KR20240072771A - Alumina insulating film-coated graphene filler and method for fabricating the same - Google Patents

Alumina insulating film-coated graphene filler and method for fabricating the same Download PDF

Info

Publication number
KR20240072771A
KR20240072771A KR1020220154751A KR20220154751A KR20240072771A KR 20240072771 A KR20240072771 A KR 20240072771A KR 1020220154751 A KR1020220154751 A KR 1020220154751A KR 20220154751 A KR20220154751 A KR 20220154751A KR 20240072771 A KR20240072771 A KR 20240072771A
Authority
KR
South Korea
Prior art keywords
graphene
insulating film
coated
alumina
filler
Prior art date
Application number
KR1020220154751A
Other languages
Korean (ko)
Inventor
강승범
이경석
Original Assignee
재단법인 한국탄소산업진흥원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국탄소산업진흥원 filed Critical 재단법인 한국탄소산업진흥원
Priority to KR1020220154751A priority Critical patent/KR20240072771A/en
Publication of KR20240072771A publication Critical patent/KR20240072771A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 그래핀의 표면에 sol-gel 반응에 의해 알루미나(Al2O3) 절연막을 코팅한다. 이로 인해 그래핀 고유의 높은 열전도성은 그대로 활용하고 그래핀 표면에 전기절연성을 지닌 알루미나(Al2O3) 절연막을 코팅하여 그래핀에 높은 전기절연성을 부여함으로써 난연.절연.방열 복합소재로 그래핀의 적용범위를 확장할 수 있다. In the present invention, an alumina (Al 2 O 3 ) insulating film is coated on the surface of graphene by a sol-gel reaction. As a result, graphene's inherent high thermal conductivity is utilized as is, and an electrically insulating alumina (Al 2 O 3 ) insulating film is coated on the graphene surface to give graphene high electrical insulating properties, making graphene a flame-retardant, insulating, and heat-dissipating composite material. The scope of application can be expanded.

Description

알루미나 절연막 코팅된 그래핀 충전재 및 그 제조 방법{Alumina insulating film-coated graphene filler and method for fabricating the same}Alumina insulating film-coated graphene filler and method for fabricating the same}

본 발명은 알루미나 절연막 코팅된 그래핀 충전재 및 그 제조 방법에 관한 것이다.The present invention relates to a graphene filler coated with an alumina insulating film and a method of manufacturing the same.

그래핀(graphene)은 탄소 원자가 육각형으로 배열된 2차원 나노물질로, 두께가 0.2nm 정도로 엄청나게 얇으면서 물리적·화학적 안정성도 높다. Graphene is a two-dimensional nanomaterial in which carbon atoms are arranged in a hexagon. It is extremely thin, about 0.2 nm in thickness, and has high physical and chemical stability.

또한 높은 기계적 물성, 열전도도, 전하이동도, 비표면적 등의 우수한 특성을 지녀, 차세대 신소재로 각광받는 탄소나노튜브를 뛰어넘는 소재로 평가받으며 고강도 소재, 열전달소재, 전자소재 및 에너지 소재 등 다양한 분야에 응용되고 활용될 수 있을 것으로 전망되고 있다.In addition, it has excellent properties such as high mechanical properties, thermal conductivity, charge mobility, and specific surface area, and is evaluated as a material that surpasses carbon nanotubes, which are in the spotlight as next-generation new materials, and are used in various fields such as high-strength materials, heat transfer materials, electronic materials, and energy materials. It is expected that it can be applied and utilized.

한편, 최근 들어 난연성과 열전도성은 우수하나 전기전도성이 낮은 난연.절연.방열 복합소재의 수요가 늘고 있다. 그러나 이러한 난연.절연.방열 복합소재를 제조할 때, 그래핀의 사용은 높은 전기전도성 때문에 부적합하다.Meanwhile, recently, demand for flame retardant, insulating, and heat dissipating composite materials with excellent flame retardancy and thermal conductivity but low electrical conductivity is increasing. However, when manufacturing these flame-retardant, insulating, and heat-dissipating composite materials, the use of graphene is unsuitable due to its high electrical conductivity.

그러나 그래핀이 우수한 특성들을 가지고 있음에서 불구하고 높은 전기전도성을 가지고 있다는 이유만으로, 난연.절연.방열 복합소재를 만들 때, 그래핀을 배제시키고 있다.However, although graphene has excellent properties, it is excluded when making flame-retardant, insulating, and heat-dissipating composite materials simply because it has high electrical conductivity.

