KR20240071595A - Pen Probe touch Ultrasonic Gear Inspection Techniques - Google Patents

Pen Probe touch Ultrasonic Gear Inspection Techniques Download PDF

Info

Publication number
KR20240071595A
KR20240071595A KR1020220153276A KR20220153276A KR20240071595A KR 20240071595 A KR20240071595 A KR 20240071595A KR 1020220153276 A KR1020220153276 A KR 1020220153276A KR 20220153276 A KR20220153276 A KR 20220153276A KR 20240071595 A KR20240071595 A KR 20240071595A
Authority
KR
South Korea
Prior art keywords
contact
ultrasonic
probe
destructive testing
present
Prior art date
Application number
KR1020220153276A
Other languages
Korean (ko)
Inventor
이경일
Original Assignee
이경일
송원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이경일, 송원대학교산학협력단 filed Critical 이경일
Priority to KR1020220153276A priority Critical patent/KR20240071595A/en
Publication of KR20240071595A publication Critical patent/KR20240071595A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2487Directing probes, e.g. angle probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces

Landscapes

  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

본 발명은 팬타입 프로브를 이용한 접촉식 비파괴검사 기법에 관한 것이다.
본 발명은 제품의 곡면부의 결함에 대한 접촉식 비파괴 탐상을 효과적으로 하기 위한 기법으로 팬타입 프로브를 이용하는 것을 특징으로 한다.
The present invention relates to a contact-type non-destructive testing technique using a fan-type probe.
The present invention is characterized by using a fan-type probe as a technique for effectively performing contact-type non-destructive inspection of defects in curved surfaces of products.

Description

[팬 프로브를 이용한 접촉식 비파괴 검사 기법]{Pen Probe touch Ultrasonic Gear Inspection Techniques}[Contact non-destructive inspection technique using a pen probe]{Pen Probe touch Ultrasonic Gear Inspection Techniques}

본 발명은 친환경자동차, 로봇 그리고 무선전자제품 등 제품의 굴곡부의 신뢰성을 평가하기 위한 기술로 팬 모양의 접촉면이 소프트한 프로브를 이용하는 기술이다.The present invention is a technology for evaluating the reliability of curved parts of products such as eco-friendly cars, robots, and wireless electronic products, using a probe with a soft fan-shaped contact surface.

초음파 비파괴 검사는 재료의 표면 또는 내부에 존재하는 불연속부(결함-밀도차)를 검출하기 위해 초음파를 재료에 전달시켜 검사하는 비파괴 검사 방법 중 하나이다. 초음파 비파괴 검사 방법에는 접촉매질이 있어야 초음파 탐상이 가능한 접촉식 방법과 공기를 매질로 하여 접촉매질 없이도 초음파 탐상이 가능하도록 하는 비접촉식방법이 있다Ultrasonic non-destructive testing is one of the non-destructive testing methods that transmits ultrasonic waves to a material to detect discontinuities (defects-density difference) existing on the surface or inside the material. Ultrasonic non-destructive testing methods include a contact method that requires the presence of a contact medium to enable ultrasonic inspection, and a non-contact method that uses air as a medium to enable ultrasonic inspection without a contact medium.

상술한 바와 같이 초음파를 이용한 비파괴 검사는 말 그대로 검사 대상체 내부에 초음파를 입사하여 내부 결함이나 대상체 바닥 표면에서 반사파를 수신하거나 대상체를 투과하여 전파된 초음파를 반대측의 표면에서 수신하여 그 수신된 신호의 세기나 전파 시간을 측정함으로써 피검사체에 대한 결함의 존재 유무 및 위치 그리고 재료의 두께나 물성치를 측정할 수 있는 검사 기술이다.As mentioned above, non-destructive testing using ultrasonic waves literally irradiates ultrasonic waves inside the object to be inspected, receives reflected waves from internal defects or the bottom surface of the object, or receives ultrasonic waves propagated through the object from the surface on the opposite side, thereby converting the received signal into It is an inspection technology that can measure the presence and location of defects on the inspected object and the thickness or physical properties of the material by measuring intensity or propagation time.

