JP2007247036A - Iron-based nanofine wire and its production method, iron-based carbon-compounded fine wire and its production method, and wave absorber using the same - Google Patents

Iron-based nanofine wire and its production method, iron-based carbon-compounded fine wire and its production method, and wave absorber using the same Download PDF

Info

Publication number
JP2007247036A
JP2007247036A JP2006075731A JP2006075731A JP2007247036A JP 2007247036 A JP2007247036 A JP 2007247036A JP 2006075731 A JP2006075731 A JP 2006075731A JP 2006075731 A JP2006075731 A JP 2006075731A JP 2007247036 A JP2007247036 A JP 2007247036A
Authority
JP
Japan
Prior art keywords
iron
wire
carbon
nanowire
wave absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006075731A
Other languages
Japanese (ja)
Inventor
Kenichi Machida
憲一 町田
Masahiro Ito
正浩 伊東
Masao Terada
昌生 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2006075731A priority Critical patent/JP2007247036A/en
Publication of JP2007247036A publication Critical patent/JP2007247036A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an iron-based nanofine wire which can easily be produced, is high in aspect ratio, is excellent in wave absorbing characteristics, and has a surface shape advantageous even for the securance of reactivity when surface coating is performed. <P>SOLUTION: The iron-based nanofine wire has a wire diameter of 50 to 300 nm, and also has a fine wire shape where iron-based granular crystals stand in a line or a shape where the fine wire parts standing in a line are connected so as to be a dendritic shape in such a manner that its wire aspect ratio is controlled to ≥20. Further, the shape of the surface part constituting the outer circumferential face of the wire in each iron-based metal granular crystal in the longitudinal direction of the wire is the rosary-like one so as to be a projecting curved face where the minimum value of the cross-sectional area of the wire is formed at the position of the connection face with the adjoining grain, and also, the maximum value of the cross-sectional area of the wire is formed at the middle position of the connection face on both the sides. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、鉄系ナノ細線とその製造方法、鉄系炭素複合細線とその製造方法、及びそれを用いた電波吸収体に関する。   The present invention relates to an iron-based nanowire and a manufacturing method thereof, an iron-based carbon composite wire and a manufacturing method thereof, and a radio wave absorber using the same.

特開平11−354973JP 11-354773 A 特開2002−93607JP 2002-93607 A 特開2001−342014JP 2001-342014 A 特開2004−269987JP 2004-269987 A

フェライトに代表される磁性損失型電波吸収体では、数GHz〜数十GHzの領域で良好な電波吸収特性を有するものの、その飽和磁化値が低いために電気長[d×(εμ)0.5:dはサンプル物理長]が短くなり、その吸収体は厚くならざるを得ない。鉄などの金属磁性材料では大きな飽和磁化を有するために、酸化物磁性体に比べ透磁率を大きくすることが可能となるが、その吸収体の作製には誘電体バインダが必要であり、大きな透磁率を得るために磁性粒子の充填率を増加させた場合、磁性粒子間に大きな電気容量が発生するために、市販されている高透磁率を有する磁性体シートにおいても、わずかな透磁率(1GHzでμ’=〜8)を有する誘電体(ε’>40)となる。その結果、下式からも理解されるように誘電率の増加によりインピーダンスが低下し、有効な電波吸収特性は得られない。 A magnetic loss type wave absorber represented by ferrite has good wave absorption characteristics in the region of several GHz to several tens GHz, but its electrical length [d × (εμ) 0.5 : D is the sample physical length], and the absorber must be thick. Since metal magnetic materials such as iron have a large saturation magnetization, it is possible to increase the magnetic permeability compared to an oxide magnetic material. However, a dielectric binder is required for the production of the absorber, and a large permeability is required. When the filling rate of the magnetic particles is increased in order to obtain magnetic permeability, a large electric capacity is generated between the magnetic particles. Therefore, even in a commercially available magnetic sheet having a high magnetic permeability, a slight magnetic permeability (1 GHz) Thus, the dielectric material (μ ′ = ˜8) is obtained (ε ′> 40). As a result, as can be understood from the following equation, the impedance decreases due to the increase of the dielectric constant, and an effective radio wave absorption characteristic cannot be obtained.

金属磁性材料による電波吸収では、バインダに対する金属磁性粉の充填率を上げた際、金属の良伝導性のために電波の電界成分により誘発される渦電流が原因で磁化の低減を招き、複素比透磁率の実部の値が減少し良好な電波吸収が得られない。これを抑制するためには金属の粒子サイズを小さくすること(粒子の断面積を小さくすることで高抵抗化する)、金属粒子間を電気的に絶縁することが必要となる。また、電波が金属表面の表層のみに侵入する現象(表皮効果)から、粒子表面を凸凹にすることで電波の伝搬経路を長くすることで電気抵抗を増加させることもできる。特許文献1では、Fe基扁平状ナノ結晶軟磁性体粉末を用いた電波吸収体が示され、その磁性粉末は厚さが3μm以下であり、その平均竜径が20〜50μmであることが好ましいこと、扁平形状が必須であること、さらに、粉末粒子間を絶縁することが重要であることが示されているが、伝搬経路を長くすることで渦電流損を低減できることは一切述べられていない。   In radio wave absorption by metallic magnetic materials, when the filling rate of metallic magnetic powder to the binder is increased, the eddy current induced by the electric field component of the radio wave causes a reduction in magnetization due to the good conductivity of the metal, resulting in a complex ratio. The value of the real part of the magnetic permeability decreases and good radio wave absorption cannot be obtained. In order to suppress this, it is necessary to reduce the metal particle size (to increase the resistance by reducing the cross-sectional area of the particle) and to electrically insulate the metal particles. Further, from the phenomenon that radio waves enter only the surface layer of the metal surface (skin effect), the electrical resistance can be increased by lengthening the propagation path of the radio waves by making the particle surface uneven. Patent Document 1 shows a radio wave absorber using an Fe-based flat nanocrystalline soft magnetic powder, and the magnetic powder has a thickness of 3 μm or less and an average dragon diameter of 20 to 50 μm. In addition, it has been shown that a flat shape is essential and that it is important to insulate between powder particles, but there is no mention that the eddy current loss can be reduced by lengthening the propagation path .

また、本発明と類似の形態を有する磁性体と誘電体を組み合わせた材料も特許文献2により報告されている。強誘電性を有する粒子を中心核として、これに高透磁率を有するフェライトをコーティングすることにより、高い複素透磁率とともに高い複素誘電率を有する磁性多層微粒子を得ることができると示されている。さらに、誘電率の大きさとしては、高誘電率の効果を得るために100以上が好ましく、500以上がより好ましいとも述べられているが、ここでも前述の式(1)から容易に類推できるように、このように大きな誘電率を有する材料を用いた場合、良好な電波吸収特性を得ることは困難である。事実、この高誘電体/磁性体複合体に関しては、透磁率の測定値は実施例に記載されているものの、その吸収特性の結果は紹介されていない。   A material combining a magnetic material and a dielectric material having a form similar to that of the present invention is also reported in Patent Document 2. It has been shown that magnetic multilayer fine particles having a high complex permeability and a high complex permittivity can be obtained by coating a ferrite having a high magnetic permeability on a particle having ferroelectricity as a central core. Further, it has been stated that the dielectric constant is preferably 100 or more and more preferably 500 or more in order to obtain the effect of a high dielectric constant, but here it can be easily inferred from the above-described formula (1). In addition, when a material having such a large dielectric constant is used, it is difficult to obtain good radio wave absorption characteristics. In fact, for this high dielectric / magnetic composite, measured values of magnetic permeability are described in the examples, but the results of the absorption characteristics are not introduced.

また、特許文献3、特許文献4に本発明と類似する鉄細線をカーボンナノチューブにより被覆した材料の報告がなされているが、前者の発明は、直線性の高い鉄系針状体を触媒兼テンプレートとして用い、これとフッ素樹脂とを510〜550℃で加熱することで、その外周に炭素を析出にさせ、その後、鉄系成分を酸溶解に除去することで直線性に優れたカーボンナノチューブを作製する手法に関するものである。しかしながら、カーボンナノチューブの前駆体となる鉄ワイヤー/カーボンナノチューブ複合体の粒子表面はフラットであり、粒状の粒子で被覆され複雑な表面構造を有する本発明の複合細線とは大きく異なる。後者の発明では、有機金属錯体を溶解した有機液体中で、基板を加熱することにより、カーボンナノチューブを合成し、同時にカーボンナノチューブの内部に有機金属錯体の金属を析出させて金属ナノワイヤーを合成いるが、この複合体表面の前者の複合体と同様にフラットな表面を有し、その粒子表面構造が異なる他、その合成温度も800℃以上と非常に高温である。   In addition, Patent Document 3 and Patent Document 4 report a material in which an iron fine wire similar to the present invention is coated with carbon nanotubes. However, the former invention uses a highly linear iron needle as a catalyst and template. The carbon nanotubes are excellent in linearity by heating them at 510-550 ° C. to precipitate carbon on the outer periphery, and then removing the iron-based components by acid dissolution. It is about the technique to do. However, the particle surface of the iron wire / carbon nanotube composite serving as the precursor of the carbon nanotube is flat, which is greatly different from the composite fine wire of the present invention having a complicated surface structure coated with granular particles. In the latter invention, carbon nanotubes are synthesized by heating a substrate in an organic liquid in which an organometallic complex is dissolved, and at the same time, metal nanowires are synthesized by depositing metal of the organometallic complex inside the carbon nanotubes. However, it has a flat surface similar to the former complex on the surface of this complex, its particle surface structure is different, and its synthesis temperature is as high as 800 ° C. or higher.

