KR20240054971A - Terahertz wave shielding material - Google Patents

Terahertz wave shielding material Download PDF

Info

Publication number
KR20240054971A
KR20240054971A KR1020247004886A KR20247004886A KR20240054971A KR 20240054971 A KR20240054971 A KR 20240054971A KR 1020247004886 A KR1020247004886 A KR 1020247004886A KR 20247004886 A KR20247004886 A KR 20247004886A KR 20240054971 A KR20240054971 A KR 20240054971A
Authority
KR
South Korea
Prior art keywords
mass
shielding material
nanowire
terahertz wave
wave shielding
Prior art date
Application number
KR1020247004886A
Other languages
Korean (ko)
Inventor
히로타카 다케다
마스미 미요
나호 다카하시
Original Assignee
유니티카 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유니티카 가부시끼가이샤 filed Critical 유니티카 가부시끼가이샤
Publication of KR20240054971A publication Critical patent/KR20240054971A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/062Fibrous particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/16Formation of a green body by embedding the binder within the powder bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/28Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder dispersed or suspended in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은, 내열성, 가요성 및 테라헤르츠파에 대한 차폐성 모두가 우수한 차폐 재료를 제공한다. 본 발명은, 나노와이어와 바인더를 포함하는 테라헤르츠파 차폐 재료에 관한 것이다.The present invention provides a shielding material that is excellent in heat resistance, flexibility, and shielding properties against terahertz waves. The present invention relates to a terahertz wave shielding material containing nanowires and a binder.

Description

테라헤르츠파 차폐 재료Terahertz wave shielding material

본 발명은, 테라헤르츠파 차폐 재료에 관한 것이다.The present invention relates to terahertz wave shielding materials.

근년, 차세대 무선 통신(6G, Beyond 5G)으로서, 「고속화」, 「대용량화」, 「저지연화」 및/또는 「고신뢰성화」를 목적으로 한 테라헤르츠파의 이용이 검토되고 있다. 또한, 자동 운전의 중요 기술인 자동차 내외의 센싱을 행하는 레이다도 테라헤르츠파를 이용하는 것에 의해, 고정세(高精細)하고 또한 3차원적인 추적이 기대되고 있다.In recent years, as a next-generation wireless communication (6G, Beyond 5G), the use of terahertz waves for the purposes of “higher speed,” “higher capacity,” “lower latency,” and/or “higher reliability” has been considered. In addition, radar, which senses the inside and outside of a car, which is an important technology for autonomous driving, is also expected to provide high-definition and three-dimensional tracking by using terahertz waves.

테라헤르츠파 등의 고주파수를 취급하는 무선 통신 유닛이나 센싱 유닛은, 전송 손실 저감의 관점에서 안테나 모듈, 전원 유닛 모듈, RF 프런트 엔드 모듈, MMIC 모듈 등을 일체화시킨 AiP(Antenna in Package)가 주류이다. 그 때문에, 유닛 내부에서, 테라헤르츠파의 간섭, 발진 등으로부터 각 모듈의 오작동이나 특성 저하를 일으키지 않도록 테라헤르츠파를 차폐할 수 있는 재료가 요구되고 있다.The mainstream of wireless communication units and sensing units that handle high frequencies such as terahertz waves is AiP (Antenna in Package), which integrates an antenna module, power unit module, RF front-end module, and MMIC module from the viewpoint of reducing transmission loss. . Therefore, there is a demand for materials that can shield terahertz waves inside the unit to prevent malfunction or deterioration of characteristics of each module from interference, oscillation, etc. of terahertz waves.

테라헤르츠파와 같은 고주파는 파장이 짧기 때문에, 차폐에는, 차폐성의 필러를 고충전하여 극간을 메울 필요가 있어, 가요성이 결여되기 쉽다. 그 때문에, 충전율의 저감이 가능한 ε형 산화 철 등의 페라이트계의 필러와 수지에 의한 차폐 재료가 이용되고 있다(특허문헌 1). 그러나, 특허문헌 1의 차폐 재료는, 페라이트계의 필러라도 아직 30체적%(=약 67질량%) 이상의 높은 충전율로 배합할 필요가 있다. 그 때문에, 가공에 견디는 가요성을 부여하기 위해서는 유리 전이 온도가 낮은 유연한 수지를 이용할 필요가 있고, 유연한 수지를 이용하기 때문에, 내열성이 나빠 사용 환경이 제한되거나, 열에 의해 차폐성이 저하되거나 하는 문제가 있었다.Since high frequencies such as terahertz waves have a short wavelength, shielding requires high filling of shielding filler to fill gaps, which tends to result in lack of flexibility. For this reason, shielding materials made of ferrite-based fillers such as ε-type iron oxide and resin, which can reduce the filling rate, are used (Patent Document 1). However, the shielding material of Patent Document 1, even if it is a ferrite-based filler, still needs to be blended at a high filling rate of 30% by volume (=about 67% by mass) or more. Therefore, in order to provide flexibility that can withstand processing, it is necessary to use a flexible resin with a low glass transition temperature, and because the flexible resin is used, there are problems such as poor heat resistance, limiting the usage environment, and deteriorating shielding properties due to heat. there was.

일본 특허공개 2019-071426호 공보Japanese Patent Publication No. 2019-071426

본 발명은, 상기의 문제점을 해결하고자 하는 것으로, 내열성, 가요성 및 테라헤르츠파에 대한 차폐성 모두가 우수한 차폐 재료를 제공하는 것을 목적으로 한다.The present invention seeks to solve the above problems, and aims to provide a shielding material that is excellent in heat resistance, flexibility, and shielding properties against terahertz waves.

본 발명은 또한, 내열성, 가요성, 및 테라헤르츠파에 대한 차폐성 및 내반사성 모두가 우수한 차폐 재료를 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a shielding material that is excellent in heat resistance, flexibility, and both shielding and reflection resistance to terahertz waves.

본 발명자들은, 나노와이어를 포함하는 재료가, 상기 목적을 달성하는 것을 발견하여, 본 발명에 도달했다.The present inventors discovered that a material containing nanowires achieves the above object, and arrived at the present invention.

즉, 본 발명의 요지는 이하와 같다.That is, the gist of the present invention is as follows.

<1> 나노와이어와 바인더를 포함하는 테라헤르츠파 차폐 재료.<1> Terahertz wave shielding material containing nanowires and binder.

<2> 나노와이어가, 철, 니켈 및 코발트로 이루어지는 군으로부터 선택된 1종 이상의 금속을 주성분으로 하는 나노와이어인, <1>에 기재된 테라헤르츠파 차폐 재료.<2> The terahertz wave shielding material according to <1>, wherein the nanowire is a nanowire containing as a main component one or more metals selected from the group consisting of iron, nickel, and cobalt.

<3> 나노와이어의 평균 길이가 5μm 이상인, <1> 또는 <2>에 기재된 테라헤르츠파 차폐 재료.<3> The terahertz wave shielding material according to <1> or <2>, wherein the average length of the nanowires is 5 μm or more.

<4> 나노와이어가 복수의 입자가 연결된 나노와이어인, <1>∼<3> 중 어느 하나에 기재된 테라헤르츠파 차폐 재료.<4> The terahertz wave shielding material according to any one of <1> to <3>, wherein the nanowire is a nanowire in which a plurality of particles are connected.

<5> 287.5∼312.5GHz의 대역폭의 전자파의 투과 감쇠량의 절대치가 20dB/mm 이상인, <1>∼<4> 중 어느 하나에 기재된 테라헤르츠파 차폐 재료.<5> The terahertz wave shielding material according to any one of <1> to <4>, wherein the absolute value of the transmission attenuation of electromagnetic waves with a bandwidth of 287.5 to 312.5 GHz is 20 dB/mm or more.

<6> 287.5∼312.5GHz의 대역폭의 전자파의 반사율이 50% 미만인, <1>∼<5> 중 어느 하나에 기재된 테라헤르츠파 차폐 재료.<6> The terahertz wave shielding material according to any one of <1> to <5>, wherein the reflectance of electromagnetic waves with a bandwidth of 287.5 to 312.5 GHz is less than 50%.

<7> 나노와이어의 함유량이 67질량% 미만인, <1>∼<6> 중 어느 하나에 기재된 테라헤르츠파 차폐 재료.<7> The terahertz wave shielding material according to any one of <1> to <6>, wherein the nanowire content is less than 67% by mass.

<8> 나노와이어의 함유량이 0.5질량% 이상인, <1>∼<7> 중 어느 하나에 기재된 테라헤르츠파 차폐 재료.<8> The terahertz wave shielding material according to any one of <1> to <7>, wherein the nanowire content is 0.5% by mass or more.

<9> 나노와이어가 철 또는 니켈을 주성분으로 하는 나노와이어이고,<9> The nanowire is a nanowire whose main component is iron or nickel,

나노와이어의 함유량이 8질량% 이상, 67질량% 미만인, <1>∼<8> 중 어느 하나에 기재된 테라헤르츠파 차폐 재료.The terahertz wave shielding material according to any one of <1> to <8>, wherein the nanowire content is 8 mass% or more and less than 67 mass%.

<10> 나노와이어가 철을 주성분으로 하는 나노와이어이고,<10> Nanowire is a nanowire whose main component is iron,

나노와이어의 함유량이 20∼50질량%인, <1>∼<9> 중 어느 하나에 기재된 테라헤르츠파 차폐 재료.The terahertz wave shielding material according to any one of <1> to <9>, wherein the nanowire content is 20 to 50 mass%.

<11> <1>∼<10> 중 어느 하나에 기재된 테라헤르츠파 차폐 재료가 포함되는 무선 통신의 안테나 유닛.<11> An antenna unit for wireless communication containing the terahertz wave shielding material according to any one of <1> to <10>.

<12> <1>∼<10> 중 어느 하나에 기재된 테라헤르츠파 차폐 재료가 포함되는 센싱 유닛.<12> A sensing unit containing the terahertz wave shielding material according to any one of <1> to <10>.

본 발명에 의하면, 내열성, 가요성 및 테라헤르츠파에 대한 차폐성 모두가 우수한 차폐 재료를 제공할 수 있다.According to the present invention, it is possible to provide a shielding material that is excellent in heat resistance, flexibility, and shielding properties against terahertz waves.

본 발명의 차폐 재료는, 적은 배합량으로도 충분한 테라헤르츠파에 대한 차폐성을 갖기 때문에, 우수한 가공성을 갖고, 1mm 미만의 박후(薄厚)의 재료로 성형한 경우여도 충분한 차폐성을 발현할 수 있어, 무선 통신의 안테나 유닛이나 센싱 유닛 등에 적합하게 이용할 수 있다.Since the shielding material of the present invention has sufficient shielding properties against terahertz waves even in a small mixing amount, it has excellent processability and can exhibit sufficient shielding properties even when molded from a thin material of less than 1 mm, and thus can be used for wireless applications. It can be suitably used in communication antenna units or sensing units.

도 1은 실시예 2의 차폐 재료의 0.2∼2THz 사이에 있어서의 전자파의 투과 감쇠량을 나타낸 도면이다.
도 2는 실시예 2의 차폐 재료의 0.2∼2THz 사이에 있어서의 전자파의 반사율을 나타낸 도면이다.
Figure 1 is a diagram showing the transmission attenuation of electromagnetic waves between 0.2 and 2 THz of the shielding material of Example 2.
Figure 2 is a diagram showing the reflectance of electromagnetic waves between 0.2 and 2 THz of the shielding material of Example 2.

