KR20240068297A - Multi-internal structure for efficiency improvement of the carbon dioxide reforming process - Google Patents

Multi-internal structure for efficiency improvement of the carbon dioxide reforming process Download PDF

Info

Publication number
KR20240068297A
KR20240068297A KR1020220149552A KR20220149552A KR20240068297A KR 20240068297 A KR20240068297 A KR 20240068297A KR 1020220149552 A KR1020220149552 A KR 1020220149552A KR 20220149552 A KR20220149552 A KR 20220149552A KR 20240068297 A KR20240068297 A KR 20240068297A
Authority
KR
South Korea
Prior art keywords
reforming
carbon dioxide
porous metal
metal plate
reactor
Prior art date
Application number
KR1020220149552A
Other languages
Korean (ko)
Inventor
곽노상
허동현
이동욱
이진향
채민주
Original Assignee
한국전력공사
한국서부발전 주식회사
(주)부흥산업사
Filing date
Publication date
Application filed by 한국전력공사, 한국서부발전 주식회사, (주)부흥산업사 filed Critical 한국전력공사
Publication of KR20240068297A publication Critical patent/KR20240068297A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts

Abstract

본 발명은 이산화탄소(CO2) 개질반응 공정의 효율을 높이기 위해 이산화탄소 개질 반응기 내부에 구성된 복합 구조물에 관한 것으로, 보다 상세하게는 CO2 개질 반응기(100) 내부에 적용되는 것으로, 다공성 금속판(10)과 상기 다공성 금속판(10) 사이에 충진된 CO2 개질 촉매(30)를 포함하는 복합 구조물을 CO2 개질 반응기에 적용하여 촉매 열전달 효율 향상을 통해 반응온도를 낮추는 장치와 그 방법에 관한 것이다.The present invention relates to a composite structure constructed inside a carbon dioxide reforming reactor to increase the efficiency of the carbon dioxide (CO 2 ) reforming reaction process. More specifically, it is applied to the inside of the CO 2 reforming reactor (100) and includes a porous metal plate (10). It relates to an apparatus and method for lowering the reaction temperature by improving catalyst heat transfer efficiency by applying a composite structure including a CO 2 reforming catalyst 30 filled between the porous metal plate 10 to a CO 2 reforming reactor.

Description

이산화탄소 개질반응 효율향상을 위한 복합 구조물{MULTI-INTERNAL STRUCTURE FOR EFFICIENCY IMPROVEMENT OF THE CARBON DIOXIDE REFORMING PROCESS}Composite structure for improving carbon dioxide reforming reaction efficiency {MULTI-INTERNAL STRUCTURE FOR EFFICIENCY IMPROVEMENT OF THE CARBON DIOXIDE REFORMING PROCESS}

본 발명은 이산화탄소(CO2) 개질반응 공정의 효율을 높이기 위해 이산화탄소 개질 반응기 내부에 구성된 복합 구조물에 관한 것이다.The present invention relates to a composite structure constructed inside a carbon dioxide reforming reactor to increase the efficiency of the carbon dioxide (CO 2 ) reforming reaction process.

최근 지구온난화의 원인 물질인 온실가스를 포집하고 활용하는 노력이 국제적으로 경주되고 있다. 온실가스 저감을 위한 다양한 기술 중 Carbon Capture & Utilization (CCU) 기술은 석탄과 같은 화석 연료의 연소시 발생하는 이산화탄소(CO2)를 포집하여 활용하는 기술로 최근 대기 중 CO2 농도 증가로 인해 발생하고 있는 이상 기온 및 환경 변화 문제의 중요한 해결책 중 하나이다. 따라서 화력발전소 등 연소설비에서 발생하는 산성가스인 이산화탄소를 대량으로 포집하여 화학적으로 전환하는 기술개발이 활발하게 연구되고 있다. 특히 포집한 고순도의 이산화탄소를 화학적으로 전환(개질)하기 위해서는 고효율 촉매 및 공정개발이 필요하다.Recently, efforts are being made internationally to capture and utilize greenhouse gases, the cause of global warming. Among various technologies for reducing greenhouse gases, Carbon Capture & Utilization (CCU) technology is a technology that captures and utilizes carbon dioxide (CO 2 ) generated during the combustion of fossil fuels such as coal, which is caused by the recent increase in the concentration of CO 2 in the atmosphere. It is one of the important solutions to the problem of abnormal temperature and environmental change. Therefore, the development of technology to capture large quantities of carbon dioxide, an acidic gas generated from combustion facilities such as thermal power plants, and convert it chemically is being actively researched. In particular, the development of a highly efficient catalyst and process is necessary to chemically convert (reform) the captured high-purity carbon dioxide.

