KR20240068845A - Glass fiber reinforced composite reinforcing bar and method for manufacturing the same - Google Patents

Glass fiber reinforced composite reinforcing bar and method for manufacturing the same Download PDF

Info

Publication number
KR20240068845A
KR20240068845A KR1020220148321A KR20220148321A KR20240068845A KR 20240068845 A KR20240068845 A KR 20240068845A KR 1020220148321 A KR1020220148321 A KR 1020220148321A KR 20220148321 A KR20220148321 A KR 20220148321A KR 20240068845 A KR20240068845 A KR 20240068845A
Authority
KR
South Korea
Prior art keywords
weight
reinforcing bar
glass fiber
flame retardant
resin
Prior art date
Application number
KR1020220148321A
Other languages
Korean (ko)
Other versions
KR102679872B1 (en
Inventor
김광환
Original Assignee
김광환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김광환 filed Critical 김광환
Priority to KR1020220148321A priority Critical patent/KR102679872B1/en
Publication of KR20240068845A publication Critical patent/KR20240068845A/en
Application granted granted Critical
Publication of KR102679872B1 publication Critical patent/KR102679872B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • B29B15/125Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/1025Coating to obtain fibres used for reinforcing cement-based products
    • C03C25/103Organic coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Architecture (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Textile Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명의 실시예에 따른 유리섬유강화 복합체 보강근은 열경화성 수지 60 내지 70중량%, 수축저감제 8 내지 15중량%, 박리제 6 내지 9중량%, 경화촉진제 4 내지 7중량%, 촉매제 3 내지 4중량%, 안료 2 내지 3중량% 및 자외선 억제제 1 내지 2중량%를 혼합한 수지 조성물에 난연 첨가제를 첨가하여 이루어진 수지 함침 조성물을 포함하는 불연성 수지층; 및 상기 수지 함침 조성물에 함침하여 인발 성형되는 유리섬유 다발체;를 포함하는 보강근 코어; 상기 보강근 코어의 외주면에 돌출되게 형성되는 리브; 및 상기 리브가 형성된 보강근 코어의 외주면을 감싸 보호할 수 있도록 구비되는 표면 보호층;을 포함할 수 있다.The glass fiber reinforced composite reinforcement according to an embodiment of the present invention contains 60 to 70% by weight of thermosetting resin, 8 to 15% by weight of shrinkage reducer, 6 to 9% by weight of release agent, 4 to 7% by weight of curing accelerator, and 3 to 4% by weight of catalyst. %, a non-flammable resin layer comprising a resin impregnation composition made by adding a flame retardant additive to a resin composition mixed with 2 to 3% by weight of pigment and 1 to 2% by weight of ultraviolet ray inhibitor; and a glass fiber bundle that is pultruded by impregnating the resin impregnation composition; a reinforcing bar core comprising a. A rib formed to protrude on the outer peripheral surface of the reinforcing bar core; and a surface protection layer provided to surround and protect the outer peripheral surface of the reinforcing bar core on which the ribs are formed.

Description

유리섬유강화 복합체 보강근 및 그 제조방법{GLASS FIBER REINFORCED COMPOSITE REINFORCING BAR AND METHOD FOR MANUFACTURING THE SAME}Glass fiber reinforced composite reinforcement and method of manufacturing the same {GLASS FIBER REINFORCED COMPOSITE REINFORCING BAR AND METHOD FOR MANUFACTURING THE SAME}

본 발명은 유리섬유강화 복합체 보강근 및 그 제조방법에 관한 것이다.The present invention relates to glass fiber reinforced composite reinforcement and a method of manufacturing the same.

섬유강화폴리머(Fiber Reinforced Polymer, FRP) 복합체 보강근은 철근-콘크리트(Reinforced Concrete, RC) 구조물의 철근 부식문제를 해결할 수 있는 대안으로 부상하여 1960년대부터 FRP를 이용하여 철근 대체재로 활용하기 위한 노력이 시도되어 현재 다양한 형태의 FRP 보강근이 개발되어 상용화되었다. Fiber Reinforced Polymer (FRP) composite rebar emerged as an alternative to solving the problem of corrosion of rebar in reinforced concrete (RC) structures, and efforts have been made since the 1960s to use FRP as a rebar replacement. Various types of FRP reinforcement have been attempted and have been developed and commercialized.

또한, 유리섬유강화 폴리머(GFRP) 메쉬는 보강 메쉬 그리드로 알려진 철근과 같은 보강 재료로 널리 사용되고 있으며, 유리섬유강화 폴리머(GFRP) 메쉬는 강철보다 가볍고 저렴하며 내부식에 강하기 때문에 현재 바닥, 도로, 교량 및 기타 콘크리트 구조물을 보강하기 위한 시공에 널리 사용되고 있다.In addition, glass fiber reinforced polymer (GFRP) mesh is widely used as a reinforcing material such as rebar, known as reinforcing mesh grid. Because glass fiber reinforced polymer (GFRP) mesh is lighter, cheaper and more resistant to corrosion than steel, it is currently used in floors, roads, and other areas. It is widely used in construction to reinforce bridges and other concrete structures.

더하여, 강철 와이어 메쉬와 비교하면 유리섬유강화 폴리머(GFRP) 메쉬는 더 강하고 가볍고 녹이 없기 때문에 설치비용뿐만 아니라 핸들링 비용을 크게 절약할 수 있으며 구조가 내구성을 높일 수 있다.In addition, compared with steel wire mesh, glass fiber reinforced polymer (GFRP) mesh is stronger, lighter, and rust-free, which can greatly save not only installation costs but also handling costs, and the structure can increase durability.

한편, 상기와 같은 GFRP 보강근 및 GFRP 메쉬는 경량 및 우수한 내 부식 성능이 있으나, 화재가 발생하여 고온에 노출될 시에는 인장성능이 감소하는 문제점이 발생한다.Meanwhile, the GFRP reinforcement and GFRP mesh as described above are lightweight and have excellent corrosion resistance, but when exposed to high temperatures due to a fire, the tensile performance is reduced.

구체적으로, 일반적인 GFRP 보강근은 미세균열을 포함하고 있으며, 이러한 미세균열은 고온에 노출될 때 보강근의 손상을 가속화하는 원인으로 작용하고 고온 및 콘크리트환경의 복합영향에 의해 유리섬유와 수지의 계면전단강도의 저하가 발생한다는 연구결과가 발표되었다.Specifically, general GFRP reinforcement bars contain microcracks, and these microcracks act as a cause of accelerated damage to the reinforcement bars when exposed to high temperatures, and the interfacial shear strength of glass fiber and resin decreases due to the combined effects of high temperature and the concrete environment. Research results have been published showing that a decrease in

또한, 보강근의 열화는 노출온도가 100℃에 도달하였을 때 가속화되는 것을 확인되었는데, 이는 수지의 유리전이온도와 밀접한 관계가 있는 것으로 나타났다.In addition, it was confirmed that the deterioration of the reinforcement accelerated when the exposure temperature reached 100°C, which appeared to be closely related to the glass transition temperature of the resin.

이에 따라, 화기에 대한 내열성을 확보하여 인장성능이 감소되는 문제점을 방지할 필요성이 있다.Accordingly, there is a need to prevent the problem of reduced tensile performance by securing heat resistance to fire.

본 발명의 실시예들은 상기와 같은 문제를 해결하기 위해 제안된 것으로서, 불연성능을 가짐에 따라 고온노출 시 인장강도가 감소하는 GFRP 보강근의 한계를 극복할 수 있는 유리섬유강화 복합체 보강근 및 그 제조방법을 제공하고자 한다.Embodiments of the present invention are proposed to solve the above problems, and provide a glass fiber-reinforced composite reinforcing bar that can overcome the limitations of GFRP reinforcing bars, which have non-combustible performance and a decrease in tensile strength when exposed to high temperatures, and a method of manufacturing the same. We would like to provide.