본 발명의 테라헤르츠파 차폐 재료는, 나노와이어와 바인더를 포함한다. 차폐 재료 중에 있어서의 나노와이어의 함유량은 특별히 한정되지 않고, 필요한 차폐 능력과 기계 물성이나 열 물성에 따라, 적절히 설정하면 된다. 통상, 차폐 성능은 필러의 첨가량이 많을수록 높아지지만, 재료의 가요성 등이 저하되어 취급하기 어려워진다. 나노와이어는 다른 필러와 상이하게, 적은 함유량으로도 차폐 효과가 발현되는 것이 특징이며, 나노와이어의 함유량은 0.5질량% 이상이면, 형상(두께)에도 따르지만 충분한 차폐 성능을 얻을 수 있다. 나노와이어의 함유량은, 차폐성의 더한층의 향상의 관점에서, 1질량% 이상인 것이 보다 바람직하고, 8질량% 이상인 것이 더 바람직하고, 10질량% 이상인 것이 충분히 바람직하며, 20질량% 이상인 것이 더 바람직하다. 한편, 적은 함유량으로도 효과가 얻어지기 때문에, 재료 강도 및 취급 용이성이 우수함과 함께, 반사파의 발생이 적은 차폐 재료로 할 수도 있다. 그 때문에, 나노와이어의 함유량은, 가요성, 내열성 및 반사성의 관점에서, 67질량% 미만인 것이 바람직하고, 50질량% 이하인 것이 보다 바람직하고, 40질량% 이하인 것이 충분히 바람직하며, 30질량% 이하인 것이 보다 충분히 바람직하다.The terahertz wave shielding material of the present invention contains nanowires and a binder. The content of nanowires in the shielding material is not particularly limited and can be appropriately set depending on the required shielding ability and mechanical or thermal properties. Normally, the shielding performance increases as the amount of filler added increases, but the flexibility of the material decreases and becomes difficult to handle. Unlike other fillers, nanowires are characterized by a shielding effect even with a small content. If the nanowire content is 0.5% by mass or more, sufficient shielding performance can be obtained, depending on the shape (thickness). From the viewpoint of further improvement in shielding properties, the nanowire content is more preferably 1% by mass or more, more preferably 8% by mass or more, sufficiently preferably 10% by mass or more, and more preferably 20% by mass or more. . On the other hand, since the effect can be obtained even with a small content, it can be used as a shielding material that not only has excellent material strength and ease of handling, but also generates little reflected waves. Therefore, from the viewpoint of flexibility, heat resistance and reflectivity, the nanowire content is preferably less than 67% by mass, more preferably 50% by mass or less, sufficiently preferably 40% by mass or less, and 30% by mass or less. more fully desirable.

특히, 후술하는 철, 니켈 또는 코발트의 비금속(卑金屬)을 주성분으로 하는 나노와이어의 함유량은, 높은 차폐 효과를 기대하는 경우는, 20∼50질량%, 내반사성(낮은 반사율)을 기대하는 경우는, 1∼20질량% 이하의 범위인 것이 바람직하다.In particular, the content of nanowires mainly containing base metals such as iron, nickel, or cobalt, which will be described later, is 20 to 50% by mass when a high shielding effect is expected, and when anti-reflection (low reflectance) is expected. It is preferable that it is in the range of 1 to 20 mass% or less.

본 명세서 중, 차폐성은, 테라헤르츠파인 0.1∼10THz를 대상으로 하여, 특히 287.5∼312.5GHz의 투과를 충분히 억제하는 특성이다.In this specification, shielding is a characteristic that sufficiently suppresses transmission of terahertz waves, 0.1 to 10 THz, especially 287.5 to 312.5 GHz.

내열성은, 고온 환경하(예를 들면 200℃)에 있어서도, 형상을 유지할 수 있는 특성이다.Heat resistance is a characteristic that allows the shape to be maintained even in a high temperature environment (for example, 200°C).

가요성은, 균열을 일으키지 않고, 절곡(折曲)할 수 있는 특성이다.Flexibility is a characteristic that allows bending without causing cracks.

내반사성은, 테라헤르츠파인 0.1∼10THz를 대상으로 하여, 특히 287.5∼312.5GHz의 반사를 충분히 억제하는 특성이다.Anti-reflection is a characteristic that sufficiently suppresses reflection in the terahertz range of 0.1 to 10 THz, especially in the range of 287.5 to 312.5 GHz.

차폐성, 내열성 및 가요성은, 본 발명의 테라헤르츠파 차폐 재료가 갖는 특성이다.Shielding properties, heat resistance, and flexibility are characteristics of the terahertz wave shielding material of the present invention.

내반사성은, 본 발명의 테라헤르츠파 차폐 재료가 반드시 갖지 않으면 안 되는 특성이라고 하는 것은 아니며, 본 발명의 테라헤르츠파 차폐 재료가 갖는 것이 바람직한 특성이다.Anti-reflection is not a property that the terahertz wave shielding material of the present invention must have, but is a property that it is desirable for the terahertz wave shielding material of the present invention to have.

본 발명의 테라헤르츠파 차폐 재료의 제작 방법은 특별히 한정되지 않지만, 예를 들면, 용융·압출 성형하거나, 잉크나 페이스트로 한 후 코팅하거나 하는 방법을 들 수 있다.The manufacturing method of the terahertz wave shielding material of the present invention is not particularly limited, but examples include methods such as melting and extrusion molding, or coating with ink or paste.

테라헤르츠파의 대역은, 일반적으로 0.1THz∼10THz 정도로 여겨지고 있으며, 차세대 무선 통신에는 287.5∼312.5GHz의 대역이 사용될 전망이다.The band of terahertz waves is generally considered to be around 0.1 THz to 10 THz, and the band of 287.5 to 312.5 GHz is expected to be used in next-generation wireless communications.

본 발명의 테라헤르츠파 차폐 재료는, 테라헤르츠파를 차폐한다. 그 차폐성은, THz-TDS(테라헤르츠 시간 영역 분광법)에 의해 투과 감쇠량으로 평가할 수 있다. 투과 감쇠량의 절대치가 클수록, 차폐성은 우수하다. 테라헤르츠파의 투과 감쇠량의 절대치는 20dB/mm 이상인 것이 바람직하고, 50dB/mm 이상인 것이 보다 바람직하며, 100dB/mm 이상인 것이 더 바람직하다. 상기 투과 감쇠량의 절대치가 20dB/mm 이상이면, 1mm 미만의 박후의 재료로 성형한 경우여도 차폐 재료로서 이용할 수 있다. 특히, 투과 감쇠량의 절대치는, 차세대 무선 통신에 사용될 가능성이 있는 287.5GHz∼312.5GHz의 대역에 있어서, 절대치의 최소치가 20dB/mm 이상인 것이 보다 바람직하고, 50dB/mm 이상인 것이 보다 바람직하며, 100dB/mm 이상인 것이 더 바람직하다.The terahertz wave shielding material of the present invention shields terahertz waves. The shielding property can be evaluated by the amount of transmission attenuation using THz-TDS (terahertz time domain spectroscopy). The greater the absolute value of the transmission attenuation, the better the shielding performance. The absolute value of the transmission attenuation of terahertz waves is preferably 20 dB/mm or more, more preferably 50 dB/mm or more, and even more preferably 100 dB/mm or more. If the absolute value of the transmission attenuation is 20 dB/mm or more, it can be used as a shielding material even if it is molded from a material less than 1 mm thick. In particular, the absolute minimum value of the transmission attenuation amount is more preferably 20 dB/mm or more, more preferably 50 dB/mm or more, and 100 dB/mm in the band of 287.5 GHz to 312.5 GHz that may be used in next-generation wireless communications. It is more preferable that it is mm or more.

투과 감쇠량은, 두께 0.4∼1.8mm의 시트 형상을 갖는 테라헤르츠파 차폐 재료를 THz-TDS(테라헤르츠 시간 영역 분광법)에 제공하는 것에 의해 얻어진 값을 이용하고 있다.The transmission attenuation amount uses a value obtained by subjecting a terahertz wave shielding material having a sheet shape with a thickness of 0.4 to 1.8 mm to THz-TDS (terahertz time domain spectroscopy).

본 발명의 테라헤르츠파 차폐 재료는, 테라헤르츠파의 반사율이 낮은 것이 바람직하다. 반사율이 낮고, 투과 감쇠량의 절대치가 큰 재료일수록, 전자파를 흡수하는 능력이 우수하게 된다. 테라헤르츠파의 흡수가 우수하면, 반사파의 커플링 등에 의한 노이즈의 증폭 등을 억제할 수 있다. 테라헤르츠파의 반사율은, 50% 미만인 것이 바람직하고, 30% 미만인 것이 보다 바람직하며, 20% 미만인 것이 더 바람직하다. 특히 반사율은, 287.5∼312.5GHz의 대역에 있어서, 최고치가 50% 미만인 것이 바람직하고, 30% 미만인 것이 보다 바람직하며, 20% 미만인 것이 더 바람직하다.The terahertz wave shielding material of the present invention preferably has a low terahertz wave reflectance. The lower the reflectance and the greater the absolute value of transmission attenuation, the better the material's ability to absorb electromagnetic waves. If the absorption of terahertz waves is excellent, amplification of noise due to coupling of reflected waves, etc. can be suppressed. The reflectance of terahertz waves is preferably less than 50%, more preferably less than 30%, and even more preferably less than 20%. In particular, the reflectance in the band of 287.5 to 312.5 GHz is preferably less than 50%, more preferably less than 30%, and still more preferably less than 20%.

반사율은, 두께 0.4∼1.8mm의 시트 형상을 갖는 테라헤르츠파 차폐 재료를 THz-TDS(테라헤르츠 시간 영역 분광법)에 제공하는 것에 의해 얻어진 값을 이용하고 있다. 반사율은, 금 박막의 반사량을 100%로 하여, 샘플의 반사량/금 박막의 반사량으로 산출한 값이다.The reflectance uses a value obtained by subjecting a terahertz wave shielding material having a sheet shape with a thickness of 0.4 to 1.8 mm to THz-TDS (terahertz time domain spectroscopy). The reflectance is a value calculated as the reflectance amount of the sample/reflection amount of the gold thin film, with the reflectance amount of the gold thin film being 100%.

본 발명에 이용하는 나노와이어란, 직경이 나노 스케일인 섬유상 물질을 말한다. 나노와이어는, 당해 나노와이어를 포함하는 바인더 재료의 유전율 및 유전 정접을 높게 하고, 전파를 열로 변환하는 관점에서, 금속을 주성분으로 하는 나노와이어인 것이 바람직하다. 나노와이어를 주성분으로서 구성하는 금속은, 당해 나노와이어를 포함하는 바인더 재료의 계면 임피던스가 공간과 차가 벌어지지 않도록, 비금속인 것이 바람직하다. 나노와이어를 주성분으로서 구성하는 금속은 철, 니켈 및 코발트로 이루어지는 군으로부터 선택된 1종 이상의 금속인 것이 바람직하다. 나노와이어를 포함하는 바인더 재료의 투자율을 높게 하기 위해, 나노와이어는, 자성 금속인 철, 니켈 및 코발트로 이루어지는 군(이하, 「군 A」라고 한다)으로부터 선택된 1종 이상(특히 1종)의 금속을 포함하는 나노와이어인 것이 더 바람직하고, 상기 군 A로부터 선택된 1종 이상(특히 1종)의 금속을 주성분으로 하는 나노와이어인 것이 충분히 바람직하며, 철 또는 니켈을 주성분으로 하는 나노와이어인 것이 보다 충분히 바람직하다. 본 발명에 있어서, 「주성분으로 하는」이란, 나노와이어 중에 있어서, 40질량% 이상의 함유량으로 포함하는 것, 특히 최다의 함유량으로 포함하는 것을 나타낸다. 또한, 자성 금속인 철, 코발트 및 니켈을 포함하는 비금속을 주성분으로 하는 것에 의해, 표면의 부동태층에 의해, 테라헤르츠파의 반사를 보다 충분히 억제하면서 투과도 보다 충분히 억제 가능한 차폐 재료로 할 수 있다. 부동태층의 형성은, X선 광전자 분광법이나 라만 분광법으로 판단 가능하다.The nanowire used in the present invention refers to a fibrous material with a nanoscale diameter. The nanowire is preferably a nanowire containing metal as a main component from the viewpoint of increasing the dielectric constant and dielectric loss tangent of the binder material containing the nanowire and converting radio waves into heat. The metal constituting the nanowire as the main component is preferably non-metal so that the interfacial impedance of the binder material containing the nanowire does not differ from the space. The metal constituting the nanowire as a main component is preferably one or more metals selected from the group consisting of iron, nickel, and cobalt. In order to increase the permeability of the binder material containing nanowires, the nanowires are made of one or more types (particularly one type) selected from the group consisting of magnetic metals iron, nickel, and cobalt (hereinafter referred to as “group A”). It is more preferable that it is a nanowire containing a metal, and it is sufficiently preferable that it is a nanowire containing at least one type (especially one type) of metal selected from the above group A as a main component, and it is sufficiently preferable that it is a nanowire containing iron or nickel as a main component. more fully desirable. In the present invention, "consisting of a main component" refers to containing the nanowire at a content of 40% by mass or more, particularly containing it at the highest content. Additionally, by using a base metal containing the magnetic metals iron, cobalt, and nickel as the main component, it is possible to use a shielding material that can more effectively suppress reflection of terahertz waves and transmittance more effectively by forming a passivation layer on the surface. The formation of a passivation layer can be judged by X-ray photoelectron spectroscopy or Raman spectroscopy.