따라서 대량 CO2 개질(Reforming)을 통한 CO, 수소 생산기술 관련 특허는 대부분 촉매 생산 및 촉매 공정을 기반으로 한 공정 플랜트 설계 기술들이 출원되고 있다. 하지만 현재까지 개발된 CO2 개질 촉매 및 공정은 효율성과 안전성 측면에서 산업계에서 요구하는 수준을 충족하지 못한 상태이다.Therefore, most patents related to CO and hydrogen production technology through large-scale CO 2 reforming are for process plant design technologies based on catalyst production and catalyst processes. However, the CO 2 reforming catalysts and processes developed to date do not meet the levels required by the industry in terms of efficiency and safety.

CO2 개질 반응 공정의 효율과 안정성을 높이기 위하여 강한 흡열반응인 CO2-스팀-메탄 개질 반응에 대해 열전달 효율 향상을 통한 CO2 개질공정 효율을 높이고자 하는 연구가 많은 연구자에 의해 연구되고 있다. In order to increase the efficiency and stability of the CO 2 reforming reaction process, many researchers are conducting research to increase the efficiency of the CO 2 reforming process by improving the heat transfer efficiency of the CO 2 -steam-methane reforming reaction, which is a strongly endothermic reaction.

이산화탄소(CO2) 활용 기술 중 메탄(CH4)을 이용한 CO2 개질기술은 크게 CO2-메탄을 반응시키는 건식개질(Dry Reforming)과 CO2-스팀-메탄을 반응시키는 CO2 복합개질로 개발되고 있으며, CO2 건식개질에 대한 반응식은 하기 반응식 1과 같이 나타낼 수 있고, CO2 복합개질에 대한 반응식은 반응식 2와 같이 나타내며, 반응식 1과 반응식 2와 같이 최종적으로 CO와 H2를 생산하는 기술이다.Among carbon dioxide (CO 2 ) utilization technologies, CO 2 reforming technology using methane (CH 4 ) is largely developed into dry reforming, which reacts CO 2 -methane, and CO 2 complex reforming, which reacts CO 2 -steam-methane. The reaction equation for CO 2 dry reforming can be expressed as Scheme 1 below, and the reaction equation for CO 2 complex reforming can be shown as Scheme 2, and as shown in Scheme 1 and Scheme 2, CO and H 2 are finally produced. It's technology.

[반응식 1][Scheme 1]

CH4 + CO2 → 2CO + 2H2 CH 4 + CO 2 → 2CO + 2H 2

[반응식 2][Scheme 2]

3CH4 + 2H2O + CO2 → 4CO + 8H2 3CH 4 + 2H 2 O + CO 2 → 4CO + 8H 2

본 기술들은 대량으로 온실가스를 활용할 수 있는 대표적인 CCU 기술이지만 화학적 CO2 개질 반응중 발생하는 탄소의 촉매 표면 침적에 의한 비활성화로 장기적인 연속운전에 많은 문제점을 갖고 있다.These technologies are representative CCU technologies that can utilize greenhouse gases in large quantities, but they have many problems in long-term continuous operation due to deactivation by deposition of carbon generated during the chemical CO 2 reforming reaction on the catalyst surface.

따라서 CO2-스팀-메탄 복합개질 반응 시 발생하는 탄소(코크)를 최소화하기 위한 공정개선이 필요하다. 고효율 다공성 SUS 계열 구조체를 CO2 개질 반응기에 추가하여 열전달 효율 극대화 방법을 통해 코크침적 및 에너지사용량을 최소화한다.Therefore, process improvement is needed to minimize carbon (coke) generated during the CO 2 -steam-methane complex reforming reaction. By adding a high-efficiency porous SUS-based structure to the CO 2 reforming reactor, coke deposition and energy usage are minimized by maximizing heat transfer efficiency.

대한민국 등록특허공보 제10-1842581호Republic of Korea Patent Publication No. 10-1842581

본 발명은 이산화탄소(CO2) 개질반응 공정의 효율을 높이기 위해 반응기 내부에 구성되는 것으로, 다공성 금속판을 포함하는 복합 구조물을 제공하는 것을 목적으로 한다.The purpose of the present invention is to provide a composite structure including a porous metal plate, which is constructed inside a reactor to increase the efficiency of the carbon dioxide (CO 2 ) reforming reaction process.