先述のとおり、金属磁性粉末を樹脂で固定した吸収体においては電波吸収特性を良くする(高反射損失、薄型化)ためには、透磁率を大きくする必要があるが、これは磁性粉末の充填率を高めることで行われるために、磁性粒子間の電気的絶縁性が悪くなるために、渦電流損が生じることで高周波数域(>10GHz)の電波吸収には問題があった。また、磁性粒子間距離の減少により大きな静電容量を生じ、誘電率が非常に大きくなる(ε’>40)ことから、一概にその吸収特性は良いものではない。   As described above, in order to improve the radio wave absorption characteristics (high reflection loss and thinning) in the absorber in which the metal magnetic powder is fixed with resin, it is necessary to increase the magnetic permeability. Since it is performed by increasing the rate, the electrical insulation between the magnetic particles is deteriorated, and eddy current loss occurs, which causes a problem in radio wave absorption in the high frequency range (> 10 GHz). Further, since the capacitance between the magnetic particles is reduced and the dielectric constant becomes very large (ε ′> 40), the absorption characteristics are not generally good.

本発明は製造が容易でアスペクト比が高く電波吸収特性にも優れ、かつ表面被覆を行なう際の反応性確保にも有利な表面形態を有した鉄系ナノ細線とその製造方法、さらに該鉄系ナノ細線の表面を炭素系微粒子の凝集体によって被覆することにより表面絶縁性を高めた鉄系炭素複合細線とその製造方法、並びにそれらを用いた電波吸収体を提供することにある。   The present invention is an iron-based nanowire having a surface form that is easy to manufacture, has a high aspect ratio, is excellent in radio wave absorption characteristics, and is advantageous for ensuring reactivity when performing surface coating, and a method for manufacturing the same, and further An object of the present invention is to provide an iron-based carbon composite thin wire whose surface insulation is enhanced by coating the surface of the nanowire with an aggregate of carbon-based fine particles, a method for producing the same, and a radio wave absorber using them.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために本発明の鉄系ナノ細線は、線径が50nm以上300nm以下であり、かつ、線アスペクト比が20以上となるように鉄系粒状結晶が列状に連なった細線形態又は該列状に連なった細線部が樹枝状に連結した形態をなし、かつ、線長手方向において各鉄系金属粒状結晶の線外周面を構成する表面部分の形態が、隣接粒子との接続面位置で線断面積の極小値を形成し、かつ、両側の接続面の途中位置で線断面積の極大値をなす凸湾曲面となる数珠状形態をなすことを特徴とする。   In order to solve the above problems, the iron-based nanowire of the present invention has a wire shape in which iron-based granular crystals are arranged in a row so that the wire diameter is 50 nm or more and 300 nm or less and the line aspect ratio is 20 or more. Alternatively, the thin wire portions connected in a row form a dendritic shape, and the shape of the surface portion constituting the wire outer peripheral surface of each iron-based metal granular crystal in the wire longitudinal direction is a connection surface with adjacent particles. A minimum value of the line cross-sectional area is formed at the position, and a bead shape is formed that becomes a convex curved surface having a maximum value of the line cross-sectional area at the midpoint of the connecting surfaces on both sides.

金属磁性電波吸収体においては、磁性体の粒子サイズを小さくすることで、比表面積を拡大し、例えばGHz帯域での非常に薄いスキンデプス(表皮効果)でも、透磁率を発生させうる磁性体体積を増やすことで磁性損により電波を吸収することが可能となる。通常、粒子のサイズは小さくても1μm程度であり、球状の粒子でこれ以上小さい場合は、反磁界の影響により大きな透磁率を得ることができない。これに対し本発明では、たとえ、50nm以上300nm以下と非常に細い線径ではあっても、非常に高いアスペクト比(>20)を有することにより、上記の反磁界の効果をほとんど無視することが可能となる。また、上記本発明特有の数珠状形態の細線形態又はこれが樹状に連結した構造となることで、表面がフラットな細線と比べ比表面積が増加するので、より多くの電磁界を補足することができ、さらには、電磁波の伝搬経路が長くなることで、磁化の減少を引き起こす渦電流損を抑制することが可能となり、電波吸収体に使用した際に優れた特性を発揮する。この効果は、特に樹状結合形態となした場合により顕著である。   In the magnetic metal electromagnetic wave absorber, the specific surface area is increased by reducing the particle size of the magnetic material, and the magnetic material volume that can generate magnetic permeability even with a very thin skin depth (skin effect) in the GHz band, for example. It is possible to absorb radio waves due to magnetic loss. Usually, the particle size is about 1 μm even if it is small, and when it is a spherical particle or smaller, a large magnetic permeability cannot be obtained due to the influence of the demagnetizing field. On the other hand, in the present invention, even if the wire diameter is as thin as 50 nm or more and 300 nm or less, the effect of the demagnetizing field can be almost ignored by having a very high aspect ratio (> 20). It becomes possible. Moreover, since the specific surface area is increased as compared with a thin wire with a flat surface by being a structure in which the above-described bead-like thin wire form or a structure in which this is connected in a dendritic shape, it is possible to supplement more electromagnetic fields. In addition, since the propagation path of electromagnetic waves becomes longer, eddy current loss that causes a decrease in magnetization can be suppressed, and excellent characteristics are exhibited when used in a radio wave absorber. This effect is particularly prominent when the dendritic bond form is obtained.

また、上記の効果を一層顕著なものとするためには、線長を1μm以上10μm以下とすることが望ましい。なお、樹状の結合体の場合、結合点間をつなぐ個々の細線部の長さを線長とする。また、線径は、その細線部の線長方向における平均値にて表わす。   Further, in order to make the above effect more remarkable, it is desirable that the line length is 1 μm or more and 10 μm or less. In the case of a dendritic joined body, the length of each thin line portion connecting the joining points is defined as a line length. The wire diameter is represented by an average value in the wire length direction of the thin wire portion.

また、本発明の鉄系ナノ細線の製造方法は上記本発明の鉄系ナノ細線を製造するために、室温以上150℃以下の加温状態において揮発性鉄カルボニルを、不活性ガスからなるキャリヤーガスとともに150ppm以上450ppm以下の濃度にて、250℃以上400℃以下に保持された反応部に供給することにより前記揮発性鉄カルボニルを熱分解する工程を有することを特徴とする。   In addition, the method for producing the iron-based nanowire of the present invention is a method for producing the iron-based nanowire of the present invention, in which a volatile iron carbonyl is converted into a carrier gas comprising an inert gas in a heated state of room temperature to 150 ° C. And a step of thermally decomposing the volatile iron carbonyl by supplying it to the reaction section maintained at 250 ° C. or more and 400 ° C. or less at a concentration of 150 ppm or more and 450 ppm or less.

揮発性鉄カルボニルとしては、例えばFe(CO)を使用できる。また不活性ガスは窒素ガス又は希ガス(例えばアルゴン)を採用できる。 For example, Fe (CO) 5 can be used as the volatile iron carbonyl. The inert gas may be nitrogen gas or a rare gas (for example, argon).

上記のように高いアスペクト比を有する本発明の鉄系ナノ細線を得るために、本発明者らが種々の反応条件をスクリーニングした結果、不活性ガス中での揮発性鉄カルボニル(カルボニル鉄錯体)の濃度は150ppm以上450ppm以下が望ましいことがわかった。該濃度が下限値未満になると、錯体ガス濃度が低すぎるために鉄系ナノ細線の成長基体(例えば反応容器(例えば反応管)の管壁や、該反応容器内に配置された基板)上へのデポジションが起きなくなる。また、該濃度が上限値を超えると、線径が過剰かアスペクト比の小さい線しか得られなくなる。   In order to obtain the iron-based nanowire of the present invention having a high aspect ratio as described above, as a result of screening of various reaction conditions by the present inventors, volatile iron carbonyl (carbonyl iron complex) in an inert gas is obtained. It was found that the concentration of is preferably 150 ppm or more and 450 ppm or less. When the concentration is less than the lower limit, the concentration of the complex gas is too low so that the growth base of the iron-based nanowire (for example, the wall of the reaction vessel (for example, reaction tube) or the substrate disposed in the reaction vessel) No deposition occurs. On the other hand, when the density exceeds the upper limit, only a line having an excessive wire diameter or a small aspect ratio can be obtained.