한국등록특허(10-1424089)Korean registered patent (10-1424089)

본 발명의 목적은, 상술한 문제점을 해결할 수 있는 알루미나 절연막 코팅된 그래핀 충전재 및 그 제조 방법을 제공하는 데 있다.The purpose of the present invention is to provide an alumina insulating film-coated graphene filler and a manufacturing method thereof that can solve the above-mentioned problems.

상기 목적을 달성하기 위한 알루미나 절연막 코팅된 그래핀 충전재는,The graphene filler coated with an alumina insulating film to achieve the above purpose is,

그래핀; 및graphene; and

sol-gel 반응에 의해 상기 그래핀의 표면에 코팅된 알루미나(Al2O3) 절연막을 포함하는 것을 특징으로 한다.It is characterized by comprising an alumina (Al 2 O 3 ) insulating film coated on the surface of the graphene by a sol-gel reaction.

또한, 상기 목적은,In addition, the above purpose is to

증류수와 SDS(sodium dodecyl sulfate)을 혼합한 용액에 그래핀을 넣고 초음파처리하여 분산시키는 제1단계;A first step of dispersing graphene in a mixed solution of distilled water and SDS (sodium dodecyl sulfate) by ultrasonication;

상기 그래핀이 분산된 용액에 Al(NO)3·9H2O를 넣고 가열 및 교반하는 제2단계;A second step of adding Al(NO) 3 ·9H 2 O to the solution in which the graphene is dispersed, heating and stirring;

상기 Al(NO)3·9H2O와 그래핀이 교반된 용액에 NaOH을 넣고 교반하는 제3단계;A third step of adding NaOH to the solution of Al(NO) 3 ·9H 2 O and graphene and stirring;

상기 교반된 용액을 여과하여 Al(OH)3이 코팅된 그래핀을 포집하는 제4단계;A fourth step of filtering the stirred solution to collect Al(OH) 3 coated graphene;

여과된 상기 Al(OH)3이 코팅된 그래핀을 건조하는 제5단계; 및A fifth step of drying the filtered Al(OH) 3 coated graphene; and

건조된 상기 Al(OH)3이 코팅된 그래핀을 소성처리하여 알루미나(Al2O3) 절연막 코팅된 그래핀 충전재를 생성하는 제6단계를 포함하는 것을 특징으로 하는 알루미나 절연막 코팅된 그래핀 충전재 제조 방법에 의해 달성된다.An alumina insulating film-coated graphene filler comprising a sixth step of calcining the dried Al(OH) 3 -coated graphene to produce an alumina (Al 2 O 3 ) insulating film-coated graphene filler. This is achieved by a manufacturing method.

본 발명은 그래핀의 표면에 sol-gel 반응에 의해 알루미나(Al2O3) 절연막을 코팅한다. 이로 인해 그래핀 고유의 높은 열전도성은 그대로 활용하고 그래핀 표면에 전기절연성을 지닌 알루미나(Al2O3) 절연막을 코팅하여 그래핀에 높은 전기절연성을 부여함으로써 난연.절연.방열 복합소재로 그래핀의 적용범위를 확장할 수 있다. In the present invention, an alumina (Al 2 O 3 ) insulating film is coated on the surface of graphene by a sol-gel reaction. As a result, graphene's inherent high thermal conductivity is utilized as is, and an electrically insulating alumina (Al 2 O 3 ) insulating film is coated on the graphene surface to give graphene high electrical insulating properties, making graphene a flame-retardant, insulating, and heat-dissipating composite material. The scope of application can be expanded.

본 발명은 알루미나(Al2O3) 전구체인 Al(NO)3·9H2O, 음이온성 계면활성제인 SDS(sodium dodecyl sulfate) 등을 이용한 Sol-Gel 반응에 의해 그래핀 입자의 표면에 알루미나 절연막을 형성하기 위한 최적의 공정 조건을 도출한다. 이러한 Sol-Gel 반응의 최적 공정 조건에 의해 그래핀 입자의 표면에 알루미나 절연막을 형성시켜 높은 전기절연성을 가진 그래핀 충전재를 제조할 수 있다. The present invention is to form an alumina insulating film on the surface of graphene particles by Sol-Gel reaction using Al(NO) 3 ·9H 2 O, an alumina (Al 2 O 3 ) precursor, and sodium dodecyl sulfate (SDS), an anionic surfactant. Derive the optimal process conditions to form. By forming an alumina insulating film on the surface of graphene particles using the optimal process conditions for this Sol-Gel reaction, graphene fillers with high electrical insulation properties can be manufactured.