철을 주성분으로 하는 나노와이어는, 예를 들면, 철의 함유량이 나노와이어 전량에 대해서 40질량% 이상이며, 가요성, 내열성 및 차폐성의 더한층의 향상 및 내반사성의 향상의 관점에서, 바람직하게는 50질량% 이상, 보다 바람직하게는 70질량% 이상, 더 바람직하게는 70∼90질량%이다. 철을 주성분으로 하는 나노와이어는, 철 이외의 원자를 포함해도 된다. 철 이외의 원자는, 예를 들면, 니켈, 코발트 및 은으로 이루어지는 군으로부터 선택되는 1종 이상의 원자여도 된다. 철 이외의 원자의 합계 함유량은 통상, 50질량% 이하이며, 특히 20질량% 이하여도 된다.Nanowires containing iron as a main component, for example, have an iron content of 40% by mass or more relative to the total amount of the nanowire, and are preferably used from the viewpoint of further improvement in flexibility, heat resistance, and shielding properties and improvement in anti-reflection properties. It is 50 mass% or more, more preferably 70 mass% or more, and further preferably 70 to 90 mass%. Nanowires containing iron as a main component may contain atoms other than iron. Atoms other than iron may be, for example, one or more atoms selected from the group consisting of nickel, cobalt, and silver. The total content of atoms other than iron is usually 50 mass% or less, and may especially be 20 mass% or less.

코발트를 주성분으로 하는 나노와이어에 있어서, 예를 들면, 코발트의 함유량은 나노와이어 전량에 대해서 40질량% 이상이며, 가요성, 내열성 및 차폐성의 더한층의 향상 및 내반사성의 향상의 관점에서, 바람직하게는 50질량% 이상, 보다 바람직하게는 70질량% 이상이다. 코발트를 주성분으로 하는 나노와이어는, 코발트 이외의 원자를 포함해도 된다. 코발트 이외의 원자는, 예를 들면, 철, 니켈 및 은으로 이루어지는 군으로부터 선택되는 1종 이상의 원자여도 된다. 코발트 이외의 원자의 합계 함유량은 통상, 50질량% 이하이며, 특히 20질량% 이하여도 된다.In nanowires containing cobalt as a main component, for example, the cobalt content is preferably 40% by mass or more based on the entire amount of the nanowire, from the viewpoint of further improvement in flexibility, heat resistance, and shielding properties and improvement in anti-reflection properties. is 50% by mass or more, more preferably 70% by mass or more. Nanowires containing cobalt as a main component may contain atoms other than cobalt. Atoms other than cobalt may be, for example, one or more atoms selected from the group consisting of iron, nickel, and silver. The total content of atoms other than cobalt is usually 50 mass% or less, and may especially be 20 mass% or less.

니켈을 주성분으로 하는 나노와이어에 있어서, 예를 들면, 니켈의 함유량은 나노와이어 전량에 대해서 40질량% 이상이며, 가요성, 내열성 및 차폐성의 더한층의 향상 및 내반사성의 향상의 관점에서, 바람직하게는 50질량% 이상, 보다 바람직하게는 70질량% 이상이다. 니켈을 주성분으로 하는 나노와이어는, 니켈 이외의 원자를 포함해도 된다. 니켈 이외의 원자는, 예를 들면, 철, 코발트 및 은으로 이루어지는 군으로부터 선택되는 1종 이상의 원자여도 된다. 니켈 이외의 원자의 합계 함유량은 통상, 50질량% 이하이며, 특히 20질량% 이하여도 된다.In nanowires containing nickel as a main component, for example, the nickel content is preferably 40% by mass or more based on the entire amount of the nanowire, from the viewpoint of further improvement in flexibility, heat resistance, and shielding properties and improvement in anti-reflection properties. is 50% by mass or more, more preferably 70% by mass or more. Nanowires containing nickel as a main component may contain atoms other than nickel. Atoms other than nickel may be, for example, one or more atoms selected from the group consisting of iron, cobalt, and silver. The total content of atoms other than nickel is usually 50 mass% or less, and may especially be 20 mass% or less.

은을 주성분으로 하는 나노와이어에 있어서, 예를 들면, 은의 함유량은 나노와이어 전량에 대해서 40질량% 이상이며, 가요성, 내열성 및 차폐성의 더한층의 향상 및 내반사성의 향상의 관점에서, 바람직하게는 50질량% 이상, 보다 바람직하게는 70질량% 이상이다. 은을 주성분으로 하는 나노와이어는, 은 이외의 원자를 포함해도 된다. 은 이외의 원자는, 예를 들면, 철, 니켈 및 코발트로 이루어지는 군으로부터 선택되는 1종 이상의 원자여도 된다. 은 이외의 원자의 합계 함유량은 통상, 50질량% 이하이며, 특히 20질량% 이하여도 된다.In nanowires containing silver as a main component, for example, the silver content is 40% by mass or more with respect to the total amount of nanowires, and from the viewpoint of further improvement in flexibility, heat resistance, and shielding properties and improvement in anti-reflection properties, preferably It is 50 mass% or more, more preferably 70 mass% or more. Nanowires containing silver as a main component may contain atoms other than silver. Atoms other than silver may be, for example, one or more atoms selected from the group consisting of iron, nickel, and cobalt. The total content of atoms other than silver is usually 50 mass% or less, and may especially be 20 mass% or less.

본 명세서 중, 나노와이어 중의 금속의 함유량은, 나노와이어 전량에 대한 값(질량%)으로 표시되고 있다. 당해 금속 원자의 함유량은, 나노와이어가 용해된 용액을, ICP-AES법에 기초하는 다원소 동시 분석법 및 검량선법에 제공하는 것에 의해 측정된 값을 이용하고 있다.In this specification, the metal content in the nanowire is expressed as a value (% by mass) relative to the entire amount of the nanowire. The content of the metal atom is a value measured by subjecting a solution in which nanowires are dissolved to a multi-element simultaneous analysis method and a calibration curve method based on the ICP-AES method.

본 발명에 이용하는 나노와이어는, 그 높은 형상의 이방성에 의해 재료 중에 있어서 그물코 구조의 클러스터를 용이하게 형성할 수 있기 때문에, 배합량을 억제할 수 있다. 배합량의 억제는 나노와이어의 평균 길이가 길수록 유효하며, 나노와이어의 평균 길이는, 5μm 이상이 바람직하고, 나아가 10μm 이상이 바람직하다. 한편 나노와이어 길이가 길어지면 가공성이 저하되기 때문에, 평균 길이는 50μm 이하가 바람직하고, 나아가 30μm 이하가 바람직하다.The nanowire used in the present invention can easily form network-structured clusters in the material due to its high shape anisotropy, so the mixing amount can be suppressed. Suppression of the compounding amount is more effective the longer the average length of the nanowires, and the average length of the nanowires is preferably 5 μm or more, and more preferably 10 μm or more. On the other hand, as the length of the nanowire increases, processability decreases, so the average length is preferably 50 μm or less, and more preferably 30 μm or less.

본 명세서 중, 나노와이어의 평균 길이는, 주사형 전자 현미경(SEM)에 의한 촬영에 기초하는, 임의의 100본의 평균치를 이용하고 있다.In this specification, the average length of nanowires is the average value of 100 arbitrary nanowires based on imaging with a scanning electron microscope (SEM).

본 발명의 연자성 나노와이어의 평균 직경은 특별히 한정되지 않지만, 가요성, 내열성 및 차폐성의 더한층의 향상 및 내반사성의 향상의 관점에서, 20∼500nm인 것이 바람직하고, 50∼400nm인 것이 보다 바람직하고, 50∼300nm인 것이 더 바람직하고, 50∼200nm인 것이 충분히 바람직하며, 50∼150nm인 것이 보다 충분히 바람직하다. 나노와이어의 어스펙트비는 특별히 한정되지 않지만, 낮으면 나노와이어의 효과를 얻을 수 없고, 예를 들면, 20∼500이어도 되고, 나노와이어가 소량으로도 충분히 재료 중에 분포하는 관점에서, 바람직하게는 40∼300이며, 나노와이어 내부의 반자계를 억제하는 관점에서, 보다 바람직하게는 50∼200이다.The average diameter of the soft magnetic nanowire of the present invention is not particularly limited, but is preferably 20 to 500 nm, and more preferably 50 to 400 nm, from the viewpoint of further improvement in flexibility, heat resistance, and shielding properties and improvement in reflection resistance. It is more preferable that it is 50 to 300 nm, it is sufficiently preferable to be 50 to 200 nm, and it is more preferable to be 50 to 150 nm. The aspect ratio of the nanowire is not particularly limited, but if it is low, the effect of the nanowire cannot be obtained. For example, it may be 20 to 500, and from the viewpoint of the nanowire being sufficiently distributed in the material even in a small amount, it is preferably It is 40 to 300, and is more preferably 50 to 200 from the viewpoint of suppressing the demagnetizing field inside the nanowire.

본 명세서 중, 나노와이어의 평균 직경은, 주사형 전자 현미경(SEM)에 의한 촬영에 기초하는, 임의의 100점에서의 평균치를 이용하고 있다. 또한, 나노와이어가 후술하는 입자 연결 형상을 갖는 경우, 당해 나노와이어의 평균 직경은, 후술하는 직경의 최대치의 평균치 A를 평균 직경으로 했다.In this specification, the average diameter of nanowires is the average value at 100 arbitrary points based on imaging with a scanning electron microscope (SEM). In addition, when the nanowire has a particle connection shape described later, the average diameter of the nanowire was set as the average value A of the maximum diameters described later.

본 발명에 이용하는 나노와이어는, 섬유상을 갖는 한, 모든 형상을 갖고 있어도 된다. 섬유상이란, 나노와이어 1본이 전체로서 선상을 갖는다는 의미이며, 입자가 일차원적으로 연결된 「입자 연결 형상」 및 단순한 「봉 형상」을 포함한다.The nanowire used in the present invention may have any shape as long as it has a fibrous shape. Fibrous shape means that one nanowire has a linear shape as a whole, and includes a “particle connected shape” in which particles are one-dimensionally connected and a simple “rod shape”.