본 발명의 일 실시예에 따른 유리섬유강화 복합체 보강근은 열경화성 수지 60 내지 70중량%, 수축저감제 8 내지 15중량%, 박리제 6 내지 9중량%, 경화촉진제 4 내지 7중량%, 촉매제 3 내지 4중량%, 안료 2 내지 3중량% 및 자외선 억제제 1 내지 2중량%를 혼합한 수지 조성물에 난연 첨가제를 첨가하여 이루어진 수지 함침 조성물을 포함하는 불연성 수지층; 및 상기 수지 함침 조성물에 함침하여 인발 성형되는 유리섬유 다발체;를 포함하는 보강근 코어; 상기 보강근 코어의 외주면에 돌출되게 형성되는 리브; 및 상기 리브가 형성된 보강근 코어의 외주면을 감싸 보호할 수 있도록 구비되는 표면 보호층;을 포함할 수 있다.The glass fiber reinforced composite reinforcement according to an embodiment of the present invention includes 60 to 70% by weight of thermosetting resin, 8 to 15% by weight of shrinkage reducer, 6 to 9% by weight of release agent, 4 to 7% by weight of curing accelerator, and 3 to 4% by weight of catalyst. % by weight, a non-flammable resin layer comprising a resin impregnation composition made by adding a flame retardant additive to a resin composition mixed with 2 to 3 wt% of pigment and 1 to 2 wt% of ultraviolet ray inhibitor; and a glass fiber bundle that is pultruded by impregnating the resin impregnation composition; a reinforcing bar core comprising a. A rib formed to protrude on the outer peripheral surface of the reinforcing bar core; and a surface protection layer provided to surround and protect the outer peripheral surface of the reinforcing bar core on which the ribs are formed.

또한, 상기 수지 함침 조성물은, 상기 수지 함침 조성물 100중량%에 대하여, 수지 조성물 85 내지 95중량% 및 난연 첨가제 5 내지 15중량%를 포함한다.In addition, the resin impregnation composition includes 85 to 95% by weight of the resin composition and 5 to 15% by weight of the flame retardant additive, based on 100% by weight of the resin impregnation composition.

또한, 상기 난연 첨가제는, 상기 난연 첨가제 100중량%에 대하여, 암모늄 폴리인산염 55 내지 65중량%, 수산화알루미늄 15 내지 25중량%, 이산화티타늄 10 내지 20중량% 및 무기질 난연제 5 내지 10중량%를 포함할 수 있다.In addition, the flame retardant additive includes 55 to 65% by weight of ammonium polyphosphate, 15 to 25% by weight of aluminum hydroxide, 10 to 20% by weight of titanium dioxide, and 5 to 10% by weight of an inorganic flame retardant, based on 100% by weight of the flame retardant additive. can do.

또한, 상기 무기질 난연제는, 상기 무기질 난연제 100중량%에 대하여, 고령토 40 내지 50중량%, 탄산 칼슘 30 내지 40중량% 및 알루미나 분말 15 내지 25중량%를 포함한다.In addition, the inorganic flame retardant includes 40 to 50% by weight of kaolin, 30 to 40% by weight of calcium carbonate, and 15 to 25% by weight of alumina powder, based on 100% by weight of the inorganic flame retardant.

또한, 상기 보강근 코어는, 상기 보강근 코어 100중량%에 대하여, 불연성 수지층 85 내지 95중량%, 유리섬유 다발체 5 내지 15중량%으로 이루어질 수 있다.In addition, the reinforcing bar core may be composed of 85 to 95% by weight of a non-combustible resin layer and 5 to 15% by weight of a glass fiber bundle, based on 100% by weight of the reinforcing bar core.

또한, 상기 유리섬유 다발체는, 복수개의 유리섬유 가닥을 일축방향으로 배향되도록 하여 형성된다.Additionally, the glass fiber bundle is formed by aligning a plurality of glass fiber strands in a uniaxial direction.

또한, 상기 표면 보호층은, 무기계 분말 복합체, 경화제 및 촉진제로 이루어지는 무기계 조성물을 포함하고, 상기 무기계 분말 복합체는, 이산화 규소 분말, 인산 분말 및 수산화 칼륨 분말으로 이루어진 군에서 선택되는 하나 이상의 물질을 포함할 수 있다.In addition, the surface protective layer includes an inorganic composition consisting of an inorganic powder composite, a curing agent, and an accelerator, and the inorganic powder composite includes at least one material selected from the group consisting of silicon dioxide powder, phosphoric acid powder, and potassium hydroxide powder. can do.

본 발명의 일 실시예에 따른 유리섬유강화 복합체 보강근의 제조방법은 열경화성 수지, 수축저감제, 박리제, 경화촉진제, 촉매제, 안료 및 자외선 억제제를 혼합한 수지 조성물에 난연 첨가제를 첨가하여 수지 함침 조성물을 준비하는 혼합 단계; 복수개의 유리섬유 가닥을 일축방향으로 배향되도록 하여 형성된 유리섬유 다발체를 상기 수지 함침 조성물에 함침하는 함침 단계; 함침된 유리섬유 다발체를 봉 형태로 압축하여 인발 성형함에 따라 보강근 코어를 형성하는 성형 단계; 형성된 보강근 코어의 외주면에 리브용 섬유를 와인딩하여 리브를 형성하는 와인딩 단계; 및 상기 리브가 형성된 보강근 코어의 외주면을 감싸 보호할 수 있도록 표면 보호층을 형성하는 표면처리 단계를 포함한다.The method of manufacturing a glass fiber-reinforced composite reinforcing bar according to an embodiment of the present invention is to prepare a resin impregnated composition by adding a flame retardant additive to a resin composition mixed with a thermosetting resin, a shrinkage reducer, a release agent, a curing accelerator, a catalyst, a pigment, and an ultraviolet ray inhibitor. Preparing mixing step; An impregnation step of impregnating a glass fiber bundle formed by orienting a plurality of glass fiber strands in a uniaxial direction into the resin impregnation composition; A forming step of forming a reinforcing bar core by compressing and pultruding the impregnated glass fiber bundle into a rod shape; A winding step of forming ribs by winding rib fibers on the outer peripheral surface of the formed reinforcing bar core; And it includes a surface treatment step of forming a surface protective layer to surround and protect the outer peripheral surface of the reinforcing bar core on which the ribs are formed.

또한, 상기 혼합 단계는, 수지 조성물로서, 열경화성 수지 60 내지 70중량%, 수축저감제 8 내지 15중량%, 박리제 6 내지 9중량%, 경화촉진제 4 내지 7중량%, 촉매제 3 내지 4중량%, 안료 2 내지 3중량% 및 자외선 억제제 1 내지 2중량%를 수용 공간에 투입하고 20 내지 30 시간동안 전동 교반하는 교반 단계; 및 상기 수지 조성물에 암모늄 폴리인산염 55 내지 65중량%, 수산화알루미늄 15 내지 25중량%, 이산화티타늄 10 내지 20중량% 및 무기질 난연제 5 내지 10중량%를 포함하는 난연 첨가제를 첨가한 후 초음파 진동기를 통해 혼합하는 첨가 단계를 포함할 수 있다.In addition, in the mixing step, the resin composition includes 60 to 70% by weight of thermosetting resin, 8 to 15% by weight of shrinkage reducing agent, 6 to 9% by weight of release agent, 4 to 7% by weight of curing accelerator, 3 to 4% by weight of catalyst, A stirring step of adding 2 to 3% by weight of pigment and 1 to 2% by weight of ultraviolet ray inhibitor into the receiving space and stirring by electric current for 20 to 30 hours; And a flame retardant additive containing 55 to 65% by weight of ammonium polyphosphate, 15 to 25% by weight of aluminum hydroxide, 10 to 20% by weight of titanium dioxide, and 5 to 10% by weight of an inorganic flame retardant is added to the resin composition, and then processed through an ultrasonic vibrator. It may include an addition step of mixing.

또한, 상기 무기질 난연제는, 상기 무기질 난연제 100중량%에 대하여, 고령토 40 내지 50중량%, 탄산 칼슘 30 내지 40중량% 및 알루미나 분말 15 내지 25중량%를 포함한다.In addition, the inorganic flame retardant includes 40 to 50% by weight of kaolin, 30 to 40% by weight of calcium carbonate, and 15 to 25% by weight of alumina powder, based on 100% by weight of the inorganic flame retardant.