他方、反応温度が400℃を超えると、細線を構成する鉄系粒状結晶の成長核となる微細な薄片状鉄が生成するための、鉄カルボニルの分解活性点が得られなくなるために、得られる鉄系ナノ細線の収率が極端に低くなり製造効率が悪い。また、反応温度が250℃未満では、鉄カルボニル錯体の分解が起こりにくくなり、同様の収率低下を招く。   On the other hand, when the reaction temperature exceeds 400 ° C., it becomes impossible to obtain an iron carbonyl decomposition active site for producing fine flaky iron that becomes a growth nucleus of the iron-based granular crystal constituting the fine wire. The yield of iron-based nanowires is extremely low and the production efficiency is poor. On the other hand, when the reaction temperature is less than 250 ° C., the iron carbonyl complex is hardly decomposed, resulting in a similar yield reduction.

また、揮発性鉄カルボニルの加温状態が室温(20℃)未満では液体の状態のままであり、150℃を超えると鉄と一酸化炭素に分解する。   Further, when the warmed state of volatile iron carbonyl is less than room temperature (20 ° C.), it remains in a liquid state, and when it exceeds 150 ° C., it decomposes into iron and carbon monoxide.

反応温度と鉄カルボニルの濃度の設定値により、鉄系粒状結晶は種々の金属鉄を主成分(50質量%以上:残部は例えば炭化鉄)とする鉄系金属粒状結晶とすることもできるし、炭化鉄(例えばFeC)を主成分とする炭化鉄系粒状結晶(50質量%以上:残部は例えば金属鉄)とすることもできる。また、鉄系金属粒状結晶は純鉄にほぼ近い組成とすることもできる(例えば金属鉄が95質量%以上)。さらに、炭化鉄系粒状結晶はその全てが炭化鉄となることも可能である。特に、鉄マトリックス中に炭化鉄が析出した組織とすることで、歪効果による電波吸収特性向上効果も期待できる。 Depending on the set values of the reaction temperature and the concentration of iron carbonyl, the iron-based granular crystal can be an iron-based metal granular crystal containing various types of metallic iron as a main component (50% by mass or more: the balance is, for example, iron carbide), It is also possible to use iron carbide-based granular crystals (50% by mass or more: the balance is, for example, metallic iron) containing iron carbide (for example, Fe 3 C) as a main component. In addition, the iron-based metal granular crystal may have a composition substantially close to that of pure iron (for example, metallic iron is 95% by mass or more). Further, all of the iron carbide-based granular crystals can be iron carbide. In particular, by making the structure in which iron carbide is precipitated in an iron matrix, an effect of improving radio wave absorption characteristics due to a distortion effect can be expected.

次に、本発明の鉄系炭素複合細線は、上記本発明の鉄系ナノ細線(コア)の表面が厚さ50nm以上500nm以下の炭素系微粒子の凝集体層によって被覆され、線径が100nm以上2μm以下であることを特徴とする。鉄系ナノ細線の表面が炭素系微粒子の凝集体によって被覆されることで、非良導体である炭素系微粒子により磁性体である鉄系ナノ細線コア間の電気的絶縁状態が向上し、渦電流損がより一層低減される。その結果、単独の鉄系ナノ細線に比べて、同一の吸収体厚さにおいてより低周波数での電波吸収が可能となる。炭素系微粒子の凝集体層の厚さが50nm未満では有効な絶縁効果が得られなく、炭素系微粒子の凝集体層の厚さが500nmを超えると非磁性体である炭素量の増加により体積あたりの透磁率の減少を招く。また、線径が200nm未満では炭素コーティング層の厚みが不十分であり酸化を受けやすいこと、2μm以上ではアスペクト比が大きくなることで反磁界の影響を少なくとも受けるようになる。   Next, in the iron-based carbon composite fine wire of the present invention, the surface of the iron-based nanowire (core) of the present invention is covered with an aggregate layer of carbon-based fine particles having a thickness of 50 nm or more and 500 nm or less, and the wire diameter is 100 nm or more. It is characterized by being 2 μm or less. The surface of the iron-based nanowires is coated with aggregates of carbon-based fine particles, which improves the electrical insulation between the iron-based nanowire cores, which are magnetic materials, due to the carbon-based fine particles, which are non-good conductors, and eddy current loss. Is further reduced. As a result, compared with a single iron-based nanowire, radio wave absorption at a lower frequency is possible with the same absorber thickness. If the thickness of the carbon-based fine particle aggregate layer is less than 50 nm, an effective insulating effect cannot be obtained. If the thickness of the carbon-based fine particle aggregate layer exceeds 500 nm, the amount of carbon that is a non-magnetic material increases per volume. Leads to a decrease in the magnetic permeability. Further, if the wire diameter is less than 200 nm, the thickness of the carbon coating layer is insufficient and is susceptible to oxidation.

本発明は、上記鉄系炭素複合細線の製造方法も提供する。その第一は、揮発性炭素質化合物を単独で、または不活性ガス(窒素又は希ガス)からなるキャリヤーガスと共に、300℃以上500℃以下に保持された反応部に供給して該揮発性炭素質化合物を熱分解し、該熱分解により発生する炭素成分を上記本発明の鉄系ナノ細線の表面に析出させることにより、該鉄系ナノ細線の表面又は内部に炭素成分を付与することを特徴とする。   The present invention also provides a method for producing the iron-based carbon composite fine wire. The first is that the volatile carbonaceous compound is supplied alone or together with a carrier gas composed of an inert gas (nitrogen or a rare gas) to the reaction section held at 300 ° C. or more and 500 ° C. or less to supply the volatile carbon compound. A carbon component generated on the surface of or inside the iron-based nanowire by depositing a carbon component generated by the thermal decomposition on the surface of the iron-based nanowire of the present invention. And

また、その第二は、揮発性炭素質化合物を単独で、または不活性ガス(窒素又は希ガス)からなるキャリヤーガスと共に、100℃以上300℃以下に保持された反応部に供給しつつ該揮発性炭素質化合物をプラズマ分解し、該プラズマ分解により発生する炭素成分を上記本発明の鉄系ナノ細線の表面に析出させることにより、該鉄系ナノ細線の表面又は内部に炭素成分を付与することを特徴とする。   The second is that the volatile carbonaceous compound is volatilized while being supplied alone or together with a carrier gas composed of an inert gas (nitrogen or a rare gas) to a reaction section maintained at 100 ° C. or higher and 300 ° C. or lower. A carbon component is plasma-decomposed, and a carbon component generated by the plasma decomposition is deposited on the surface of the iron-based nanowire of the present invention, thereby imparting a carbon component to the surface or inside of the iron-based nanowire. It is characterized by.

揮発性炭素質化合物としては、メタノール、エタノール、プロパノール、ブタノール、ジメチルエーテル、ジエチルエーテル、アセトンなどの易揮発性含酸素化合物、メタン、エタン、プロパン、ブタン、エチレン、プロピレン、アセチレンなどの飽和または不飽和炭化水素の一種又は二種以上を使用することができる。   Volatile carbonaceous compounds include volatile oxygenates such as methanol, ethanol, propanol, butanol, dimethyl ether, diethyl ether, and acetone, and saturated or unsaturated such as methane, ethane, propane, butane, ethylene, propylene, and acetylene. One kind or two or more kinds of hydrocarbons can be used.

本発明の鉄系ナノ細線の表面は、前述のごとく起伏に富んだ数珠状形態であるため、反応活性に富み、上記のごとく揮発性炭素質化合物の熱分解やプラズマ分解により炭素系微粒子の凝集体を効率良く析出させることができる。熱分解の場合、反応温度が300℃未満では揮発性炭素質化合物の分解が容易ではなく、500℃を超えると鉄ナノ細線自身の著しい凝集が見られる。また、プラズマ分解の場合は、特に温度を設定するものではないが、反応温度が100℃未満では鉄ナノ細線と炭素との界面での原子相互拡散が起こりにくく密着性が悪くとなり、また、鉄ナノ細線の凝集を抑えるためには300℃以下であることが望ましい。   Since the surface of the iron-based nanowire of the present invention has a bead-like shape rich in undulations as described above, it is rich in reaction activity, and as described above, the agglomeration of carbon-based fine particles by thermal decomposition or plasma decomposition of volatile carbonaceous compounds. Aggregates can be efficiently deposited. In the case of thermal decomposition, if the reaction temperature is less than 300 ° C., the decomposition of the volatile carbonaceous compound is not easy, and if it exceeds 500 ° C., remarkable aggregation of the iron nanowires is observed. In the case of plasma decomposition, the temperature is not particularly set. However, when the reaction temperature is less than 100 ° C., atomic interdiffusion at the interface between the iron nanowire and the carbon hardly occurs, and the adhesion is deteriorated. In order to suppress aggregation of nanowires, it is desirable that the temperature is 300 ° C. or lower.