본 발명에 이용하는 나노와이어는 내반사성의 향상의 관점에서, 입자 연결 형상을 갖고 있는 것이 바람직하다. 나노와이어가 입자 연결 형상을 갖는 것에 의해, 나노와이어 표면에 요철이 생겨, 진입하는 전자파의 확산을 촉진하고, 그 결과, 테라헤르츠파가 흡수되기 쉬워져, 반사를 억제하고 차폐성을 높게 할 수 있다. 입자 연결 형상을 갖는 나노와이어인지 여부는 SEM에 의해 판단하는 것이 가능하다.The nanowire used in the present invention preferably has a particle-connected shape from the viewpoint of improving anti-reflection properties. Because the nanowire has a particle-connected shape, irregularities are created on the surface of the nanowire, which promotes the diffusion of incoming electromagnetic waves. As a result, terahertz waves become easier to absorb, suppressing reflection and increasing shielding properties. . It is possible to determine whether a nanowire has a particle-connected shape by SEM.

입자 연결 형상이란, 상세하게는, 복수의 입자가 직렬로 또한 연속적으로 연결되어 이루어지는, 전체로서 선상의 형상을 말한다. 양단의 입자는 각각 인접하는 1개의 입자와 연결되고, 그 외의 각 입자는 인접하는 양측의 2개의 입자와 연결되어 있다. 이와 같은 입자 연결 형상에 있어서는 통상, 연결 부분(2개의 입자 간의 경계 부분)에서 오목부를 형성하고, 입자 부분에서 볼록부를 형성하며, 입자의 연결 방향(나노와이어의 긴 방향)에 있어서 오목부와 볼록부가 연속적으로 반복되어 있다. 나노와이어를 구성하는 각 입자는 대략 구 형상을 갖는다. 대략 구 형상이란 원형 단면을 갖는 구 형상뿐만 아니라, 삼각형 이상의 다각형, 타원형 또는 그들의 복합 형상의 단면을 갖는 입체 형상을 포함하여 의미하는 것으로 한다.In detail, the particle connected shape refers to a linear shape as a whole formed by connecting a plurality of particles in series and continuously. Each particle at both ends is connected to one adjacent particle, and each other particle is connected to two adjacent particles on both sides. In such a particle connection shape, a concave portion is usually formed at the connecting portion (boundary portion between two particles), a convex portion is formed at the particle portion, and the concave portion and the convex portion are formed in the particle connection direction (longitudinal direction of the nanowire). The parts are repeated continuously. Each particle that makes up a nanowire has an approximately spherical shape. A roughly spherical shape is meant to include not only a spherical shape with a circular cross section, but also a three-dimensional shape with a triangular or larger polygonal shape, an elliptical shape, or a composite shape thereof.

입자 연결 형상을 갖는 나노와이어는, 구체적으로는, 나노와이어에 있어서의 직경의 최대치의 평균치를 A(nm), 나노와이어에 있어서의 직경의 최소치의 평균치를 B(nm)로 한 경우에, 하기 식(1-1)을 만족시키며, 내반사성을 향상시키고, 또한 접히기 어렵게 하기 위해서, 하기 식(1-1')를 만족시키는 것이 바람직하고, 하기 식(1-1'')를 만족시키는 것이 보다 바람직하다.Nanowires having a particle-connected shape are, specifically, when the average value of the maximum diameters in the nanowires is set to A (nm) and the average value of the minimum diameters in the nanowires is set to B (nm), the following In order to satisfy the formula (1-1), improve reflection resistance, and make it difficult to fold, it is preferable to satisfy the formula (1-1') below, and to satisfy the formula (1-1'') below: It is more preferable.

1.1≤A/B≤2.5 (1-1)1.1≤A/B≤2.5 (1-1)

1.1≤A/B≤2 (1-1')1.1≤A/B≤2 (1-1')

1.1≤A/B≤1.75 (1-1'')1.1≤A/B≤1.75 (1-1'')

입자 연결 형상을 갖는 나노와이어에 있어서 직경은, 나노와이어의 긴 방향에 대한 수직 단면에 있어서의 직경을 의미하고, 직경의 최대치 및 최소치는 나노와이어의 SEM 화상에 있어서 판독할 수 있다. 입자 연결 형상을 갖는 나노와이어는, 나노와이어에 있어서 단부는 아닌 곳에서 직경의 최대치를 제공한다. 단부란 나노와이어의 끝으로부터 100nm 이내의 곳이다. 직경의 최대치의 평균치 A란, 임의의 100본의 나노와이어에 대한 직경의 최대치의 평균치이다. 직경의 최소치의 평균치 B란, 임의의 100본의 나노와이어에 대한 직경의 최소치의 평균치이다. 이들 값에 기초하여, A/B가 산출된다.In a nanowire having a particle-connected shape, the diameter means the diameter in a cross section perpendicular to the longitudinal direction of the nanowire, and the maximum and minimum values of the diameter can be read in the SEM image of the nanowire. Nanowires with particle-connected shapes provide a maximum diameter at locations other than the ends of the nanowire. The end is within 100 nm from the end of the nanowire. The average value A of the maximum diameter is the average value of the maximum diameter for 100 arbitrary nanowires. The average value B of the minimum diameter value is the average value of the minimum diameter values for 100 arbitrary nanowires. Based on these values, A/B is calculated.

입자 연결 형상을 갖는 나노와이어에 있어서, 직경의 최대치의 평균치 A는 통상, 50∼500nm, 특히 50∼400nm이며, 가요성, 내열성 및 차폐성의 더한층의 향상 및 내반사성의 향상의 관점에서, 바람직하게는 50∼300nm, 보다 바람직하게는 50∼200nm, 더 바람직하게는 60∼200nm, 가장 바람직하게는 60∼150nm이다.In nanowires having a particle-connected shape, the average value A of the maximum diameter is usually 50 to 500 nm, especially 50 to 400 nm, and from the viewpoint of further improvement in flexibility, heat resistance and shielding properties and improvement in anti-reflection properties, it is preferable. is 50 to 300 nm, more preferably 50 to 200 nm, further preferably 60 to 200 nm, and most preferably 60 to 150 nm.

입자 연결 형상을 갖는 나노와이어에 있어서, 직경의 최소치의 평균치 B는 통상, 10∼200nm, 특히 20∼200nm이며, 가요성, 내열성 및 차폐성의 더한층의 향상 및 내반사성의 향상의 관점에서, 바람직하게는 30∼150nm, 보다 바람직하게는 30∼100nm, 더 바람직하게는 40∼100nm, 충분히 바람직하게는 40∼90nm이다.In nanowires having a particle-connected shape, the average value B of the minimum diameter is usually 10 to 200 nm, especially 20 to 200 nm, and from the viewpoint of further improvement in flexibility, heat resistance and shielding properties and improvement in anti-reflection properties, it is preferable. is 30 to 150 nm, more preferably 30 to 100 nm, further preferably 40 to 100 nm, and sufficiently preferably 40 to 90 nm.

본 발명에 이용하는 나노와이어의 제작 방법은 특별히 한정되지 않지만, 용액 중에서 특정 조건에서 금속 이온을 환원함으로써 얻을 수 있다. 특히 바람직하다고 하는 입자 연결 형상을 갖고, 또한 철, 니켈 및 코발트로 이루어지는 군으로부터 선택되는 1종의 금속을 주성분으로 하는 나노와이어의 제조 방법을 이하에 나타낸다.The manufacturing method of the nanowire used in the present invention is not particularly limited, but can be obtained by reducing metal ions in a solution under specific conditions. A method for producing a nanowire having a particularly preferable particle connection shape and containing as a main component a metal selected from the group consisting of iron, nickel, and cobalt is shown below.

나노와이어의 원료가 되는 금속 이온은, 염산염, 황산염, 질산염 등의 금속염으로서 공급된다. 예를 들면, 염화 철, 염화 코발트, 염화 니켈, 황산 철, 황산 코발트, 황산 니켈, 질산 철, 질산 코발트, 질산 니켈 등을 들 수 있다. 이들은, 수화물이어도 문제가 없다.Metal ions that serve as raw materials for nanowires are supplied as metal salts such as hydrochloride, sulfate, and nitrate. Examples include iron chloride, cobalt chloride, nickel chloride, iron sulfate, cobalt sulfate, nickel sulfate, iron nitrate, cobalt nitrate, and nickel nitrate. There is no problem with these even if they are hydrated.

원료의 금속염은 용액으로서 반응계에 공급된다. 금속염을 용액으로 하기 위해서는, 극성이 높은 모노알코올, 글라이콜, NMP, DMSO 등의 유기 용매 혹은 물이 필요해진다. 이들은, 단일 용매, 혼합 용매 중 어느 것이어도 문제가 없다.The metal salt of the raw material is supplied to the reaction system as a solution. To turn a metal salt into a solution, a highly polar organic solvent such as monoalcohol, glycol, NMP, DMSO, or water is required. There is no problem whether these are single solvents or mixed solvents.

금속염의 용액에는, 반응상의 필요에 따라서, EDTA, 시트르산 등의 착화제를 첨가해도 된다. 통상 착화제를 첨가하면 반응 활성이 저하되기 때문에, 반응의 제어가 용이하게 되고, 그것이 형상 제어에 영향을 준다.To the solution of the metal salt, a complexing agent such as EDTA or citric acid may be added depending on the needs of the reaction. Usually, adding a complexing agent lowers the reaction activity, making it easier to control the reaction, which affects shape control.

용액 중의 금속 이온을 환원함으로써 나노와이어를 얻을 수 있다. 환원 방법으로서는, 무전해 도금법에 있어서 일반적인 환원제인 하이드라진, 수소화 붕소 나트륨, 다이메틸아민보레인, 차아인산 나트륨 등을 사용하여, 각 환원제와 환원할 금속 이온에 추장되는 조건에서 행하면 된다.Nanowires can be obtained by reducing metal ions in solution. As a reduction method, hydrazine, sodium borohydride, dimethylamine borane, sodium hypophosphite, etc., which are common reducing agents in the electroless plating method, may be used, and the reduction may be performed under conditions recommended for each reducing agent and the metal ion to be reduced.

반응계로의 환원제의 공급 방법은, 환원제의 상태, 반응계의 조건에 따라, 알맞게 선택하면 된다. 예를 들면, 하이드라진과 같은 액상의 것이면, 그대로 반응계에 공급할 수 있다. 수소화 붕소 나트륨과 같은 고체의 경우, 용액화하여 공급하는 것이 바람직하다.The method of supplying the reducing agent to the reaction system may be appropriately selected depending on the state of the reducing agent and the conditions of the reaction system. For example, if it is a liquid such as hydrazine, it can be supplied to the reaction system as is. In the case of solids such as sodium borohydride, it is preferable to supply them in solution.

환원제를 공급한 후의 반응은 각 환원 조건에 따르면 된다. 예를 들면, 중간 정도의 환원력의 하이드라진의 경우, 수산화 나트륨 등으로 pH를 알칼리성으로 조정하고, 90℃ 정도에서 환원 반응을 행한다. 높은 환원력의 수소화 붕소 나트륨의 경우, 환원 반응은 실온(예를 들면 20℃)에서 행한다.The reaction after supplying the reducing agent may follow each reduction condition. For example, in the case of hydrazine with a medium reducing power, the pH is adjusted to alkaline with sodium hydroxide or the like, and the reduction reaction is performed at about 90°C. In the case of sodium borohydride, which has high reducing power, the reduction reaction is carried out at room temperature (eg, 20°C).

환원 반응은, 배치법으로 행해도 되고, 플로법으로 행해도 된다.The reduction reaction may be performed by a batch method or a flow method.

입자 연결 형상의 나노와이어를 제작하기 위해서는, 배치법, 플로법 어느 경우여도, 환원 반응 중에 100∼150mT 정도의 자장을 인가한다. 자장의 인가 방법은, 반응 용기나 반응 유로의 사이즈로 적절한 방법을 선택하면 된다.In order to produce nanowires in the particle-connected form, a magnetic field of about 100 to 150 mT is applied during the reduction reaction in either the batch method or the flow method. The method for applying the magnetic field may be an appropriate method selected depending on the size of the reaction vessel or reaction channel.