본 발명에서 제안하는 복합 구조물로 다공성 금속판을 상세히 설명하면 다음과 같다. The porous metal plate as a composite structure proposed in the present invention will be described in detail as follows.

본 발명의 다공성 금속판의 구체예로 다공성 SUS 계열 구조체를 상세히 설명하면 다음과 같다. 일반적인 CO2 건식, 복합개질 반응기에는 지지체로 알루미나(Al2O3), 활성 금속으로 Ni을 사용하는 촉매가 균일하게 로딩되어 있다. Ni 금속은 대표적인 개질 촉매의 활성금속으로 고온에서 안정적이지만 개질 반응시 많은 탄소 침적을 야기하고 있다. 그리고 CO2 개질 반응은 800 ℃ 이상의 고온에서 일어나기 때문에 지지체인 알루미나는 알파 형태로 비표면적이 매우 낮은 형태로 존재한다. As a specific example of the porous metal plate of the present invention, a porous SUS-based structure will be described in detail as follows. A typical CO 2 dry, complex reforming reactor is uniformly loaded with a catalyst using alumina (Al 2 O 3 ) as a support and Ni as an active metal. Ni metal is an active metal in a typical reforming catalyst and is stable at high temperatures, but causes a lot of carbon deposition during the reforming reaction. And because the CO 2 reforming reaction occurs at a high temperature of 800 ℃ or higher, the alumina as a support exists in alpha form with a very low specific surface area.

본 발명에서는 다공성 SUS 계열 구조체를 CO2 개질 반응기에 적용하여 열전달 효율 향상을 통해 CO2 개질 반응을 800 ℃이하로 낮추기 위한 이산화탄소 개질 방법을 제시하였다. In the present invention, a carbon dioxide reforming method was proposed to lower the CO 2 reforming reaction to below 800°C by applying a porous SUS-based structure to a CO 2 reforming reactor to improve heat transfer efficiency.

상세한 제조방법으로 5 mm 두께의 SUS판을 가공하여 1 mm 이하의 기공을 균일하게 갖도록 도 1과 같이 제작하였다. 이 SUS 판의 적용에 따른 반응기 차압 증가를 최소화 하기 위해서 기공을 전체 SUS 판 단면적에 50 ~ 80 %까지 다양하게 적용하여 분석하였다. 이를통해 고효율 다공성 SUS 구조체를 CO2 개질 반응기에 추가하여 열전달 효율 극대화 방법을 통해 코크침적 및 에너지사용량을 최소화함을 확인하였다.A 5 mm thick SUS plate was processed using a detailed manufacturing method to have uniform pores of 1 mm or less, as shown in Figure 1. In order to minimize the increase in differential pressure in the reactor due to the application of this SUS plate, the porosity was analyzed by varying the amount from 50 to 80% of the total cross-sectional area of the SUS plate. Through this, it was confirmed that coke deposition and energy usage were minimized by maximizing heat transfer efficiency by adding a high-efficiency porous SUS structure to the CO 2 reforming reactor.

본 발명은 포집한 이산화탄소를 메탄(CH4)을 이용하여 합성가스(H2, CO)로 개질하기 위한 공정에 관한 것으로, CO2 개질 반응기에 다공성 금속판을 삽입하여 열전달 효율 향상을 통해 CO2 개질 반응을 800 ℃이하로 낮추었다. 이를 통해 화학적 CO2 개질 반응 중 상용촉매에 발생하는 탄소침적에 의한 비활성화로를 최소화하고 에너지사용량을 최소화 한다. The present invention relates to a process for reforming captured carbon dioxide into synthesis gas (H 2 , CO) using methane (CH 4 ). CO 2 reforming by inserting a porous metal plate into the CO 2 reforming reactor to improve heat transfer efficiency. The reaction was lowered to below 800°C. Through this, deactivation caused by carbon deposition on the commercial catalyst during the chemical CO 2 reforming reaction is minimized and energy consumption is minimized.

