화탄소와 에폭사이드를 반응하여 생성된 폴리머의 이산화탄소 첨가 비율(fCO2)은 약 0.55 내지 0.9 일 수 있다.In one embodiment, the carbon dioxide addition ratio (f CO2 ) of the polymer produced by reacting carbon dioxide and epoxide under the carbon dioxide-epoxide reaction catalyst may be about 0.55 to 0.9.

일 실시예에 있어서, 상기 이산화탄소-에폭사이드 반응 촉매 하에 이산화탄소와 에폭사이드를 반응하여 생성된 폴리머의 이산화탄소 첨가 비율(fCO2)은 약 0.85 내지 0.9 일 수 있다.In one embodiment, the carbon dioxide addition ratio (f CO2 ) of the polymer produced by reacting carbon dioxide and epoxide under the carbon dioxide-epoxide reaction catalyst may be about 0.85 to 0.9.

본 발명의 실시예에 따른 폴리머 합성 방법은 아연(Ⅱ)계 염을 페놀계 화합물 용액 내에서 반응한 후, 상기 용액 내 H3Co(CN)6를 포함하는 코발트계 화합물을 첨가하여 반응하여 제조된 이산화탄소-에폭사이드 반응 촉매 하에서, 이산화탄소와 에폭사이드를 반응하는 단계;를 포함할 수 있다.The polymer synthesis method according to an embodiment of the present invention is prepared by reacting a zinc (II)-based salt in a phenol-based compound solution and then adding a cobalt-based compound containing H 3 Co(CN) 6 in the solution. It may include the step of reacting carbon dioxide and epoxide under a carbon dioxide-epoxide reaction catalyst.

본 발명의 다른 실시예에 따른 폴리머 합성 방법은 아연(Ⅱ) 이온을 포함하고, 상기 아연(Ⅱ) 주변에 [H2Co(CN)6]-, [HCo(CN)6]2-, [Co(CN)6]3- 또는 페놀계 화합물이 위치하는 이산화탄소-에폭사이드 반응 촉매 하에서, 이산화탄소와 에폭사이드를 반응하는 단계;를 포함할 수 있다.The polymer synthesis method according to another embodiment of the present invention includes zinc(II) ions, and [H 2 Co(CN) 6 ] - , [HCo(CN) 6 ] 2- , [ It may include the step of reacting carbon dioxide and epoxide under a carbon dioxide-epoxide reaction catalyst where Co(CN) 6 ] 3- or a phenol-based compound is located.

본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매 제조 방법에 의해, 이산화탄소-에폭사이드 반응에 의해 높은 이산화탄소 첨가 비율을 가지는 폴리머를 제조할 수 있는 촉매가 제조될 수 있다.By using the method for producing a carbon dioxide-epoxide reaction catalyst according to an embodiment of the present invention, a catalyst capable of producing a polymer having a high carbon dioxide addition ratio through a carbon dioxide-epoxide reaction can be produced.

본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매는, 이산화탄소-에폭사이드 반응에 의해 높은 이산화탄소 첨가 비율을 가지는 폴리머를 제조하는 반응에 사용될 수 있다.The carbon dioxide-epoxide reaction catalyst according to an embodiment of the present invention can be used in a reaction to produce a polymer having a high carbon dioxide addition ratio through a carbon dioxide-epoxide reaction.

본 발명의 실시예에 따른 폴리머 합성 방법은 상기 본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매에 의해 구현될 수 있다.The polymer synthesis method according to the embodiment of the present invention can be implemented by the carbon dioxide-epoxide reaction catalyst according to the embodiment of the present invention.

도 1은 본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매 제조 방법을 나타낸 흐름도이다.
도 2는 본 발명의 실시예에 따른 폴리머 합성 방법을 나타낸 흐름도이다.
Figure 1 is a flow chart showing a method for producing a carbon dioxide-epoxide reaction catalyst according to an embodiment of the present invention.
Figure 2 is a flow chart showing a polymer synthesis method according to an embodiment of the present invention.

이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다. Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings. Since the present invention can be subject to various changes and can have various forms, specific embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific disclosed form, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention. While describing each drawing, similar reference numerals are used for similar components. In the attached drawings, the dimensions of the structures are enlarged from the actual size for clarity of the present invention.

본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in this application are only used to describe specific embodiments and are not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, or a combination thereof described in the specification, but are not intended to indicate the presence of one or more other features or numbers. It should be understood that this does not exclude in advance the possibility of the existence or addition of steps, operations, components, or combinations thereof.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as generally understood by a person of ordinary skill in the technical field to which the present invention pertains. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and unless explicitly defined in the present application, should not be interpreted in an ideal or excessively formal sense. No.

도 1은 본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매 제조 방법을 나타낸 흐름도이다.Figure 1 is a flow chart showing a method for producing a carbon dioxide-epoxide reaction catalyst according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매 제조 방법(100)은 아연(Ⅱ)계 염을 페놀계 화합물 용액 내에서 반응하는 제1 단계(S110); 및 상기 용액 내 H3Co(CN)6를 포함하는 코발트계 화합물을 첨가하여 반응하는 제2 단계(S120);를 포함할 수 있다.Referring to Figure 1, the carbon dioxide-epoxide reaction catalyst manufacturing method 100 according to an embodiment of the present invention includes a first step (S110) of reacting a zinc(II)-based salt in a phenol-based compound solution; and a second step (S120) of reacting by adding a cobalt-based compound containing H 3 Co(CN) 6 in the solution.

상기 제1 단계(S110)는 아연(Ⅱ)계 염을 페놀계 화합물 용액 내에서 반응시키는 단계이다. 상기 제1 단계(S110)에서, 상기 페놀계 화합물의 -OH 작용기가 상기 아연(Ⅱ)계 이온에 배위할 수 있다. 상술된 현상은 가정적이고 예시적이며, 본 발명의 범위는 이에 제한되지 않는다.The first step (S110) is a step of reacting a zinc(II)-based salt in a phenol-based compound solution. In the first step (S110), the -OH functional group of the phenol-based compound may coordinate with the zinc(II)-based ion. The phenomena described above are hypothetical and exemplary, and the scope of the present invention is not limited thereto.

상술된 바와 같이, 아연(Ⅱ)계 이온을 제공할 수 있는 염이라면, 상기 아연(Ⅱ)계 염의 종류는 특별히 제한되지 않는다. 일 실시예에 있어서, 상기 아연(Ⅱ)계 염은 Zn(OAc)2, ZnO, Zn(OH)2, Zn(NO3)2, Zn(OTf)2, Zn(2-ethylhexanoate)2를 포함하는 Zn(carboxylate)2계 염, ZnEt2를 포함하는 Zn(alkyl)2계 염 및 ZnCl2를 포함하는 Zn(halide)2계 염을 포함하는 군에서 선택된 하나 이상의 물질을 포함할 수 있다.As described above, the type of the zinc(II)-based salt is not particularly limited as long as it is a salt that can provide zinc(II)-based ions. In one embodiment, the zinc(II)-based salt includes Zn(OAc) 2 , ZnO, Zn(OH) 2 , Zn(NO 3 ) 2 , Zn(OTf) 2 , and Zn(2-ethylhexanoate) 2 It may include one or more substances selected from the group including a Zn (carboxylate) 2 -based salt, a Zn (alkyl) 2 -based salt containing ZnEt 2 , and a Zn (halide) 2 -based salt containing ZnCl 2 .