각 재료의 농도는 반응계의 용량이나 각 원재료의 혼합 방법 등으로 적절히 선택하면 된다. 수 L 정도의 반응 용량의 경우, 원료의 금속염을 50mmol/L 정도의 농도로 조정하면 되고, 그 농도보다 고농도로 환원제를 첨가하면 된다.The concentration of each material can be appropriately selected based on the capacity of the reaction system or the mixing method of each raw material. In the case of a reaction capacity of about several L, the metal salt of the raw material can be adjusted to a concentration of about 50 mmol/L, and the reducing agent can be added at a higher concentration than that concentration.

본 발명의 취지의 하나에 있어서는, 테라헤르츠 전파의 차폐성을 부여하는 나노와이어는, 그 혼합 비율이 낮더라도 우수한 차폐 효과를 발휘한다. 이 때문에, 본 발명의 테라헤르츠파 차폐 재료는, 바인더 자체가 갖는 내열성, 가요성 등을 해치지 않는다.According to one of the purposes of the present invention, nanowires that provide shielding properties for terahertz radio waves exhibit excellent shielding effects even when their mixing ratio is low. For this reason, the terahertz wave shielding material of the present invention does not impair the heat resistance, flexibility, etc. of the binder itself.

바인더는, 특별히 한정되지 않고, 유기물, 무기물 어느 것이어도 된다. 유기물이란 통상, 폴리머를 말하며, 그 구체예로서, 예를 들면, 폴리아크릴 수지; 폴리유레테인 수지; 에폭시 수지; 폴리이미드 수지; 불소 수지; 실리콘 고무 등의 각종 고무 등을 들 수 있다. 무기물로서, 물유리, 실리카 등을 들 수 있다.The binder is not particularly limited and may be either organic or inorganic. Organic substances generally refer to polymers, and specific examples thereof include polyacrylic resin; polyurethane resin; epoxy resin; polyimide resin; fluororesin; Various rubbers, such as silicone rubber, etc. are mentioned. Examples of inorganic materials include water glass and silica.

유기물로서, 예를 들면, 아크릴 수지, 유레테인 수지, 실리콘 고무 등의 각종 고무 등을 사용하면, 본 발명의 테라헤르츠파 차폐 재료는, 가요성이 우수하여, 가공하기 쉬운 재료가 된다.When various types of rubber such as acrylic resin, urethane resin, and silicone rubber are used as the organic material, the terahertz wave shielding material of the present invention has excellent flexibility and becomes a material that is easy to process.

또한 예를 들면, 에폭시 수지를 사용하면, 본 발명의 테라헤르츠파 차폐 재료는, 접착성이 우수한 재료가 된다.Additionally, for example, if epoxy resin is used, the terahertz wave shielding material of the present invention becomes a material with excellent adhesiveness.

또한 예를 들면, 폴리이미드 수지를 사용하면, 본 발명의 테라헤르츠파 차폐 재료는, 내열성이 우수한 재료가 된다.Additionally, for example, if polyimide resin is used, the terahertz wave shielding material of the present invention becomes a material with excellent heat resistance.

또한 예를 들면, 불소 수지를 사용하면, 본 발명의 테라헤르츠파 차폐 재료는, 내오성이 우수한 재료가 된다.Additionally, for example, if fluorine resin is used, the terahertz wave shielding material of the present invention becomes a material with excellent stain resistance.

무기물로서, 예를 들면, 물유리, 실리카 등을 사용하면, 본 발명의 테라헤르츠파 차폐 재료는, 열팽창률을 낮게 할 수 있어, 세라믹이나 금속과 합하는 것에 적합한 재료가 된다.When water glass, silica, etc. are used as the inorganic material, the terahertz wave shielding material of the present invention can have a low coefficient of thermal expansion, making it a material suitable for combination with ceramics and metals.

본 발명의 테라헤르츠파 차폐 재료는, 본 발명의 효과를 해치지 않는 범위에 있어서, 각종 첨가제를 가해도 된다.Various additives may be added to the terahertz wave shielding material of the present invention within a range that does not impair the effect of the present invention.

본 발명의 테라헤르츠파 차폐 재료의 형상은 특별히 한정되지 않지만, 예를 들면, 판상, 시트상, 도막, 상자형을 들 수 있다. 상세하게는, 본 발명의 테라헤르츠파 차폐 재료는, 이른바 펠릿 형태를 갖고 있어도 되고, 또는 모든 형상을 갖는 성형 가공품 형태를 갖고 있어도 된다. 예를 들면, 본 발명의 테라헤르츠파 차폐 재료는, 나노와이어 및 바인더를 용융 혼련하여 이루어지는, 이른바 펠릿 형태를 갖고 있어도 된다. 또한 예를 들면, 본 발명의 테라헤르츠파 차폐 재료는, 당해 펠릿을 성형 가공하여 이루어지는 성형 가공품 형태를 갖고 있어도 된다. 또한 예를 들면, 본 발명의 테라헤르츠파 차폐 재료는, 나노와이어 및 바인더를 직접적으로 성형 가공하여 이루어지는 성형 가공품 형태를 갖고 있어도 된다. 성형 가공 방법으로서는, 특별히 한정되지 않고, 예를 들면, 압축 성형법, 사출 성형법, 캐스트법, 용융 혼련법, 도포법 등을 들 수 있다.The shape of the terahertz wave shielding material of the present invention is not particularly limited, but examples include plate shape, sheet shape, coating film, and box shape. In detail, the terahertz wave shielding material of the present invention may have a so-called pellet form, or may have the form of a molded product having any shape. For example, the terahertz wave shielding material of the present invention may have a so-called pellet form formed by melting and kneading nanowires and a binder. Additionally, for example, the terahertz wave shielding material of the present invention may have the form of a molded product obtained by molding the pellet. Additionally, for example, the terahertz wave shielding material of the present invention may have the form of a molded product obtained by directly molding and processing nanowires and a binder. The molding processing method is not particularly limited, and examples include compression molding, injection molding, casting, melt kneading, and coating.

본 발명의 테라헤르츠파 차폐 재료는, 내열성, 가요성 및 테라헤르츠파에 대한 차폐성(바람직하게는 추가로 내반사성) 모두가 우수하기 때문에, 무선 통신의 안테나 유닛이나 센싱 유닛에 이용할 수 있다. 구체적으로는, 본 발명의 테라헤르츠파 차폐 재료는, 안테나 유닛, 센싱 유닛의 송수신부 이외를 덮도록 사용하여, 노이즈의 커플링 등을 억제한다.The terahertz wave shielding material of the present invention is excellent in heat resistance, flexibility, and terahertz wave shielding (preferably additional anti-reflection resistance), so it can be used for antenna units and sensing units in wireless communication. Specifically, the terahertz wave shielding material of the present invention is used to cover parts other than the transmitting and receiving parts of the antenna unit and the sensing unit to suppress noise coupling, etc.

실시예Example

이하, 본 발명을 실시예에 의해 구체적으로 설명하지만, 본 발명은 이들에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

A. 각종 평가A. Various evaluations

(1) 나노와이어의 금속종의 정성, 정량(1) Qualitative and quantitative determination of metal species in nanowires

충분히 진공 건조한 나노와이어를 ICP-AES에 의해, 정성 및 정량을 행했다.The sufficiently vacuum-dried nanowires were subjected to qualitative and quantitative analysis by ICP-AES.

(2) 나노와이어의 평균 길이(2) Average length of nanowires

(1)과 마찬가지로 충분히 진공 건조한 나노와이어를 SEM으로 2000배로 촬영했다. 임의의 100본의 나노와이어 길이를 계측하여, 평균치를 산출했다.As in (1), sufficiently vacuum-dried nanowires were photographed with SEM at 2000x magnification. The length of 100 random nanowires was measured, and the average value was calculated.

(3) 나노와이어의 형상(3) Shape of nanowire

나노와이어를 SEM으로 10만배로 촬영하여, 형상을 평가했다.The nanowires were photographed with SEM at 100,000x magnification and their shape was evaluated.

나노와이어가 입자 연결 형상을 갖는 경우, 이하의 측정을 행했다.When the nanowire had a particle-connected shape, the following measurements were performed.

나노와이어의 분산액을 지지막 부착 그리드 상에서 건조하고, 얻어진 나노와이어를, 투과형 전자 현미경으로 10만∼100만배 정도로 나노와이어를 촬영하여, 나노와이어 1본에 있어서의 직경의 최대치, 최소치를 임의의 100본에 대해 계측했다. 그들 값의 평균치로부터 나노와이어의 A값, B값 및 A/B값을 산출했다.The nanowire dispersion was dried on a grid with a support membrane, the obtained nanowires were photographed with a transmission electron microscope at a magnification of 100,000 to 1 million times, and the maximum and minimum diameters for one nanowire were arbitrarily set to 100. Measurements were made for the bone. From the average of those values, the A value, B value, and A/B value of the nanowire were calculated.

(4) 내열성(4) Heat resistance

성형한 시트를 2cm×2cm로 절출하여, 200℃로 가열한 오븐에 5분간 정치했다.The molded sheet was cut into 2 cm x 2 cm and left in an oven heated to 200°C for 5 minutes.

정치 후, 형상을 관찰하여, 이하의 기준으로 평가했다.After standing still, the shape was observed and evaluated based on the following standards.

○: 형상을 유지하고 있었다.○: The shape was maintained.

×: 형상을 유지할 수 없었다.×: The shape could not be maintained.

(5) 가요성(5) Flexibility

성형한 시트를 2cm×10cm로 절출하여, 10cm 방향의 5cm인 곳에서, 90° 방향으로 절곡했다.The molded sheet was cut into 2 cm x 10 cm and bent in the 90° direction at 5 cm from the 10 cm direction.

절곡한 상태에서 절곡부를 육안으로 관찰하여, 이하의 기준으로 평가했다.The bent portion was visually observed in the bent state, and evaluated based on the following criteria.

○: 균열이 생기고 있지 않았다.○: No cracks were formed.

×: 균열이 생기고 있었다.×: Cracks were forming.

(6) 투과 감쇠량(차폐성)(6) Transmission attenuation (shielding)

성형한 시트를 2cm×2cm로 절출하여, THz-TDS(테라헤르츠 시간 영역 분광법)로 투과 감쇠량을 측정했다.The molded sheet was cut into 2 cm x 2 cm pieces, and the transmission attenuation was measured using THz-TDS (terahertz time domain spectroscopy).

측정 결과로부터 287.5∼312.5GHz의 대역의 투과 감쇠량의 절대치의 최소치를 최저 투과 감쇠량으로 했다.From the measurement results, the minimum absolute value of the transmission attenuation in the band of 287.5 to 312.5 GHz was taken as the minimum transmission attenuation.

최저 투과 감쇠량을, 이하의 기준으로 평가했다.The lowest transmission attenuation was evaluated based on the following standards.

◎◎: 100dB/mm 이상(최량); ◎◎: 100dB/mm or more (maximum);

◎: 50dB/mm 이상, 100dB/mm 미만(우량); ◎: 50 dB/mm or more, less than 100 dB/mm (excellent);

○: 20dB/mm 이상, 50dB/mm 미만(양); ○: 20dB/mm or more, less than 50dB/mm (positive);

×: 20dB/mm 미만(실용상 문제 있음).×: Less than 20dB/mm (practically problematic).

(7) 반사율(내반사성)(7) Reflectance (reflection resistance)

성형한 시트를 2cm×2cm로 절출하여, THz-TDS로 측정했다. 블랭크로서 금 박막을 사용하고, 그 반사율을 100%로 했다.The molded sheet was cut into 2 cm x 2 cm and measured with THz-TDS. A gold thin film was used as a blank, and its reflectance was set to 100%.