또한, 상기 표면처리 단계는, 상기 리브가 형성된 보강근 코어를 이산화 규소 분말, 인산 분말 및 수산화 칼륨 분말로 이루어진 군에서 선택되는 하나 이상의 물질을 포함하는 무기계 분말 복합체가 수용된 수용 공간에 투입하고 진동 교반하는 도포 단계; 및 상기 무기계 분말 복합체가 도포된 보강근 코어에 경화제 및 촉진제를 도포하고 120 내지 200℃의 온도에서 3 내지 5분동안 경화를 위한 열처리를 수행하는 경화 단계를 포함할 수 있다.In addition, the surface treatment step involves putting the ribbed reinforcing bar core into a receiving space containing an inorganic powder composite containing at least one material selected from the group consisting of silicon dioxide powder, phosphoric acid powder, and potassium hydroxide powder, and shaking it by vibration. step; And it may include a curing step of applying a curing agent and an accelerator to the reinforcing bar core to which the inorganic powder composite is applied and performing heat treatment for curing at a temperature of 120 to 200 ° C. for 3 to 5 minutes.

본 발명의 실시예들에 따른 유리섬유강화 복합체 보강근 및 그 제조방법은 불연성능을 가짐에 따라 고온노출 시 인장강도가 감소하는 GFRP 보강근의 한계를 극복할 수 있는 효과가 있다.The glass fiber-reinforced composite reinforcing bar and its manufacturing method according to embodiments of the present invention have the effect of overcoming the limitation of the GFRP reinforcing bar, which has a decrease in tensile strength when exposed to high temperatures due to its non-combustible performance.

도 1은 본 발명의 일 실시예에 따른 유리섬유강화 복합체 보강근을 개략적으로 설명하기 위한 모식도이다.
도 2, 도 3 및 도 4는 본 발명의 일 실시예에 따른 유리섬유강화 복합체 보강근의 제조방법을 순차적으로 보여주는 흐름도이다.
도 5는 본 발명의 일 실시예 따른 유리섬유강화 복합체 보강근의 제조장치를 개략적으로 보여주는 도면이다.
Figure 1 is a schematic diagram schematically illustrating a glass fiber-reinforced composite reinforcing bar according to an embodiment of the present invention.
Figures 2, 3, and 4 are flowcharts sequentially showing a method of manufacturing a glass fiber-reinforced composite reinforcing bar according to an embodiment of the present invention.
Figure 5 is a diagram schematically showing an apparatus for manufacturing a glass fiber-reinforced composite reinforcing bar according to an embodiment of the present invention.

본 발명의 다른 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술 되는 실시 예를 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예는 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Other advantages and features of the present invention and methods for achieving them will become clear by referring to the embodiments described in detail below along with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below and may be implemented in various different forms. The present embodiments are only provided to ensure that the disclosure of the present invention is complete and to provide common knowledge in the technical field to which the present invention pertains. It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims.

만일 정의되지 않더라도, 여기서 사용되는 모든 용어들(기술 혹은 과학 용어들을 포함)은 이 발명이 속한 종래 기술에서 보편적 기술에 의해 일반적으로 수용되는 것과 동일한 의미를 가진다. 일반적인 사전들에 의해 정의된 용어들은 관련된 기술 그리고/혹은 본 출원의 본문에 의미하는 것과 동일한 의미를 갖는 것으로 해석될 수 있고, 그리고 여기서 명확하게 정의된 표현이 아니더라도 개념화되거나 혹은 과도하게 형식적으로 해석되지 않을 것이다.Even if not defined, all terms (including technical or scientific terms) used herein have the same meaning as generally accepted by the general art in the prior art to which this invention belongs. Terms defined by general dictionaries may be interpreted as having the same meaning as they have in the related art and/or text of the present application, and should not be conceptualized or interpreted in an overly formal manner even if expressions are not clearly defined herein. won't

이하에서는 본 발명의 구체적인 실시예들에 대하여 도면을 참조하여 상세히 설명한다.Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

아울러 본 발명을 설명함에 있어서, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.In addition, when describing the present invention, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present invention, the detailed description will be omitted.

도 1은 본 발명의 일 실시예에 따른 유리섬유강화 복합체 보강근을 개략적으로 설명하기 위한 모식도이고, 도 2는 본 발명의 일 실시예에 따른 유리섬유강화 복합체 보강근의 제조방법을 순차적으로 보여주는 흐름도이다.Figure 1 is a schematic diagram for schematically explaining a glass fiber reinforced composite reinforcing bar according to an embodiment of the present invention, and Figure 2 is a flow chart sequentially showing a method of manufacturing a glass fiber reinforced composite reinforcing bar according to an embodiment of the present invention. .

도 1을 참조하면, 본 발명의 일 실시예에 따른 유리섬유강화 복합체 보강근(1)은 보강근 코어(100), 리브(200) 및 표면 보호층(300)을 포함하여 이루어질 수 있다.Referring to FIG. 1, the glass fiber reinforced composite reinforcing bar 1 according to an embodiment of the present invention may include a reinforcing bar core 100, ribs 200, and a surface protection layer 300.

또한, 상기 유리섬유강화 복합체 보강근(1)은 소정 길이를 가지며, 사용 목적에 따라 소정 두께 및 길이로 형성될 수 있으며, 주 보강재료로 사용된 유리섬유와 결속재인 열경화성 수지를 포함한다. 유리섬유가 열경화성 수지에 함침됨으로써, 복수 가닥의 유리섬유들이 다발체로 견고하게 결합될 수 있게 된다.In addition, the glass fiber-reinforced composite reinforcing bar 1 has a predetermined length, can be formed to a predetermined thickness and length depending on the purpose of use, and includes glass fiber used as the main reinforcing material and a thermosetting resin as a binding material. By impregnating glass fibers with a thermosetting resin, multiple strands of glass fibers can be firmly bonded into a bundle.

상기 유리섬유는, 17세기 영국의 과학자 Robert Hooke에 의해서 개발된 섬유로 FRP의 생산에 가장 널리 사용되는 섬유이고, 주성분은 Si02이며 Al203, CaO, MgO, B2O3등의 성분으로 구성되어 있다. 상업적으로 이용되는 유리섬유의 장점은 가격이 싸면서도 고강도 및 우수한 절연 특성을 가지고 있다.The glass fiber is a fiber developed by British scientist Robert Hooke in the 17th century and is the most widely used fiber in the production of FRP. Its main component is Si0 2 and contains components such as Al 2 0 3 , CaO, MgO, and B 2 O 3 It consists of: The advantage of commercially used glass fiber is that it is inexpensive, has high strength, and has excellent insulating properties.

구체적으로, 상기 보강근 코어(100)는 수지 함침 조성물을 포함하는 불연성 수지층(10) 및 인발 성형된 유리섬유 다발체(20)로 이루어질 수 있고, 상기 수지 함침 조성물은 수지 조성물에 난연 첨가제를 첨가하여 형성될 수 있다.Specifically, the reinforcing bar core 100 may be composed of a non-combustible resin layer 10 containing a resin impregnation composition and a pultruded glass fiber bundle 20, and the resin impregnation composition adds a flame retardant additive to the resin composition. It can be formed.

더 구체적으로, 상기 보강근 코어(100)는 열경화성 수지 60 내지 70중량%, 수축저감제 8 내지 15중량%, 박리제 6 내지 9중량%, 경화촉진제 4 내지 7중량%, 촉매제 3 내지 4중량%, 안료 2 내지 3중량% 및 자외선 억제제 1 내지 2중량%를 혼합한 수지 조성물에 난연 첨가제를 첨가하여 이루어진 수지 함침 조성물을 포함하는 불연성 수지층(10) 및 상기 수지 함침 조성물에 함침하여 인발 성형되는 유리섬유 다발체(20)를 포함한다.More specifically, the reinforcing bar core 100 contains 60 to 70% by weight of thermosetting resin, 8 to 15% by weight of shrinkage reducing agent, 6 to 9% by weight of release agent, 4 to 7% by weight of curing accelerator, 3 to 4% by weight of catalyst, A non-flammable resin layer (10) comprising a resin impregnation composition made by adding a flame retardant additive to a resin composition mixed with 2 to 3% by weight of a pigment and 1 to 2% by weight of an ultraviolet ray inhibitor, and glass pultruded by impregnating the resin impregnation composition. It includes a fiber bundle (20).