도 1은 본 발명의 일 실시예에 따른 알루미나 절연막 코팅된 그래핀 충전재를 나타낸 모식도다.
도 2는 본 발명의 일 실시예에 따른 알루미나 절연막 코팅된 그래핀 충전재 제조 방법을 나타낸 순서도다.
도 3은 본 발명의 일 실시예에 따른 알루미나 절연막 코팅된 그래핀 충전재 제조 방법을 나타낸 모식도다.
도 4는 SDS의 사용 비율에 따른 알루미나 절연막 형성의 변화를 나타낸 SEM(scanning electron microscope) 이미지와 EDS(energy dispersive X-ray spectrometer) 분석 결과를 나타낸 표다.
도 5는 sol-gel 공정 최적 조건에서 알루미나 절연막 형성된 그래핀 입자의 분체 저항 측정 결과를 나타낸 그래프다.
Figure 1 is a schematic diagram showing a graphene filler coated with an alumina insulating film according to an embodiment of the present invention.
Figure 2 is a flowchart showing a method of manufacturing a graphene filler coated with an alumina insulating film according to an embodiment of the present invention.
Figure 3 is a schematic diagram showing a method of manufacturing a graphene filler coated with an alumina insulating film according to an embodiment of the present invention.
Figure 4 is a table showing SEM (scanning electron microscope) images and EDS (energy dispersive X-ray spectrometer) analysis results showing changes in alumina insulating film formation according to the use ratio of SDS.
Figure 5 is a graph showing the powder resistance measurement results of graphene particles with an alumina insulating film formed under optimal conditions for the sol-gel process.

이하, 본 발명의 일 실시예에 따른 알루미나 절연막 코팅된 그래핀 충전재를 자세히 설명한다.Hereinafter, a graphene filler coated with an alumina insulating film according to an embodiment of the present invention will be described in detail.

도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 알루미나 절연막 코팅된 그래핀 충전재(1)는 그래핀(11)과 알루미나 절연막(12)으로 구성된다. As shown in FIG. 1, the alumina insulating film-coated graphene filler 1 according to an embodiment of the present invention is composed of graphene 11 and an alumina insulating film 12.

[그래핀(11)][Graphene (11)]

그래핀(Graphene)(11)은 높은 전기전도성과 높은 열전도를 가진다. Graphene (11) has high electrical conductivity and high thermal conductivity.

그래핀(11) 제조 방식은 상향식(bottom-up)과 하향식(top-down)으로 구별되며 주로 상향식의 화학 기상 증착법(chemical vapor deposition)과 하향식의 흑연(graphite)을 산처리하는 휴머스 방법(hummer’s method) 및 기계적 박리법이 대표적으로 알려져 있다.Graphene 11 manufacturing methods are divided into bottom-up and top-down, mainly bottom-up chemical vapor deposition and top-down Humus method of acid treatment of graphite ( Hummer's method) and mechanical peeling method are commonly known.

본 실시예에서 그래핀(11)은 하향식으로 제조되는 GNP(graphene nanoplatelets)가 사용된다. GNP는 천연 흑연을 얇게 박리하여 제조된다.In this embodiment, graphene 11 uses GNPs (graphene nanoplatelets) manufactured in a top-down manner. GNP is manufactured by thinly exfoliating natural graphite.

[알루미나 절연막(12)][Alumina insulating film (12)]

알루미나 절연막(12)은 sol-gel 반응에 의해 그래핀(11)의 표면에 코팅된다. 졸(sol)은 콜로이드나 무기물 단분자 고체 분자들이 분산되어 있는 현탁액 상태로, 반응이 지속됨에 따라 분산된 고체 분자들이 고분자화 되어 연속적인 고체 망목 구조(network structure)를 이루어 유동성을 잃은 겔(gel)상태가 된다. 그리고 겔을 열처리함으로써 알루미나 절연막(12)이 그래핀(11)의 표면에 코팅된다.The alumina insulating film 12 is coated on the surface of the graphene 11 by a sol-gel reaction. A sol is a suspension state in which colloidal or inorganic single-molecular solid molecules are dispersed. As the reaction continues, the dispersed solid molecules polymerize and form a continuous solid network structure, forming a gel that loses fluidity. ) state. Then, the alumina insulating film 12 is coated on the surface of the graphene 11 by heat treating the gel.