측정 결과로부터 287.5∼312.5GHz의 대역의 최고치를 최고 반사율로 했다.From the measurement results, the highest value in the band of 287.5 to 312.5 GHz was taken as the highest reflectance.

최고 반사율을, 이하의 기준으로 평가했다.The highest reflectance was evaluated based on the following standards.

◎◎: 20% 미만(최량); ◎◎: less than 20% (maximum);

◎: 20% 이상, 30% 미만(우량); ◎: 20% or more, less than 30% (excellent);

○: 30% 이상, 50% 미만(양); ○: 30% or more, less than 50% (positive);

×: 50% 이상(실용상 문제 있음).×: 50% or more (practically problematic).

B. 원료B. Raw materials

B-1. 나노와이어 또는 입자B-1. nanowires or particles

(1) Fe20NW(1) Fe20NW

염화 니켈 육수화물 9.21질량부(38.4몰부), 시트르산 삼나트륨 이수화물 0.100질량부(0.340몰부)를 에틸렌 글라이콜에 용해하여, 400질량부로 조제했다.9.21 parts by mass (38.4 mole parts) of nickel chloride hexahydrate and 0.100 parts by mass (0.340 mole parts) of trisodium citrate dihydrate were dissolved in ethylene glycol to prepare 400 parts by mass.

수산화 나트륨 1.50질량부(37.5몰부)를 에틸렌 글라이콜에 용해하여, 410질량부로 조제했다.1.50 parts by mass (37.5 mole parts) of sodium hydroxide was dissolved in ethylene glycol to prepare 410 parts by mass.

염화 철(II) 사수화물 2.22질량부(11.2몰부)를 에틸렌 글라이콜에 용해하여, 100질량부로 조제했다.2.22 parts by mass (11.2 mole parts) of iron(II) chloride tetrahydrate was dissolved in ethylene glycol to prepare 100 parts by mass.

3개의 액을 혼합하여, 중심 자장이 130mT인 자기 회로에 넣고, 28% 암모니아수 75.0질량부(1230몰부), 하이드라진 일수화물 15.0질량부(300몰부)의 순서로 첨가하고, 90∼95℃에서 45분간 가열했다.The three liquids are mixed, placed in a magnetic circuit with a central magnetic field of 130 mT, 75.0 parts by mass (1230 mole parts) of 28% aqueous ammonia and 15.0 parts by mass (300 mole parts) of hydrazine monohydrate are added in that order, and the temperature is 45°C at 90 to 95°C. Heated for a minute.

그 후, 자장의 인가를 정지하고, 생긴 흑색의 고체를 T100A090C의 PTFE제 필터를 이용하여 여과 회수 후, 물, 메탄올로 각각 3회씩 세정하고, 24시간 진공 건조하여 나노와이어를 얻었다.After that, the application of the magnetic field was stopped, and the resulting black solid was collected by filtration using a T100A090C PTFE filter, washed three times each with water and methanol, and vacuum dried for 24 hours to obtain nanowires.

(2) Fe80NW(2) Fe80NW

염화 철(II) 사수화물 26.0질량부(131몰부), 염화 니켈 육수화물 7.78질량부(32.7몰부)를 물 1556.22질량부에 용해하여, 중심 자장이 130mT인 자기 회로에 넣고, 질소 가스의 버블링을 개시했다. 버블링 개시부터 10분 경과 후, 수소화 붕소 나트륨 12.4질량부(327몰부)를 물에 용해한 수용액 310질량부의 적하를 개시했다. 15분에 걸쳐 실온에서 적하 후, 추가로 10분간 정치했다.26.0 parts by mass (131 mole parts) of iron (II) chloride tetrahydrate and 7.78 parts by mass (32.7 mole parts) of nickel chloride hexahydrate were dissolved in 1556.22 parts by mass of water, placed in a magnetic circuit with a central magnetic field of 130 mT, and bubbling with nitrogen gas. started. Ten minutes after the start of bubbling, dropwise addition of 310 parts by mass of an aqueous solution containing 12.4 parts by mass (327 parts by mole) of sodium borohydride dissolved in water was started. It was added dropwise at room temperature over 15 minutes and left to stand for an additional 10 minutes.

그 후, 자장의 인가와 질소 가스의 버블링을 정지하고, 반응액을 1000질량부의 물에 부어 희석했다. 생긴 흑색의 고체를 T100A090C의 PTFE제 필터를 이용하여 여과 회수 후, 물, 메탄올로 각각 3회씩 세정하고, 24시간 진공 건조하여 나노와이어를 얻었다.After that, application of the magnetic field and bubbling of nitrogen gas were stopped, and the reaction solution was poured into 1000 parts by mass of water and diluted. The resulting black solid was collected by filtration using a T100A090C PTFE filter, washed three times each with water and methanol, and vacuum dried for 24 hours to obtain nanowires.

(3) FeNW(3) FeNW

염화 철(II) 사수화물 34.2질량부(172몰부)를 물 1195.8질량부에 용해하여, 중심 자장이 130mT인 자기 회로에 넣고, 질소 가스의 버블링을 개시했다. 버블링 개시부터 10분 경과 후, 수소화 붕소 나트륨 28.0질량부(740몰부)를 물에 용해한 수용액 730질량부의 적하를 개시했다. 15분에 걸쳐 실온에서 적하 후, 추가로 10분간 정치했다.34.2 parts by mass (172 parts by mol) of iron (II) chloride tetrahydrate was dissolved in 1195.8 parts by mass of water, placed in a magnetic circuit with a central magnetic field of 130 mT, and bubbling of nitrogen gas was started. Ten minutes after the start of bubbling, 730 parts by mass of an aqueous solution containing 28.0 parts by mass (740 mole parts) of sodium borohydride dissolved in water began to be added dropwise. It was added dropwise at room temperature over 15 minutes and left to stand for an additional 10 minutes.

그 후, 자장의 인가와 질소 가스의 버블링을 정지하고, 반응액을 1000질량부의 물에 부어 희석했다. 자장의 인가와 질소 가스의 버블링을 정지하고, 생긴 흑색의 고체를 T100A090C의 PTFE제 필터를 이용하여 여과 회수 후, 물, 메탄올로 각각 3회씩 세정하고, 24시간 진공 건조하여 나노와이어를 얻었다.After that, application of the magnetic field and bubbling of nitrogen gas were stopped, and the reaction solution was poured into 1000 parts by mass of water and diluted. The application of the magnetic field and the bubbling of nitrogen gas were stopped, and the resulting black solid was collected by filtration using a T100A090C PTFE filter, washed three times each with water and methanol, and vacuum dried for 24 hours to obtain nanowires.

(4) NiNW(4) NiNW

염화 니켈 육수화물 10.0질량부(42.1몰부), 시트르산 삼나트륨 이수화물 0.935질량부(3.18몰부)를 에틸렌 글라이콜에 용해하여, 500질량부로 조제했다.10.0 parts by mass (42.1 mole parts) of nickel chloride hexahydrate and 0.935 parts by mass (3.18 mole parts) of trisodium citrate dihydrate were dissolved in ethylene glycol to prepare 500 parts by mass.

수산화 나트륨 2.50질량부(62.5몰부)를 에틸렌 글라이콜에 용해하여, 442질량부로 조제했다.2.50 parts by mass (62.5 mole parts) of sodium hydroxide was dissolved in ethylene glycol to prepare 442 parts by mass.

2개의 액을 혼합하여, 중심 자장이 130mT인 자기 회로에 넣고, 28% 암모니아수 55.0질량부(904몰부), 하이드라진 일수화물 2.50질량부(49.9몰부)의 순서로 첨가하고, 90∼95℃에서 15분간 가열했다.The two liquids are mixed, placed in a magnetic circuit with a central magnetic field of 130 mT, 55.0 parts by mass (904 mole parts) of 28% aqueous ammonia and 2.50 parts by mass (49.9 mole parts) of hydrazine monohydrate are added in that order, and the temperature is 15% at 90 to 95°C. Heated for a minute.

그 후, 자장의 인가를 정지하고, 생긴 흑색의 고체를 T100A090C의 PTFE제 필터를 이용하여 여과 회수 후, 물, 메탄올로 각각 3회씩 세정하고, 24시간 진공 건조하여 나노와이어를 얻었다.Afterwards, the application of the magnetic field was stopped, and the resulting black solid was collected by filtration using a T100A090C PTFE filter, washed three times each with water and methanol, and vacuum dried for 24 hours to obtain nanowires.

(5) AgNW(5) AgNWs

Sigma-Aldrich사제 Ag 나노와이어 분산액으로부터, T100A090C의 PTFE제 필터를 이용하여 여과 회수하고, 계속해서, 물, 메탄올로 각각 3회씩 세정하고, 24시간 진공 건조하여 나노와이어를 얻었다.The Ag nanowire dispersion liquid manufactured by Sigma-Aldrich was collected by filtration using a T100A090C PTFE filter, washed three times each with water and methanol, and vacuum dried for 24 hours to obtain nanowires.

(6) NiP(6) NiP

Sigma-Aldrich사제 Ni 입자(직경 1μm 이하)Ni particles manufactured by Sigma-Aldrich (diameter 1 μm or less)

이용하는 나노와이어 및 입자의 특성치를 표 1에 나타낸다.Table 1 shows the characteristic values of the nanowires and particles used.

표 1 중, NiP의 평균 길이는 입자의 최대 길이이다.In Table 1, the average length of NiP is the maximum length of the particles.

NiP의 어스펙트비는 입자의 최대 길이/최소 길이이다.The aspect ratio of NiP is the maximum length/minimum length of the particle.

한편, 입자의 최대 길이 및 최소 길이는, SEM 화상에 있어서 입자의 무게 중심을 통과하는 직경에 대한 최대 길이 및 최소 길이이다. 무게 중심이란, 등질의 재료(예를 들면, 종이)를 당해 입자의 윤곽으로 절취하고, 균형을 잡아서 점에서 지지했을 때의 당해 점이다.Meanwhile, the maximum and minimum lengths of the particle are the maximum and minimum lengths relative to the diameter passing through the center of gravity of the particle in the SEM image. The center of gravity is the point when a material of the same quality (e.g., paper) is cut along the outline of the particle, balanced, and supported at the point.

B-2. 바인더B-2. bookbinder

(1) 실리콘 혼합 수지(1) Silicone mixed resin

모멘티브사 TSE3450/모멘티브사 TSE3450=10/1(질량 비율)로 혼합한 수지Resin mixed with Momentive TSE3450/Momentive TSE3450=10/1 (mass ratio)

(2) 에폭시 수지(2) Epoxy resin

DIC사 EXA-4850-150/트라이에틸렌테트라민=12/1(질량 비율)로 혼합한 수지Resin mixed with DIC EXA-4850-150/triethylenetetramine = 12/1 (mass ratio)

(3) 불소 수지(3) Fluororesin

AGC사 EA-2000. 본 발명에서는 톨루엔에 현탁한 것을 사용AGC company EA-2000. In the present invention, one suspended in toluene is used.

실시예 1Example 1

Fe20NW 65.0질량부와, 실리콘 혼합 수지 35.0질량부를 혼합하고, 탁상 핸드 프레스기로 성형하여 12cm×12cm×두께 0.5mm의 시트(차폐 재료)를 제작했다.65.0 parts by mass of Fe20NW and 35.0 parts by mass of silicone mixed resin were mixed and molded using a tabletop hand press to produce a sheet (shielding material) of 12 cm x 12 cm x 0.5 mm in thickness.