상술된 바와 같이, -OH 작용기를 제공할 수 있는 페놀계 화합물이라면, 상기 페놀계 화합물의 종류는 특별히 제한되지 않는다. 일 실시예에 있어서, 상기 폐놀계 화합물은 페놀(phenol), 페놀 유도체, 카테콜(catecol), 레조르시놀(resorcinol), 하이드로퀴논(hydroquinone), 피로갈롤(pyrogallol), 갈산(gallic acid), 알킬 갈레이트(alkyl gallate), 4-(4-히드록시벤질)벤젠-1,2,3-트리올(4-(4-hydroxybenzyl)benzene-1,2,3-triol), (4-히드록시페닐)(2,3,4-트리히드록시페닐)메타논((4-hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone), 4-히드록시벤조산(4-hydroxybenzoic acid), 2,3,4-히드록시벤조산(2,3,4-hydroxybenzoic acid), 프로토카테츄산(protocatechuic acid), 아릴 갈레이트(aryl gallate), 4-[(4-히드록시페닐)메틸]-1,2,3-트리히드록시벤젠(4-[(4-hydroxyphenyl)methyl]-1,2,3-trihydroxybenzene), 갈라세톤페논(gallacetonphenone), 2,3,4-트리히드록시디페닐메탄(2,3,4-trihydroxydiphenylmethane), 트리히드록시벤조페논(trihydroxybenzophenone), 테트라히드록시벤조페논(tetrahydroxybenzophenone), 헥사하이드록시벤조페논(hexahydroxybenzophenone), 디히드록시벤조페논(dihydroxybenzophenone), 하이드록시벤조산(hydroxybenzoic acid), 디히드록시벤조산(dihydroxybenzoic acid), 트리하이드록시벤조산(trihydroxybenzoic acid), 카페인산(caffeic acid), p-쿠마르산(p-coumaric acid), 엘라그산(ellagic acid), 타닌산(tannic acid), 케르세틴(quercetin), 세테킨(cetechin), 에피카테킨(epicatechin), 에피갈로카테킨(epigallocatechin), 에피칼로카테킨 갈레이트(epicallocatechin gallate), 레스베라트롤(resveratrol), 모린(morin), 루틴(rutin), 케르시트린(quercitrin), 캠페롤(kaempferol), 타마리세틴(tamarixetin), 루테올린(luteolin), 텍시폴린(taxifolin) 및 폴리페놀(polyphenol)을 포함하는 군에서 선택된 하나 이상의 물질을 포함할 수 있다.As described above, the type of the phenolic compound is not particularly limited as long as it is a phenolic compound capable of providing an -OH functional group. In one embodiment, the phenol-based compounds include phenol, phenol derivatives, catecol, resorcinol, hydroquinone, pyrogallol, gallic acid, Alkyl gallate, 4-(4-hydroxybenzyl)benzene-1,2,3-triol (4-(4-hydroxybenzyl)benzene-1,2,3-triol), (4-hydroxybenzyl) Roxyphenyl)(2,3,4-trihydroxyphenyl)methanone ((4-hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone), 4-hydroxybenzoic acid, 2,3 , 4-hydroxybenzoic acid (2,3,4-hydroxybenzoic acid), protocatechuic acid, aryl gallate, 4-[(4-hydroxyphenyl)methyl]-1,2, 3-trihydroxybenzene (4-[(4-hydroxyphenyl)methyl]-1,2,3-trihydroxybenzene), gallacetonphenone, 2,3,4-trihydroxydiphenylmethane (2,3 ,4-trihydroxydiphenylmethane), trihydroxybenzophenone, tetrahydroxybenzophenone, hexahydroxybenzophenone, dihydroxybenzophenone, hydroxybenzoic acid, dihydroxybenzoic acid, trihydroxybenzoic acid, caffeic acid, p-coumaric acid, ellagic acid, tannic acid, quercetin (quercetin), cetechin, epicatechin, epigallocatechin, epicallocatechin gallate, resveratrol, morin, rutin, quercitrin It may contain one or more substances selected from the group including quercitrin, kaempferol, tamarixetin, luteolin, taxifolin, and polyphenol.

상술된 바와 같이, 상기 제1 단계(S110)에서, 상기 페놀계 화합물의 -OH 작용기가 상기 아연(Ⅱ)계 이온에 배위할 수 있는데, 상기 아연(Ⅱ)계 염의 종류, 상기 페놀계 화합물의 종류 및 공정 변수에 따라, 상기 아연(Ⅱ)계 염과 상기 페놀계 화합물의 당량비를 최적 또는 호적으로 선택할 수 있다. 일 실시예에 있어서, 상기 제1 단계(S110)에서, 상기 아연(Ⅱ)계 염과 상기 페놀계 화합물의 당량비는 약 1:1 내지 5:1일 수 있다. 또한, 상기 제1 단계(S110)에서, 상기 아연(Ⅱ)계 염의 종류, 상기 페놀계 화합물의 종류 및 공정 변수에 따라, 상기 아연(Ⅱ)계 염의 용액상 농도를 최적 또는 호적으로 선택할 수 있다. 일 실시예에 있어서, 상기 제1 단계(S110)에서, 상기 아연(Ⅱ)계 염의 용액상 농도는 약 0.05 내지 0.2 M일 수 있다.As described above, in the first step (S110), the -OH functional group of the phenol-based compound may be coordinated to the zinc (II)-based ion, the type of zinc (II)-based salt, and the phenol-based compound. Depending on the type and process variables, the equivalent ratio of the zinc(II)-based salt and the phenol-based compound can be selected optimally or optimally. In one embodiment, in the first step (S110), the equivalent ratio of the zinc (II)-based salt and the phenol-based compound may be about 1:1 to 5:1. In addition, in the first step (S110), the solution phase concentration of the zinc (II) salt can be optimally or optimally selected depending on the type of the zinc (II) salt, the type of the phenolic compound, and process variables. . In one embodiment, in the first step (S110), the solution concentration of the zinc(II)-based salt may be about 0.05 to 0.2 M.

상기 제1 단계(S110)에서, 실시자는 목적하는 촉매의 목적하는 효과의 최적화 또는 호적화를 위해 반응 온도 및 반응 시간을 포함하는 공정 변수를 최적 또는 호적으로 선택할 수 있다. 일 실시예에 있어서, 상기 제1 단계(S110)는, 약 0 내지 80 ℃의 온도에서 반응할 수 있다. 일 실시예에 있어서, 상기 제1 단계(S110)는, 약 18 내지 48 시간 반응할 수 있다.In the first step (S110), the operator may optimally or optimally select process variables including reaction temperature and reaction time to optimize or optimize the desired effect of the desired catalyst. In one embodiment, the first step (S110) may be performed at a temperature of about 0 to 80 °C. In one embodiment, the first step (S110) may take about 18 to 48 hours.

상기 제2 단계(S120)는 상기 제1 단계(S110)의 용액에 H3Co(CN)6를 포함하는 코발트계 화합물을 첨가하여 반응시키는 단계이다. 상기 제2 단계(S120)에서, 상기 제1 단계(S110)에서 형성된 페놀-아연 배위체의 음이온 리간드가 H3Co(CN)6를 포함하는 코발트계 화합물과 산-염기 반응을 통해 아연(Ⅱ)계 이온과 코발트계 이온이 공존하는 촉매를 형성할 수 있다. 상술된 현상은 가정적이고 예시적이며, 본 발명의 범위는 이에 제한되지 않는다. 상기 촉매는 DMC(double metal catalyst)일 수 있다.The second step (S120) is a step of adding and reacting a cobalt-based compound containing H 3 Co(CN) 6 to the solution of the first step (S110). In the second step (S120), the anionic ligand of the phenol-zinc coordinate formed in the first step (S110) is zinc (Ⅱ) through an acid-base reaction with a cobalt-based compound containing H 3 Co(CN) 6 . )-based ions and cobalt-based ions can form a catalyst in which they coexist. The phenomena described above are hypothetical and exemplary, and the scope of the present invention is not limited thereto. The catalyst may be a double metal catalyst (DMC).

상술된 바와 같이, 상기 제2 단계(S120)에서 아연(Ⅱ)계 이온과 코발트계 이온이 공존하는 촉매가 형성될 수 있는데, 상기 아연(Ⅱ)계 염의 종류, 상기 페놀계 화합물의 종류 및 공정 변수에 따라, 상기 페놀계 화합물과 상기 코발트계 화합물의 당량비는 최적 또는 호적으로 선택될 수 있다. 일 실시예에 있어서, 상기 제2 단계(S120)에서, 상기 페놀계 화합물과 상기 코발트계 화합물의 당량비는 약 1:1 내지 5:1일 수 있다.As described above, in the second step (S120), a catalyst in which zinc (II)-based ions and cobalt-based ions coexist can be formed, including the type of zinc (II)-based salt, the type of the phenol-based compound, and the process. Depending on the variables, the equivalent ratio of the phenol-based compound and the cobalt-based compound may be selected optimally or favorably. In one embodiment, in the second step (S120), the equivalent ratio of the phenol-based compound and the cobalt-based compound may be about 1:1 to 5:1.

상기 제2 단계(S120)에서, 실시자는 목적하는 촉매의 목적하는 효과의 최적화 또는 호적화를 위해 반응 온도 및 반응 시간을 포함하는 공정 변수를 최적 또는 호적으로 선택할 수 있다. 일 실시예에 있어서, 상기 제2 단계(S120)는, 상온에서 약 18 내지 48 시간 반응할 수 있다.In the second step (S120), the operator can optimally or optimally select process variables including reaction temperature and reaction time to optimize or optimize the desired effect of the desired catalyst. In one embodiment, the second step (S120) may be performed at room temperature for about 18 to 48 hours.

본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매는 아연(Ⅱ)계 염을 페놀계 화합물 용액 내에서 반응한 후, 상기 용액 내 H3Co(CN)6를 포함하는 코발트계 화합물을 첨가하여 반응하여 제조될 수 있다.The carbon dioxide-epoxide reaction catalyst according to an embodiment of the present invention reacts a zinc(II)-based salt in a phenol-based compound solution, and then adds a cobalt-based compound containing H 3 Co(CN) 6 in the solution. It can be produced by reaction.

상기 본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매에 관한 설명은 상술된 본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매 제조 방법에 관한 설명에서 동일하거나 유사한 구성에 대해 동일하거나 유사하게 적용될 수 있다.The description of the carbon dioxide-epoxide reaction catalyst according to the embodiment of the present invention will be applied in the same or similar manner to the same or similar configuration as the description of the method of producing the carbon dioxide-epoxide reaction catalyst according to the embodiment of the present invention described above. You can.

하기 화학식 (1)은 본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매의 일례를 나타낸 화학식이다.The following chemical formula (1) is a chemical formula showing an example of a carbon dioxide-epoxide reaction catalyst according to an embodiment of the present invention.