여기서, 상기 수지 함침 조성물은 상기 수지 함침 조성물 100중량%에 대하여, 수지 조성물 85 내지 95중량% 및 난연 첨가제 5 내지 15중량%를 포함할 수 있다.Here, the resin impregnation composition may include 85 to 95% by weight of the resin composition and 5 to 15% by weight of the flame retardant additive, based on 100% by weight of the resin impregnation composition.

상기 난연 첨가제는 난연성능을 향상시킬 수 있는 효과를 가진 무기계 불연 소재들을 적정한 비율로 혼합한 것이며, 구체적으로, 난연 첨가제는 상기 난연 첨가제 100중량%에 대하여, 암모늄 폴리인산염 55 내지 65중량%, 수산화알루미늄 15 내지 25중량%, 이산화티타늄 10 내지 20중량% 및 무기질 난연제 5 내지 10중량%를 포함한다.The flame retardant additive is a mixture of inorganic noncombustible materials that have the effect of improving flame retardant performance in an appropriate ratio. Specifically, the flame retardant additive is 55 to 65% by weight of ammonium polyphosphate and hydroxide based on 100% by weight of the flame retardant additive. It contains 15 to 25% by weight of aluminum, 10 to 20% by weight of titanium dioxide, and 5 to 10% by weight of an inorganic flame retardant.

더하여, 상기 무기질 난연제는 상기 무기질 난연제 100중량%에 대하여, 고령토 40 내지 50중량%, 탄산 칼슘 30 내지 40중량% 및 알루미나 분말 15 내지 25중량%를 포함할 수 있다.In addition, the inorganic flame retardant may include 40 to 50% by weight of kaolin, 30 to 40% by weight of calcium carbonate, and 15 to 25% by weight of alumina powder, based on 100% by weight of the inorganic flame retardant.

여기서, 상기 고령토, 상기 탄산 칼슘 및 상기 알루미나 분말은 다른 난연제와 함께 난연성을 상승시키는 작용을 하며, 높은 난연 효과를 위해 상기 난연 첨가제는 상기 수지 함침 조성물의 100중량%에 대하여 15중량%를 넘지 않도록 첨가하는 것이 바람직하다.Here, the kaolin, the calcium carbonate, and the alumina powder act to increase flame retardancy together with other flame retardants, and for high flame retardant effect, the flame retardant additive is adjusted not to exceed 15% by weight based on 100% by weight of the resin impregnated composition. It is desirable to add

상기 고령토는 내열성과 항균성 및 탈취효과가 우수함과 동시에 난연성을 가질 뿐만 아니라, 수지 조성물의 기계적 강도, 내마모성 및 고온강도를 증가시키고, 일정한 습도조절, 원적외선 방사 등의 기능성을 발휘하는 특성을 지닌 것으로, 1 내지 10㎛의 입도를 지닌 것을 사용한다.The kaolin not only has excellent heat resistance, antibacterial properties, and deodorizing effects, but also has flame retardancy, increases the mechanical strength, abrasion resistance, and high-temperature strength of the resin composition, and has properties such as constant humidity control and far-infrared radiation. Those with a particle size of 1 to 10㎛ are used.

상기 탄산칼슘은 일반적으로 잘 알려진 것으로 수지 조성물에 난연성을 증가시키고 화재발생시 유해가스의 발생을 현저히 줄일 수 있는 특성을 지닌다.The calcium carbonate is generally well known and has properties that increase the flame retardancy of the resin composition and significantly reduce the generation of harmful gases in the event of a fire.

상기 알루미나 분말은 기계적 강도와 난연성을 동시에 만족시킬 수 있는 소재로 사용되는 것이며, 고령토 및 탄산칼슘과 함께 배합되어 주형성과 고온강도를 증가시키는 역할을 한다.The alumina powder is used as a material that can satisfy both mechanical strength and flame retardancy, and is mixed with kaolin and calcium carbonate to increase moldability and high-temperature strength.

상기 알루미나 분말은 무기질 난연제 100중량%에 대하여, 함량이 15중량% 미만에서 요구하는 기계적 강도를 확보하기 어려우며, 그 함량이 25중량%를 초과하게 되면 알루미늄 성분이 과다하게 되어 난연성능이 저하되는 문제가 있다.It is difficult for the alumina powder to secure the required mechanical strength when the content is less than 15% by weight based on 100% by weight of the inorganic flame retardant, and when the content exceeds 25% by weight, the aluminum component becomes excessive and the flame retardant performance deteriorates. There is.

더하여, 상기 열경화성 수지는 상기 열경화성 수지 100중량%에 대하여, 폴리에틸렌(PE) 60 내지 80중량% 및 폴리스타이렌(PS) 20 내지 40중량%를 포함한다.In addition, the thermosetting resin includes 60 to 80% by weight of polyethylene (PE) and 20 to 40% by weight of polystyrene (PS) based on 100% by weight of the thermosetting resin.

또한, 상기 보강근 코어(100)는 상기 보강근 코어 100중량%에 대하여, 불연성 수지층 85 내지 95중량%, 유리섬유 다발체 5 내지 15중량%으로 이루어진다.In addition, the reinforcing bar core 100 is composed of 85 to 95 wt% of a non-combustible resin layer and 5 to 15 wt% of a glass fiber bundle, based on 100 wt% of the reinforcing bar core.

다시 말해, 상기 보강근 코어(100)는 유리섬유강화 복합체로 형성되되, 유리섬유 기지의 고분자 재료, 즉 열경화성 수지를 함침하여 제조되는 것으로 첨가되는 재료에 따라 물성이 좌우되므로 금속재료에 비하여 경량으로 구조물을 만들 수 있는 것은 물론, 용이하게 제작이 가능하고 기계적인 강도는 오히려 향상될 수 있다.In other words, the reinforcing bar core 100 is formed of a glass fiber-reinforced composite, and is manufactured by impregnating a glass fiber-based polymer material, that is, a thermosetting resin. Since the physical properties depend on the added material, the structure is lightweight compared to a metal material. Not only can it be made, but it can also be easily manufactured and its mechanical strength can actually be improved.

더 구체적으로, 상기 보강근 코어(100)는 복수개의 유리섬유 가닥으로 이루어진 유리섬유 다발체(20)가 상기 수지 함침 조성물에 함침되어 봉 형태로 형성될 수 있으며, 이 때, 상기 유리섬유 다발체(20)는 복수개의 유리섬유 가닥을 일축방향으로 배향되도록 하여 형성된다.More specifically, the reinforcing bar core 100 may be formed in a rod shape by impregnating a glass fiber bundle 20 composed of a plurality of glass fiber strands with the resin impregnation composition, and at this time, the glass fiber bundle ( 20) is formed by orienting a plurality of glass fiber strands in a uniaxial direction.

상기 리브(200)는 상기 보강근 코어(100)의 외주면에 돌출되게 형성된다.The ribs 200 are formed to protrude from the outer peripheral surface of the reinforcing bar core 100.

또한, 상기 리브(200)는 상기 보강근 코어(100)의 길이방향에 대해서 소정 각도 기울어지도록 형성될 수 있다.Additionally, the ribs 200 may be formed to be inclined at a predetermined angle with respect to the longitudinal direction of the reinforcing bar core 100.

또한, 상기 리브(200)는 상기 보강근 코어(100)의 외주면을 기준으로 일정한 높이를 갖는다.In addition, the ribs 200 have a constant height based on the outer peripheral surface of the reinforcing bar core 100.

여기서, 리브(200)는 상기 보강근 코어(100)의 외주면으로 리브용 섬유를 나선형 방향으로 와인딩하여 형성될 수 있으며, 상기 리브용 섬유는 아라미드 섬유, 탄소섬유, 현무암 섬유, PVA 섬유, 고강도 폴리에스테르 섬유 중 선택된 어느 하나 또는 이들을 결합한 것일 수 있다.Here, the rib 200 may be formed by winding rib fibers in a spiral direction around the outer peripheral surface of the reinforcing bar core 100, and the rib fibers include aramid fiber, carbon fiber, basalt fiber, PVA fiber, and high-strength polyester. It may be any one of the fibers selected or a combination thereof.

상기 표면 보호층(300)은 상기 리브(200)가 형성된 보강근 코어(100)의 외주면을 감싸 보호할 수 있도록 구비된다.The surface protection layer 300 is provided to surround and protect the outer peripheral surface of the reinforcing bar core 100 on which the ribs 200 are formed.