실시예 2Example 2

Fe20NW 3.00질량부와, 실리콘 혼합 수지 7.00질량부를 혼합하고, 탁상 핸드 프레스기(노다사제, RC-2000)로 성형하여 12cm×12cm×두께 0.4mm의 시트(차폐 재료)를 제작했다.3.00 parts by mass of Fe20NW and 7.00 parts by mass of silicone mixed resin were mixed and molded using a tabletop hand press (RC-2000, manufactured by Noda) to produce a sheet (shielding material) of 12 cm x 12 cm x 0.4 mm thick.

실시예 3Example 3

Fe20NW 1.00질량부와, 실리콘 혼합 수지 9.00질량부를 혼합하고, 탁상 핸드 프레스기로 성형하여 12cm×12cm×두께 0.7mm의 시트(차폐 재료)를 제작했다.1.00 parts by mass of Fe20NW and 9.00 parts by mass of silicone mixed resin were mixed and molded using a tabletop hand press to produce a sheet (shielding material) of 12 cm x 12 cm x 0.7 mm in thickness.

실시예 4Example 4

Fe20NW 0.500질량부와, 실리콘 혼합 수지 9.50질량부를 혼합하고, 탁상 핸드 프레스기로 성형하여 12cm×12cm×두께 0.4mm의 시트(차폐 재료)를 제작했다.0.500 parts by mass of Fe20NW and 9.50 parts by mass of silicone mixed resin were mixed and molded using a tabletop hand press to produce a sheet (shielding material) of 12 cm x 12 cm x 0.4 mm thick.

실시예 5Example 5

Fe20NW 0.100질량부와, 실리콘 혼합 수지 9.90질량부를 혼합하고, 탁상 핸드 프레스기로 성형하여 12cm×12cm×두께 0.4mm의 시트(차폐 재료)를 제작했다.0.100 parts by mass of Fe20NW and 9.90 parts by mass of silicone mixed resin were mixed and molded using a tabletop hand press to produce a sheet (shielding material) of 12 cm x 12 cm x 0.4 mm thick.

실시예 6Example 6

Fe80NW 3.00질량부와, 실리콘 혼합 수지 7.00질량부를 혼합하고, 탁상 핸드 프레스기로 성형하여 12cm×12cm×두께 0.4mm의 시트(차폐 재료)를 제작했다.3.00 parts by mass of Fe80NW and 7.00 parts by mass of silicone mixed resin were mixed and molded using a tabletop hand press to produce a sheet (shielding material) of 12 cm x 12 cm x 0.4 mm thick.

실시예 7Example 7

Fe80NW 1.00질량부와, 실리콘 혼합 수지 9.00질량부를 혼합하고, 탁상 핸드 프레스기로 성형하여 12cm×12cm×두께 1.8mm의 시트(차폐 재료)를 제작했다.1.00 parts by mass of Fe80NW and 9.00 parts by mass of silicone mixed resin were mixed and molded using a tabletop hand press to produce a sheet (shielding material) of 12 cm x 12 cm x 1.8 mm thick.

실시예 8Example 8

FeNW 1.00질량부와, 실리콘 혼합 수지 9.00질량부를 혼합하고, 탁상 핸드 프레스기로 성형하여 12cm×12cm×두께 1.6mm의 시트(차폐 재료)를 제작했다.1.00 parts by mass of FeNW and 9.00 parts by mass of silicone mixed resin were mixed and molded using a tabletop hand press to produce a sheet (shielding material) of 12 cm x 12 cm x 1.6 mm thick.

실시예 9Example 9

NiNW 1.00질량부와, 실리콘 혼합 수지 9.00질량부를 혼합하고, 탁상 핸드 프레스기로 성형하여 12cm×12cm×두께 1.6mm의 시트(차폐 재료)를 제작했다.1.00 parts by mass of NiNW and 9.00 parts by mass of silicone mixed resin were mixed and molded using a tabletop hand press to produce a sheet (shielding material) of 12 cm x 12 cm x 1.6 mm thick.

실시예 10Example 10

AgNW 3.00질량부와, 실리콘 혼합 수지 7.00질량부를 혼합하고, 탁상 핸드 프레스기로 성형하여 12cm×12cm×두께 0.4mm의 시트(차폐 재료)를 제작했다.3.00 parts by mass of AgNW and 7.00 parts by mass of silicone mixed resin were mixed and molded using a tabletop hand press to produce a sheet (shielding material) of 12 cm x 12 cm x 0.4 mm thick.

실시예 11Example 11

Fe20NW 3.00질량부와, 에폭시 수지 7.00질량부를 혼합하고, 탁상 핸드 프레스기로 성형하여 12cm×12cm×두께 0.4mm의 시트(차폐 재료)를 제작했다.3.00 parts by mass of Fe20NW and 7.00 parts by mass of epoxy resin were mixed and molded using a tabletop hand press to produce a sheet (shielding material) of 12 cm x 12 cm x 0.4 mm thick.

실시예 12Example 12

AgNW 3.00질량부와, 에폭시 수지 7.00질량부를 혼합하고, 탁상 핸드 프레스기로 성형하여 12cm×12cm×두께 0.4mm의 시트(차폐 재료)를 제작했다.3.00 parts by mass of AgNW were mixed with 7.00 parts by mass of epoxy resin, and molded using a tabletop hand press to produce a sheet (shielding material) of 12 cm x 12 cm x 0.4 mm thick.

실시예 13Example 13

Fe20NW 3.00질량부와, 불소 수지 7.00질량부를 혼합하고, 10cm×10cm의 금형으로 건조(톨루엔 제거), 350℃에서 열큐어를 행하여, 두께 0.4mm의 시트(차폐 재료)를 제작했다.3.00 parts by mass of Fe20NW and 7.00 parts by mass of fluororesin were mixed, dried (toluene removed) in a 10 cm x 10 cm mold, and heat cured at 350°C to produce a sheet (shielding material) with a thickness of 0.4 mm.

실시예 14Example 14

Fe20NW 1.00질량부와, 불소 수지 9.00질량부를 혼합하고, 10cm×10cm의 금형으로 건조(톨루엔 제거), 350℃에서 열큐어를 행하여, 두께 0.4mm의 시트(차폐 재료)를 제작했다.1.00 parts by mass of Fe20NW and 9.00 parts by mass of fluororesin were mixed, dried (toluene removed) in a 10 cm x 10 cm mold, and heat cured at 350°C to produce a sheet (shielding material) with a thickness of 0.4 mm.

실시예 15Example 15

NiNW 3.00질량부와, 불소 수지 7.00질량부를 혼합하고, 10cm×10cm의 금형으로 건조(톨루엔 제거), 350℃에서 열큐어를 행하여, 두께 0.4mm의 시트(차폐 재료)를 제작했다.3.00 parts by mass of NiNW and 7.00 parts by mass of fluororesin were mixed, dried (toluene removed) in a 10 cm x 10 cm mold, and heat cured at 350°C to produce a sheet (shielding material) with a thickness of 0.4 mm.

실시예 16Example 16

NiNW 1.00질량부와, 불소 수지 9.00질량부를 혼합하고, 10cm×10cm의 금형으로 건조(톨루엔 제거), 350℃에서 열큐어를 행하여, 두께 0.4mm의 시트(차폐 재료)를 제작했다.1.00 parts by mass of NiNW and 9.00 parts by mass of fluororesin were mixed, dried (toluene removed) in a 10 cm x 10 cm mold, and heat cured at 350°C to produce a sheet (shielding material) with a thickness of 0.4 mm.

비교예 1Comparative Example 1

실리콘 혼합 수지를, 탁상 핸드 프레스기로 성형하여 12cm×12cm×두께 0.6mm의 시트를 제작했다.The silicone mixed resin was molded using a tabletop hand press to produce a sheet of 12 cm x 12 cm x 0.6 mm thick.

비교예 2Comparative Example 2

NiP 1.00질량부와 실리콘 혼합 수지 9.00질량부를, 탁상 핸드 프레스기로 성형하여 12cm×12cm×두께 0.6mm의 시트를 제작했다.1.00 parts by mass of NiP and 9.00 parts by mass of silicone mixed resin were molded using a tabletop hand press to produce a sheet of 12 cm x 12 cm x 0.6 mm thick.

비교예 3Comparative Example 3

NiP 3.00질량부와 실리콘 혼합 수지 7.00질량부를, 탁상 핸드 프레스기로 성형하여 12cm×12cm×두께 0.4mm의 시트를 제작했다.3.00 parts by mass of NiP and 7.00 parts by mass of silicone mixed resin were molded using a tabletop hand press to produce a sheet of 12 cm x 12 cm x 0.4 mm thick.

비교예 4Comparative Example 4

NiP 8.00질량부와 실리콘 수지 2.00질량부를, 탁상 핸드 프레스기로 성형하여 12cm×12cm×두께 0.4mm의 시트를 제작했다.8.00 parts by mass of NiP and 2.00 parts by mass of silicone resin were molded using a tabletop hand press to produce a sheet of 12 cm x 12 cm x 0.4 mm thick.

비교예 5Comparative Example 5

NiP 3.00질량부와 에폭시 수지 7.00질량부를, 탁상 핸드 프레스기로 성형하여 12cm×12cm×두께 0.4mm의 시트를 제작했다.3.00 parts by mass of NiP and 7.00 parts by mass of epoxy resin were molded using a tabletop hand press to produce a sheet of 12 cm x 12 cm x 0.4 mm thick.

비교예 6Comparative Example 6

NiP 8.00질량부와 에폭시 수지 2.00질량부를, 탁상 핸드 프레스기로 성형하여 12cm×12cm×두께 0.4mm의 시트를 제작했다.8.00 parts by mass of NiP and 2.00 parts by mass of epoxy resin were molded using a tabletop hand press to produce a sheet of 12 cm x 12 cm x 0.4 mm thick.

얻어진 시트의 구성 및 평가를 표 2 및 표 3에 나타낸다.The composition and evaluation of the obtained sheets are shown in Tables 2 and 3.

실시예 1∼16의 시트(차폐 재료)는, 나노와이어와 바인더를 포함하는 차폐 재료였기 때문에, 테라헤르츠파의 감쇠성(즉 차폐성)이 우수했다. 또한, 나노와이어의 첨가량이 낮더라도 차폐 성능이 높기 때문에, 재료로서의 가요성 및 내열성도 우수했다.Since the sheets (shielding materials) of Examples 1 to 16 were shielding materials containing nanowires and a binder, the attenuation properties (i.e., shielding properties) of terahertz waves were excellent. In addition, since the shielding performance was high even when the amount of nanowires added was low, the material had excellent flexibility and heat resistance.

나아가, 실시예 1∼9, 11 및 13∼16의 시트(차폐 재료)는, 철, 니켈 및 코발트로 이루어지는 군으로부터 선택된 금속을 주성분으로 하는 나노와이어를 이용했기 때문에, 반사율이 낮고, 테라헤르츠파를 성형체 내부에서 보다 충분히 감쇠할 수 있었다.Furthermore, since the sheets (shielding materials) of Examples 1 to 9, 11, and 13 to 16 used nanowires whose main components are metals selected from the group consisting of iron, nickel, and cobalt, they have low reflectivity and cannot transmit terahertz waves. was able to be more sufficiently attenuated inside the molded body.

비교예 1∼5의 시트는, 나노와이어를 포함하고 있지 않았기 때문에, 테라헤르츠파 감쇠성이 불량했다.Since the sheets of Comparative Examples 1 to 5 did not contain nanowires, the terahertz wave attenuation properties were poor.

비교예 4 및 6은 테라헤르츠파를 차폐하기 위해서, Ni 입자의 첨가량을 늘렸기 때문에, 가요성이 부족해지고, 더욱이 첨가량이 많기 때문에, 반사율이 높은 재료가 되었다.In Comparative Examples 4 and 6, the amount of Ni particles added was increased in order to shield terahertz waves, so flexibility became insufficient, and since the amount added was large, the materials became materials with high reflectivity.