졸은 입자 졸과 중합 졸 두 가지로 나눌 수 있다. 입자 졸은 미세한 입자가 액체 중에 분사된 것으로 액체의 양이 줄어들거나 입자의 양이 많아지면 유동성이 줄어들고 점도가 급격히 증가하면서 겔화가 진행되고, 중합 졸은 액체 내에 입자가 고분자 상태로 분산되어 있는 경우를 말하며 주로 유기금속화합물이 중합 졸을 만든다. 일반적으로 알콕사이드 졸-겔법의 출발물질로 사용되는 알콕사이드로부터 제조되는 중합겔(polymeric gel)은 공유결합에 의해 연결되므로 비가역적이고 영구적인 겔로서 화학적 겔(gel)이며, 콜로이드 졸-겔법에서 반데르발스힘에 의해 형성되는 입자겔(particulate gel)은 분산이 가역적이므로 물리적 겔(gel)이다.Sols can be divided into two types: particle sols and polymeric sols. Particle sol is when fine particles are sprayed into a liquid. As the amount of liquid decreases or the amount of particles increases, fluidity decreases and viscosity increases rapidly, causing gelation. Polymerization sol is when particles are dispersed in a polymer state within the liquid. This refers to mainly organic metal compounds that produce polymerized sol. Polymeric gels manufactured from alkoxides, which are generally used as starting materials for the alkoxide sol-gel method, are chemical gels that are irreversible and permanent because they are linked by covalent bonds. In the colloidal sol-gel method, the polymeric gel is a chemical gel. The particulate gel formed by force is a physical gel because the dispersion is reversible.

알루미나(Al2O3)는 전기절연성을 가진다. 따라서 그래핀(11)의 표면에 코팅된 알루미나 절연막(12)은 그래핀(11)의 전기전도성을 억제한다. 알루미나의 입자들의 크기, 분포량, 분포구조에 따라 그래핀(11)의 전기전도성 억제도가 달라진다. Alumina (Al 2 O 3 ) has electrical insulation properties. Therefore, the alumina insulating film 12 coated on the surface of the graphene 11 suppresses the electrical conductivity of the graphene 11. The degree of suppression of electrical conductivity of graphene 11 varies depending on the size, distribution amount, and distribution structure of the alumina particles.

알루미나 절연막(12)이 sol-gel 반응에 의해 그래핀(11)의 표면에 코팅되는데 자세한 과정은 후술되는 알루미나 절연막 코팅된 그래핀 충전재 제조 방법에서 자세히 설명한다.The alumina insulating film 12 is coated on the surface of the graphene 11 by a sol-gel reaction, and the detailed process will be described in detail in the method of manufacturing the alumina insulating film-coated graphene filler, which will be described later.

이와 같이 그래핀(11) 표면에 전기절연성을 지닌 알루미나 절연막(12)을 코팅하여 그래핀(11)에 높은 전기절연성을 부여함으로써, 그래핀(11) 고유의 높은 열전도성을 그대로 활용하여, 난연.절연.방열 복합소재의 재료로 그래핀(11)을 사용할 수 있다.In this way, by coating the surface of the graphene 11 with an alumina insulating film 12 having electrical insulation properties to give the graphene 11 high electrical insulation properties, the inherent high thermal conductivity of the graphene 11 is utilized as is, making it flame retardant. Graphene (11) can be used as a material for insulating and heat dissipating composite materials.

[난연.절연.방열 복합소재][Flame retardant, insulating, heat dissipating composite material]

알루미나 절연막 코팅된 그래핀 충전재(1)를 기지재(matrix)에 혼합한 후, 금형에 넣고 가열 및 가압하고, 금형으로부터 꺼내서 냉각하면, 난연.절연.방열 복합소재를 만들 수 있다. 금형의 형상에 따라, 난연.절연.방열 복합소재의 형상과 크기는 다양할 수 있다. 여기서, 기지재는 에폭시 수지, 페놀 수지 등 다양할 수 있다.A flame retardant, insulating, and heat dissipating composite material can be made by mixing the graphene filler (1) coated with an alumina insulating film with a matrix, placing it in a mold, heating and pressurizing it, and then taking it out of the mold and cooling it. Depending on the shape of the mold, the shape and size of the flame retardant, insulating, and heat dissipating composite material may vary. Here, the base material may be diverse, such as epoxy resin or phenol resin.

이하, 본 발명의 일 실시예에 따른 알루미나 절연막 코팅된 그래핀 충전재 제조 방법을 설명한다. 도 1을 기본적으로 참조한다. Hereinafter, a method for manufacturing a graphene filler coated with an alumina insulating film according to an embodiment of the present invention will be described. Reference is made primarily to Figure 1.