도 1과 도 2는 본 발명의 일 실시예에 따른 복합 구조물인 CO2 개질 반응기 적용을 위한 다공성 금속판의 구성을 나타낸 모습이다.
도 3은 본 발명의 일 실시예에 따른 다공성 금속판의 CO2 개질 반응기의 적용 개념도이다.
도 4는 CO2 복합개질 반응 시스템 모식도이다.
Figures 1 and 2 show the configuration of a porous metal plate for application to a CO 2 reforming reactor, which is a composite structure according to an embodiment of the present invention.
Figure 3 is a conceptual diagram of the application of a CO 2 reforming reactor of a porous metal plate according to an embodiment of the present invention.
Figure 4 is a schematic diagram of the CO 2 complex reforming reaction system.

본 발명은 촉매 열전달 효율 향상을 통해 이산화탄소 개질 반응온도를 낮춤으로써 이산화탄소 개질반응 효율을 향상시킬 수 있는 복합 구조물에 관한 것으로, 상기 복합 구조물로 다공성 금속판을 CO2 개질 반응기에 적용하여 촉매 열전달 효율 향상을 통해 반응온도를 낮추는 장치와 그 방법에 관한 것이다.The present invention relates to a composite structure that can improve carbon dioxide reforming reaction efficiency by lowering the carbon dioxide reforming reaction temperature by improving catalytic heat transfer efficiency. The composite structure improves catalytic heat transfer efficiency by applying a porous metal plate to a CO 2 reforming reactor. It relates to a device and method for lowering the reaction temperature.

본 발명의 복합 구조물은 CO2 개질 반응기(100) 내부에 적용되는 것으로, 다공성 금속판(10)과 상기 다공성 금속판(10) 사이에 충진된 CO2 개질 촉매(30)를 포함한다. 상기 다공성 금속판(10)은 CO2 개질 반응기(100) 내부에서 CO2 개질 촉매(30)가 빠져나가지 못하도록 CO2 개질 촉매(30)를 지지하는 역할을 한다.The composite structure of the present invention is applied inside the CO 2 reforming reactor 100 and includes a porous metal plate 10 and a CO 2 reforming catalyst 30 filled between the porous metal plate 10. The porous metal plate 10 serves to support the CO 2 reforming catalyst 30 to prevent the CO 2 reforming catalyst 30 from escaping from inside the CO 2 reforming reactor 100.

상기 다공성 금속판(10)은 일정 거리 이격되어 형성된 복수 개의 기공(20)이 형성되어 있다.The porous metal plate 10 has a plurality of pores 20 spaced apart from each other at a certain distance.

상기 다공성 금속판(10)은 CO2 개질 촉매(30)의 충진량 확보를 위해 SUS계열, 마그네슘, 알루미늄, 티타늄 등 두께(T)가 10 mm 이하의 판으로 제작 가능한 금속류를 사용이 가능하다. The porous metal plate 10 can be made of metals that can be manufactured into plates with a thickness (T) of 10 mm or less, such as SUS series, magnesium, aluminum, and titanium, in order to secure the filling amount of the CO 2 reforming catalyst 30.

상기 다공성 금속판(10)의 기공(20)은 사용되는 CO2 개질 촉매(30) 직경에 1/2 이하로 하고 전체 금속판 단면적에 50 ~ 80 %의 기공도를 갖도록 구성될 수 있다.The pores 20 of the porous metal plate 10 may be configured to be less than 1/2 the diameter of the CO 2 reforming catalyst 30 used and have a porosity of 50 to 80% of the total cross-sectional area of the metal plate.

CO2 개질 촉매(30)는 펠렛 또는 비드 타입 형태의 알루미나, SiO2, CeO2, ZrO2등의 지지체를 사용할 수 있다.The CO 2 reforming catalyst 30 may use a pellet- or bead-type support such as alumina, SiO 2 , CeO 2 , or ZrO 2 .

이하에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 이산화탄소 개질반응 효율향상을 위한 복합 구조물에 대한 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, with reference to the accompanying drawings, embodiments of a composite structure for improving the efficiency of carbon dioxide reforming reaction of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. However, the present invention may be implemented in many different forms and is not limited to the embodiments described herein. In order to clearly explain the present invention in the drawings, parts unrelated to the description are omitted, and similar parts are given similar reference numerals throughout the specification.