また、本発明の電波吸収体は、上記本発明の鉄系ナノ細線又は鉄系炭素複合細線を樹脂バインダにて結合したことを特徴とする。本発明の鉄系ナノ細線又は鉄系炭素複合細線を用いることで優れた電波吸収特性を有した電波吸収体が実現できる。また、樹脂バインダにて結合した形態なので、ボード、シート、テープもしくはコード被覆体状への成形も容易である。   The radio wave absorber of the present invention is characterized in that the iron-based nanowires or the iron-based carbon composite wires of the present invention are bonded with a resin binder. By using the iron-based nanowire or the iron-based carbon composite wire of the present invention, a radio wave absorber having excellent radio wave absorption characteristics can be realized. Moreover, since it is the form which couple | bonded with the resin binder, shaping | molding into a board, a sheet | seat, a tape, or a code | cord | cover code | cord | cover is easy.

以下、添付図面を参照して、本発明の実施形態について詳細に説明する。
図1にこの発明に関わる電磁波吸収体の断面図を示す。図1のように吸収体に電磁波が垂直に入射する場合、吸収体表面から金属板を見込む規格化入力インピーダンスZは下記(1)式により表され、このZを用いて反射損失Rは(2)および(3)式より求めた。このように、反射損失はZによって決まるが、(1)式から明らかなように、Zはε、μ、電磁波の波長λ、試験体厚さdの関数であり、−20dBを満足する領域の算出法は複雑である。そこで、ε、μの周波数特性をネットワークアナライザを用いてSパラメータ法により測定し、その測定結果から(1)〜(3)式を用いて試験体の厚さを変えた場合の反射損失を算出し、この値をもとに電磁波吸収体を設計、製造することができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows a cross-sectional view of an electromagnetic wave absorber according to the present invention. As shown in FIG. 1, when electromagnetic waves are incident on the absorber perpendicularly, the normalized input impedance Z for expecting a metal plate from the surface of the absorber is expressed by the following equation (1). Using this Z, the reflection loss R is (2 ) And (3). Thus, although the reflection loss is determined by Z, as is apparent from the equation (1), Z is a function of ε, μ, wavelength λ of electromagnetic wave, and specimen thickness d, and is a region satisfying −20 dB. The calculation method is complicated. Therefore, the frequency characteristics of ε and μ are measured by the S-parameter method using a network analyzer, and the reflection loss when the thickness of the specimen is changed is calculated from the measurement results using equations (1) to (3). The electromagnetic wave absorber can be designed and manufactured based on this value.

すなわち、上述した電磁波吸収用磁性体粉末に対しエポキシ樹脂等の樹脂バインダを混錬し、金属板を基板として所定の厚さのシートあるいはボード状に成型し、これを電磁波吸収体として使用する。この場合は、電磁波が最も良好に吸収される共鳴周波数は電磁波吸収体の厚みに依存し、所望の電磁波の周波数に対応させて厚みは調整することができる。また、図1の形態のほかにも、さらに薄板状としたシートやテープ形態の電磁波吸収体に成形することも可能である。   That is, a resin binder such as an epoxy resin is kneaded with the electromagnetic wave absorbing magnetic powder described above, and a metal plate is used as a substrate to form a sheet or board having a predetermined thickness, which is used as an electromagnetic wave absorber. In this case, the resonance frequency at which electromagnetic waves are best absorbed depends on the thickness of the electromagnetic wave absorber, and the thickness can be adjusted to correspond to the frequency of the desired electromagnetic wave. Further, in addition to the form shown in FIG. 1, it is also possible to form an electromagnetic wave absorber in the form of a thin sheet or tape.

以下、本発明の効果を確認するために行った実験結果について説明する。なお、本件に関わるナノ細線の作製は下記に限定されるものではない。   Hereinafter, the results of experiments conducted to confirm the effects of the present invention will be described. The production of nanowires related to this case is not limited to the following.

(実施例1)
金属細線の合成は、図2に示す反応ラインを用いて行なった。反応管には両端部が内径8mm、長さ50mm、中央部が内径15mm、長さ300mmのパイレックスガラス管(反応管a)を用い、中央部のうち反応管入口側20mmの部分を電気炉内に設置し、反応管出口付近に石英ウールを充填した。鉄カルボニルを図2のバブラーに充填し、これにアルゴンガスを流通させることで、アルゴンガスとともに鉄カルボニル蒸気を反応管加熱部に導入した。
Example 1
The fine metal wire was synthesized using the reaction line shown in FIG. A Pyrex glass tube (reaction tube a) having an inner diameter of 8 mm, a length of 50 mm, a central portion of an inner diameter of 15 mm, and a length of 300 mm is used as the reaction tube. And filled with quartz wool near the outlet of the reaction tube. Iron carbonyl was introduced into the reaction tube heating section together with argon gas by filling the bubbler shown in FIG.

加熱部温度を300℃、アルゴンガス流量を150mL/分とし反応を行なった結果、図1に示した反応管の入口Aでは反応管内壁に鉄薄片が付着し、その上に、反応管を詰めるように鉄マイクロ細線(径1〜50μm)が生成した。また、出口Bでは鉄系ナノ細線(径100〜200nm)が生成した。   As a result of carrying out the reaction at a heating section temperature of 300 ° C. and an argon gas flow rate of 150 mL / min, iron flakes adhere to the inner wall of the reaction tube at the inlet A of the reaction tube shown in FIG. 1, and the reaction tube is packed thereon. Thus, iron micro fine wires (diameter 1 to 50 μm) were produced. Further, at the exit B, iron-based nanowires (diameter: 100 to 200 nm) were generated.

走査型電子顕微鏡による鉄マイクロ細線、鉄系ナノ細線の形態観察の結果を図3、図4にそれぞれ示す。図2より、鉄マイクロ細線の形状は鉄微粒子が数珠状に連なったもので、粒子径が1〜50μmと鉄系ナノ細線より大きく、1本1本が直線状ではなく枝分かれし、それらが絡まった構造をもつことを確認した。一方で、図3より、鉄系ナノ細線は、形状は鉄マイクロ細線と類似のものではあるが、その線径が100〜200nmであり、全長が数十〜数百μmであることを確認した。   The results of morphological observations of iron microwires and iron-based nanowires using a scanning electron microscope are shown in FIGS. 3 and 4, respectively. From FIG. 2, the shape of the iron microwire is a series of iron fine particles in a rosary shape, the particle diameter is 1-50 μm, which is larger than the iron-based nanowire, and each one is branched rather than linear, and they are entangled It was confirmed to have a structure. On the other hand, from FIG. 3, it was confirmed that the iron-based nanowire is similar in shape to the iron microwire, but the wire diameter is 100 to 200 nm and the total length is several tens to several hundreds μm. .

図5に得られた鉄系ナノ細線の粉末X線回折パターンを示す。これらのピークは全てα−Fe相に帰属され、それぞれの回折ピークの強度比から結晶成長に異方性がないことが分かった。この結果は図4の結果と一致し、ナノ細線の外観はアスペクト比の高い形態を有するものの、微細構造としては球状粒子の繋がった構造を反映している。また、鉄マイクロ細線、鉄薄片についても同様に粉末X線回折を行なった結果、同様にα−Fe相が得られていることを確認した。   FIG. 5 shows a powder X-ray diffraction pattern of the iron-based nanowire obtained. These peaks were all attributed to the α-Fe phase, and it was found from the intensity ratio of the respective diffraction peaks that there was no anisotropy in crystal growth. This result coincides with the result of FIG. 4, and although the appearance of the nanowire has a form with a high aspect ratio, the fine structure reflects a structure in which spherical particles are connected. Moreover, as a result of performing powder X-ray diffraction similarly about an iron micro fine wire and an iron thin piece, it confirmed that the alpha-Fe phase was obtained similarly.