도 2 및 도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 알루미나 절연막 코팅된 그래핀 충전재 제조 방법은,As shown in Figures 2 and 3, the method for producing an alumina insulating film-coated graphene filler according to an embodiment of the present invention,

증류수와 SDS(sodium dodecyl sulfate)을 혼합한 용액에 그래핀을 넣고 초음파처리하여 분산시키는 제1단계(S10);A first step (S10) of adding graphene to a mixed solution of distilled water and SDS (sodium dodecyl sulfate) and dispersing it by ultrasonic treatment;

상기 그래핀이 분산된 용액에 Al(NO)3·9H2O를 넣고 가열 및 교반하는 제2단계(S20);A second step (S20) of adding Al(NO) 3 ·9H 2 O to the solution in which the graphene is dispersed, heating and stirring;

상기 Al(NO)3·9H2O와 그래핀이 교반된 용액에 증류수와 NaOH을 넣고 교반하는 제3단계(S30);A third step (S30) of adding distilled water and NaOH to the solution of Al(NO) 3 ·9H 2 O and graphene and stirring;

상기 교반된 용액을 여과하여 Al(OH)3이 코팅된 그래핀을 포집하는 제4단계(S40); A fourth step (S40) of filtering the stirred solution to collect Al(OH) 3 coated graphene;

여과된 상기 Al(OH)3이 코팅된 그래핀을 건조하는 제5단계(S50); 및A fifth step (S50) of drying the filtered Al(OH) 3 coated graphene; and

건조된 상기 Al(OH)3이 코팅된 그래핀을 소성처리하여 알루미나(Al2O3) 절연막 코팅된 그래핀 충전재를 생성하는 제6단계로 구성된다.It consists of a sixth step of calcining the dried Al(OH) 3 -coated graphene to produce a graphene filler coated with an alumina (Al 2 O 3 ) insulating film.

이하, 제1단계(S10)를 설명한다.Hereinafter, the first step (S10) will be described.

증류수(Distilled water)에 음이온 계면활성제인 SDS(sodium dodecyl sulfate)을 넣고 혼합한다. Add SDS (sodium dodecyl sulfate), an anionic surfactant, to distilled water and mix.

증류수과 SDS를 혼합한 용액에 그래핀(11)을 넣고 초음파처리(sonication)하여 분산시킨다. Graphene (11) is added to a solution of distilled water and SDS and dispersed by sonication.

나노 크기의 그래핀(11)은 그래핀(11) 사이의 반데르발스 힘에 의해 강하게 응집되는 성질을 가지고 있어, 용액 내에서 균일하게 분포되기 어렵다. Nano-sized graphene 11 has the property of being strongly aggregated due to van der Waals forces between graphene 11, making it difficult to distribute it uniformly in a solution.

SDS는 그래핀(11) 입자표면에 흡착하여 표면장력을 떨어뜨림으로써 유체 속에서 응집하여 안정화하려는 그래핀(11) 입자를 분산시킨다. SDS adsorbs on the surface of graphene (11) particles and lowers the surface tension, thereby dispersing the graphene (11) particles that are trying to cohere and stabilize in the fluid.

그래핀(11)으로는 GNP(graphene nanoplatelets) 파우더를 사용한다. GNP (graphene nanoplatelets) powder is used as graphene (11).

본 실시예에서, 증류수에 10% SDS를 혼합한 용액 150g, 그래핀(11)은 1.5g을 사용한다.In this example, 150 g of a solution of 10% SDS mixed with distilled water and 1.5 g of graphene 11 are used.

초음파처리는 20초 교반, 10초 정지하는 것을 60회 반복하여 30분 동안 실시한다.Ultrasonic treatment is performed for 30 minutes by repeating 20 seconds of stirring and 10 seconds of stopping 60 times.

이하, 제2단계(S20)를 설명한다.Hereinafter, the second step (S20) will be described.

그래핀(11)이 분산된 용액에 알루미나 전구체를 넣고, 설정 온도로 가열하고 교반한다.An alumina precursor is added to the solution in which graphene 11 is dispersed, heated to a set temperature, and stirred.

알루미나 전구체로 알루미늄 질산염인 Al(NO)3·9H2O를 사용한다.Al(NO) 3 ·9H 2 O, an aluminum nitrate, is used as the alumina precursor.

본 실시예에서 Al(NO)3·9H2O는 37.5g을 넣는다.In this example, 37.5 g of Al(NO) 3 ·9H 2 O is added.