<비교 예 1> 상용 알루미나 지지체(Aluminum oxide, 비표면적 93 m2/g, Sigma Aldrich사 제품)에 활성금속 Ni을 전구체(Nickel nitrate hexahydrate, Sigma Aldrich사 제품)를 통해 지지체 중량 대비 10 wt% 담지하여 CO2 복합개질 시스템 반응기(도 3)에 높이 2.0cm가 되도록 1인치 석영 튜브관에 로딩하였다. 그리고 로딩한 촉매를 800 ℃의 수소 분위기(50 vol%_H2/Ar)하에서 1시간 환원 처리한 후에 반응을 수행하였다. 반응온도 850 ℃, 공간속도 24,000 /h의 조건에서 반응물로는 CH4 : CO2 : H2O : Ar의 몰 비를 45 : 15 : 30 : 10 비율로 고정하여 반응을 수행하였다. 반응 초반에 불안정화 시간을 제외하고 6시간 안정화 시간의 CO2 전환율 평균 결과를 표 1에 나타내었다.<Comparative Example 1> Active metal Ni precursor (Nickel nitrate hexahydrate, manufactured by Sigma Aldrich) was loaded on a commercial alumina support (Aluminum oxide, specific surface area: 93 m 2 /g, manufactured by Sigma Aldrich) at 10 wt% based on the weight of the support. A 1-inch quartz tube was loaded to a height of 2.0 cm in the CO 2 complex reforming system reactor (FIG. 3). Then, the loaded catalyst was reduced for 1 hour in a hydrogen atmosphere (50 vol%_H 2 /Ar) at 800°C, and then the reaction was performed. The reaction was performed under the conditions of a reaction temperature of 850°C and a space velocity of 24,000/h, with the molar ratio of CH 4 : CO 2 : H 2 O : Ar as reactants set at 45:15:30:10. Table 1 shows the average CO 2 conversion rate results over a 6-hour stabilization time, excluding the destabilization time at the beginning of the reaction.

<실시 예 1> 상기 비교 예 1에서 CO2 복합개질 반응기에 전체 SUS 판 단면적에 80%를 기공으로 구성한 구조체 3개를 도 2와 같이 적용하는 것을 제외하고는 상기 비교 예 1과 동일한 방법으로 실시하여 얻은 이산화탄소 전환율은 표 1과 같다.<Example 1> In Comparative Example 1, the same method as Comparative Example 1 was carried out, except that three structures with pores accounting for 80% of the total cross-sectional area of the SUS plate were applied to the CO 2 complex reforming reactor as shown in Figure 2. The carbon dioxide conversion rate obtained is shown in Table 1.

<실시 예 2> 상기 비교 예 1에서 CO2 복합개질 반응기에 전체 SUS 판 단면적에 70%를 기공으로 구성한 구조체 3개를 도 2와 같이 적용하는 것을 제외하고는 상기 실시 예 1과 동일한 방법으로 실시하여 얻은 이산화탄소 전환율은 표 1과 같다.<Example 2> In Comparative Example 1, the same method as Example 1 was carried out, except that three structures with pores accounting for 70% of the total cross-sectional area of the SUS plate were applied to the CO 2 complex reforming reactor as shown in FIG. The carbon dioxide conversion rate obtained is shown in Table 1.

<실시 예 3> 상기 비교 예 1에서 CO2 복합개질 반응기에 전체 SUS 판 단면적에 60%를 기공으로 구성한 구조체 3개를 도 2와 같이 적용하는 것을 제외하고는 상기 실시 예 1과 동일한 방법으로 실시하여 얻은 이산화탄소 전환율은 표 1과 같다.<Example 3> In Comparative Example 1, the same method as Example 1 was carried out, except that three structures with pores accounting for 60% of the total cross-sectional area of the SUS plate were applied to the CO 2 complex reforming reactor as shown in FIG. The carbon dioxide conversion rate obtained is shown in Table 1.

<실시 예 4> 상기 비교 예 1에서 CO2 복합개질 반응기에 전체 SUS 판 단면적에 50%를 기공으로 구성한 구조체 3개를 도 2와 같이 적용하는 것을 제외하고는 상기 실시 예 1과 동일한 방법으로 실시하여 얻은 이산화탄소 전환율은 표 1과 같다.<Example 4> In Comparative Example 1, the same method as Example 1 was carried out, except that three structures with pores accounting for 50% of the total cross-sectional area of the SUS plate were applied to the CO 2 complex reforming reactor as shown in FIG. The carbon dioxide conversion rate obtained is shown in Table 1.