鉄カルボニルのバブラーへの仕込み量、アルゴンガス流量、反応温度および反応管の内径が鉄系ナノ細線の収率に与える影響について検討した。ここで、鉄系ナノ細線の収率は次の計算により求めた。使用した鉄カルボニルは分子量195.9、純度95%、密度1.5g/mLであり、鉄カルボニルXmL中に含まれる鉄金属(原子量55.8)の重量は下式となる。
1.5×X×0.95×(55.8/195.9)=0.41×X (g)‥(4)
この計算値を100%として、得られた鉄系ナノ細線の重量から収率を求めた。鉄カルボニルの仕込み量2mL、反応温度300℃で、反応管aを用いた場合において、アルゴンガス流量100、120、150、160、170、180、および200mL/分と変化させた際の鉄系ナノ細線の収率を図6に示す。また、鉄カルボニルの仕込み量2mL、アルゴンガス流量180mL/分で、反応管aを用い、反応温度を200、250、270、280、300、320、および350℃でそれぞれ反応をおこなった時の鉄系ナノ細線の収率を図7に示す。鉄カルボニルの仕込み量2mLで、反応管aを用いた場合では、最も鉄系ナノ細線の収率の高い最適反応条件はアルゴンガス流量180mL/分、反応温度300℃となり、このときの収率は約35%であった。鉄カルボニルの仕込み量を変化させても、鉄系ナノ細線の生成量はそれほど変化せず、鉄系ナノ細線は反応の初期過程のみに生成することがわかった。また、反応管bでは収率の低下が見られた(表1)。
The effects of the amount of iron carbonyl charged to the bubbler, the argon gas flow rate, the reaction temperature, and the inner diameter of the reaction tube on the yield of the iron-based nanowires were investigated. Here, the yield of the iron-based nanowires was determined by the following calculation. The used iron carbonyl has a molecular weight of 195.9, a purity of 95%, and a density of 1.5 g / mL, and the weight of iron metal (atomic weight 55.8) contained in the iron carbonyl XmL is represented by the following formula.
1.5 × X × 0.95 × (55.8 / 195.9) = 0.41 × X (g) (4)
Taking this calculated value as 100%, the yield was determined from the weight of the obtained iron-based nanowires. When the amount of iron carbonyl charged is 2 mL, the reaction temperature is 300 ° C., and the reaction tube a is used, the iron-based nanometer when the argon gas flow rate is changed to 100, 120, 150, 160, 170, 180, and 200 mL / min. The yield of thin wires is shown in FIG. In addition, iron was used when the reaction was carried out at 200, 250, 270, 280, 300, 320, and 350 ° C. using a reaction tube a with an iron carbonyl charge of 2 mL and an argon gas flow rate of 180 mL / min. The yield of the system nanowire is shown in FIG. In the case of using 2 liters of iron carbonyl and the reaction tube a, the optimum reaction conditions with the highest yield of iron-based nanowires are an argon gas flow rate of 180 mL / min and a reaction temperature of 300 ° C. The yield at this time is About 35%. It was found that even when the amount of iron carbonyl charged was changed, the amount of iron-based nanowires did not change so much, and iron-based nanowires were formed only in the initial stage of the reaction. In addition, a decrease in yield was observed in the reaction tube b (Table 1).

作製した鉄系ナノ細線、鉄マイクロ細線、鉄薄片に対し、およそ30wt%のエポキシ樹脂を添加しメノウ乳鉢を用いて均一に混合した後、続いてダイスを用いて外径10mm、厚さ1〜2mmの円盤状に成型した。これを120℃で40分かけて加熱・硬化させ、超音波カッターを用いて外径7mm、内径3mmのドーナツ状形態に切削加工した。作製した樹脂成形体を7mmの同軸導波管に設置し、ネットワークアナライザを用いてSパラメータ法によりそれぞれの材料定数を測定した。比誘電率(実部:ε’、虚部:ε”)及び比透磁率(実部:μ’、虚部;μ”)の結果を図8に示し、それから計算された電波吸収特性を図9に示す。また、比較のため、市販のカルボニル鉄微粒子(和光純薬、粒径6μm)より同様に作製した試料の電波吸収特性を図10に示す。   About 30 wt% epoxy resin was added to the produced iron-based nanowires, iron microwires, and iron flakes and mixed uniformly using an agate mortar, followed by using a die for an outer diameter of 10 mm, a thickness of 1 to Molded into a 2 mm disk. This was heated and cured at 120 ° C. for 40 minutes, and cut into a donut shape having an outer diameter of 7 mm and an inner diameter of 3 mm using an ultrasonic cutter. The produced resin molding was placed in a 7 mm coaxial waveguide, and each material constant was measured by an S parameter method using a network analyzer. The results of relative permittivity (real part: ε ′, imaginary part: ε ″) and relative permeability (real part: μ ′, imaginary part; μ ″) are shown in FIG. 8, and the radio wave absorption characteristics calculated therefrom are shown. 9 shows. For comparison, FIG. 10 shows the radio wave absorption characteristics of a sample prepared in the same manner from commercially available carbonyl iron fine particles (Wako Pure Chemical Industries, particle size 6 μm).

鉄系ナノ細線に比べ、鉄マイクロ細線および鉄薄片の電波吸収特性は低く、これは、比透磁率の虚部の周波数依存性からも分かるように、鉄マイクロ細線および鉄薄片では粒子径が大きいために渦電流損により、比透磁率の実部の値が周波数の増加に伴い、急激に減少していることに対応する。鉄系ナノ細線では、4.0〜1.3mmの厚さの吸収体において、5〜17GHzの領域で−20dB以下の良好な反射損失が見られた。ナノ細線では粒子サイズが非常に粒子が細かいことから、粒子自身の電気抵抗値が大きくなることで、渦電流損を抑えられ高周波域においても損失が小さいことで良好な電磁波吸収特性が得られた。比較として市販の鉄カルボニル鉄粉より作製した電波吸収体は、厚さ4.0〜2.0mmの試料で2〜4GHz周辺に−20dB以下の反射損失を示し、同じ厚さの試料において鉄系ナノ細線から作製した電波吸収体では、吸収域が高周波側にシフトした。これは、鉄系ナノ細線の形状に付随する磁気異方性から共鳴周波数が高周波数側にシフトすることに由来する。   Compared with iron-based nanowires, the electromagnetic wave absorption characteristics of iron microwires and iron flakes are low. This is because the particle diameter of iron microwires and iron flakes is large, as can be seen from the frequency dependence of the imaginary part of relative permeability. Therefore, it corresponds to the fact that the value of the real part of the relative permeability is rapidly decreased as the frequency is increased due to the eddy current loss. In the iron-based nanowire, in the absorber having a thickness of 4.0 to 1.3 mm, a favorable reflection loss of −20 dB or less was observed in the region of 5 to 17 GHz. Nanowires have very fine particle size, so the electrical resistance value of the particles themselves increases, eddy current loss is suppressed, and good electromagnetic wave absorption characteristics are obtained by low loss in the high frequency range. . For comparison, a radio wave absorber made from commercially available iron carbonyl iron powder shows a reflection loss of -20 dB or less around 2 to 4 GHz in a sample having a thickness of 4.0 to 2.0 mm, and an iron-based material in a sample having the same thickness. In the radio wave absorber produced from the nanowire, the absorption region shifted to the high frequency side. This is because the resonance frequency shifts to the high frequency side from the magnetic anisotropy associated with the shape of the iron-based nanowire.

(実施例2)
実施例1で作製した鉄系ナノ細線から炭化鉄/炭素複合細線微粒子を以下の方法により作製した。ここでも同様に反応ラインは図2に示す構成のものを使用した。反応管も同様にタイプaのものを使用し、鉄系ナノ細線の作製後、部位Bに捕集された鉄系ナノ細線を磁石の吸引力を利用してガラス壁面を介して反応部位部位Aに移動させた。鉄系ナノ細線は容易に酸化されるため、このように一連のプロセスとして行なうのが望ましい。反応終了後、鉄カルボニルの気化のため空になったバブラーにエタノールを3.0mLを注入した。エタノール以外のメタノール、イソプロピルアルコール、ブタノール等のアルコール類、ヘキサン、シクロヘキサン、エチレン、アセチレン等の直鎖または環状の炭化水素を炭素源として用いても良い。しかしながら、それらの毒性や、反応加熱部に導入される含炭素蒸気成分のガス濃度が、微細な粒状粒子を得るためには重要となるため、本反応条件ではエタノールの使用により最も良好な結果が得られた。アルゴンガス(流量60mL/分)でバブラー内のエタノールをバブリングし気化させて反応管内に導入し、反応管を電気炉で300℃から500℃に1時間かけて昇温することで鉄系ナノ細線と反応させた。なお、300℃以下の反応ではエタノールの分解反応が認められず、また、500℃以上では、得られる複合細線粒子の凝集が走査型電子顕微鏡観察から確認された。
(Example 2)
From the iron-based nanowires produced in Example 1, iron carbide / carbon composite fine wires were produced by the following method. Here again, the reaction line having the structure shown in FIG. 2 was used. Similarly, a reaction tube of type a is used, and after production of the iron-based nanowire, the iron-based nanowire collected in the site B is made to react with the site A of the reaction site via the glass wall surface using the attractive force of the magnet. Moved to. Since iron-based nanowires are easily oxidized, it is desirable to carry out such a series of processes. After completion of the reaction, 3.0 mL of ethanol was injected into a bubbler that had been emptied due to vaporization of iron carbonyl. Alcohols other than ethanol, alcohols such as isopropyl alcohol and butanol, and linear or cyclic hydrocarbons such as hexane, cyclohexane, ethylene and acetylene may be used as the carbon source. However, since the toxicity and the gas concentration of the carbon-containing vapor component introduced into the reaction heating part are important for obtaining fine granular particles, the best results are obtained by using ethanol under these reaction conditions. Obtained. The ethanol in the bubbler was bubbled with argon gas (flow rate 60 mL / min), vaporized and introduced into the reaction tube, and the reaction tube was heated from 300 ° C. to 500 ° C. in an electric furnace over 1 hour, thereby iron-based nanowires. And reacted. In the reaction at 300 ° C. or lower, no ethanol decomposition reaction was observed, and at 500 ° C. or higher, the aggregation of the obtained composite fine wire particles was confirmed by observation with a scanning electron microscope.