또한, 상기 표면 보호층(300)은 무기계 분말 복합체, 경화제 및 촉진제로 이루어지는 무기계 조성물을 포함할 수 있으며, 상기 무기계 분말 복합체는, 이산화 규소 분말, 인산 분말 및 수산화 칼륨 분말로 이루어진 군에서 선택되는 하나 이상의 물질을 포함할 수 있다.In addition, the surface protective layer 300 may include an inorganic composition consisting of an inorganic powder composite, a curing agent, and an accelerator, and the inorganic powder composite is one selected from the group consisting of silicon dioxide powder, phosphoric acid powder, and potassium hydroxide powder. It may contain the above substances.

이하, 도 2, 도 3, 도 4 및 도 5를 참조하여, 본 발명에 실시예들에 따른 유리섬유강화 복합체 보강근의 제조방법을 하기와 같이 설명한다.Hereinafter, with reference to FIGS. 2, 3, 4, and 5, a method of manufacturing a glass fiber reinforced composite reinforcing bar according to embodiments of the present invention will be described as follows.

도 2, 도 3 및 도 4는 본 발명의 일 실시예에 따른 유리섬유강화 복합체 보강근의 제조방법을 순차적으로 보여주는 흐름도이고, 도 5는 본 발명의 일 실시예 따른 유리섬유강화 복합체 보강근의 제조장치를 개략적으로 보여주는 도면이다.Figures 2, 3, and 4 are flowcharts sequentially showing a method of manufacturing a glass fiber-reinforced composite reinforcing bar according to an embodiment of the present invention, and Figure 5 is a manufacturing apparatus of a glass fiber-reinforced composite reinforcing bar according to an embodiment of the present invention. This is a drawing that schematically shows.

도 2, 도 3 및 도 4에 도시된 바와 같이, 본 발명의 일 실시예에 따른 유리섬유강화 복합체 보강근의 제조방법(S10)은 열경화성 수지, 수축저감제, 박리제, 경화촉진제, 촉매제, 안료 및 자외선 억제제를 혼합한 수지 조성물에 난연 첨가제를 첨가하여 수지 함침 조성물을 준비하는 혼합 단계(S100), 복수개의 유리섬유 가닥을 일축방향으로 배향되도록 하여 형성되는 유리섬유 다발체를 상기 수지 함침 조성물에 함침하는 함침 단계(S200), 함침된 유리섬유 다발체를 봉 형태로 압축하여 인발 성형함에 따라 보강근 코어를 형성하는 성형 단계(S300), 형성된 보강근 코어의 외주면에 리브용 섬유를 와인딩하여 리브를 형성하는 와인딩 단계(S400); 및 상기 리브가 형성된 보강근 코어의 외주면을 감싸 보호할 수 있도록 표면 보호층을 형성하는 표면처리 단계(S500)를 포함한다.As shown in Figures 2, 3, and 4, the method (S10) for manufacturing a glass fiber-reinforced composite reinforcing bar according to an embodiment of the present invention includes a thermosetting resin, a shrinkage reducing agent, a release agent, a curing accelerator, a catalyst, a pigment, and A mixing step (S100) of preparing a resin impregnation composition by adding a flame retardant additive to a resin composition mixed with an ultraviolet ray inhibitor (S100), and impregnating a glass fiber bundle formed by orienting a plurality of glass fiber strands in a uniaxial direction into the resin impregnation composition. An impregnation step (S200), a forming step (S300) of forming a reinforcing bar core by compressing and pultruding the impregnated glass fiber bundle into a rod shape, forming a rib by winding rib fibers on the outer peripheral surface of the formed reinforcing bar core. Winding step (S400); And it includes a surface treatment step (S500) of forming a surface protection layer to surround and protect the outer peripheral surface of the reinforcing bar core on which the ribs are formed.

도 5를 참조하면, 본 발명의 일 실시예에 따른 유리섬유강화 복합체 보강근의 제조장치는 함침부(2000), 가공부(3000), 와인딩부(4000), 경화부(5000) 및 커팅부(6000)를 포함하며, 상기의 구성을 통해 본 발명의 일 실시예에 따른 유리섬유강화 복합체 보강근의 제조방법을 설명하면 다음과 같다.Referring to Figure 5, the apparatus for manufacturing a glass fiber reinforced composite reinforcing bar according to an embodiment of the present invention includes an impregnation unit (2000), a processing unit (3000), a winding unit (4000), a hardening unit (5000), and a cutting unit ( 6000), and the manufacturing method of the glass fiber reinforced composite reinforcing bar according to an embodiment of the present invention will be described through the above configuration as follows.

먼저, 함침부(2000)는 수용 공간이 마련된 수조 형태로 마련되며, 수용 공간에 수지 함침 조성물이 채워져 보빈크릴(1000)로부터 나오는 복수개의 유리섬유 가닥이 한 번에 함침되도록 마련될 수 있다.First, the impregnation unit 2000 is provided in the form of a water tank with an accommodating space, and the accommodating space is filled with a resin impregnation composition so that a plurality of glass fiber strands coming from the bobbin creel 1000 are impregnated at once.

상기 혼합 단계(S100)는 수지 조성물로서, 열경화성 수지 60 내지 70중량%, 수축저감제 8 내지 15중량%, 박리제 6 내지 9중량%, 경화촉진제 4 내지 7중량%, 촉매제 3 내지 4중량%, 안료 2 내지 3중량% 및 자외선 억제제 1 내지 2중량%를 상기 함침부(2000)에 마련된 수용 공간에 투입하고 20 내지 30 시간동안 전동 교반하는 교반 단계(S110) 및 교반된 수지 조성물에 암모늄 폴리인산염 55 내지 65중량%, 수산화알루미늄 15 내지 25중량%, 이산화티타늄 10 내지 20중량% 및 무기질 난연제 5 내지 10중량%를 포함하는 난연 첨가제를 첨가한 후 초음파 진동기를 통해 혼합하는 첨가 단계(S120)를 포함할 수 있다.The mixing step (S100) is a resin composition, 60 to 70% by weight of thermosetting resin, 8 to 15% by weight of shrinkage reducing agent, 6 to 9% by weight of release agent, 4 to 7% by weight of curing accelerator, 3 to 4% by weight of catalyst, A stirring step (S110) in which 2 to 3% by weight of pigment and 1 to 2% by weight of ultraviolet ray inhibitor are added to the receiving space provided in the impregnation unit (2000) and stirred by electric current for 20 to 30 hours, and ammonium polyphosphate is added to the stirred resin composition. An addition step (S120) of adding a flame retardant additive containing 55 to 65% by weight, 15 to 25% by weight of aluminum hydroxide, 10 to 20% by weight of titanium dioxide, and 5 to 10% by weight of an inorganic flame retardant, and then mixing through an ultrasonic vibrator. It can be included.

여기서 무기질 난연제는 상기 무기질 난연제 100중량%에 대하여, 고령토 40 내지 50중량%, 탄산 칼슘 30 내지 40중량% 및 알루미나 분말 15 내지 25중량%를 포함한다.Here, the inorganic flame retardant includes 40 to 50% by weight of kaolin, 30 to 40% by weight of calcium carbonate, and 15 to 25% by weight of alumina powder, based on 100% by weight of the inorganic flame retardant.

이로써, 상기 혼합 단계(S100)는 수지 조성물을 먼저 혼합하고, 이후에 난연 첨가제를 첨가함으로써 수지 조성물을 제조하기 위한 혼합공정에 있어 발생하는 발열반응를 통해 상기 함침부(2000)에 마련된 수용 공간에 수지 함침 조성물이 준비된다.Accordingly, in the mixing step (S100), the resin composition is mixed first and then the flame retardant additive is added to the receiving space provided in the impregnation unit 2000 through an exothermic reaction occurring in the mixing process for producing the resin composition. An impregnating composition is prepared.