<실시 예 5> 상기 비교 예 1에서 CO2 복합개질 반응기에 전체 SUS 판 단면적에 80%를 기공으로 구성한 구조체 3개를 도 2와 같이 적용하고 반응온도를 750℃로 조정한 것을 제외하고는 상기 실시 예 1과 동일한 방법으로 실시하여 얻은 이산화탄소 전환율은 표 1과 같다.<Example 5> In Comparative Example 1, three structures with pores accounting for 80% of the total cross-sectional area of the SUS plate were applied to the CO 2 complex reforming reactor as shown in FIG. 2, except that the reaction temperature was adjusted to 750°C. The carbon dioxide conversion rate obtained by carrying out the same method as Example 1 is shown in Table 1.

<실시 예 6> 상기 비교 예 1에서 CO2 복합개질 반응기에 전체 SUS 판 단면적에 80%를 기공으로 구성한 구조체 3개를 도 2와 같이 적용하고 반응온도를 700℃로 조정한 것을 제외하고는 상기 실시 예 1과 동일한 방법으로 실시하여 얻은 이산화탄소 전환율은 표 1과 같다.<Example 6> In Comparative Example 1, three structures with pores accounting for 80% of the total cross-sectional area of the SUS plate were applied to the CO 2 complex reforming reactor as shown in FIG. 2, except that the reaction temperature was adjusted to 700°C. The carbon dioxide conversion rate obtained by carrying out the same method as Example 1 is shown in Table 1.

구분division CO2 복합개질 반응기CO 2 complex reforming reactor CO2 복합개질 반응온도CO 2 complex reforming reaction temperature CO2 전환율
(%)
CO2 conversion rate
(%)
반응기 차압
(bar)
reactor differential pressure
(bar)
실시 예 1Example 1 다공성(단면적에 기공 80%) SUS 판 적용 CO2 복합개질 반응기CO 2 complex reforming reactor using porous (80% pores in cross-sectional area) SUS plate 850 ℃ 850℃ 8282 0.30.3 실시 예 2Example 2 다공성(단면적에 기공 70%) SUS 판 적용 CO2 복합개질 반응기CO 2 complex reforming reactor using porous (70% pores in cross-sectional area) SUS plate 850 ℃ 850℃ 8282 0.50.5 실시 예 3Example 3 다공성(단면적에 기공 60%) SUS 판 적용 CO2 복합개질 Porous (60% pores in cross-sectional area) SUS plate applied CO 2 complex reforming 850 ℃ 850℃ 8282 1.01.0 실시 예 4Example 4 다공성(단면적에 기공 50%) SUS 판 적용 CO2 복합개질 반응기CO 2 complex reforming reactor using porous (50% pores in cross-sectional area) SUS plate 850 ℃ 850℃ 8080 1.51.5 실시 예 5Example 5 다공성(단면적에 기공 80%) SUS 판 적용 CO2 복합개질 반응기CO 2 complex reforming reactor using porous (80% pores in cross-sectional area) SUS plate 750 ℃ 750℃ 7575 0.30.3 실시 예 6Example 6 다공성(단면적에 기공 80%) SUS 판 적용 CO2 복합개질 반응기CO2 complex reforming reactor using porous (80% pores in cross-sectional area) SUS plate 700 ℃700℃ 6969 0.30.3 비교 예 1Comparison example 1 상용 CO2 복합개질 반응기Commercial CO 2 complex reforming reactor 850 ℃ 850℃ 6868 0.10.1

상기 표 1에 나타낸 바와 같이, 본 발명의 복합 구조물을 적용한 경우인 실시 예 1 및 실시예 4와 복합 구조물을 적용하지 않을 경우 비교 예 1의 비교결과, 동일 반응온도(850 ℃)에서 CO2 전환율을 14% 향상였고 동일 전환율의 경우 반응온도를 150 ℃ 낮추어 에너지 소비량을 획기적으로 줄일 수 있는 것을 확인할 수 있었다.As shown in Table 1, as a result of comparison between Examples 1 and 4 when the composite structure of the present invention is applied and Comparative Example 1 when the composite structure is not applied, the CO 2 conversion rate at the same reaction temperature (850 ° C.) was improved by 14%, and in the case of the same conversion rate, it was confirmed that energy consumption could be dramatically reduced by lowering the reaction temperature by 150°C.

이와 같은 결과를 볼 때 동일한 이산화탄소 복합개질 시스템을 기준으로 본 발명에서 개발한 다공성 금속판을 사용하는 경우 이산화탄소 전환율을 획기적으로 향상시킬 수 있다.Considering these results, the carbon dioxide conversion rate can be dramatically improved when using the porous metal plate developed in the present invention based on the same carbon dioxide complex reforming system.