Al(NO)3·9H2O를 넣은 용액을 가열하여 30℃ 온도에서 2시간 동안 기계적 교반한다.A solution containing Al(NO) 3 ·9H 2 O is heated and mechanically stirred for 2 hours at 30°C.

이하, 제3단계(S30)를 설명한다.Hereinafter, the third step (S30) will be described.

Al(NO)3·9H2O와 그래핀(11)이 교반된 용액에, 염기성 촉매인 NaOH을 넣고 교반한다. NaOH, a basic catalyst, is added to a stirred solution of Al(NO) 3 ·9H 2 O and graphene (11) and stirred.

Al(NO)3·9H2O를 사용하여 산 또는 염기의 촉매로 중합반응을 실시하는데, 본 실시예에서는 염기성 촉매인 NaOH를 이용한다.The polymerization reaction is performed using Al(NO) 3 ·9H 2 O as an acid or base catalyst, and in this example, NaOH, a basic catalyst, is used.

본 실시예에서 25% NaOH을 pH 6.5~7, 30℃ 온도에서 넣는다.In this example, 25% NaOH is added at pH 6.5-7 and a temperature of 30°C.

Al(NO)3·9H2O와 그래핀(11)이 교반된 용액에 NaOH을 넣은 후 80℃ 온도에서 8시간 동안 기계적 교반한다.NaOH was added to the stirred solution of Al(NO) 3 ·9H 2 O and graphene (11), and then mechanically stirred at 80°C for 8 hours.

그러면 sol-gel 반응이 일어나 그래핀(11) 표면에 Al(OH)3이 코팅된다.Then, a sol-gel reaction occurs and Al(OH) 3 is coated on the surface of the graphene (11).

이하, 제4단계(S40)를 설명한다.Hereinafter, the fourth step (S40) will be described.

제3단계(S30)에서 교반한 용액을 필터로 여과하여 Al(OH)3 코팅된 그래핀(2)을 포집한다. 여과된 Al(OH)3 코팅된 그래핀(2)을 에탄올(ethanol)로 3~4회 반복 세척하여 실시된다. The solution stirred in the third step (S30) is filtered through a filter to collect Al(OH) 3 coated graphene (2). This is carried out by repeatedly washing the filtered Al(OH) 3 coated graphene (2) with ethanol 3 to 4 times.

이하, 제5단계(S50)를 설명한다.Hereinafter, the fifth step (S50) will be described.

여과된 Al(OH)3 코팅된 그래핀(2)을 80℃ 온도에서 6시간 동안 건조하여 여과된 Al(OH)3 코팅된 그래핀(2)을 표면에 잔존하는 에탄올을 제거한다.The filtered Al(OH) 3 coated graphene (2) is dried at a temperature of 80° C. for 6 hours to remove ethanol remaining on the surface of the filtered Al(OH) 3 coated graphene (2).

이하, 제6단계(S60)를 설명한다.Hereinafter, the sixth step (S60) will be described.

건조된 Al(OH)3 코팅된 그래핀을 800℃ 온도에서 3.5시간 동안 소성처리(calcination)하면, 알루미나(Al2O3) 절연막 코팅된 그래핀 충전재(1)가 생성된다.When dried Al(OH) 3 coated graphene is calcinated at a temperature of 800° C. for 3.5 hours, an alumina (Al 2 O 3 ) insulating film-coated graphene filler (1) is produced.

상술한 바와 같은 필요 소재들의 양, 분산, pH 조절, 교반, 및 소성 등의 조건과 각 공정시간, 온도 등의 공정 조건에서 알루미나 절연막 코팅된 그래핀 충전재(1)가 제조된다.The graphene filler 1 coated with an alumina insulating film is manufactured under the above-described conditions such as the amount of required materials, dispersion, pH control, stirring, and sintering, as well as each process time and temperature.

알루미나 절연막 형성의 양상은 sol-gel 공정 조건에 따라 변화한다. 즉 공정 조건을 조절하여 알루미나 절연막(12)의 모양(판형, 선형, 구형 등), 크기, 두께 등을 변화시킬 수 있다. 이러한 알루미나 절연막(12)의 모양(판형, 선형, 구형등), 크기, 두께 등을 변화시켜, 전기절연성을 자유롭게 조절할 수 있다.The pattern of alumina insulating film formation changes depending on the sol-gel process conditions. That is, the shape (plate-shaped, linear, spherical, etc.), size, thickness, etc. of the alumina insulating film 12 can be changed by adjusting the process conditions. By changing the shape (plate-shaped, linear, spherical, etc.), size, thickness, etc. of the alumina insulating film 12, the electrical insulation properties can be freely adjusted.