(1) (One)

즉, 일 실시예에 있어서, 상기 이산화탄소-에폭사이드 반응 촉매에 포함된 아연(Ⅱ) 이온 주변에 코발트계 이온 및/또는 페놀계 화합물이 위치할 수 있다.That is, in one embodiment, cobalt-based ions and/or phenol-based compounds may be located around the zinc(II) ions included in the carbon dioxide-epoxide reaction catalyst.

상기 화학식 (1)에 도시된 아연계 이온의 결합 관계, 페놀계 화합물의 -OH 작용기 개수 및 결합 관계 및 페놀계 화합물의 종류(A)는 예시적이거나 임의적인 것이며, 본 발명의 범위는 이에 제한되지 않는다.The bonding relationship of the zinc-based ion, the number and bonding relationship of the -OH functional group of the phenol-based compound, and the type (A) of the phenol-based compound shown in the above formula (1) are exemplary or arbitrary, and the scope of the present invention is limited thereto. It doesn't work.

상기 코발트계 이온은 전하가 표시되지 않았으나, [Co(CN)6]3- 일 수 있는 것으로 도시된다. 그러나 이는 예시적인 것이며, 일 실시예에 있어서 상기 코발트계 이온은 [H2Co(CN)6]-, [HCo(CN)6]2- 및 [Co(CN)6]3-를 포함하는 군에서 선택된 하나 이상의 물질을 포함한다.The charge of the cobalt-based ion is not indicated, but is shown to be [Co(CN) 6 ] 3- . However, this is an example, and in one embodiment, the cobalt-based ion is a group including [H 2 Co(CN) 6 ] - , [HCo(CN) 6 ] 2- , and [Co(CN) 6 ] 3- Contains one or more substances selected from.

상기 페놀계 화합물은 3개의 -OH 작용기를 가진 것으로 도시되나, 이는 예시적인 것이며, 상기 페놀계 화합물의 벤젠 고리에 결합된 작용기(A) 역시 임의적인 것으로서, 본 발명의 목적을 달성할 수 있는 한 본 발명의 범위를 제한하지 않는다. 상기 페놀계 화합물에 포함된 -OH 작용기의 개수 및 결합 관계, 그리고 기타 작용기(A)의 종류에 의해 상기 페놀계 화합물의 종류가 결정되며, 일 실시예에 있어서, 상기 폐놀계 화합물은 페놀(phenol), 페놀 유도체, 카테콜(catecol), 레조르시놀(resorcinol), 하이드로퀴논(hydroquinone), 피로갈롤(pyrogallol), 갈산(gallic acid), 알킬 갈레이트(alkyl gallate), 4-(4-히드록시벤질)벤젠-1,2,3-트리올(4-(4-hydroxybenzyl)benzene-1,2,3-triol), (4-히드록시페닐)(2,3,4-트리히드록시페닐)메타논((4-hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone), 4-히드록시벤조산(4-hydroxybenzoic acid), 2,3,4-히드록시벤조산(2,3,4-hydroxybenzoic acid), 프로토카테츄산(protocatechuic acid), 아릴 갈레이트(aryl gallate), 4-[(4-히드록시페닐)메틸]-1,2,3-트리히드록시벤젠(4-[(4-hydroxyphenyl)methyl]-1,2,3-trihydroxybenzene), 갈라세톤페논(gallacetonphenone), 2,3,4-트리히드록시디페닐메탄(2,3,4-trihydroxydiphenylmethane), 트리히드록시벤조페논(trihydroxybenzophenone), 테트라히드록시벤조페논(tetrahydroxybenzophenone), 헥사하이드록시벤조페논(hexahydroxybenzophenone), 디히드록시벤조페논(dihydroxybenzophenone), 하이드록시벤조산(hydroxybenzoic acid), 디히드록시벤조산(dihydroxybenzoic acid), 트리하이드록시벤조산(trihydroxybenzoic acid), 카페인산(caffeic acid), p-쿠마르산(p-coumaric acid), 엘라그산(ellagic acid), 타닌산(tannic acid), 케르세틴(quercetin), 세테킨(cetechin), 에피카테킨(epicatechin), 에피갈로카테킨(epigallocatechin), 에피칼로카테킨 갈레이트(epicallocatechin gallate), 레스베라트롤(resveratrol), 모린(morin), 루틴(rutin), 케르시트린(quercitrin), 캠페롤(kaempferol), 타마리세틴(tamarixetin), 루테올린(luteolin), 텍시폴린(taxifolin) 및 폴리페놀(polyphenol)을 포함하는 군에서 선택된 하나 이상의 물질을 포함할 수 있다.The phenol-based compound is shown as having three -OH functional groups, but this is an example, and the functional group (A) bonded to the benzene ring of the phenol-based compound is also optional, as long as the purpose of the present invention can be achieved. It does not limit the scope of the present invention. The type of the phenol-based compound is determined by the number and bonding relationship of -OH functional groups contained in the phenol-based compound, and the type of other functional groups (A). In one embodiment, the phenol-based compound is phenol (phenol). ), phenol derivatives, catecol, resorcinol, hydroquinone, pyrogallol, gallic acid, alkyl gallate, 4-(4-hydride) Roxybenzyl)benzene-1,2,3-triol (4-(4-hydroxybenzyl)benzene-1,2,3-triol), (4-hydroxyphenyl)(2,3,4-trihydroxyphenyl ) Methanone ((4-hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone), 4-hydroxybenzoic acid, 2,3,4-hydroxybenzoic acid (2,3,4-hydroxybenzoic) acid), protocatechuic acid, aryl gallate, 4-[(4-hydroxyphenyl)methyl]-1,2,3-trihydroxybenzene (4-[(4-hydroxyphenyl) )methyl]-1,2,3-trihydroxybenzene), gallacetonphenone, 2,3,4-trihydroxydiphenylmethane, trihydroxybenzophenone , tetrahydroxybenzophenone, hexahydroxybenzophenone, dihydroxybenzophenone, hydroxybenzoic acid, dihydroxybenzoic acid, trihydroxybenzoic acid ( trihydroxybenzoic acid, caffeic acid, p-coumaric acid, ellagic acid, tannic acid, quercetin, cetechin, epicatechin , epigallocatechin, epicallocatechin gallate, resveratrol, morin, rutin, quercitrin, kaempferol, tamaricetin ( It may contain one or more substances selected from the group including tamarixetin, luteolin, taxifolin, and polyphenol.

상기 본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매는 이산화탄소와 에폭사이드를 반응하여 폴리머를 형성할 수 있다. 상기 반응에 참여하는 에폭사이드의 종류는 특별히 제한되지 않는다. 본 발명은 적어도 본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매 하 이산화탄소-에폭사이드 반응을 진행하여 생성된 폴리머의 이산화탄소 첨가 비율(fCO2)이 높다는 것을 발견한 것에 기초한다. 본 명세서의 문맥에서, "이산화탄소 첨가 비율(fCO2)"은 상기 이산화탄소-에폭사이드 반응 결과 생성된 폴리머에서, 최대(포화) 이산화탄소 첨가량에 대한 실제 이산화탄소 첨가량의 비율을 의미할 수 있다. 일례로, 상기 이산화탄소-에폭사이드 반응 결과 생성된 폴리머는 이론적으로 이산화탄소 유래 단량체와 에폭사이드 유래 단량체가 교대하는 구조를 가질 수 있는데, 이 경우 상기 최대(포화) 이산화탄소 첨가량은 상기 폴리머에 포함된 전체 단량체의 반수일 수 있다. 이 때, 이산화탄소 첨가 비율(fCO2)은 상기 최대(포화) 이산화탄소 첨가량에 대해, 실제 이산화탄소 첨가량의 비율을 의미할 수 있다. 일 실시예에 있어서, 상기 이산화탄소-에폭사이드 반응 촉매 하에 이산화탄소와 에폭사이드를 반응하여 생성된 폴리머의 이산화탄소 첨가 비율(fCO2)은 약 0.55 내지 0.9 일 수 있다. 일 실시예에 있어서, 상기 이산화탄소-에폭사이드 반응 촉매 하에 이산화탄소와 에폭사이드를 반응하여 생성된 폴리머의 이산화탄소 첨가 비율(fCO2)은 약 0.85 내지 0.9 일 수 있다.The carbon dioxide-epoxide reaction catalyst according to the embodiment of the present invention can form a polymer by reacting carbon dioxide and epoxide. The type of epoxide participating in the reaction is not particularly limited. The present invention is based on the discovery that the carbon dioxide addition rate (f CO2 ) of the polymer produced by conducting a carbon dioxide-epoxide reaction under a carbon dioxide-epoxide reaction catalyst according to at least an embodiment of the present invention is high. In the context of the present specification, “carbon dioxide addition rate (f CO2 )” may mean the ratio of the actual carbon dioxide addition to the maximum (saturated) carbon dioxide addition, in the polymer produced as a result of the carbon dioxide-epoxide reaction. For example, the polymer produced as a result of the carbon dioxide-epoxide reaction may theoretically have a structure in which carbon dioxide-derived monomers and epoxide-derived monomers alternate, in which case the maximum (saturated) amount of carbon dioxide added is equal to the total monomers contained in the polymer. It may be half of . At this time, the carbon dioxide addition rate (f CO2 ) may mean the ratio of the actual carbon dioxide addition amount to the maximum (saturated) carbon dioxide addition amount. In one embodiment, the carbon dioxide addition ratio (f CO2 ) of the polymer produced by reacting carbon dioxide and epoxide under the carbon dioxide-epoxide reaction catalyst may be about 0.55 to 0.9. In one embodiment, the carbon dioxide addition ratio (f CO2 ) of the polymer produced by reacting carbon dioxide and epoxide under the carbon dioxide-epoxide reaction catalyst may be about 0.85 to 0.9.