得られた炭化鉄/炭素複合細線微粒子の走査型電子顕微鏡による表面観察像を図11に示す。合成した炭化鉄/炭素複合細線微粒子は径1〜2μmの線状の形態をとっていることを確認した。その線径は出発物質であった鉄系ナノ細線(線径:100〜200nm)より太くなっているが、出発物資の鉄系ナノ細線の表面がフラットであるのに対し、その表面は粒状生成物により被覆されており微細な構造が得られた。反応前後の試料の重量測定を行なった結果、反応後では重量の増加が見られ、塩酸により金属成分を溶解除去した結果、黒色の粉体が得られた(黒色粉体の粉末X線回折の結果、無定形であることを確認)。さらに、得られた黒色粉体の電子顕微鏡観察から、その粒子形態およびサイズとも図11に示した表面の粒状生成物に類似しており、また、その黒色粉体より作製した電波吸収体が、我々で作製したカーボンのオーム損失型の電波吸収体と似た挙動を示した。残留黒色粉体より作製した電波吸収体の特性を図12に、市販カーボンより作製した電波吸収体のそれを図13に示す。   FIG. 11 shows a surface observation image of the obtained iron carbide / carbon composite fine wire particles by a scanning electron microscope. It was confirmed that the synthesized iron carbide / carbon composite fine wire particles had a linear form with a diameter of 1 to 2 μm. The wire diameter is thicker than the starting iron nanowire (wire diameter: 100-200 nm), but the surface of the starting iron nanowire is flat, but the surface is granular. A fine structure was obtained because it was covered with an object. As a result of measuring the weight of the sample before and after the reaction, an increase in weight was observed after the reaction, and as a result of dissolving and removing the metal component with hydrochloric acid, a black powder was obtained (the powder X-ray diffraction of the black powder). Confirm that the result is amorphous). Furthermore, from observation with an electron microscope of the obtained black powder, both the particle form and size are similar to the granular product on the surface shown in FIG. 11, and the radio wave absorber produced from the black powder is The behavior was similar to that of the carbon ohmic loss wave absorber we fabricated. FIG. 12 shows the characteristics of a radio wave absorber manufactured from the residual black powder, and FIG. 13 shows that of a radio wave absorber manufactured from commercially available carbon.

さらに、上記試料の粉末X線回折測定を行った結果(図14)、観測されたピークは全てFeCに帰属され、前述したとおり炭素成分は無定形のためにそれに由来するピークは観察されなかった。以上のことから、鉄系ナノ細線とエタノールの反応により得られた複合細線を炭化鉄/無定形炭素複合細線と同定した。ここで、前述の鉄系ナノ細線は非常に酸化を受けやすく、空気中に暴露することで発火したが、上記の炭化鉄/炭素複合細線は炭素による表面被覆により耐酸化性が向上し、空気中での発火は見られなかった。 Furthermore, as a result of the powder X-ray diffraction measurement of the above sample (FIG. 14), all the observed peaks are attributed to Fe 3 C, and as described above, since the carbon component is amorphous, peaks derived from it are observed. There wasn't. From the above, the composite thin wire obtained by the reaction of the iron-based nanowire and ethanol was identified as an iron carbide / amorphous carbon composite thin wire. Here, the aforementioned iron-based nanowires are very susceptible to oxidation, and were ignited by exposure to air. However, the above iron carbide / carbon composite wires have improved oxidation resistance due to surface coating with carbon, and air There was no ignition inside.

一方で、前述の市販カルボニル鉄粉を用い同条件で反応を行った結果、反応前後で重量の増加は認められず、本発明で作製した鉄系ナノ細線が高い触媒活性(エタノールのクラッキング)を示し、エタノールと低温においても反応が可能で、電子顕微鏡にも見られたような非常に入り組んだ表面構造をもつ炭化鉄/炭素の複合細線となることがわかった。   On the other hand, as a result of conducting the reaction under the same conditions using the above-mentioned commercially available carbonyl iron powder, no increase in weight was observed before and after the reaction, and the iron-based nanowire prepared in the present invention has high catalytic activity (ethanol cracking). It has been shown that it can react with ethanol even at low temperatures, resulting in an iron carbide / carbon composite wire having a very complicated surface structure as seen in an electron microscope.

得られた炭化鉄/炭素の複合細線に対し、およそ30wt%のエポキシ樹脂を添加し鉄系ナノ細線と同様の手法で電波吸収体を作製し、電波吸収特性を評価した。比誘電率および比透磁率の測定結果を図15に、また、それより計算される電波吸収特性を図16に示す。   About 30 wt% of an epoxy resin was added to the obtained iron carbide / carbon composite fine wire, and a radio wave absorber was prepared in the same manner as the iron-based nanowire, and the radio wave absorption characteristics were evaluated. FIG. 15 shows the measurement results of the relative permittivity and the relative permeability, and FIG. 16 shows the radio wave absorption characteristics calculated therefrom.

本発明で得られた炭化鉄/炭素複合細線樹脂成形体の透磁率の特性は、メカニカルアロイング法で発明者らが以前作製した炭化鉄/炭素複合体(J. R. Liu, M. Itoh, T. Horikawa, E. Taguchi, H. Mori, K. Machida, Appl. Phys. A, Vol. 82, 2006, p. 509-513.)よりも低損失であった。走査型電子顕微鏡で見られた表面構造のように、エタノールとの反応により複合細線表面に生成した粒状粒子の一部は炭化鉄となっており、比表面積が大きくなることで電磁波の伝搬経路が長くなることによる電気抵抗の増加により渦電流損が抑制されていることがわかった。   The magnetic permeability characteristics of the iron carbide / carbon composite fine wire resin molded body obtained by the present invention are as follows. The iron carbide / carbon composite (JR Liu, M. Itoh, T. Horikawa, E. Taguchi, H. Mori, K. Machida, Appl. Phys. A, Vol. 82, 2006, p. 509-513.). Like the surface structure seen with a scanning electron microscope, some of the granular particles produced on the surface of the composite fine wire by reaction with ethanol are iron carbide, and the propagation surface of electromagnetic waves is increased by increasing the specific surface area. It was found that the eddy current loss was suppressed by the increase in electrical resistance due to the increase in length.

炭化鉄/炭素複合細線より作製した電波吸収体は6.0〜1.0mmの厚さの吸収体において、3〜16GHzの領域で−20dB以下の良好な反射損失が得られた。既述の鉄系ナノ細線では粒子サイズの減少により渦電流損が抑えられ、高周波域においても良好な電磁波吸収特性が得られたが、炭化鉄/炭素複合細線では、エタノールとの反応により鉄よりも電気抵抗の高い炭化鉄が生じたこと、また、表面が複雑な形状を持つことから表皮効果を考えると電磁波の粒子内での伝搬長が増加したこと、さらに、非良導体であるカーボンにより被覆されたことで渦電流損がより一層低減されることがわかる。また、複合細線中のカーボンに由来する誘電特性が付与されたことにより、電気長が増加することで、鉄系ナノ細線に比べて炭化鉄/炭素複合細線では、同一の吸収体厚さにおいて低周波数での吸収が可能となる(電波吸収体の薄型化に同義)。また、−20dB以下の吸収が得られた周波数域についても、鉄系ナノ細線で見られた5〜17GHzに対して3〜16GHzとサンプルの厚さを変えることで吸収できる帯域が低周波数側に拡がった。また、市販のカルボニル鉄粉(汎用性の高い電波吸収用磁性粉)より作製される電波吸収体の対応帯域が2〜4GHz程度であることから、本発明による炭化鉄/炭素複合細線より作製される電波吸収体は、その非常に広い吸収対応域に特徴を有する。   The electromagnetic wave absorber produced from the iron carbide / carbon composite fine wire was an absorber having a thickness of 6.0 to 1.0 mm, and a good reflection loss of −20 dB or less was obtained in the region of 3 to 16 GHz. In the iron-based nanowires described above, eddy current loss was suppressed by reducing the particle size, and good electromagnetic wave absorption characteristics were obtained even in the high frequency range. In addition, iron carbide with high electrical resistance was generated, and because the surface has a complicated shape, considering the skin effect, the propagation length of electromagnetic waves in the particles increased, and it was covered with carbon, which is a non-good conductor It can be seen that the eddy current loss is further reduced. In addition, due to the addition of dielectric properties derived from carbon in the composite wire, the electrical length is increased, so that the iron carbide / carbon composite wire has a lower thickness at the same absorber thickness than the iron-based nanowire. Absorption at frequency is possible (synonymous with thinning of wave absorber). Also, in the frequency range where absorption of -20 dB or less was obtained, the band that can be absorbed by changing the thickness of the sample to 3 to 16 GHz with respect to 5 to 17 GHz seen in the iron-based nanowires is on the low frequency side. Spread. Moreover, since the corresponding | compatible band of the electromagnetic wave absorber produced from commercially available carbonyl iron powder (general-purpose magnetic powder for electromagnetic wave absorption) is about 2-4 GHz, it is produced from the iron carbide / carbon composite thin wire by this invention. The electromagnetic wave absorber is characterized by its very wide absorption response range.