다음 단계로서, 함침 단계(S200)를 살펴보면, 유리섬유가 권선된 복수개의 보빈크릴(1000)로부터 복수개의 유리섬유 가닥이 풀려나와 공급된다. 상기 보빈크릴(1000) 각각에서 풀려나오는 복수개의 유리섬유 가닥은 일축방향으로 배향되어 유리섬유 다발체를 형성한 후 상기 함침부(2000)를 경유하고, 상기 함침부(2000)에서 형성된 유리섬유 다발체가 미리 준비된 수지 함침 조성물이 함침된다.As a next step, looking at the impregnation step (S200), a plurality of glass fiber strands are released and supplied from a plurality of bobbin creels 1000 on which glass fibers are wound. A plurality of glass fiber strands released from each of the bobbin creels (1000) are oriented in a uniaxial direction to form a glass fiber bundle and then pass through the impregnation unit (2000), and the glass fiber bundle formed in the impregnation unit (2000) The sieve is impregnated with a previously prepared resin impregnation composition.

다음 단계로서, 성형 단계(S300)를 살펴보면, 수지 함침 조성물이 함침된 유리섬유 다발체는 가공부(3000)를 거치면서 봉 형태로서 인발되어 유리섬유강화 복합체 보강근 코어의 형상을 가지도록 가공한다.As a next step, looking at the molding step (S300), the glass fiber bundle impregnated with the resin impregnation composition is drawn into a rod shape while passing through the processing unit 3000 and processed to have the shape of a glass fiber reinforced composite reinforcing bar core.

다음 단계로서, 와인딩 단계(S400)를 살펴보면, 와인딩부(4000)는 가공부(3000)에서 배출된 보강근 코어의 외주면으로 리브용 섬유를 나선형 방향으로 와인딩하여 리브를 형성하도록 마련된다.As a next step, looking at the winding step (S400), the winding unit 4000 is provided to form a rib by winding rib fibers in a spiral direction around the outer peripheral surface of the reinforcing bar core discharged from the processing unit 3000.

더 구체적으로, 와인딩부(4000)는 리브용 섬유가 권취된 롤러가 모터의 구동에 의해 이동하는 보강근 코어의 외주면에서 연속해서 회전하도록 이루어짐으로써, 보강근 코어의 길이 방향을 따라 외주면에 리브용 섬유가 감겨 리브가 형성되도록 한다.More specifically, the winding unit 4000 is configured so that the roller on which the rib fibers are wound continuously rotates on the outer circumferential surface of the reinforcing bar core that moves by driving the motor, so that the rib fibers are formed on the outer circumferential surface along the longitudinal direction of the reinforcing bar core. Wrap it to form ribs.

다음 단계로서, 표면처리 단계(S500)를 살펴보면, 상기 표면처리 단계(S500)는 상기 리브가 형성된 보강근 코어를 이산화 규소 분말, 인산 분말 및 수산화 칼륨 분말로 이루어진 군에서 선택되는 하나 이상의 물질을 포함하는 무기계 분말 복합체가 수용된 수용 공간에 투입하고 진동 교반하는 도포 단계(S510) 및 상기 무기계 분말 복합체가 도포된 보강근 코어에 경화제 및 촉진제를 도포하고 120 내지 200℃의 온도에서 3 내지 5분동안 경화를 위한 열처리를 수행하는 경화 단계(S520)를 포함할 수 있다.As the next step, looking at the surface treatment step (S500), the surface treatment step (S500) is an inorganic material containing one or more materials selected from the group consisting of silicon dioxide powder, phosphoric acid powder, and potassium hydroxide powder. An application step (S510) of putting the powder composite into the receiving space and shaking it with vibration, and applying a hardener and an accelerator to the reinforcing bar core to which the inorganic powder composite is applied and heat treatment for curing at a temperature of 120 to 200 ° C. for 3 to 5 minutes. It may include a curing step (S520) of performing.

상기 표면처리 단계(S500)는 경화부(5000)를 통해 이루어지는데, 상기 경화부(5000)는 리브가 형성된 보강근 코어가 최적의 강도(인장강도)와 우수한 콘크리트 접합성을 가지도록 경화반응을 촉진시킨다.The surface treatment step (S500) is performed through the hardening unit 5000, which promotes the hardening reaction of the ribbed reinforcing bar core to have optimal strength (tensile strength) and excellent concrete adhesion.

구체적으로, 경화부(5000)는 수조 형태를 가진 수용 공간을 포함하며, 수용 공간에 무기계 분말 복합체가 채워져 리브가 형성된 보강근 코어가 상기 진동 공간을 통과할 때, 코어의 외주면에 상기 무기계 분말 복합체가 도포될 수 있도록 마련된다.Specifically, the hardening unit 5000 includes a receiving space in the form of a water tank, and when a reinforcing bar core in which ribs are formed by filling the receiving space with an inorganic powder composite passes through the vibration space, the inorganic powder composite is applied to the outer peripheral surface of the core. It is prepared so that it can be done.

즉, 도포 단계(S510)에서 상기 무기계 분말 복합체가 수용된 수용 공간이 상하 방향으로 1 ~ 3분동안 진동 교반됨에 따라, 상기 리브가 형성된 보강근 코어가 상기 수용 공간을 통과할 때, 상기 무기계 분말 복합체가 상기 리브가 형성된 보강근 코어의 외주면에 고르게 분포하도록 도포된다.That is, in the application step (S510), as the receiving space in which the inorganic powder composite is accommodated is shaken by vibration in the vertical direction for 1 to 3 minutes, when the ribbed reinforcing bar core passes through the receiving space, the inorganic powder composite is It is applied evenly to the outer circumferential surface of the ribbed reinforcing bar core.

상기 도포 단계(S510) 이후, 경화 단계(S520)에서 무기계 분말 복합체가 도포된 보강근 코어는 상기 경화부(5000)에 마련된 밀폐 공간에 투입되게 되고, 고온의 분위기하에서 상기 밀폐 공간을 통과하며 수 분 동안 경화된다.After the application step (S510), the reinforcing bar core to which the inorganic powder composite is applied in the curing step (S520) is introduced into a closed space provided in the hardening unit 5000, and passes through the closed space under a high temperature atmosphere for several minutes. hardens for a while.

다시 말해, 표면처리 단계(S500)에서는 상기 리브가 형성된 보강근 코어를 무기계 분말 복합체가 수용된 수용 공간에 투입하고 진동 교반하여 분말의 공극률을 줄인 후 경화제 및 촉진제를 도포하고 경화를 위한 열처리를 수행할 수 있다.In other words, in the surface treatment step (S500), the reinforcing bar core on which the ribs are formed is put into the receiving space where the inorganic powder composite is accommodated, the porosity of the powder is reduced by vibration stirring, and then a hardener and an accelerator are applied, and heat treatment for hardening can be performed. .

상기 경화 단계(S520)에서는 이동하는 무기계 분말 복합체가 도포된 보강근 코어로 열을 가하여 경화가 이루어지게 하는데, 상기 무기계 분말 복합체가 도포된 보강근 코어가 투입되면, 120 내지 200℃의 고온 분위기하에서 이동하며 경화가 이루어진다.In the curing step (S520), heat is applied to the reinforcing bar core coated with the moving inorganic powder composite to cause curing. When the reinforcing bar core coated with the inorganic powder composite is introduced, it moves under a high temperature atmosphere of 120 to 200°C. Hardening takes place.

표면처리 단계(S500) 이후에, 표면처리된 보강근 코어(100)는 바로 냉각이 이루어지게 되며(S600), 커팅부(6000)를 통하여 기 설정된 길이에 따라 냉각된 보강근 코어(100)를 커팅하며(S700), 이를 통해 장형의 봉형상을 가진, 즉 최종 제품 상태의 유리섬유강화 복합체 보강근을 제조할 수 있으며, 일반적으로 유통되는 규격 또는 사용자에 의해 설정된 길이에 따라 절단하여 보관 및 이송이 용이하게 이루어지도록 한다.After the surface treatment step (S500), the surface-treated reinforcing bar core 100 is immediately cooled (S600), and the cooled reinforcing bar core 100 is cut according to a preset length through the cutting unit 6000. (S700), through which it is possible to manufacture glass fiber-reinforced composite reinforcing bars with a long rod shape, that is, in the final product state, and can be easily stored and transported by cutting according to commonly distributed standards or a length set by the user. Let it come true.