도 2는 본 발명의 실시예에 따른 폴리머 합성 방법을 나타낸 흐름도이다.Figure 2 is a flow chart showing a polymer synthesis method according to an embodiment of the present invention.

도 2를 참조하면, 본 발명의 실시예에 따른 폴리머 합성 방법(200)은 본 발명의 실시예에 따른 촉매 하에서, 이산화탄소와 에폭사이드를 반응하는 단계(S210)를 포함할 수 있다. 상기 본 발명의 실시예에 따른 폴리머 합성 방법에 관한 설명은, 상술된 본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매 제조 방법 및 본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매에 대한 설명에서 동일하거나 유사한 구성에 대해 동일하거나 유사하게 적용될 수 있다. 따라서 일 실시예에 있어서, 본 발명의 실시예에 따른 폴리머 합성 방법(200)은 아연(Ⅱ)계 염을 페놀계 화합물 용액 내에서 반응한 후, 상기 용액 내 H3Co(CN)6를 포함하는 코발트계 화합물을 첨가하여 반응하여 제조된 이산화탄소-에폭사이드 반응 촉매 하에서, 이산화탄소와 에폭사이드를 반응하는 단계;를 포함할 수 있다. 또한, 본 발명의 다른 실시예에 따른 폴리머 합성 방법(200)은 아연(Ⅱ) 이온을 포함하고, 상기 아연(Ⅱ) 주변에 [H2Co(CN)6]-, [HCo(CN)6]2-, [Co(CN)6]3- 또는 페놀계 화합물이 위치하는 이산화탄소-에폭사이드 반응 촉매 하에서, 이산화탄소와 에폭사이드를 반응하는 단계;를 포함할 수 있다.Referring to FIG. 2, the polymer synthesis method 200 according to an embodiment of the present invention may include a step (S210) of reacting carbon dioxide and epoxide in the presence of a catalyst according to an embodiment of the present invention. The description of the polymer synthesis method according to the embodiment of the present invention includes the method for producing a carbon dioxide-epoxide reaction catalyst according to the above-described embodiment of the present invention and the description of the carbon dioxide-epoxide reaction catalyst according to the embodiment of the present invention. It may be applied identically or similarly to the same or similar configuration. Therefore, in one embodiment, the polymer synthesis method 200 according to an embodiment of the present invention reacts a zinc(II)-based salt in a phenol-based compound solution, and then contains H 3 Co(CN) 6 in the solution. It may include reacting carbon dioxide and epoxide under a carbon dioxide-epoxide reaction catalyst prepared by adding and reacting a cobalt-based compound. In addition, the polymer synthesis method 200 according to another embodiment of the present invention includes zinc(II) ions, and [H 2 Co(CN) 6 ] - , [HCo(CN) 6 around the zinc(II). ] 2- , [Co(CN) 6 ] 3- , or reacting carbon dioxide and epoxide under a carbon dioxide-epoxide reaction catalyst where a phenolic compound is located.

이하 본 발명의 실시예에 대해 상술한다. 다만, 하기에 기재된 실시예는 본 발명의 일부 실시 형태에 불과한 것으로서, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. Hereinafter, embodiments of the present invention will be described in detail. However, the examples described below are only some embodiments of the present invention, and the scope of the present invention is not limited to the following examples.

실시예 1Example 1

아연 전구체로 Zn(OAc)2를 369 mg, 2.01 mmol 준비한다. 페놀계 화합물로 피로갈롤(pyrogallol)을 84.5 mg, 0.67 mmol 준비한다. 코발트계 화합물로 H3Co(CN)6를 215.8 mg, 0.67 mmol 준비한다. 아연 전구체와 페놀계 화합물과 코발트계 화합물의 당량은 3:1:1이다. 즉, 페놀계 화합물에 대한 아연 전구체의 당량은 3, 코발트계 화합물에 대한 페놀계 화합물의 당량은 1이었다.Prepare 369 mg, 2.01 mmol of Zn(OAc) 2 as a zinc precursor. Prepare 84.5 mg, 0.67 mmol of pyrogallol as a phenolic compound. Prepare 215.8 mg, 0.67 mmol of H 3 Co(CN) 6 as a cobalt-based compound. The equivalent weight of the zinc precursor, phenol-based compound, and cobalt-based compound is 3:1:1. That is, the equivalent weight of the zinc precursor to the phenol-based compound was 3, and the equivalent weight of the phenol-based compound to the cobalt-based compound was 1.

상기 아연 전구체와 페놀계 화합물을 100 mL Schlenk flask 내 메탄올(5.0 mL)에 첨가한 후, 16시간 동안 상온에서 교반(1150 rpm)한다. 상기 용액에 코발트계 화합물을 첨가하고, 상온에서 16 시간 동안 교반하였다. 흑색 고체인 촉매를 원심분리기로 수득하였고, 무수 메탄올(1.0 mL)로 세척 후 건조되었다.The zinc precursor and phenolic compound were added to methanol (5.0 mL) in a 100 mL Schlenk flask, and then stirred (1150 rpm) at room temperature for 16 hours. A cobalt-based compound was added to the solution and stirred at room temperature for 16 hours. The catalyst as a black solid was obtained by centrifugation, washed with anhydrous methanol (1.0 mL), and dried.

상기 촉매 존재 하 이산화탄소와 프로필렌 옥사이드(PO)를 반응하였다. 반응 온도는 80 ℃, 이산화탄소는 40 bar의 압력으로 공급되었다. 촉매량은 2.0 mg/g-PO 이었다.Carbon dioxide and propylene oxide (PO) were reacted in the presence of the catalyst. The reaction temperature was 80°C, and carbon dioxide was supplied at a pressure of 40 bar. The catalyst amount was 2.0 mg/g-PO.

실시예 2Example 2

아연 전구체, 페놀계 화합물, 코발트계 화합물을 동시에 첨가하여 촉매를 제조한 것을 제외하고는 실시예 1과 동일하다.It is the same as Example 1 except that the catalyst was prepared by simultaneously adding a zinc precursor, a phenol-based compound, and a cobalt-based compound.

실시예 3Example 3

아연 전구체와 코발트계 화합물을 먼저 반응하고, 페놀계 화합물을 이후에 첨가한 것을 제외하고는 실시예 1과 동일하다.It is the same as Example 1 except that the zinc precursor and the cobalt-based compound were reacted first, and the phenol-based compound was added later.

실시예 4Example 4

아연 전구체와 페놀계 화합물을 50도에서 반응 한 것을 제외하고는 실시예 1과 동일하다.It is the same as Example 1 except that the zinc precursor and the phenol-based compound were reacted at 50 degrees.

실시예 5Example 5

페놀계 화합물에 대한 아연 전구체의 당량은 2, 코발트계 화합물에 대한 페놀계 화합물의 당량은 1.5인 것을 제외하고는 실시예 1과 동일하다.It is the same as Example 1, except that the equivalent weight of the zinc precursor to the phenol-based compound is 2, and the equivalent weight of the phenol-based compound to the cobalt-based compound is 1.5.

실시예 6Example 6

페놀계 화합물에 대한 아연 전구체의 당량은 2, 코발트계 화합물에 대한 페놀계 화합물의 당량은 1인 것을 제외하고는 실시예 1과 동일하다.It is the same as Example 1, except that the equivalent weight of the zinc precursor to the phenol-based compound is 2, and the equivalent weight of the phenol-based compound to the cobalt-based compound is 1.

실시예 7Example 7

페놀계 화합물에 대한 아연 전구체의 당량은 1, 코발트계 화합물에 대한 페놀계 화합물의 당량은 3인 것을 제외하고는 실시예 1과 동일하다.It is the same as Example 1, except that the equivalent weight of the zinc precursor to the phenol-based compound is 1, and the equivalent weight of the phenol-based compound to the cobalt-based compound is 3.

실시예 8Example 8

페놀계 화합물로 갈산(gallic acid)를 사용한 것을 제외하고는 실시예 1과 동일하다.It is the same as Example 1 except that gallic acid was used as the phenol-based compound.

실시예 9Example 9

아연 전구체, 페놀계 화합물, 코발트계 화합물을 동시에 첨가하여 촉매를 제조한 것을 제외하고는 실시예 8과 동일하다.It is the same as Example 8, except that the catalyst was prepared by simultaneously adding a zinc precursor, a phenol-based compound, and a cobalt-based compound.

실시예 10Example 10

아연 전구체와 코발트계 화합물을 2일(48시간)간 반응한 것을 제외하고는 실시예 8과 동일하다.It is the same as Example 8 except that the zinc precursor and the cobalt-based compound were reacted for 2 days (48 hours).

실시예 11Example 11

아연 전구체와 페놀계 화합물을 50도에서 반응 한 것을 제외하고는 실시예 8과 동일하다.It is the same as Example 8 except that the zinc precursor and the phenolic compound were reacted at 50 degrees.

