KR20240049533A - Composition for feed additive comprising fermentation product of allium tuberosum for inhibiting poultry pathogenic microorganism and avian influenza viruses - Google Patents

Composition for feed additive comprising fermentation product of allium tuberosum for inhibiting poultry pathogenic microorganism and avian influenza viruses Download PDF

Info

Publication number
KR20240049533A
KR20240049533A KR1020240046424A KR20240046424A KR20240049533A KR 20240049533 A KR20240049533 A KR 20240049533A KR 1020240046424 A KR1020240046424 A KR 1020240046424A KR 20240046424 A KR20240046424 A KR 20240046424A KR 20240049533 A KR20240049533 A KR 20240049533A
Authority
KR
South Korea
Prior art keywords
fermented
chive
chives
acid
kaempferol
Prior art date
Application number
KR1020240046424A
Other languages
Korean (ko)
Inventor
김수기
이우도
다미니 코타리
김영봉
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020240046424A priority Critical patent/KR20240049533A/en
Publication of KR20240049533A publication Critical patent/KR20240049533A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/70Feeding-stuffs specially adapted for particular animals for birds
    • A23K50/75Feeding-stuffs specially adapted for particular animals for birds for poultry
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/065Microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus
    • C12R2001/25Lactobacillus plantarum

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Birds (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

본 발명은 락토바실러스 플란타룸 SK4719 균주(KACC 92270P)를 이용하여 발효된 부추 발효물 또는 이의 추출물을 포함하는 사료 첨가제 조성물에 관한 것이다. The present invention relates to a feed additive composition containing fermented chives or extracts thereof fermented using Lactobacillus plantarum SK4719 strain (KACC 92270P).

Description

가금 병원성 세균 및 조류인플루엔자 바이러스 억제용 발효부추 사료첨가제 조성물과 그 효능{COMPOSITION FOR FEED ADDITIVE COMPRISING FERMENTATION PRODUCT OF ALLIUM TUBEROSUM FOR INHIBITING POULTRY PATHOGENIC MICROORGANISM AND AVIAN INFLUENZA VIRUSES}Fermented leek feed additive composition for inhibiting poultry pathogenic bacteria and avian influenza virus and its efficacy

본 발명은 락토바실러스 플란타룸 SK4719 균주(KACC 92270P)를 이용하여 발효시킨 부추 발효물을 포함하는 사료 첨가제 조성물에 관한 것이다.The present invention relates to a feed additive composition containing chive fermentation product fermented using Lactobacillus plantarum SK4719 strain (KACC 92270P).

최근 국내에서 전염성 호흡기 질병인 조류독감에 의한 경제적 손실이 계속적으로 발생하였으며, 그 외 병원성 미생물에 의해 질병 발생 및 피해가 지속되어 이에 공통으로 대응할 수 있는 제품생산 기술개발이 필요한 실정이다.Recently, economic losses due to avian influenza, a contagious respiratory disease, have continued to occur in Korea, and disease outbreaks and damage caused by other pathogenic microorganisms continue, so there is a need to develop product production technologies that can commonly respond to these.

부추는 1년에 8회 수확 가능한 다년생 식물로 농지 이용효율이 매우 높으며 값이 저렴하고 특히 다양한 기능성 물질을 함유하여 친환경 항균/항바이러스제로서 유용하다. 하지만, 부추를 이용한 사료첨가제 등 제품 개발, 상업화 되어 판매하고 있는 것은 없는 상황이다. 현재 부추의 발효 및 비발효 천연물을 이용하여 가축에게 급여한 연구가 최근 진행되고 있으며, 그 결과 가축의 생산성, 항산화, 혈액 및 면역 활성 개선 효과가 있다고 보고되고 있다.Chives are perennial plants that can be harvested eight times a year, have very high farmland use efficiency, are inexpensive, and are especially useful as an eco-friendly antibacterial/antiviral agent as they contain various functional substances. However, there are no products developed, commercialized, or sold using chives, such as feed additives. Currently, research is being conducted on feeding livestock using fermented and non-fermented natural products of chives, and the results are reported to be effective in improving livestock productivity, antioxidants, blood, and immune activity.

대한민국 공개특허 제10-2019-0033987호Republic of Korea Patent Publication No. 10-2019-0033987

이에, 본 발명의 발명자는 부추 유래 락토바실러스 플란타룸(Lactobacillus plantarum) SK4719 균주를 이용하여 발효된 부추 발효물 또는 이의 추출물의 가금 질병 방제 효능을 확인함으로써 본 발명을 완성하였다.Accordingly, the inventor of the present invention completed the present invention by confirming the poultry disease control efficacy of fermented chives or extracts thereof using the leek-derived Lactobacillus plantarum SK4719 strain.

따라서, 본 발명은 락토바실러스 플란타룸 SK4719 균주(KACC 92270P)를 이용하여 발효시킨 부추 발효물을 포함하는 사료 첨가제 조성물 및 이의 제조방법을 제공하는 것을 목적으로 한다.Therefore, the purpose of the present invention is to provide a feed additive composition containing fermented chives fermented using Lactobacillus plantarum SK4719 strain (KACC 92270P) and a method for producing the same.

상기 목적의 달성을 위해, 본 발명은 부추 발효물 또는 이의 추출물을 포함하는, 사료 첨가제 조성물을 제공한다. To achieve the above object, the present invention provides a feed additive composition comprising fermented chives or extracts thereof.