10 : 다공성 금속판
20 : 기공
30 : CO2 개질 촉매
100 : CO2 개질 반응기
10: porous metal plate
20: pore
30: CO 2 reforming catalyst
100: CO 2 reforming reactor

Claims (1)

CO2 개질 반응기(100) 내부에 위치한 2개 이상의 다공성 금속판(10);
2개 이상의 상기 다공성 금속판 각각의 사이에 충진된 CO2 개질 촉매(30);
상기 다공성 금속판(10)에는 일정 거리 이격되어 형성된 복수 개의 기공(20)이 형성되고, 상기 다공성 금속판(10)의 기공(20)은 상기 CO2 개질 촉매(30) 직경에 1/2 이하로 하고 상기 다공성 금속판의 단면적 중 50 ~ 80 %의 기공도를 갖는 것을 특징으로 하는 이산화탄소 개질반응 효율향상을 위한 복합 구조물

Two or more porous metal plates (10) located inside the CO 2 reforming reactor (100);
A CO 2 reforming catalyst (30) filled between each of the two or more porous metal plates;
A plurality of pores 20 are formed in the porous metal plate 10 at a certain distance apart, and the pores 20 of the porous metal plate 10 are less than 1/2 the diameter of the CO 2 reforming catalyst 30. A composite structure for improving the efficiency of carbon dioxide reforming reaction, characterized in that it has a porosity of 50 to 80% of the cross-sectional area of the porous metal plate.

KR1020220149552A 2022-11-10 Multi-internal structure for efficiency improvement of the carbon dioxide reforming process KR20240068297A (en)

Publications (1)

Publication Number Publication Date
KR20240068297A true KR20240068297A (en) 2024-05-17

Family

ID=

Similar Documents

Publication Publication Date Title
US8623313B2 (en) Ammonia synthesis process
CN109894133B (en) Preparation method of supported Ni-MoCx catalytic material and application of supported Ni-MoCx catalytic material in preparation of synthesis gas by chemical-looping dry gas reforming
CN102674247B (en) A kind of method of decarburization and the dual forced methane steam reforming hydrogen manufacturing of dehydrogenation and device
KR20230004859A (en) A process for capturing carbon dioxide from the atmosphere and converting it directly into fuels and chemicals
JP2014141361A (en) Method for synthesizing ammonia
CN112547074A (en) Catalyst for methanol steam reforming hydrogen production, preparation method and application thereof
EP2641889B1 (en) Methanol production process
WO2008047321A1 (en) Hydrogen production method by direct decomposition of natural gas and lpg
CN108328574B (en) Method for preparing hydrogen by phenol adsorption enhanced reforming
CN100404409C (en) Process for preparing synthetic gas by reforming carbon dioxide-methane
KR100976789B1 (en) Catalyst for water gas shift reaction, method for production thereof, and method of water gas shift by using same
CN111215086A (en) Application of rare earth oxide loaded transition metal catalyst in ammonia decomposition reaction
KR20240068297A (en) Multi-internal structure for efficiency improvement of the carbon dioxide reforming process
Li et al. Methane oxidation to synthesis gas using lattice oxygen in La1− xSrxFeO3 perovskite oxides instead of molecular oxygen
KR101487387B1 (en) Preparation Method of Metal Carbide Methane Reforming Catalyst and Methane Reforming Catalyst Prepared by the Method
EP2711336B1 (en) Non-co2 emitting manufacturing method for synthesis gas
CN1962055A (en) Catalyst for water gas shift reaction for use in fuel cell and preparation method thereof
CN110038565B (en) High-airspeed catalyst for hydrogen production from methanol water and preparation method and application thereof
JP2755685B2 (en) Hydrogen production method for fuel cell
KR101166074B1 (en) Manganese based Catalysts for Carbon dioxide reforming of Methane, Preparing method thereof, and Preparing method of Syngas using the same
CN115318317B (en) Preparation method of ammonia decomposition catalyst and product thereof
EA012595B1 (en) A method of converting natural gas into fuels
CN111167465A (en) Nickel molybdate nano catalyst and preparation method and application thereof
CN117960181A (en) Integral catalyst for preparing hydrogen by reforming methanol and water vapor, and preparation method and application thereof
KR100293200B1 (en) Nickel based catalyst used in carbon dioxide reforming(cdr) reaction of methane and reforming method using the same