실시예 12Example 12

촉매량을 1.0 mg/g-PO로 첨가한 것을 제외하고는 실시예 11과 동일하다.It is the same as Example 11 except that the catalyst amount was added at 1.0 mg/g-PO.

실시예 13Example 13

페놀계 화합물에 대한 아연 전구체의 당량은 4, 코발트계 화합물에 대한 페놀계 화합물의 당량은 1인 것을 제외하고는 실시예 8과 동일하다.It is the same as Example 8, except that the equivalent weight of the zinc precursor to the phenol-based compound is 4, and the equivalent weight of the phenol-based compound to the cobalt-based compound is 1.

실시예 14Example 14

페놀계 화합물에 대한 아연 전구체의 당량은 2, 코발트계 화합물에 대한 페놀계 화합물의 당량은 1인 것을 제외하고는 실시예 8과 동일하다.It is the same as Example 8, except that the equivalent weight of the zinc precursor to the phenol-based compound is 2, and the equivalent weight of the phenol-based compound to the cobalt-based compound is 1.

실시예 15Example 15

촉매량을 1 mg/g-PO로 첨가한 것을 제외하고는 실시예 14와 동일하다.It is the same as Example 14 except that the catalyst amount was added at 1 mg/g-PO.

실시예 16Example 16

페놀계 화합물에 대한 아연 전구체의 당량은 1.5, 코발트계 화합물에 대한 페놀계 화합물의 당량은 1인 것을 제외하고는 실시예 8과 동일하다.It is the same as Example 8, except that the equivalent weight of the zinc precursor to the phenol-based compound is 1.5, and the equivalent weight of the phenol-based compound to the cobalt-based compound is 1.

실시예 17Example 17

페놀계 화합물로 카페산(caffeic acid)을 사용한 것을 제외하고는 실시예 15와 동일하다.It is the same as Example 15 except that caffeic acid was used as the phenol-based compound.

실시예 18Example 18

아연 전구체와 페놀계 화합물을 50도에서 반응 한 것을 제외하고는 실시예 17과 동일하다.It is the same as Example 17 except that the zinc precursor and the phenolic compound were reacted at 50 degrees.

실시예 19Example 19

페놀계 화합물로 4-히드록시벤조산(4-hydroxybenzoic acid)을 사용한 것을 제외하고는 실시예 15와 동일하다.It is the same as Example 15 except that 4-hydroxybenzoic acid was used as the phenol-based compound.

실시예 20Example 20

아연 전구체와 페놀계 화합물을 50도에서 반응 한 것을 제외하고는 실시예 19와 동일하다.It is the same as Example 19 except that the zinc precursor and the phenolic compound were reacted at 50 degrees.

실시예 21Example 21

페놀계 화합물로 2,3,4-히드록시벤조산(2,3,4-hydroxybenzoic acid)을 사용한 것을 제외하고는 실시예 15와 동일하다.It is the same as Example 15 except that 2,3,4-hydroxybenzoic acid was used as the phenol-based compound.

실시예 22Example 22

아연 전구체와 페놀계 화합물을 50도에서 반응 한 것을 제외하고는 실시예 21과 동일하다.It is the same as Example 21 except that the zinc precursor and the phenolic compound were reacted at 50 degrees.

실시예 23Example 23

페놀계 화합물로 프로토카테츄산(protocatechuic acid)을 사용한 것을 제외하고는 실시예 15와 동일하다.It is the same as Example 15 except that protocatechuic acid was used as the phenolic compound.

실시예 24Example 24

아연 전구체와 페놀계 화합물을 50도에서 반응 한 것을 제외하고는 실시예 13과 동일하다.It is the same as Example 13 except that the zinc precursor and the phenolic compound were reacted at 50 degrees.

실시예 25Example 25

페놀계 화합물로 p-쿠마르산(p-coumaric acid)을 사용한 것을 제외하고는 실시예 15와 동일하다.It is the same as Example 15 except that p-coumaric acid was used as the phenol-based compound.

실시예 26Example 26

아연 전구체와 페놀계 화합물을 50도에서 반응 한 것을 제외하고는 실시예 25와 동일하다.It is the same as Example 25 except that the zinc precursor and the phenolic compound were reacted at 50 degrees.

실시예 27Example 27

페놀계 화합물로 4-(4-히드록시벤질)벤젠-1,2,3-트리올(4-(4-hydroxybenzyl)benzene-1,2,3-triol)을 사용한 것을 제외하고는 실시예 15와 동일하다.Example 15, except that 4-(4-hydroxybenzyl)benzene-1,2,3-triol was used as the phenol-based compound. Same as

실시예 28Example 28

페놀계 화합물로 (4-히드록시페닐)(2,3,4-트리히드록시페닐)메타논((4-hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone)을 사용한 것을 제외하고는 실시예 15와 동일하다.Examples except that (4-hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone was used as the phenol-based compound. Same as 15.

실시예 29Example 29

페놀계 화합물로 타닌산(tannic acid)을 사용한 것을 제외하고는 실시예 15와 동일하다.It is the same as Example 15 except that tannic acid was used as the phenol-based compound.

실시예 30Example 30

페놀계 화합물로 메틸갈레이트(methylgallate)를 사용한 것을 제외하고는 실시예 15와 동일하다.It is the same as Example 15 except that methyl gallate was used as the phenol-based compound.

실시예 31Example 31

아연 전구체로 ZnEt2를 사용한 것을 제외하고는 실시예 1과 동일하다.It is the same as Example 1 except that ZnEt 2 was used as the zinc precursor.

실시예 32Example 32

아연 전구체로 ZnO를 사용한 것을 제외하고는 실시예 8과 동일하다.It is the same as Example 8 except that ZnO was used as the zinc precursor.

실시예 33Example 33

아연 전구체로 ZnCl2를 사용하고, 페놀계 화합물에 대한 아연 전구체의 당량은 2, 코발트계 화합물에 대한 페놀계 화합물의 당량은 1인 것을 제외하고는 실시예 1과 동일하다.It is the same as Example 1, except that ZnCl 2 is used as the zinc precursor, the equivalent weight of the zinc precursor to the phenol-based compound is 2, and the equivalent weight of the phenol-based compound to the cobalt-based compound is 1.

실시예 34Example 34

페놀계 화합물로 갈산(gallic acid)를 사용한 것을 제외하고는 실시예 33과 동일하다.It is the same as Example 33 except that gallic acid was used as the phenol-based compound.

실시예 35Example 35

아연 전구체로 Zn(2-ethylhexanoate)2를 사용한 것을 제외하고는 실시예 1과 동일하다.It is the same as Example 1 except that Zn (2-ethylhexanoate) 2 was used as the zinc precursor.

실시예 36Example 36

아연 전구체와 페놀계 화합물을 반응하는 단계를 수행하지 않고, 페놀계 화합물을 포함하는 용액에 코발트계 화합물을 첨가한 것을 제외하고는 실시예 1과 동일하다.It is the same as Example 1, except that the step of reacting the zinc precursor and the phenol-based compound was not performed, and the cobalt-based compound was added to the solution containing the phenol-based compound.

실시예 37Example 37

본 발명의 실시예에 따른 제조 방법에 의해 촉매를 제조하지 않고, 종래의 Co-ZnGA 촉매를 사용하여 이산화탄소-에폭사이드 반응을 진행한 것을 제외하고는 실시예 1과 동일하다.It is the same as Example 1, except that the carbon dioxide-epoxide reaction was performed using a conventional Co-ZnGA catalyst rather than preparing a catalyst using the production method according to the embodiment of the present invention.

실시예 38Example 38

촉매량을 0.5 mg/g-PO로 첨가한 것을 제외하고는 실시예 37과 동일하다.It is the same as Example 37 except that the catalyst amount was added at 0.5 mg/g-PO.

****************

이상에서 서술된 각 실시예의 조건은 하기 표와 같다.The conditions of each example described above are as shown in the table below.