上述したエタノールを用いた炭化温度(300〜500℃)では、鉄系ナノ細線表面に対し炭素被膜の形成が進行すると共に、鉄系ナノ細線自身が炭化鉄へと移行した。これに対して、外部より誘導コイルを用いてプラズマを発生させることで、鉄系ナノ細線を炭素で被覆したのみの鉄/炭素複合ナノ細線(直径500nm以下)の合成が可能である。   At the carbonization temperature (300 to 500 ° C.) using ethanol described above, the formation of a carbon film progressed on the surface of the iron-based nanowire, and the iron-based nanowire itself shifted to iron carbide. On the other hand, by generating plasma using an induction coil from the outside, it is possible to synthesize iron / carbon composite nanowires (diameter 500 nm or less) in which iron-based nanowires are only covered with carbon.

一般に、電波吸収シートを作製する場合、その吸収特性を高めるために磁性体/樹脂の混合比を増大させる必要がある。上記で得られた鉄/炭素ナノ細線は、鉄系ナノ細線単独のものと比べ表層で導電性が低い(接触抵抗が大きい)ため、より密に磁性体を樹脂中に導入することが可能であり、より薄く、更にはより低周波数も吸収可能な吸収体シートを作製することができる。   In general, when a radio wave absorbing sheet is produced, it is necessary to increase the magnetic material / resin mixing ratio in order to improve the absorption characteristics. The iron / carbon nanowires obtained above have a lower electrical conductivity (high contact resistance) than the iron nanowires alone, so it is possible to introduce the magnetic substance more densely into the resin. It is possible to produce an absorber sheet that is thinner and can absorb even lower frequencies.

以上説明をしたように、本発明により作製されるナノ細線は高い触媒活性を示し、これとエタノールとの反応により容易に炭化鉄/炭素複合細線を得ることが可能となる。炭化鉄/炭素複合細線の表面構造は非常に微細であり、それにより渦電流損を効果的に抑制することができ、さらに、本複合細線は磁性材(磁界成分)と誘電材(電界成分)の複合細線であるために、上記の鉄系ナノ細線単独の場合に比べ、これより作製した電波吸収体は低周波数への吸収域の広帯域化が可能となる。さらに従来の電磁波吸収体用磁性粉末(カルボニル鉄粉)に比べその吸収域の幅を非常に大きくすることが可能となる。   As described above, the nanowire produced by the present invention exhibits high catalytic activity, and it becomes possible to easily obtain an iron carbide / carbon composite fine wire by reaction with ethanol. The surface structure of the iron carbide / carbon composite fine wire is very fine, which can effectively suppress eddy current loss. Furthermore, this composite fine wire is composed of a magnetic material (magnetic field component) and a dielectric material (electric field component). Therefore, compared to the case of the above-mentioned iron-based nanowire alone, the radio wave absorber produced from this can broaden the absorption range to a low frequency. Furthermore, the width of the absorption region can be greatly increased as compared with the conventional magnetic powder for electromagnetic wave absorber (carbonyl iron powder).

本発明に関わる電磁波吸収体の基本構造である。1 is a basic structure of an electromagnetic wave absorber according to the present invention. 反応ラインの概略を示した図である。It is the figure which showed the outline of the reaction line. 鉄マイクロ細線の走査型電子顕微鏡観察像である。It is a scanning electron microscope observation image of an iron micro fine wire. 鉄系ナノ細線の走査型電子顕微鏡観察像である。It is a scanning electron microscope image of an iron-based nanowire. 鉄系ナノ細線のX線回折パターンである。It is an X-ray diffraction pattern of an iron-based nanowire. アルゴンガス流量を変化させた際の鉄系ナノ細線の収量を示した図である。It is the figure which showed the yield of the iron-type nano fine wire at the time of changing argon gas flow rate. 反応温度を変化させた際の鉄系ナノ細線の収量を示した図である。It is the figure which showed the yield of the iron-type nanowire at the time of changing reaction temperature. 鉄系ナノ細線、鉄マイクロ細線、鉄薄片より作製した吸収体の比誘電率、比透磁率の周波数依存性を示した図である。It is the figure which showed the frequency dependence of the dielectric constant and the relative magnetic permeability of the absorber produced from the iron-type nanowire, the iron microwire, and the iron thin piece. 鉄系ナノ細線、鉄マイクロ細線、鉄薄片より作製した吸収体の反射損失特性である。It is the reflection loss characteristic of the absorber produced from the iron-type nanowire, the iron microwire, and the iron flake. 市販のカルボニル鉄微粒子より作製した吸収体の反射損失特性である。It is the reflection loss characteristic of the absorber produced from commercially available carbonyl iron fine particles. 炭化鉄/炭素複合細線の走査型電子顕微鏡による表面観察像である。It is the surface observation image by a scanning electron microscope of an iron carbide / carbon composite fine wire. 炭化鉄/炭素複合細線の酸エッチング後、残留した黒色粉体より作製した電波吸収体の反射損失を示した図である。It is the figure which showed the reflection loss of the electromagnetic wave absorber produced from the black powder which remained after the acid etching of the iron carbide / carbon composite fine wire. 市販の無定形カーボンより作製した電波吸収体の反射損失を示した図である。It is the figure which showed the reflection loss of the electromagnetic wave absorber produced from the commercially available amorphous carbon. 得られた炭化鉄/炭素複合細線のX線回折パターンである。It is an X-ray diffraction pattern of the obtained iron carbide / carbon composite fine wire. 炭化鉄/炭素複合細線より作製した電波吸収体の比誘電率、比透磁率の周波数依存性を示した図である。It is the figure which showed the frequency dependence of the dielectric constant and the relative magnetic permeability of the electromagnetic wave absorber produced from the iron carbide / carbon composite fine wire. 炭化鉄/炭素複合細線より作製した電波吸収体の反射損失特性である。It is the reflection loss characteristic of the electromagnetic wave absorber produced from the iron carbide / carbon composite fine wire.

Claims (11)