따라서 초음파 프로부로부터 송신된 초음파 신호의 형상 또는 세기가 대상체의 검사 결과에 영향을 주는 주요 요소이며 이는 초음파 프로브와 검사체 표면간의 접촉 상태에 따라 결정된다. 즉, 프로브와 검사체간의 접촉상태가 변하게 되면 초음파의 신호가 달라지므로 동일한 검사체에서 검사를 수행하였더라도 접촉 상태에 따라 다른 검사 결과가 도출될 수 있다.Therefore, the shape or intensity of the ultrasonic signal transmitted from the ultrasonic probe is a major factor affecting the test results of the object and is determined by the contact state between the ultrasonic probe and the surface of the test object. In other words, when the contact state between the probe and the test object changes, the ultrasonic signal changes, so even if the test is performed on the same test object, different test results may be obtained depending on the contact state.

한편, 친환경자동차, 로봇 그리고 무선전자제품은 구조적으로 그 외형이 곡면으로 이루어지는 부분이 많기에 초음파를 이용하여 기어의 결함을 검사하는 경우 프On the other hand, since eco-friendly cars, robots, and wireless electronic products have many structural parts that have curved surfaces, it is necessary to inspect gear defects using ultrasonic waves.

로브의 접촉 상태가 검사자에 따라서 달라질 수 있으며, 검사체의 표면 상태, 검사위치, 프로브와 검사체간 접촉 매질에 따라 변할 수 있어 검사 결과가 달라질 수 있다.The contact state of the lobe may vary depending on the examiner, and may vary depending on the surface condition of the test object, the test location, and the contact medium between the probe and the test object, so test results may vary.

즉, 친환경자동차, 로봇 그리고 무선전자제품의 손상 여부를 판단하기 위한 초음파 검사 기법은 기어 내부에서 반사된 초음파 신호의 세기를 통해 손상 여부 및 정도를 검출하게 되는데, 초음파 프로브와 기어 표면 사이에 항상 일정한 접촉 상태를 유지하는 것이 검사의 재현성과 신뢰성을 확보하는데 중요한 요소가 된다.In other words, the ultrasonic inspection technique for determining damage to eco-friendly cars, robots, and wireless electronic products detects the presence and extent of damage through the intensity of ultrasonic signals reflected from the inside of the gear. There is always a constant distance between the ultrasonic probe and the gear surface. Maintaining contact is an important factor in ensuring the reproducibility and reliability of the test.

따라서, 초음파를 이용한 기어 내부 검사를 위해서는 검사자에 상관없이 일정한 검사 위치와 접촉 상태를 유지할 수 있는 기술의 개발이 요구된다.Therefore, for gear internal inspection using ultrasonic waves, the development of technology that can maintain a constant inspection position and contact state regardless of the inspector is required.

본 발명의 목적은 내부의 불연속부 측정에서 곡면부분의 측정이 어렵던 기존에 접촉식 초음파 비파괴 검사에서 소프트한 재질의 접촉면을 가진 팬타입 프로브를 이용하여 기존에 측정이 어렵던 곡면 부분을 측정하는 방식을 제공하는 것이 본 발명의 목적이다.The purpose of the present invention is to provide a method of measuring curved surfaces that were previously difficult to measure in internal discontinuities using a fan-type probe with a contact surface made of a soft material in contact ultrasonic non-destructive testing. It is the purpose of the present invention to provide.