실시예Example 아연전구체zinc precursor 페놀계 화합물phenolic compounds 아연/페놀 당량Zinc/phenol equivalent 페놀/코발트 당량Phenol/cobalt equivalent 촉매량Catalytic amount
(mg/g-PO)(mg/g-PO)
기타 반응 조건Other reaction conditions
1One Zn(OAc)2 Zn(OAc) 2 pyrogallolpyrogallol 33 1One 22 -- 22 Zn(OAc)2 Zn(OAc) 2 pyrogallolpyrogallol 33 1One 22 AA 33 Zn(OAc)2 Zn(OAc) 2 pyrogallolpyrogallol 33 1One 22 BB 44 Zn(OAc)2 Zn(OAc) 2 pyrogallolpyrogallol 33 1One 22 CC 55 Zn(OAc)2 Zn(OAc) 2 pyrogallolpyrogallol 22 1.51.5 22 -- 66 Zn(OAc)2 Zn(OAc) 2 pyrogallolpyrogallol 22 1One 22 -- 77 Zn(OAc)2 Zn(OAc) 2 pyrogallolpyrogallol 1One 33 22 -- 88 Zn(OAc)2 Zn(OAc) 2 gallic acidgallic acid 33 1One 22 -- 99 Zn(OAc)2 Zn(OAc) 2 gallic acidgallic acid 33 1One 22 AA 1010 Zn(OAc)2 Zn(OAc) 2 gallic acidgallic acid 33 1One 22 DD 1111 Zn(OAc)2 Zn(OAc) 2 gallic acidgallic acid 33 1One 22 -- 1212 Zn(OAc)2 Zn(OAc) 2 gallic acidgallic acid 33 1One 4.44.4 -- 1313 Zn(OAc)2 Zn(OAc) 2 gallic acidgallic acid 44 1One 22 -- 1414 Zn(OAc)2 Zn(OAc) 2 gallic acidgallic acid 22 1One 22 -- 1515 Zn(OAc)2 Zn(OAc) 2 gallic acidgallic acid 22 1One 1One -- 1616 Zn(OAc)2 Zn(OAc) 2 gallic acidgallic acid 1.51.5 1One 22 -- 1717 Zn(OAc)2 Zn(OAc) 2 caffeic acidcaffeic acid 33 1One 1One -- 1818 Zn(OAc)2 Zn(OAc) 2 caffeic acidcaffeic acid 33 1One 1One CC 1919 Zn(OAc)2 Zn(OAc) 2 4-hydroxybenzoic acid4-hydroxybenzoic acid 33 1One 1One -- 2020 Zn(OAc)2 Zn(OAc) 2 4-hydroxybenzoic acid4-hydroxybenzoic acid 33 1One 1One CC 2121 Zn(OAc)2 Zn(OAc) 2 2,3,4-hydroxybenzoic acid2,3,4-hydroxybenzoic acid 33 1One 1One -- 2222 Zn(OAc)2 Zn(OAc) 2 2,3,4-hydroxybenzoic acid2,3,4-hydroxybenzoic acid 33 1One 1One CC 2323 Zn(OAc)2 Zn(OAc) 2 protocatechuic acidprotocatechuic acid 33 1One 1One -- 2424 Zn(OAc)2 Zn(OAc) 2 protocatechuic acidprotocatechuic acid 33 1One 1One CC 2525 Zn(OAc)2 Zn(OAc) 2 p-coumaric acidp-coumaric acid 33 1One 1One -- 2626 Zn(OAc)2 Zn(OAc) 2 p-coumaric acidp-coumaric acid 33 1One 1One CC 2727 Zn(OAc)2 Zn(OAc) 2 4-(4-hydroxybenzyl)benzene-1,2,3-triol4-(4-hydroxybenzyl)benzene-1,2,3-triol 33 1One 1One -- 2828 Zn(OAc)2 Zn(OAc) 2 (4-hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone(4-hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone 33 1One 1One -- 2929 Zn(OAc)2 Zn(OAc) 2 Tannic acidTannic acid 33 1One 1One -- 3030 Zn(OAc)2 Zn(OAc) 2 methylgallatemethylgallate 33 1One 1One -- 3131 ZnEt2 ZnEt 2 pyrogallolpyrogallol 33 1One 22 -- 3232 ZnOZnO gallic acidgallic acid 33 1One 22 -- 3333 ZnCl2 ZnCl 2 pyrogallolpyrogallol 22 1One 22 -- 3434 ZnCl2 ZnCl 2 gallic acidgallic acid 22 1One 22 -- 3535 Zn(2-EH)2 Zn(2-EH) 2 pyrogallolpyrogallol 33 1One 22 -- 3636 -- pyrogallolpyrogallol -- 1One 22 -- 3737 Co-ZnGA 비교군Co-ZnGA comparison group 22 -- 3838 Co-ZnGA 비교군Co-ZnGA comparison group 0.50.5 --

여기서, 상기 기타 반응 조건은Here, the other reaction conditions are

A: 아연 전구체, 페놀계 화합물, 코발트계 화합물 동시에 첨가 반응A: Simultaneous addition reaction of zinc precursor, phenolic compound, and cobalt compound

B: 아연 전구체와 코발트계 화합물 먼저 반응 후, 페놀계 화합물 반응B: Reaction of zinc precursor with cobalt-based compound first, followed by reaction with phenol-based compound

C: 아연 전구체와 페놀계 화합물 반응 시 50도 가열C: Heated to 50 degrees when reacting zinc precursor and phenolic compound

D: 아연 전구체와 페놀계 화합물을 2일간 반응D: React zinc precursor and phenolic compound for 2 days

이다.am.

****************

이상에서 서술된 각 실시예의 촉매 하에서 이산화탄소와 프로필렌 옥사이드의 반응에 대해 정리한 결과는 하기 표와 같다.The results of the reaction between carbon dioxide and propylene oxide under the catalyst of each example described above are shown in the table below.

실시예Example 폴리머(g)Polymer (g) fCO2fCO2 선택성selectivity 1One 293293 0.820.82 60%60% 22 111111 0.380.38 85%85% 33 6969 0.430.43 67%67% 44 3333 0.420.42 68%68% 55 193193 0.610.61 65%65% 66 237237 0.560.56 84%84% 77 199199 0.610.61 76%76% 88 462462 0.760.76 63%63% 99 336336 0.690.69 79%79% 1010 457457 0.630.63 77%77% 1111 620620 0.890.89 82%82% 1212 766766 0.790.79 71%71% 1313 651651 0.640.64 78%78% 1414 199199 0.840.84 84%84% 1515 127127 0.90.9 87%87% 1616 248248 0.450.45 80%80% 1717 256256 0.50.5 66%66% 1818 8181 0.560.56 61%61% 1919 107107 0.570.57 77%77% 2020 8.28.2 0.290.29 99%99% 2121 1414 0.470.47 96%96% 2222 7070 0.60.6 71%71% 2323 342342 0.560.56 80%80% 2424 118118 0.680.68 85%85% 2525 4.44.4 0.450.45 91%91% 2626 125125 0.50.5 79%79% 2727 1616 0.360.36 93%93% 2828 9.79.7 0.220.22 99%99% 2929 3535 0.530.53 78%78% 3030 356356 0.550.55 77%77% 3131 500500 0.490.49 67%67% 3232 2424 0.480.48 93%93% 3333 433433 0.590.59 64%64% 3434 643643 0.580.58 55%55% 3535 309309 0.630.63 76%76% 3636 No reactionNo reaction 3737 397397 0.570.57 86%86% 3838 10711071 0.620.62 87%87%

실시예 15를 참조하면, 아연 전구체로 Zn(OAc)2를, 페놀계 화합물로 갈산을 사용하고, 페놀계 화합물에 대한 아연 전구체의 당량을 2, 코발트계 화합물에 대한 페놀계 화합물의 당량을 1, 촉매량을 1 mg/g-PO로 선택하여 반응을 진행한 경우 이산화탄소 첨가 비율이 0.9까지 증가함을 확인할 수 있다.Referring to Example 15, Zn(OAc) 2 was used as the zinc precursor and gallic acid was used as the phenol-based compound, the equivalent weight of the zinc precursor to the phenol-based compound was 2, and the equivalent weight of the phenol-based compound to the cobalt-based compound was 1. , it can be seen that when the reaction was carried out by selecting a catalyst amount of 1 mg/g-PO, the carbon dioxide addition ratio increased to 0.9.

실시예 2 및 실시예 9를 참조하면, 본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매 제조 방법에서, 아연 전구체, 페놀계 화합물 및 코발트계 화합물을 동시에 첨가하여 반응하면, 아연 전구체와 페놀계 화합물을 먼저 반응하고, 코발트계 화합물을 이어서 첨가하여 반응하는 실시예 1 및 실시예 8에 비해 폴리머의 수득률과 수득된 폴리머의 이산화탄소 첨가 비율이 낮다는 것을 확인할 수 있다.Referring to Example 2 and Example 9, in the method for producing a carbon dioxide-epoxide reaction catalyst according to an embodiment of the present invention, when a zinc precursor, a phenol-based compound, and a cobalt-based compound are added simultaneously for reaction, the zinc precursor and the phenol-based compound It can be seen that the polymer yield and the carbon dioxide addition ratio of the obtained polymer are lower compared to Examples 1 and 8, in which the compound is reacted first and the cobalt-based compound is added subsequently.

실시예 3을 참조하면, 본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매 제조 방법에서, 아연 전구체와 코발트계 화합물을 먼저 반응하고, 페놀계 화합물을 이어서 첨가하여 반응하면, 아연 전구체와 페놀계 화합물을 먼저 반응하고, 코발트계 화합물을 이어서 첨가하여 반응하는 실시예 1에 비해 폴리머의 수득률과 수득된 폴리머의 이산화탄소 첨가 비율이 낮다는 것을 확인할 수 있다.Referring to Example 3, in the method for producing a carbon dioxide-epoxide reaction catalyst according to an embodiment of the present invention, the zinc precursor and the cobalt-based compound are first reacted, and then the phenol-based compound is added and reacted, and the zinc precursor and the phenol-based compound are reacted. It can be seen that the polymer yield and the carbon dioxide addition ratio of the obtained polymer are lower compared to Example 1, in which the compound is reacted first and the cobalt-based compound is subsequently added and reacted.