線径が50nm以上300nm以下であり、かつ、線アスペクト比が20以上となるように鉄系粒状結晶が列状に連なった細線形態又は該列状に連なった細線部が樹枝状に連結した形態をなし、かつ、線長手方向において各鉄系金属粒状結晶の線外周面を構成する表面部分の形態が、隣接粒子との接続面位置で線断面積の極小値を形成し、かつ、両側の接続面の途中位置で線断面積の極大値をなす凸湾曲面となる数珠状形態をなすことを特徴とする鉄系ナノ細線。   A thin wire form in which iron-based granular crystals are connected in a row such that the wire diameter is 50 nm or more and 300 nm or less and the line aspect ratio is 20 or more, or a form in which the thin wire portions connected in a row are connected in a dendritic shape And the shape of the surface portion constituting the line outer peripheral surface of each iron-based metal granular crystal in the line longitudinal direction forms a minimum value of the line cross-sectional area at the connection surface position with the adjacent particles, and An iron-based nanowire characterized by forming a bead-like shape that forms a convex curved surface having a maximum value of a line cross-sectional area at a midpoint of a connecting surface. 線長が1μm以上10μm以下とされた請求項1記載の鉄系ナノ細線。   The iron-based nanowire according to claim 1, wherein the wire length is 1 μm or more and 10 μm or less. 前記鉄系粒状結晶は金属鉄を主成分とする鉄系金属粒状結晶である請求項1又は請求項2に記載の鉄系ナノ細線。   The iron-based nanowire according to claim 1, wherein the iron-based granular crystal is an iron-based metal granular crystal containing metallic iron as a main component. 前記鉄系金属粒状結晶は、鉄系成分の一部が炭化鉄となった組織を有する請求項3記載の鉄系ナノ細線。   The iron-based nanowire according to claim 3, wherein the iron-based metal granular crystal has a structure in which a part of the iron-based component is iron carbide. 前記鉄系粒状結晶は炭化鉄を主成分とする炭化鉄系粒状結晶である請求項1又は請求項2に記載の鉄系ナノ細線。   The iron-based nanowire according to claim 1 or 2, wherein the iron-based granular crystal is an iron carbide-based granular crystal containing iron carbide as a main component. 請求項1ないし請求項5のいずれか1項に記載の鉄系ナノ細線表面が厚さ50nm以上500nm未満の炭素系微粒子の凝集体層によって被覆され、線径が200nm以上2μm以下であることを特徴とする鉄系炭素複合細線。   The surface of the iron-based nanowire according to any one of claims 1 to 5 is covered with an aggregate layer of carbon-based fine particles having a thickness of 50 nm or more and less than 500 nm, and the wire diameter is 200 nm or more and 2 μm or less. Featuring iron-based carbon composite thin wires. 請求項1ないし請求項5のいずれか1項に記載の鉄系ナノ細線の製造方法であって、
室温以上150℃以下の加温状態において揮発性鉄カルボニルを、不活性ガスからなるキャリヤーガスとともに150ppm以上450ppm以下の濃度にて、250℃以上400℃以下に保持された反応部に供給することにより前記揮発性鉄カルボニルを熱分解する工程を有することを特徴とする鉄系ナノ細線の製造方法。
A method for producing an iron-based nanowire according to any one of claims 1 to 5,
By supplying volatile iron carbonyl in a heated state of room temperature to 150 ° C. together with a carrier gas composed of an inert gas at a concentration of 150 ppm to 450 ppm to a reaction section maintained at 250 ° C. to 400 ° C. A method for producing an iron-based nanowire comprising the step of thermally decomposing the volatile iron carbonyl.
請求項6記載の鉄系炭素複合細線の製造方法であって、
揮発性炭素質化合物を単独で、または不活性ガスからなるキャリヤーガスと共に、300℃以上500℃以下に保持された反応部に供給して該揮発性炭素質化合物を熱分解し、該熱分解により発生する炭素成分を請求項1ないし請求項5のいずれか1項に記載の鉄系ナノ細線の表面に析出させることにより、該鉄系ナノ細線の表面又は内部に炭素成分を付与することを特徴とする鉄系炭素複合細線の製造方法。
A method for producing an iron-based carbon composite fine wire according to claim 6,
A volatile carbonaceous compound is supplied alone or together with a carrier gas composed of an inert gas to a reaction section held at 300 ° C. or more and 500 ° C. or less to thermally decompose the volatile carbonaceous compound, and A carbon component is imparted to the surface or inside of the iron-based nanowire by depositing the generated carbon component on the surface of the iron-based nanowire according to any one of claims 1 to 5. A method for producing an iron-based carbon composite fine wire.
請求項6記載の鉄系炭素複合細線の製造方法であって、
揮発性炭素質化合物を単独で、または窒素もしくはアルゴン等のキャリヤーガスと共に、100℃以上300℃以下に保持された反応部に供給しつつ該揮発性炭素質化合物をプラズマ分解し、該プラズマ分解により発生する炭素成分を請求項1ないし請求項5のいずれか1項に記載の鉄系ナノ細線の表面に析出させることにより、該鉄系ナノ細線の表面又は内部に炭素成分を付与することを特徴とする鉄系炭素複合細線の製造方法。
A method for producing an iron-based carbon composite fine wire according to claim 6,
While supplying the volatile carbonaceous compound alone or together with a carrier gas such as nitrogen or argon to the reaction section held at 100 ° C. or higher and 300 ° C. or lower, the volatile carbonaceous compound is plasma-decomposed, A carbon component is imparted to the surface or inside of the iron-based nanowire by depositing the generated carbon component on the surface of the iron-based nanowire according to any one of claims 1 to 5. A method for producing an iron-based carbon composite fine wire.
請求項1ないし請求項5のいずれか1項に記載の鉄系ナノ細線、又は請求項6に記載の鉄系炭素複合細線を樹脂バインダにて結合したことを特徴とする電波吸収体。   A radio wave absorber comprising the iron-based nanowire according to any one of claims 1 to 5 or the iron-based carbon composite wire according to claim 6 bonded together by a resin binder. ボード、シート、テープもしくはコード被覆体状に成形されてなる請求項8記載の電波吸収体。   9. The radio wave absorber according to claim 8, wherein the radio wave absorber is formed into a board, a sheet, a tape, or a cord cover.
JP2006075731A 2006-03-17 2006-03-17 Iron-based nanofine wire and its production method, iron-based carbon-compounded fine wire and its production method, and wave absorber using the same Pending JP2007247036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006075731A JP2007247036A (en) 2006-03-17 2006-03-17 Iron-based nanofine wire and its production method, iron-based carbon-compounded fine wire and its production method, and wave absorber using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006075731A JP2007247036A (en) 2006-03-17 2006-03-17 Iron-based nanofine wire and its production method, iron-based carbon-compounded fine wire and its production method, and wave absorber using the same

Publications (1)

Publication Number Publication Date
JP2007247036A true JP2007247036A (en) 2007-09-27

Family

ID=38591653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006075731A Pending JP2007247036A (en) 2006-03-17 2006-03-17 Iron-based nanofine wire and its production method, iron-based carbon-compounded fine wire and its production method, and wave absorber using the same

Country Status (1)

Country Link
JP (1) JP2007247036A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008002583T5 (en) 2007-09-25 2010-08-12 Panasonic Corp., Kadoma Mounting system for electronic components and assembly machine for electronic components
JP2011216839A (en) * 2010-03-18 2011-10-27 Tdk Corp Powder magnetic core and method for manufacturing the same
JP2013211296A (en) * 2012-03-30 2013-10-10 Toshiba Corp Radiowave absorber
WO2021107136A1 (en) * 2019-11-28 2021-06-03 ユニチカ株式会社 Electromagnetic wave blocking material
JP7381158B2 (en) 2021-08-25 2023-11-15 ユニチカ株式会社 Terahertz wave shielding material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008002583T5 (en) 2007-09-25 2010-08-12 Panasonic Corp., Kadoma Mounting system for electronic components and assembly machine for electronic components
JP2011216839A (en) * 2010-03-18 2011-10-27 Tdk Corp Powder magnetic core and method for manufacturing the same
JP2013211296A (en) * 2012-03-30 2013-10-10 Toshiba Corp Radiowave absorber
WO2021107136A1 (en) * 2019-11-28 2021-06-03 ユニチカ株式会社 Electromagnetic wave blocking material
JP7381158B2 (en) 2021-08-25 2023-11-15 ユニチカ株式会社 Terahertz wave shielding material

Similar Documents

Publication Publication Date Title
Li et al. MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance
Zhang et al. High-efficiency electromagnetic wave absorption of cobalt-decorated NH2-UIO-66-derived porous ZrO2/C
Wang et al. A review on carbon/magnetic metal composites for microwave absorption
Kuang et al. Facile synthesis of Fe/Fe3C-C core-shell nanoparticles as a high-efficiency microwave absorber
Cui et al. Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@ C
He et al. Ni2+ guided phase/structure evolution and ultra-wide bandwidth microwave absorption of CoxNi1-x alloy hollow microspheres
Tong et al. Rambutan-like Ni/MWCNT heterostructures: easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics
Liu et al. Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption
Shu et al. Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal–organic frameworks for electromagnetic wave absorption in the X-band
Shu et al. Facile synthesis of nitrogen-doped cobalt/cobalt oxide/carbon/reduced graphene oxide nanocomposites for electromagnetic wave absorption
Han et al. Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials
Wang et al. The construction of carbon-coated Fe3O4 yolk-shell nanocomposites based on volume shrinkage from the release of oxygen anions for wide-band electromagnetic wave absorption
Zhao et al. Yolk–shell Ni@ SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties
Lv et al. Interface strategy to achieve tunable high frequency attenuation
Xu et al. Facile synthesis of three-dimensional porous Co/MnO composites derived from bimetal oxides for highly efficient electromagnetic wave absorption
He et al. Chemical conversion of Cu2O/PPy core-shell nanowires (CSNWs): a surface/interface adjustment method for high-quality Cu/Fe/C and Cu/Fe3O4/C CSNWs with superior microwave absorption capabilities
Xiong et al. Engineering compositions and hierarchical yolk-shell structures of NiCo/GC/NPC nanocomposites with excellent electromagnetic wave absorption properties
Zheng et al. Novel composite of Co/carbon nanotubes: Synthesis, magnetism and microwave absorption properties
Wang et al. An ultralight nitrogen-doped carbon aerogel anchored by Ni-NiO nanoparticles for enhanced microwave adsorption performance
Chen et al. Fe/Fe3O4@ N-doped carbon hexagonal plates decorated with Ag nanoparticles for microwave absorption
Hu et al. Flexible reduced graphene oxide@ Fe3O4/silicone rubber composites for enhanced microwave absorption
Li et al. Tailoring microwave electromagnetic responses in Ti3C2T x MXene with Fe3O4 nanoparticle decoration via a solvothermal method
JP2013016833A (en) Wave absorber
Wu et al. Surface-oxidized amorphous Fe nanoparticles supported on reduced graphene oxide sheets for microwave absorption
JP2007247036A (en) Iron-based nanofine wire and its production method, iron-based carbon-compounded fine wire and its production method, and wave absorber using the same