일 예로, 도 4에 도시된 바와 같이, SDS의 사용 비율에 조절하면 알루미나 절연막의 형태를 변화시킬 수 있다.For example, as shown in FIG. 4, the shape of the alumina insulating film can be changed by adjusting the use ratio of SDS.

도 5에 도시된 바와 같이, 상술한 바와 같은 sol-gel 공정 최적 조건에서 형성된 알루미나 절연막 코팅된 그래핀 충전재(1)는 높은 전기전도성을 갖는 그래핀(11) 입자에 알루미나 절연막(12)을 형성시킴으로써 분체 비저항 1010 Ω·cm 이상의 높은 전기절연성을 가질 수 있다.As shown in FIG. 5, the alumina insulating film-coated graphene filler 1 formed under the optimal conditions of the sol-gel process as described above forms an alumina insulating film 12 on the graphene 11 particles having high electrical conductivity. By doing so, it is possible to have high electrical insulation with a powder specific resistance of 1010 Ω·cm or more.

1: 알루미나 절연막 코팅된 그래핀 충전재
11: 그래핀
12: 알루미나 절연막
1: Graphene filler coated with alumina insulating film
11: graphene
12: Alumina insulating film

Claims (5)

그래핀; 및
sol-gel 반응에 의해 상기 그래핀의 표면에 코팅된 알루미나(Al2O3) 절연막을 포함하는 것을 특징으로 하는 알루미나 절연막 코팅된 그래핀 충전재.
graphene; and
An alumina insulating film-coated graphene filler comprising an alumina (Al 2 O 3 ) insulating film coated on the surface of the graphene by a sol-gel reaction.
증류수와 SDS(sodium dodecyl sulfate)을 혼합한 용액에 그래핀을 넣고 초음파처리하여 분산시키는 제1단계;
상기 그래핀이 분산된 용액에 Al(NO)3·9H2O를 넣고 가열 및 교반하는 제2단계;
상기 Al(NO)3·9H2O와 그래핀이 교반된 용액에 NaOH을 넣고 교반하는 제3단계;
상기 교반된 용액을 여과하여 Al(OH)3이 코팅된 그래핀을 포집하는 제4단계;
여과된 상기 Al(OH)3이 코팅된 그래핀을 건조하는 제5단계; 및
건조된 상기 Al(OH)3이 코팅된 그래핀을 소성처리하여 알루미나(Al2O3) 절연막 코팅된 그래핀 충전재를 생성하는 제6단계를 포함하는 것을 특징으로 하는 알루미나 절연막 코팅된 그래핀 충전재 제조 방법.
A first step of adding graphene to a mixed solution of distilled water and SDS (sodium dodecyl sulfate) and dispersing it by ultrasonic treatment;
A second step of adding Al(NO) 3 ·9H 2 O to the solution in which the graphene is dispersed, heating and stirring;
A third step of adding NaOH to the solution of Al(NO) 3 ·9H 2 O and graphene and stirring;
A fourth step of filtering the stirred solution to collect Al(OH) 3 coated graphene;
A fifth step of drying the filtered Al(OH) 3 coated graphene; and
An alumina insulating film-coated graphene filler comprising a sixth step of calcining the dried Al(OH) 3 -coated graphene to produce an alumina (Al 2 O 3 ) insulating film-coated graphene filler. Manufacturing method.
제2항에 있어서,
그래핀 1.5g에 대하여, 증류수에 10% SDS를 혼합한 용액 150g, Al(NO)3·9H2O 37.5g, 25% NaOH을 적용하는 것을 특징으로 하는 알루미나 절연막 코팅된 그래핀 충전재 제조 방법.
According to paragraph 2,
A method of producing a graphene filler coated with an alumina insulating film, characterized in that 150 g of a solution of 10% SDS in distilled water, 37.5 g of Al(NO) 3 ·9H 2 O, and 25% NaOH are applied to 1.5 g of graphene.
제2항에 있어서, 제1단계에서,
초음파처리는 20초 교반, 10초 정지하는 것을 60회 반복하여 30분 동안 실시되는 것을 특징으로 하는 알루미나 절연막 코팅된 그래핀 충전재 제조 방법.
The method of claim 2, wherein in the first step,
A method of manufacturing a graphene filler coated with an alumina insulating film, characterized in that ultrasonic treatment is carried out for 30 minutes by repeating 20 seconds of stirring and 10 seconds of stopping 60 times.
제2항에 있어서, 상기 제2단계에서,
30℃ 온도에서 2시간 동안 기계적 교반하는 것을 특징으로 하는 알루미나 절연막 코팅된 그래핀 충전재 제조 방법.
The method of claim 2, wherein in the second step,
A method for manufacturing an alumina insulating film-coated graphene filler, characterized by mechanical stirring for 2 hours at a temperature of 30°C.
KR1020220154751A 2022-11-17 2022-11-17 Alumina insulating film-coated graphene filler and method for fabricating the same KR20240072771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220154751A KR20240072771A (en) 2022-11-17 2022-11-17 Alumina insulating film-coated graphene filler and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220154751A KR20240072771A (en) 2022-11-17 2022-11-17 Alumina insulating film-coated graphene filler and method for fabricating the same