실시예 1∼3, 6∼9, 11 및 13∼16과, 실시예 4∼5, 10 및 12의 비교로부터, 본 발명의 테라헤르츠파 차폐 재료는, 이하의 조건(A1) 및 (A2)를 만족시키는 것에 의해, 보다 우수한 차폐성 및 내반사성(모두 「우량」 레벨 이상)을 갖는 것이 분명하다: From comparison of Examples 1 to 3, 6 to 9, 11 and 13 to 16 with Examples 4 to 5, 10 and 12, the terahertz wave shielding material of the present invention satisfies the following conditions (A1) and (A2) It is clear that it has better shielding and anti-reflection properties (all above the “good” level) by satisfying:

(A1) 나노와이어가 철 또는 니켈을 주성분으로 하는 나노와이어이다; (A1) The nanowire is a nanowire whose main component is iron or nickel;

(A2) 나노와이어의 함유량이 8질량% 이상, 67질량% 미만이다.(A2) The nanowire content is 8 mass% or more and less than 67 mass%.

실시예 6과, 실시예 1∼5, 7∼12 및 13∼16의 비교로부터, 본 발명의 테라헤르츠파 차폐 재료는, 이하의 조건(B1) 및 (B2)를 만족시키는 것에 의해, 보다 한층 우수한 차폐성 및 내반사성(모두 「최량」 레벨)을 갖는 것이 분명하다: From a comparison of Example 6 with Examples 1 to 5, 7 to 12, and 13 to 16, the terahertz wave shielding material of the present invention satisfies the following conditions (B1) and (B2), thereby providing further performance. It is clear that it has excellent shielding and anti-reflection properties (both at the “best” level):

(B1) 나노와이어가 철을 주성분으로 하는 나노와이어이다; (B1) The nanowire is a nanowire whose main component is iron;

(B2) 나노와이어의 함유량이 20∼50질량%이다.(B2) The nanowire content is 20 to 50 mass%.

본 발명의 테라헤르츠파 차폐 재료는, 내열성, 가요성, 및 테라헤르츠파에 대한 차폐성 및 내반사성 중 적어도 하나의 특성(바람직하게는 모든 특성)이 요구되는, 모든 용도에 유용하다. 그와 같은 용도로서, 예를 들면, 무선 통신의 안테나 유닛; 센싱 유닛; 고주파용의 자계 실드; 전자파 흡수재를 들 수 있다.The terahertz wave shielding material of the present invention is useful for all applications that require at least one (preferably all properties) of heat resistance, flexibility, and shielding and anti-reflection properties for terahertz waves. Such uses include, for example, antenna units for wireless communication; sensing unit; Magnetic field shield for high frequencies; Examples include electromagnetic wave absorbing materials.

Claims (12)

나노와이어와 바인더를 포함하는 테라헤르츠파 차폐 재료.Terahertz wave shielding material containing nanowires and binders. 제 1 항에 있어서,
나노와이어가, 철, 니켈 및 코발트로 이루어지는 군으로부터 선택된 1종 이상의 금속을 주성분으로 하는 나노와이어인, 테라헤르츠파 차폐 재료.
According to claim 1,
A terahertz wave shielding material, wherein the nanowire is a nanowire containing as a main component one or more metals selected from the group consisting of iron, nickel, and cobalt.
제 1 항에 있어서,
나노와이어의 평균 길이가 5μm 이상인, 테라헤르츠파 차폐 재료.
According to claim 1,
A terahertz wave shielding material whose nanowires have an average length of 5μm or more.
제 1 항에 있어서,
나노와이어가 복수의 입자가 연결된 나노와이어인, 테라헤르츠파 차폐 재료.
According to claim 1,
A terahertz wave shielding material in which nanowires are nanowires in which multiple particles are connected.
제 1 항에 있어서,
287.5∼312.5GHz의 대역폭의 전자파의 투과 감쇠량의 절대치가 20dB/mm 이상인, 테라헤르츠파 차폐 재료.
According to claim 1,
A terahertz wave shielding material whose absolute value of transmission attenuation of electromagnetic waves with a bandwidth of 287.5 to 312.5 GHz is 20 dB/mm or more.
제 1 항에 있어서,
287.5∼312.5GHz의 대역폭의 전자파의 반사율이 50% 미만인, 테라헤르츠파 차폐 재료.
According to claim 1,
A terahertz wave shielding material with a reflectance of less than 50% of electromagnetic waves in the bandwidth of 287.5 to 312.5 GHz.
제 1 항에 있어서,
나노와이어의 함유량이 67질량% 미만인, 테라헤르츠파 차폐 재료.
According to claim 1,
A terahertz wave shielding material with a nanowire content of less than 67% by mass.
제 1 항에 있어서,
나노와이어의 함유량이 0.5질량% 이상인, 테라헤르츠파 차폐 재료.
According to claim 1,
A terahertz wave shielding material with a nanowire content of 0.5% by mass or more.
제 1 항에 있어서,
나노와이어가 철 또는 니켈을 주성분으로 하는 나노와이어이고,
나노와이어의 함유량이 8질량% 이상, 67질량% 미만인, 테라헤르츠파 차폐 재료.
According to claim 1,
A nanowire is a nanowire whose main component is iron or nickel,
A terahertz wave shielding material with a nanowire content of 8 mass% or more and less than 67 mass%.
제 1 항에 있어서,
나노와이어가 철을 주성분으로 하는 나노와이어이고,
나노와이어의 함유량이 20∼50질량%인, 테라헤르츠파 차폐 재료.
According to claim 1,
A nanowire is a nanowire whose main component is iron,
A terahertz wave shielding material with a nanowire content of 20 to 50 mass%.
제 1 항 내지 제 10 항 중 어느 한 항에 기재된 테라헤르츠파 차폐 재료가 포함되는 무선 통신의 안테나 유닛.An antenna unit for wireless communication containing the terahertz wave shielding material according to any one of claims 1 to 10. 제 1 항 내지 제 10 항 중 어느 한 항에 기재된 테라헤르츠파 차폐 재료가 포함되는 센싱 유닛. A sensing unit comprising the terahertz wave shielding material according to any one of claims 1 to 10.
KR1020247004886A 2021-08-25 2022-08-24 Terahertz wave shielding material KR20240054971A (en)

Applications Claiming Priority (17)

Application Number Priority Date Filing Date Title
JPJP-P-2021-137421 2021-08-25
JP2021137421 2021-08-25
JP2021137422 2021-08-25
JPJP-P-2021-137422 2021-08-25
JP2021198607 2021-12-07
JPJP-P-2021-198607 2021-12-07
JPJP-P-2021-198605 2021-12-07
JP2021198606 2021-12-07
JP2021198605 2021-12-07
JPJP-P-2021-198606 2021-12-07
JPJP-P-2022-059546 2022-03-31
JP2022059533 2022-03-31
JP2022059546 2022-03-31
JPJP-P-2022-059533 2022-03-31
JPJP-P-2022-073506 2022-04-27
JP2022073506 2022-04-27
PCT/JP2022/031779 WO2023027085A1 (en) 2021-08-25 2022-08-24 Terahertz radiation shielding material

Publications (1)

Publication Number Publication Date
KR20240054971A true KR20240054971A (en) 2024-04-26

Family

ID=85322826

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020247004886A KR20240054971A (en) 2021-08-25 2022-08-24 Terahertz wave shielding material

Country Status (5)

Country Link
JP (2) JP7381158B2 (en)
KR (1) KR20240054971A (en)
DE (1) DE112022004113T5 (en)
TW (1) TW202317286A (en)
WO (1) WO2023027085A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019071426A (en) 2016-11-04 2019-05-09 マクセルホールディングス株式会社 Electromagnetic wave absorbing sheet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247036A (en) 2006-03-17 2007-09-27 Osaka Univ Iron-based nanofine wire and its production method, iron-based carbon-compounded fine wire and its production method, and wave absorber using the same
WO2015070184A1 (en) 2013-11-08 2015-05-14 Srinivas, Arjun Daniel Irradiation-assisted production of nanostructures
JP2015095638A (en) * 2013-11-14 2015-05-18 株式会社新日本電波吸収体 Electromagnetic wave absorber
WO2019048056A1 (en) * 2017-09-08 2019-03-14 Sze Hagenuk Gmbh Nonwoven fabric for shielding terahertz frequencies
CN111630095A (en) * 2017-12-04 2020-09-04 华沙工业大学 Use of polymer-carbon materials for shielding electromagnetic radiation having wavelengths in the sub-terahertz and terahertz ranges
JP7344550B2 (en) * 2018-12-19 2023-09-14 ユニチカ株式会社 Method for producing iron-nickel nanowires
JP7479124B2 (en) * 2019-03-29 2024-05-08 Toppanホールディングス株式会社 Electromagnetic wave suppression sheet and its manufacturing method
WO2021107136A1 (en) * 2019-11-28 2021-06-03 ユニチカ株式会社 Electromagnetic wave blocking material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019071426A (en) 2016-11-04 2019-05-09 マクセルホールディングス株式会社 Electromagnetic wave absorbing sheet

Also Published As

Publication number Publication date
DE112022004113T5 (en) 2024-07-04
JPWO2023027085A1 (en) 2023-03-02
JP2023164803A (en) 2023-11-14
WO2023027085A1 (en) 2023-03-02
TW202317286A (en) 2023-05-01
JP7381158B2 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
US10932398B2 (en) Electromagnetic interference (EMI) shielding products using titanium monoxide (TiO) based materials
US20090087608A1 (en) Roll-type composite sheet having improved heat-releasing electromagnetic wave-absorbing, and impact-absorbing properties, and method of manufacturing the same
JP5218396B2 (en) Electromagnetic interference suppression sheet, high-frequency signal flat cable, flexible printed circuit board, and electromagnetic interference suppression sheet manufacturing method
JP4446593B2 (en) Electromagnetic wave absorber
KR20240054971A (en) Terahertz wave shielding material
JP4824621B2 (en) Radio wave absorber composition, radio wave absorber, and method for producing radio wave absorber
CN113773610A (en) Carbonyl iron powder wave-absorbing material and preparation method thereof
US20220173494A1 (en) Antenna array for 5g communications, antenna structure, noise-suppressing thermally conductive sheet, and thermally conductive sheet
CN117837282A (en) Terahertz wave shielding material
CN110845228A (en) Lean-iron soft magnetic ferrite, electromagnetic wave absorption material and preparation method thereof
JP4279393B2 (en) Plate-like soft magnetic ferrite particle powder and soft magnetic ferrite particle composite using the same
WO2021107136A1 (en) Electromagnetic wave blocking material
CN116368004A (en) Electromagnetic wave absorbing sheet
JP2023033192A (en) electromagnetic wave absorber
JP7493693B1 (en) Near-field noise suppression sheet
KR102076837B1 (en) Manufacturing method of eco-friendly electromagnetic intereference shielding materials including AgSnO2-carbon material
JP2002344192A (en) Composite powder for radio wave absorber
JP4462750B2 (en) Radio wave absorber
JP7209761B2 (en) NEAR FIELD NOISE SUPPRESSION SHEET AND MANUFACTURING METHOD THEREOF
CN113708086B (en) Transition metal nano powder/carbon nano tube composite material and preparation method and application thereof
CN114591602B (en) High dielectric constant liquid crystal polyester composition and preparation method and application thereof
KR102388449B1 (en) Electromagnetic wave shielding material and method for producing the same
KR20230085746A (en) Electromagnetic wave absorber having electromagnetic wave absorption properties in high frequency band and method for preparing the same
KR20240055727A (en) Soft magnetic nanowires, paints containing the same, and a laminate formed by applying the same
JP2024058390A (en) Radio wave absorber and its manufacturing method