상기와 같은 목적을 달성하기 위하여 본 발명에 따른 팬 프로브를 이용한 접촉식 비파괴 검사 장치는, 친환경자동차, 로봇 그리고 무선전자제품의 내부에 초음파를 입사하고 그 반사된 초음파를 수신하여 수신된 초음파 신호로부터 기어의 결함을 검사하기 위한 접촉식 비파괴 검사 장치에 있어서, 초음파를 발생시켜 발진하는 초음파 펄스 리시브와, 상기 펄스 리시브로부터 발생된 초음파를 기어 내부로 입사시키고 반사된 초음파 신호를 수신하도록 접촉부가 기어의 표면에 접촉되는 프로브와, 상기 프로브로부터 수신된 초음파 신호를 분석하여 기어의 결함 유무, 결함 위치를 산출하는 신호처리 및 연산부가 구비되어 구성되되, 상기 프로브의 접촉부는 기어의 표면에 밀착되는 부드러운 재질로 형성된 것을 특징으로 한다.In order to achieve the above object, a contact-type non-destructive testing device using a fan probe according to the present invention applies ultrasonic waves to the inside of eco-friendly cars, robots, and wireless electronic products, receives the reflected ultrasonic waves, and extracts the received ultrasonic signals from the received ultrasonic signals. In the contact type non-destructive testing device for inspecting defects in gears, the contact part includes an ultrasonic pulse receiver that generates and oscillates ultrasonic waves, and a contact part of the gear so that the ultrasonic waves generated from the pulse receiver are incident on the inside of the gear and receive the reflected ultrasonic signals. It is comprised of a probe in contact with the surface, and a signal processing and calculation unit that analyzes the ultrasonic signal received from the probe to calculate the presence or absence of a defect in the gear and the location of the defect. The contact part of the probe is made of a soft material that is in close contact with the surface of the gear. It is characterized by being formed of.

또한, 본 발명에 따른 팬 프로브를 이용한 접촉식 비파괴 검사 장치는, 상기 프로브는 펜(Pen) 형상으로 형성된 것을 특징으로 한다.In addition, the contact type non-destructive testing device using a pan probe according to the present invention is characterized in that the probe is formed in the shape of a pen.

상기와 같은 구성에 의하여 본 발명에 따른 팬 프로브를 이용한 접촉식 비파괴 검사 기법은 프로브를 펜 형상으로 형성하여 소형 기어, 친환경자동차, 로봇 그리고 무선전자제품의 검사가 용이할 뿐만 아니라 프로브의 접촉부를 소프트하게 형성하여 기어의 치차부 및 제품의 곡면도 용이하게 탐촉이 가능한 장점을 갖는다.With the above configuration, the contact non-destructive testing technique using a fan probe according to the present invention not only facilitates inspection of small gears, eco-friendly cars, robots, and wireless electronic products by forming the probe into a pen shape, but also makes the contact part of the probe soft. It is formed so that it has the advantage of being able to easily probe the gear parts and the curved surfaces of the product.

도 1은 본 발명의 일실시예에 따른 소프트 프로브를 이용한 접촉식 기어 비파괴 검사 장치의 구성을 도시한 사진
도 2은 본 발명의 일실시예에 따른 소프트 프로브를 이용한 접촉식 기어 비파괴 검사 장치에 이용되는 펜 형상의 초음파 소프트 프로브를 도시한 사진
도 3은 본 발명의 일실시예에 따른 소프트 프로브를 이용한 접촉식 기어 비파괴 검사 장치를 이용하여 초음파분석 프로그램을 구동한 결과를 화면 사진
1 is a photograph showing the configuration of a contact-type gear non-destructive inspection device using a soft probe according to an embodiment of the present invention.
Figure 2 is a photograph showing a pen-shaped ultrasonic soft probe used in a contact-type gear non-destructive testing device using a soft probe according to an embodiment of the present invention.
Figure 3 is a screen photograph showing the results of running an ultrasonic analysis program using a contact-type gear non-destructive testing device using a soft probe according to an embodiment of the present invention.

이하에서는 도면에 도시된 실시예를 참조하여 본 발명에 따른 팬 프로브를 이용한 접촉식 비파괴 검사 기법을 보다 상세하게 설명하기로 한다.Hereinafter, a contact non-destructive testing technique using a fan probe according to the present invention will be described in more detail with reference to the embodiments shown in the drawings.