실시예 36을 참조하면, 아연 전구체 없이 본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매 제조 방법을 실시하여 제조된 물질은 촉매 활성이 없어 반응을 진행시키지 않음을 확인할 수 있다.Referring to Example 36, it can be confirmed that the material prepared by performing the method for producing a carbon dioxide-epoxide reaction catalyst according to an embodiment of the present invention without a zinc precursor does not have catalytic activity and does not proceed with the reaction.

실시예 37 내지 실시예 38을 참조하면, 본 발명의 실시예에 따른 이산화탄소-에폭사이드 반응 촉매 제조 방법에 의해 제조된 촉매는 아연 전구체의 종류, 페놀계 화합물의 종류, 페놀계 화합물에 대한 아연 전구체의 당량, 코발트계 화합물에 대한 페놀계 화합물의 당량, 촉매 첨가량, 반응 온도 및 반응 시간 등 공정 변수를 적절히 조절하면, 종래의 Co-ZnGA보다 더 높은 이산화탄소 첨가 비율을 가지는 폴리머를 합성할 수 있음을 확인할 수 있다.Referring to Examples 37 to 38, the catalyst prepared by the method for producing a carbon dioxide-epoxide reaction catalyst according to an embodiment of the present invention includes the type of zinc precursor, the type of phenolic compound, and the zinc precursor for the phenolic compound. By appropriately adjusting process variables such as the equivalent weight of phenol-based compound to cobalt-based compound, catalyst addition amount, reaction temperature, and reaction time, it is possible to synthesize a polymer with a higher carbon dioxide addition ratio than conventional Co-ZnGA. You can check it.

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the present invention has been described above with reference to preferred embodiments, those skilled in the art can make various modifications and changes to the present invention without departing from the spirit and scope of the present invention as set forth in the following patent claims. You will understand that it is possible.

100: 이산화탄소-에폭사이드 반응 촉매 제조 방법
200: 폴리머 합성 방법
100: Method for producing carbon dioxide-epoxide reaction catalyst
200: Polymer synthesis method

Claims (15)

아연(Ⅱ)계 염을 페놀계 화합물 용액 내에서 반응하는 제1 단계; 및
상기 용액 내 H3Co(CN)6를 포함하는 코발트계 화합물을 첨가하여 반응하는 제2 단계;를 포함하는,
이산화탄소-에폭사이드 반응 촉매 제조 방법.
A first step of reacting a zinc(II)-based salt in a phenol-based compound solution; and
A second step of reacting by adding a cobalt-based compound containing H 3 Co(CN) 6 in the solution,
Method for producing carbon dioxide-epoxide reaction catalyst.
제1항에 있어서,
상기 아연(Ⅱ)계 염은 Zn(OAc)2, ZnO, Zn(OH)2, Zn(NO3)2, Zn(OTf)2, Zn(2-ethylhexanoate)2를 포함하는 Zn(carboxylate)2계 염, ZnEt2를 포함하는 Zn(alkyl)2계 염 및 ZnCl2를 포함하는 Zn(halide)2계 염을 포함하는 군에서 선택된 하나 이상의 물질을 포함하는,
이산화탄소-에폭사이드 반응 촉매 제조 방법.
According to paragraph 1,
The zinc(II)-based salt is Zn(carboxylate) 2 including Zn(OAc) 2 , ZnO, Zn(OH) 2 , Zn(NO 3 ) 2 , Zn(OTf) 2 , and Zn(2-ethylhexanoate) 2 Containing one or more substances selected from the group consisting of salts, Zn(alkyl) 2 salts containing ZnEt 2 and Zn(halide) 2 salts containing ZnCl 2 ,
Method for producing carbon dioxide-epoxide reaction catalyst.
제1항에 있어서,
상기 폐놀계 화합물은 페놀(phenol), 페놀 유도체, 카테콜(catecol), 레조르시놀(resorcinol), 하이드로퀴논(hydroquinone), 피로갈롤(pyrogallol), 갈산(gallic acid), 알킬 갈레이트(alkyl gallate), 4-(4-히드록시벤질)벤젠-1,2,3-트리올(4-(4-hydroxybenzyl)benzene-1,2,3-triol), (4-히드록시페닐)(2,3,4-트리히드록시페닐)메타논((4-hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone), 4-히드록시벤조산(4-hydroxybenzoic acid), 2,3,4-히드록시벤조산(2,3,4-hydroxybenzoic acid), 프로토카테츄산(protocatechuic acid), 아릴 갈레이트(aryl gallate), 4-[(4-히드록시페닐)메틸]-1,2,3-트리히드록시벤젠(4-[(4-hydroxyphenyl)methyl]-1,2,3-trihydroxybenzene), 갈라세톤페논(gallacetonphenone), 2,3,4-트리히드록시디페닐메탄(2,3,4-trihydroxydiphenylmethane), 트리히드록시벤조페논(trihydroxybenzophenone), 테트라히드록시벤조페논(tetrahydroxybenzophenone), 헥사하이드록시벤조페논(hexahydroxybenzophenone), 디히드록시벤조페논(dihydroxybenzophenone), 하이드록시벤조산(hydroxybenzoic acid), 디히드록시벤조산(dihydroxybenzoic acid), 트리하이드록시벤조산(trihydroxybenzoic acid), 카페인산(caffeic acid), p-쿠마르산(p-coumaric acid), 엘라그산(ellagic acid), 타닌산(tannic acid), 케르세틴(quercetin), 세테킨(cetechin), 에피카테킨(epicatechin), 에피갈로카테킨(epigallocatechin), 에피칼로카테킨 갈레이트(epicallocatechin gallate), 레스베라트롤(resveratrol), 모린(morin), 루틴(rutin), 케르시트린(quercitrin), 캠페롤(kaempferol), 타마리세틴(tamarixetin), 루테올린(luteolin), 텍시폴린(taxifolin), 및 폴리페놀(polyphenol)을 포함하는 군에서 선택된 하나 이상의 물질을 포함하는,
이산화탄소-에폭사이드 반응 촉매 제조 방법.
According to paragraph 1,
The phenol-based compounds include phenol, phenol derivatives, catecol, resorcinol, hydroquinone, pyrogallol, gallic acid, and alkyl gallate. ), 4-(4-hydroxybenzyl)benzene-1,2,3-triol (4-(4-hydroxybenzyl)benzene-1,2,3-triol), (4-hydroxyphenyl)(2, 3,4-trihydroxyphenyl)methanone ((4-hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone), 4-hydroxybenzoic acid, 2,3,4-hydroxybenzoic acid (2,3,4-hydroxybenzoic acid), protocatechuic acid, aryl gallate, 4-[(4-hydroxyphenyl)methyl]-1,2,3-trihydroxybenzene (4-[(4-hydroxyphenyl)methyl]-1,2,3-trihydroxybenzene), gallacetonphenone, 2,3,4-trihydroxydiphenylmethane, trihydroxybenzophenone, tetrahydroxybenzophenone, hexahydroxybenzophenone, dihydroxybenzophenone, hydroxybenzoic acid, dihydroxybenzoic acid acid, trihydroxybenzoic acid, caffeic acid, p-coumaric acid, ellagic acid, tannic acid, quercetin, cetechin (cetechin), epicatechin, epigallocatechin, epicallocatechin gallate, resveratrol, morin, rutin, quercitrin, kaempferol Containing one or more substances selected from the group consisting of (kaempferol), tamarixetin, luteolin, taxifolin, and polyphenol,
Method for producing carbon dioxide-epoxide reaction catalyst.
제1항에 있어서,
상기 제1 단계에서, 상기 아연(Ⅱ)계 염과 상기 페놀계 화합물의 당량비는 1:1 내지 5:1인,
이산화탄소-에폭사이드 반응 촉매 제조 방법.
According to paragraph 1,
In the first step, the equivalent ratio of the zinc (II)-based salt and the phenol-based compound is 1:1 to 5:1,
Method for producing carbon dioxide-epoxide reaction catalyst.
제4항에 있어서,
상기 제1 단계에서, 상기 아연(Ⅱ)계 염의 용액상 농도는 0.05 내지 0.2 M인,
이산화탄소-에폭사이드 반응 촉매 제조 방법.
According to paragraph 4,
In the first step, the solution phase concentration of the zinc (II)-based salt is 0.05 to 0.2 M,
Method for producing carbon dioxide-epoxide reaction catalyst.
제1항에 있어서,
상기 제1 단계는, 0 내지 80 ℃의 온도에서 반응하는,
이산화탄소-에폭사이드 반응 촉매 제조 방법.
According to paragraph 1,
The first step is to react at a temperature of 0 to 80 ° C.
Method for producing carbon dioxide-epoxide reaction catalyst.
제1항에 있어서,
상기 제1 단계는, 18 내지 48 시간 반응하는,
이산화탄소-에폭사이드 반응 촉매 제조 방법.
According to paragraph 1,
The first step is to react for 18 to 48 hours,
Method for producing carbon dioxide-epoxide reaction catalyst.
제1항에 있어서,
상기 제2 단계에서, 상기 페놀계 화합물과 상기 코발트계 화합물의 당량비는 1:1 내지 5:1인,
이산화탄소-에폭사이드 반응 촉매 제조 방법.
According to paragraph 1,
In the second step, the equivalent ratio of the phenol-based compound and the cobalt-based compound is 1:1 to 5:1,
Method for producing carbon dioxide-epoxide reaction catalyst.
제1항에 있어서,
상기 제2 단계는, 상온에서 18 내지 48 시간 반응하는,
이산화탄소-에폭사이드 반응 촉매 제조 방법.
According to paragraph 1,
The second step is a reaction at room temperature for 18 to 48 hours,
Method for producing carbon dioxide-epoxide reaction catalyst.
아연(Ⅱ)계 염을 페놀계 화합물 용액 내에서 반응한 후, 상기 용액 내 H3Co(CN)6를 포함하는 코발트계 화합물을 첨가하여 반응하여 제조된,
이산화탄소-에폭사이드 반응 촉매.
Prepared by reacting a zinc (II)-based salt in a phenol-based compound solution and then adding a cobalt-based compound containing H 3 Co(CN) 6 in the solution.
Carbon dioxide-epoxide reaction catalyst.
제10항에 있어서,
상기 이산화탄소-에폭사이드 반응 촉매에 포함된 아연(Ⅱ) 이온 주변에 [H2Co(CN)6]-, [HCo(CN)6]2-, [Co(CN)6]3- 또는 페놀계 화합물이 위치하는,
이산화탄소-에폭사이드 반응 촉매.
According to clause 10,
[H 2 Co(CN) 6 ] - , [HCo(CN) 6 ] 2- , [Co(CN) 6 ] 3- , or phenol-based group around the zinc(Ⅱ) ion contained in the carbon dioxide-epoxide reaction catalyst. where the compound is located,
Carbon dioxide-epoxide reaction catalyst.
제10항에 있어서,
상기 이산화탄소-에폭사이드 반응 촉매 하에 이산화탄소와 에폭사이드를 반응하여 생성된 폴리머의 이산화탄소 첨가 비율(fCO2)은 0.55 내지 0.9 인,
이산화탄소-에폭사이드 반응 촉매.
According to clause 10,
The carbon dioxide addition ratio (f CO2 ) of the polymer produced by reacting carbon dioxide and epoxide under the carbon dioxide-epoxide reaction catalyst is 0.55 to 0.9,
Carbon dioxide-epoxide reaction catalyst.
제12항에 있어서,
상기 이산화탄소-에폭사이드 반응 촉매 하에 이산화탄소와 에폭사이드를 반응하여 생성된 폴리머의 이산화탄소 첨가 비율(fCO2)은 0.85 내지 0.9 인,
이산화탄소-에폭사이드 반응 촉매.
According to clause 12,
The carbon dioxide addition ratio (f CO2 ) of the polymer produced by reacting carbon dioxide and epoxide under the carbon dioxide-epoxide reaction catalyst is 0.85 to 0.9,
Carbon dioxide-epoxide reaction catalyst.
아연(Ⅱ)계 염을 페놀계 화합물 용액 내에서 반응한 후, 상기 용액 내 H3Co(CN)6를 포함하는 코발트계 화합물을 첨가하여 반응하여 제조된 이산화탄소-에폭사이드 반응 촉매 하에서,
이산화탄소와 에폭사이드를 반응하는 단계;를 포함하는,
폴리머 합성 방법.
Under a carbon dioxide-epoxide reaction catalyst prepared by reacting a zinc(II)-based salt in a phenol-based compound solution and then adding a cobalt-based compound containing H 3 Co(CN) 6 in the solution,
Including, reacting carbon dioxide and epoxide.
Polymer synthesis method.
아연(Ⅱ) 이온을 포함하고, 상기 아연(Ⅱ) 주변에 [H2Co(CN)6]-, [HCo(CN)6]2-, [Co(CN)6]3- 또는 페놀계 화합물이 위치하는 이산화탄소-에폭사이드 반응 촉매 하에서,
이산화탄소와 에폭사이드를 반응하는 단계;를 포함하는,
폴리머 합성 방법.
Contains zinc(II) ions, and [H 2 Co(CN) 6 ] - , [HCo(CN) 6 ] 2- , [Co(CN) 6 ] 3- , or phenol-based compound around the zinc(II). Under the carbon dioxide-epoxide reaction catalyst located here,
Including, reacting carbon dioxide and epoxide.
Polymer synthesis method.
KR1020220176108A 2022-12-15 2022-12-15 Method for producing catalyst for carbon dioxide-epoxide reaction, catalyst for carbon dioxide-epoxide reaction and method for synthesizing polymer KR20240093136A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220176108A KR20240093136A (en) 2022-12-15 2022-12-15 Method for producing catalyst for carbon dioxide-epoxide reaction, catalyst for carbon dioxide-epoxide reaction and method for synthesizing polymer
PCT/KR2023/017721 WO2024128554A1 (en) 2022-12-15 2023-11-07 Method for preparing carbon dioxide-epoxide reaction catalyst, carbon dioxide-epoxide reaction catalyst, and polymer synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220176108A KR20240093136A (en) 2022-12-15 2022-12-15 Method for producing catalyst for carbon dioxide-epoxide reaction, catalyst for carbon dioxide-epoxide reaction and method for synthesizing polymer