이로써, 본 발명은, 종래의 콘크리트 내부에 보강근으로 사용되는 철근을 유리섬유강화 복합체 보강근으로 대체함에 있어서, 경량화를 달성함과 동시에, 고강성을 가지고, 내부식성 및 내구성이 우수하며, 충격하중 또는 동적하중에 대한 내진동성이 증대되고, 내열성 및 내화성이 향상되고, 불연성능을 가진 유리섬유강화 복합체 보강근의 제조가 가능하도록 하는 효과를 갖는다.Accordingly, the present invention replaces reinforcing bars used as reinforcing bars inside conventional concrete with glass fiber-reinforced composite reinforcing bars, thereby achieving weight reduction, high rigidity, excellent corrosion resistance and durability, and high resistance to impact load or It has the effect of increasing vibration resistance to dynamic load, improving heat resistance and fire resistance, and making it possible to manufacture glass fiber-reinforced composite reinforcement bars with non-combustible performance.

이상의 상세한 설명은 본 발명을 예시하는 것이다. The above detailed description is illustrative of the present invention.

또한, 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내어 설명하는 것이며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 즉 본 명세서에 개시된 발명의 개념의 범위, 저술한 개시 내용과 균등한 범위 및/또는 당 업계의 기술 또는 지식의 범위 내에서 변경 또는 수정이 가능하다. 저술한 실시 예는 본 발명의 기술적 사상을 구현하기 위한 최선의 상태를 설명하는 것이며, 본 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다.Additionally, the foregoing is intended to illustrate preferred embodiments of the present invention, and the present invention can be used in various other combinations, modifications, and environments. That is, changes or modifications can be made within the scope of the inventive concept disclosed in this specification, a scope equivalent to the written disclosure, and/or within the scope of technology or knowledge in the art. The written examples illustrate the best state for implementing the technical idea of the present invention, and various changes required for specific application fields and uses of the present invention are also possible. Accordingly, the detailed description of the invention above is not intended to limit the invention to the disclosed embodiments. Additionally, the appended claims should be construed to include other embodiments as well.

10: 불연성 수지층
20: 유리섬유 다발체
100: 보강근 코어
200: 리브
300: 표면 보호층
10: Non-combustible resin layer
20: Glass fiber bundle
100: Reinforcement core
200: rib
300: Surface protective layer

Claims (11)

열경화성 수지 60 내지 70중량%, 수축저감제 8 내지 15중량%, 박리제 6 내지 9중량%, 경화촉진제 4 내지 7중량%, 촉매제 3 내지 4중량%, 안료 2 내지 3중량% 및 자외선 억제제 1 내지 2중량%를 혼합한 수지 조성물에 난연 첨가제를 첨가하여 이루어진 수지 함침 조성물을 포함하는 불연성 수지층; 및 상기 수지 함침 조성물에 함침하여 인발 성형되는 유리섬유 다발체;를 포함하는 보강근 코어;
상기 보강근 코어의 외주면에 돌출되게 형성되는 리브; 및
상기 리브가 형성된 보강근 코어의 외주면을 감싸 보호할 수 있도록 구비되는 표면 보호층;을 포함하는 유리섬유강화 복합체 보강근.
60 to 70% by weight of thermosetting resin, 8 to 15% by weight of shrinkage reducing agent, 6 to 9% by weight of release agent, 4 to 7% by weight of curing accelerator, 3 to 4% by weight of catalyst, 2 to 3% by weight of pigment, and 1 to 1% by weight of ultraviolet ray inhibitor. A non-flammable resin layer including a resin impregnation composition made by adding a flame retardant additive to a resin composition mixed at 2% by weight; and a glass fiber bundle that is pultruded by impregnating the resin impregnation composition; a reinforcing bar core comprising a.
A rib formed to protrude on the outer peripheral surface of the reinforcing bar core; and
A glass fiber-reinforced composite reinforcing bar comprising a surface protective layer provided to surround and protect the outer peripheral surface of the reinforcing bar core on which the ribs are formed.
제 1 항에 있어서,
상기 수지 함침 조성물은,
상기 수지 함침 조성물 100중량%에 대하여, 수지 조성물 85 내지 95중량% 및 난연 첨가제 5 내지 15중량%를 포함하는 유리섬유강화 복합체 보강근.
According to claim 1,
The resin impregnation composition,
A glass fiber-reinforced composite reinforcing bar containing 85 to 95% by weight of the resin composition and 5 to 15% by weight of a flame retardant additive, based on 100% by weight of the resin impregnated composition.
제 2 항에 있어서,
상기 난연 첨가제는,
상기 난연 첨가제 100중량%에 대하여, 암모늄 폴리인산염 55 내지 65중량%, 수산화알루미늄 15 내지 25중량%, 이산화티타늄 10 내지 20중량% 및 무기질 난연제 5 내지 10중량%를 포함하는 유리섬유강화 복합체 보강근.
According to claim 2,
The flame retardant additive is,
A glass fiber-reinforced composite reinforcing bar containing 55 to 65% by weight of ammonium polyphosphate, 15 to 25% by weight of aluminum hydroxide, 10 to 20% by weight of titanium dioxide, and 5 to 10% by weight of an inorganic flame retardant, based on 100% by weight of the flame retardant additive.
제 3 항에 있어서,
상기 무기질 난연제는,
상기 무기질 난연제 100중량%에 대하여, 고령토 40 내지 50중량%, 탄산 칼슘 30 내지 40중량% 및 알루미나 분말 15 내지 25중량%를 포함하는 유리섬유강화 복합체 보강근.
According to claim 3,
The inorganic flame retardant,
A glass fiber-reinforced composite reinforcing bar containing 40 to 50% by weight of kaolin, 30 to 40% by weight of calcium carbonate, and 15 to 25% by weight of alumina powder, based on 100% by weight of the inorganic flame retardant.
제 4 항에 있어서,
상기 보강근 코어는,
상기 보강근 코어 100중량%에 대하여, 불연성 수지층 85 내지 95중량%, 유리섬유 다발체 5 내지 15중량%으로 이루어진 유리섬유강화 복합체 보강근.
According to claim 4,
The reinforcing core is,
A glass fiber reinforced composite reinforcing bar consisting of 85 to 95 wt% of a non-combustible resin layer and 5 to 15 wt% of a glass fiber bundle, based on 100 wt% of the reinforcing bar core.
제 5 항에 있어서,
상기 유리섬유 다발체는,
복수개의 유리섬유 가닥을 일축방향으로 배향되도록 하여 형성되는 유리섬유강화 복합체 보강근.
According to claim 5,
The glass fiber bundle,
A glass fiber-reinforced composite reinforcing bar formed by orienting a plurality of glass fiber strands in a uniaxial direction.
제 6 항에 있어서,
상기 표면 보호층은,
무기계 분말 복합체, 경화제 및 촉진제로 이루어지는 무기계 조성물을 포함하고,
상기 무기계 분말 복합체는, 이산화 규소 분말, 인산 분말 및 수산화 칼륨 분말으로 이루어진 군에서 선택되는 하나 이상의 물질을 포함하는 유리섬유강화 복합체 보강근.
According to claim 6,
The surface protective layer is,
Contains an inorganic composition consisting of an inorganic powder complex, a curing agent, and an accelerator,
The inorganic powder composite is a glass fiber-reinforced composite reinforcing bar containing at least one material selected from the group consisting of silicon dioxide powder, phosphoric acid powder, and potassium hydroxide powder.
열경화성 수지, 수축저감제, 박리제, 경화촉진제, 촉매제, 안료 및 자외선 억제제를 혼합한 수지 조성물에 난연 첨가제를 첨가하여 수지 함침 조성물을 준비하는 혼합 단계;
복수개의 유리섬유 가닥을 일축방향으로 배향되도록 하여 형성된 유리섬유 다발체를 상기 수지 함침 조성물에 함침하는 함침 단계;
함침된 유리섬유 다발체를 봉 형태로 압축하여 인발 성형함에 따라 보강근 코어를 형성하는 성형 단계;
형성된 보강근 코어의 외주면에 리브용 섬유를 와인딩하여 리브를 형성하는 와인딩 단계; 및
상기 리브가 형성된 보강근 코어의 외주면을 감싸 보호할 수 있도록 표면 보호층을 형성하는 표면처리 단계를 포함하는 유리섬유강화 복합체 보강근의 제조방법.
A mixing step of preparing a resin impregnated composition by adding a flame retardant additive to a resin composition mixed with a thermosetting resin, shrinkage reducer, release agent, curing accelerator, catalyst, pigment, and ultraviolet ray inhibitor;
An impregnation step of impregnating a glass fiber bundle formed by orienting a plurality of glass fiber strands in a uniaxial direction into the resin impregnation composition;
A forming step of forming a reinforcing bar core by compressing and pultruding the impregnated glass fiber bundle into a rod shape;
A winding step of forming ribs by winding rib fibers on the outer peripheral surface of the formed reinforcing bar core; and
A method of manufacturing a glass fiber-reinforced composite reinforcing bar comprising a surface treatment step of forming a surface protective layer to surround and protect the outer peripheral surface of the ribbed reinforcing bar core.
제 7 항에 있어서,
상기 혼합 단계는,
수지 조성물로서, 열경화성 수지 60 내지 70중량%, 수축저감제 8 내지 15중량%, 박리제 6 내지 9중량%, 경화촉진제 4 내지 7중량%, 촉매제 3 내지 4중량%, 안료 2 내지 3중량% 및 자외선 억제제 1 내지 2중량%를 수용 공간에 투입하고 20 내지 30 시간동안 전동 교반하는 교반 단계; 및
상기 수지 조성물에 암모늄 폴리인산염 55 내지 65중량%, 수산화알루미늄 15 내지 25중량%, 이산화티타늄 10 내지 20중량% 및 무기질 난연제 5 내지 10중량%를 포함하는 난연 첨가제를 첨가한 후 초음파 진동기를 통해 혼합하는 첨가 단계를 포함하는 유리섬유강화 복합체 보강근의 제조방법.
According to claim 7,
The mixing step is,
As a resin composition, 60 to 70% by weight of thermosetting resin, 8 to 15% by weight of shrinkage reducing agent, 6 to 9% by weight of release agent, 4 to 7% by weight of curing accelerator, 3 to 4% by weight of catalyst, 2 to 3% by weight of pigment, and A stirring step of adding 1 to 2% by weight of an ultraviolet ray inhibitor into the receiving space and stirring by electric current for 20 to 30 hours; and
A flame retardant additive containing 55 to 65% by weight of ammonium polyphosphate, 15 to 25% by weight of aluminum hydroxide, 10 to 20% by weight of titanium dioxide, and 5 to 10% by weight of an inorganic flame retardant is added to the resin composition and then mixed through an ultrasonic vibrator. A method of manufacturing a glass fiber-reinforced composite reinforcing bar comprising the addition step of:
제 9 항에 있어서,
상기 무기질 난연제는,
상기 무기질 난연제 100중량%에 대하여, 고령토 40 내지 50중량%, 탄산 칼슘 30 내지 40중량% 및 알루미나 분말 15 내지 25중량%를 포함하는 유리섬유강화 복합체 보강근의 제조방법.
According to clause 9,
The inorganic flame retardant,
A method of producing a glass fiber-reinforced composite reinforcement bar comprising 40 to 50% by weight of kaolin, 30 to 40% by weight of calcium carbonate, and 15 to 25% by weight of alumina powder, based on 100% by weight of the inorganic flame retardant.
제 10 항에 있어서,
상기 표면처리 단계는,
상기 리브가 형성된 보강근 코어를 이산화 규소 분말, 인산 분말 및 수산화 칼륨 분말로 이루어진 군에서 선택되는 하나 이상의 물질을 포함하는 무기계 분말 복합체가 수용된 수용 공간에 투입하고 진동 교반하는 도포 단계; 및
상기 무기계 분말 복합체가 도포된 보강근 코어에 경화제 및 촉진제를 도포하고 120 내지 200℃의 온도에서 3 내지 5분동안 경화를 위한 열처리를 수행하는 경화 단계를 포함하는 유리섬유강화 복합체 보강근의 제조방법.
According to claim 10,
The surface treatment step is,
An application step of putting the reinforcing bar core on which the ribs are formed into a receiving space containing an inorganic powder composite containing at least one material selected from the group consisting of silicon dioxide powder, phosphoric acid powder, and potassium hydroxide powder and shaking it by vibration; and
A method of manufacturing a glass fiber-reinforced composite reinforcing bar comprising a curing step of applying a hardener and an accelerator to the reinforcing bar core to which the inorganic powder composite is applied and performing heat treatment for hardening at a temperature of 120 to 200 ° C. for 3 to 5 minutes.
KR1020220148321A 2022-11-09 2022-11-09 Nonflammable glass fiber reinforced reinforcing bar and method for manufacturing the same KR102679872B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220148321A KR102679872B1 (en) 2022-11-09 2022-11-09 Nonflammable glass fiber reinforced reinforcing bar and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220148321A KR102679872B1 (en) 2022-11-09 2022-11-09 Nonflammable glass fiber reinforced reinforcing bar and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20240068845A true KR20240068845A (en) 2024-05-20
KR102679872B1 KR102679872B1 (en) 2024-07-01