Publications (1)

Publication Number Publication Date
KR20240072771A true KR20240072771A (en) 2024-05-24

Family

ID=91321173

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220154751A KR20240072771A (en) 2022-11-17 2022-11-17 Alumina insulating film-coated graphene filler and method for fabricating the same

Country Status (1)

Country Link
KR (1) KR20240072771A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424089B1 (en) 2014-03-14 2014-07-28 주식회사 에코인프라홀딩스 Method for preparing heat-dissipating graphene coating material having conductivity using sol-gel method and graphene oxide and heat-dissipating graphene coating material having conductivity prepared by the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424089B1 (en) 2014-03-14 2014-07-28 주식회사 에코인프라홀딩스 Method for preparing heat-dissipating graphene coating material having conductivity using sol-gel method and graphene oxide and heat-dissipating graphene coating material having conductivity prepared by the same

Similar Documents

Publication Publication Date Title
Jang et al. Enhancement of thermal conductivity of BN/epoxy composite through surface modification with silane coupling agents
Shen et al. Silica coating onto graphene for improving thermal conductivity and electrical insulation of graphene/polydimethylsiloxane nanocomposites
TWI700243B (en) Hexagonal boron nitride powder, its manufacturing method, and its composition and heat dissipation material
Xie et al. Polyimide/BaTiO3 composites with controllable dielectric properties
Xie et al. High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers
Qian et al. Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity
Ouyang et al. Simultaneously enhance thermal conductive property and mechanical properties of silicon rubber composites by introducing ultrafine Al2O3 nanospheres prepared via thermal plasma
Jiang et al. Graphene-coated ZnO tetrapod whiskers for thermally and electrically conductive epoxy composites
TWI481563B (en) Magnesium oxide particles, a method for producing the same, a heat-dissipating filler, a resin composition, a heat-dissipating grease, and a heat-dissipating paint composition
Oh et al. Enhancement of thermal conductivity of polymethyl methacrylate-coated graphene/epoxy composites using admicellar polymerization with different ionic surfactants
CN102532896A (en) Modified graphene/polyimide resin composite material and preparation method thereof
Mun et al. Thermal conductivity of a silicon carbide/pitch-based carbon fiber-epoxy composite
JP2013122003A (en) Heat conductive filler and manufacturing method thereof
Wang et al. Preparation and properties of MWCNTs-BNNSs/epoxy composites with high thermal conductivity and low dielectric loss
Chang et al. A reduced percolation threshold of hybrid fillers of ball-milled exfoliated graphite nanoplatelets and AgNWs for enhanced thermal interface materials in high power electronics
JP2018030752A (en) Boron nitride particle agglomerate, method for producing the same, composition and resin sheet
Chen et al. Anisotropic and high thermal conductivity of epoxy composites containing multilayer Ti 3 C 2 T x MXene nanoflakes
JP6786047B2 (en) Method of manufacturing heat conductive sheet
Jin et al. The preparation of a core/shell structure with alumina coated spherical silica powder
Ryu et al. Magnetic alignment of electrochemically exfoliated graphite in epoxy as a thermal interface material with high through-plane thermal conductivity
CN113943515A (en) Preparation method of reduced graphene oxide/copper nanoparticle modified epoxy resin composite material
Lee et al. Vertically-aligned boron nitride composite as a highly thermally conductive material using magnetic field-assisted three-dimensional printing
KR20240072771A (en) Alumina insulating film-coated graphene filler and method for fabricating the same
Bhat et al. Dielectric and material properties of poly (vinyl alcohol): Based modified red mud polymer nanocomposites
AU2019222583B2 (en) BNNT thermal management materials for high-power systems