Publications (1)

Publication Number Publication Date
KR20240093136A true KR20240093136A (en) 2024-06-24

Family

ID=91485171

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220176108A KR20240093136A (en) 2022-12-15 2022-12-15 Method for producing catalyst for carbon dioxide-epoxide reaction, catalyst for carbon dioxide-epoxide reaction and method for synthesizing polymer

Country Status (2)

Country Link
KR (1) KR20240093136A (en)
WO (1) WO2024128554A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940006924B1 (en) * 1991-07-19 1994-07-29 삼성전자 주식회사 Semiconductor memory device with redundancy circuit
US6835686B2 (en) * 2001-07-05 2004-12-28 Millennium Specialty Chemicals Catalyst system and process for rearrangement of epoxides to allylic alcohols
CN103180361B (en) * 2010-03-24 2016-10-26 科思创德国股份有限公司 The method preparing polyether carbonate polyol
KR102220786B1 (en) * 2013-07-18 2021-03-02 에스케이이노베이션 주식회사 Double Metal Cyanide Catalyst and Epoxide/Carbon Dioxide Copolymer
KR102409995B1 (en) * 2016-02-26 2022-06-15 에스케이이노베이션 주식회사 method for producing a poly(alkylene carbonate)polyol

Also Published As

Publication number Publication date
WO2024128554A1 (en) 2024-06-20

Similar Documents

Publication Publication Date Title
US9469722B2 (en) Metal cyanide complex catalyst and its preparation and application
Boocock et al. Studies of free radicals. II. Chemical properties of nitronylnitroxides. A unique radical anion
CN107573497B (en) Method for preparing polycarbonate based on ionic liquid high-efficiency catalysis
Buchard et al. A bimetallic iron (III) catalyst for CO 2/epoxide coupling
EP2536778B1 (en) Process for preparing polyether carbonate polyols with double metal cyanide catalysts and in the presence of metal salts
CN1104954C (en) New zinc/metal hexacyanocobaltate complex compositions, process for their preparation, and their use in process for production of polyether polyols
JP2013527288A5 (en)
JP2013540189A (en) Method for producing polyether carbonate polyol
Tsai et al. Dinuclear and trinuclear nickel complexes as effective catalysts for alternating copolymerization on carbon dioxide and cyclohexene oxide
US10604624B2 (en) Method for producing poly(alkylene carbonate)polyol
Martínez et al. Ring-opening copolymerisation of cyclohexene oxide and carbon dioxide catalysed by scorpionate zinc complexes
JPH02142754A (en) Preparation of organic carbonate by means of oxidative carbonylation using palladium- cobalt catalyst
Shi et al. Synthesis of Zn–Fe double metal cyanide complexes with imidazolium-based ionic liquid cocatalysts via ball milling for copolymerization of CO 2 and propylene oxide
Wang et al. Metal β-diketonate complexes as highly efficient catalysts for chemical fixation of CO 2 into cyclic carbonates under mild conditions
CN114011459B (en) Titanium double-acid ionic liquid catalyst and preparation method and application thereof
Wang et al. A lanthanide MOF catalyst with an excellent thermal stability for the synthesis of polycarbonate diol
KR20240093136A (en) Method for producing catalyst for carbon dioxide-epoxide reaction, catalyst for carbon dioxide-epoxide reaction and method for synthesizing polymer
Fei et al. Lanthanide-supported molybdenum–vanadium oxide clusters: syntheses, structures and catalytic properties
EP3805209A1 (en) Method for preparing alkylene carbonate from alkylene oxide and carbon dioxide
Bae et al. Early transition metal complexes with triphenolamine ligands: Synthesis and applications
Tamura et al. Ring-opening polymerization of trimethylene carbonate to poly (trimethylene carbonate) diol over a heterogeneous high-temperature calcined CeO 2 catalyst
TW201916938A (en) High activity double metal cyanide catalyst and preparing method and application thereof capable of reducing the content of high molecular weight compounds in polyol compound
Gao et al. Silica-supported zinc glutarate catalyst synthesized by rheological phase reaction used in the copolymerization of carbon dioxide and propylene oxide
CN106084197A (en) A kind of preparation method of narrow ditribution polyethers
CN111825836B (en) Preparation method of polycarbonate

Legal Events

Date Code Title Description
E902 Notification of reason for refusal