Family

ID=91282737

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220148321A KR102679872B1 (en) 2022-11-09 2022-11-09 Nonflammable glass fiber reinforced reinforcing bar and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR102679872B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861578B1 (en) * 2008-06-18 2008-10-07 신승수 Frp re-bar for reinforcing concrete structure and its manufacturing method
JP2011202397A (en) * 2010-03-25 2011-10-13 Ube Nitto Kasei Co Ltd Fire-retardant net-like object, method of manufacturing uncured linear object for net yarn, and method of manufacturing fire-retardant frp net body
KR20220105237A (en) * 2021-01-19 2022-07-27 김태준 FRP reinforcing bar with enhanced non-flammability and adhesion, and device for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861578B1 (en) * 2008-06-18 2008-10-07 신승수 Frp re-bar for reinforcing concrete structure and its manufacturing method
JP2011202397A (en) * 2010-03-25 2011-10-13 Ube Nitto Kasei Co Ltd Fire-retardant net-like object, method of manufacturing uncured linear object for net yarn, and method of manufacturing fire-retardant frp net body
KR20220105237A (en) * 2021-01-19 2022-07-27 김태준 FRP reinforcing bar with enhanced non-flammability and adhesion, and device for manufacturing the same

Also Published As

Publication number Publication date
KR102679872B1 (en) 2024-07-01

Similar Documents

Publication Publication Date Title
US5727357A (en) Composite reinforcement
KR100766954B1 (en) Fiber reinforced polymer bar having self-impregnated protrusion and method for producing the same
US6048598A (en) Composite reinforcing member
KR101936499B1 (en) Method for manufacturing composite rebar having spiral rib
Das et al. Applications of fiber reinforced polymer composites (FRP) in civil engineering
KR100808938B1 (en) A hybrid fiber reinforced plastic rebar for concrete
JPH069259A (en) Composite material, preparation thereof and use thereof
JP5182779B2 (en) Inorganic matrix / carbon fiber composite wire for reinforcing concrete or mortar, method for producing the same, and concrete or mortar structure
WO2016125666A1 (en) Concrete reinforcing material and concrete formed body
KR102679872B1 (en) Nonflammable glass fiber reinforced reinforcing bar and method for manufacturing the same
CN114506129A (en) Composite material rod and preparation method and application thereof
WO2012016234A1 (en) Pultruded article and process for forming same
KR101916231B1 (en) Central strength member for gap conductor and the method for manufacturing thereof
RU206114U1 (en) Composite reinforcement
JP3094851B2 (en) Civil and architectural reinforcement
JP6576865B2 (en) Non-combustible carbon fiber composite material
CN115151701A (en) Composite material part with improved modulus
CN203514930U (en) Medium-thickness glass fiber reinforced plastic chimney
KR102302108B1 (en) Fiber reinforcing plastic material for reinforcing building structure and method for producing the same
US20240165853A1 (en) Fiber structural reinforcement with frictional surface coating
US3501359A (en) Method of making a reinforced filament wound pipe
KR102391081B1 (en) manufacturing apparatus for glass fiber composite material panel and glass fiber composite material panel manufactured using thereof
JPH0648848A (en) Incombustible composite material structure and its production
Barman et al. Flexible towpregs and thermoplastic composites for civil engineering applications
RU2825906C1 (en) Composite rod

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right