도 1은 본 발명의 일실시예에 따른 팬 프로브를 이용한 접촉식 비파괴 검사 기법의 구성을 도시한 사진이고, 도 2은 본 발명의 일실시예에 따른 팬 프로브를 이용한 접촉식 기어 비파괴 검사 기법에 이용되는 펜 형상의 초음파 소프트 프로브를 도시한 사진이며, 도 3은 본 발명의 일실시예에 따른 팬 프로브를 이용한 접촉식 비파괴 검사 기법을 이용하여 초음파 분석 프로그램을 구동한 결과를 화면 사진이다.Figure 1 is a photograph showing the configuration of a contact-type non-destructive testing technique using a fan probe according to an embodiment of the present invention, and Figure 2 is a photograph showing the configuration of a contact-type gear non-destructive testing technique using a fan probe according to an embodiment of the present invention. This is a photograph showing the pen-shaped ultrasonic soft probe used, and Figure 3 is a screen photograph showing the results of running an ultrasonic analysis program using a contact non-destructive testing technique using a fan probe according to an embodiment of the present invention.

Claims (1)

탐상된 초음파 신호를 분석할 컴퓨터(SW) (1);
음파 분석 및 초음파 증폭을 담당하는 PXI(2);
초음파를 발생시키는 pulses Receive(3);
팬 타입 소프트 프로브;
Computer (SW) (1) to analyze the detected ultrasonic signal;
PXI(2), responsible for acoustic analysis and ultrasound amplification;
pulses that generate ultrasonic waves Receive(3);
Fan type soft probe;
KR1020220153276A 2022-11-16 2022-11-16 Pen Probe touch Ultrasonic Gear Inspection Techniques KR20240071595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220153276A KR20240071595A (en) 2022-11-16 2022-11-16 Pen Probe touch Ultrasonic Gear Inspection Techniques

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220153276A KR20240071595A (en) 2022-11-16 2022-11-16 Pen Probe touch Ultrasonic Gear Inspection Techniques

Publications (1)

Publication Number Publication Date
KR20240071595A true KR20240071595A (en) 2024-05-23

Family

ID=91283755

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220153276A KR20240071595A (en) 2022-11-16 2022-11-16 Pen Probe touch Ultrasonic Gear Inspection Techniques

Country Status (1)

Country Link
KR (1) KR20240071595A (en)

Similar Documents

Publication Publication Date Title
US8826740B2 (en) Methods and apparatus for porosity measurement and defect detection
Rosli et al. In-plane and out-of-plane measurements of Rayleigh waves using EMATs for characterising surface cracks
CN111751448B (en) Surface leakage wave ultrasonic synthetic aperture focusing imaging method
US20130088724A1 (en) Method and apparatus for the inspection of sandwich structures using laser-induced resonant frequencies
Yeh et al. An alternative Ultrasonic TimeofFlight Diffraction (TOFD) method
KR101251204B1 (en) Ultrasonic nondestructive inspection device and ultrasonic nondestructive inspection method
KR101830461B1 (en) Method and device for determining an orientation of a defect present within a mechanical component
CN113533504B (en) Subsurface crack quantitative measurement method based on laser ultrasonic surface wave frequency domain parameters
US10627369B2 (en) Method and device for inspection of solids by means of ultrasound
KR20240071595A (en) Pen Probe touch Ultrasonic Gear Inspection Techniques
JP2001208729A (en) Defect detector
CN104569155A (en) Electromagnetic ultrasonic detection method for surface defects
KR101963820B1 (en) Reflection mode nonlinear ultrasonic diagnosis apparatus
JPH07248317A (en) Ultrasonic flaw detecting method
JP2006162321A5 (en)
JP3782410B2 (en) Ultrasonic flaw detection method and apparatus using Rayleigh wave
Vangi et al. On the use of two emerging laser-based flaw-detection techniques–Considerations and practicalities
SU1061709A3 (en) Method for identifying nature of flaws in ultrasonic flaw detection
WO2022270133A1 (en) Ultrasonic flaw detection method and ultrasonic flaw detection device
Mayworm et al. A metrological based realization of time-of-flight diffraction technique
KR20180027274A (en) Non-destruction testing apparatus having effective detection distance measurement function
KR20180012655A (en) Gear Inspection Apparatus Using Ultrasonic Soft Touch Probe
Song et al. An effective defect identification scheme in pipeline ultrasonic testing
KR101964758B1 (en) Non-contact nonlinear ultrasonic diagnosis apparatus
JPH01107149A (en) Standard test piece for ultrasonic flaw detector