또한, 본 발명은 물 또는 MRS와 부추 착즙액을 혼합한 후, 락토바실러스 플란타룸 SK4719 균주를 접종하여 발효시키는 단계를 포함하는, 사료 첨가제 조성물의 제조방법을 제공한다.In addition, the present invention provides a method for producing a feed additive composition, comprising mixing water or MRS and chive juice, then inoculating Lactobacillus plantarum SK4719 strain and fermenting it.

또한, 본 발명은 부추 발효물 또는 이의 추출물을 포함하는, 가금 병원성 세균 및 조류인플루엔자 바이러스 억제용 조성물을 제공한다.Additionally, the present invention provides a composition for inhibiting poultry pathogenic bacteria and avian influenza virus, comprising fermented chives or extracts thereof.

본 발명의 사료 첨가제 조성물 우수한 항균 활성을 나타내고 있어 가금류의 질병 방제에 효과적이다.The feed additive composition of the present invention exhibits excellent antibacterial activity and is effective in controlling diseases in poultry.

도 1은 본 발명의 일 실시예에 있어서 MRS 내에서 발효시킨 부추 발효물의 (A) 세포 생존률 및 (B) pH를 나타낸 그래프이다.
도 2는 본 발명의 일 실시예에 있어서 물 내에서 발효시킨 부추 발효물의 (A) 세포 생존률 및 (B) pH를 나타낸 그래프이다.
도 3은 본 발명의 일 실시예에 있어서 (A) MRS 및 (B) 물 내에서 발효시킨 부추 발효물의 시간에 따른 세포 생존률을 나타낸 그래프이다.
도 4는 본 발명의 일 실시예에 있어서 부추 발효물의 DPPH 라디칼 스캐빈저 활성을 나타낸 것이다. 그래프에서 a 및 b는 Students’ t-test를 사용하여 p<0.05에서 통계학적 유의차를 가짐을 의미한다.
도 5는 본 발명의 일 실시예에 있어서 부추 발효물의 가금류 병원균에 대한 항균 활성을 나타낸 것이다. WFCC: water-fermented CC juice extract; MFCC: MRS-fermented CC juice extract.
도 6은 본 발명의 일 실시예에 있어서 부추 발효물의 메탄올 추출물의 LC-MS/MS 크로마토그램을 나타낸 것이다: (A) 포지티브 모드 및 (B) 네가티브 모드.
Figure 1 is a graph showing (A) cell viability and (B) pH of fermented chives fermented in MRS in an embodiment of the present invention.
Figure 2 is a graph showing (A) cell survival rate and (B) pH of fermented chives fermented in water in an embodiment of the present invention.
Figure 3 is a graph showing the cell survival rate over time of (A) MRS and (B) fermented chives fermented in water in an embodiment of the present invention.
Figure 4 shows the DPPH radical scavenger activity of fermented chives in one embodiment of the present invention. In the graph, a and b indicate a statistically significant difference at p<0.05 using Students' t-test.
Figure 5 shows the antibacterial activity of fermented chives against poultry pathogens in one embodiment of the present invention. WFCC: water-fermented CC juice extract; MFCC: MRS-fermented CC juice extract.
Figure 6 shows LC-MS/MS chromatograms of methanol extract of fermented chives according to an example of the present invention: (A) positive mode and (B) negative mode.

이하 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 이하의 설명에 있어, 당업자에게 주지 저명한 기술에 대해서는 그 상세한 설명을 생략할 수 있다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있다. 또한, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings. In the following description, detailed descriptions of techniques well known to those skilled in the art may be omitted. Additionally, when describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description may be omitted. In addition, the terminology used in this specification is a term used to appropriately express preferred embodiments of the present invention, and may vary depending on the intention of the user or operator or the customs of the field to which the present invention belongs.

따라서 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Therefore, definitions of these terms should be made based on the content throughout this specification. Throughout the specification, when a part is said to “include” a certain element, this means that it may further include other elements rather than excluding other elements, unless specifically stated to the contrary.

본 발명은 부추 발효물 또는 이의 추출물을 포함하는, 사료 첨가제 조성물 및 이의 제조방법에 관한 것이다. The present invention relates to a feed additive composition comprising fermented chives or extracts thereof and a method for producing the same.

또한, 본 발명은 부추 발효물 또는 이의 추출물을 포함하는, 가금 병원성 세균 및 조류인플루엔자 바이러스 억제용 조성물에 관한 것이다.Additionally, the present invention relates to a composition for inhibiting poultry pathogenic bacteria and avian influenza virus, comprising fermented chives or extracts thereof.

상기 부추 발효물은 부추 유래 락토바실러스 플란타룸 SK4719 균주를 이용하여 발효된 것일 수 있으나, 이에 제한되지 않는다.The fermented chive product may be fermented using the leek-derived Lactobacillus plantarum SK4719 strain, but is not limited thereto.

상기 부추 발효물은 물 또는 MRS와 부추 착즙액을 혼합하여 발효된 것일 수 있으나, 이에 제한되지 않는다.The fermented chive product may be fermented by mixing water or MRS and chive juice, but is not limited thereto.

상기 부추 발효물의 추출물은 알코올 추출물일 수 있으며, 예를 들어, 메탄올 추출물일 수 있으나, 이에 제한되지 않는다.The extract of the fermented chive product may be an alcohol extract, for example, a methanol extract, but is not limited thereto.

상기 부추 발효물은 물 또는 MRS와 부추 착즙액을 혼합한 후, 락토바실러스 플란타룸 SK4719 균주를 접종하여 발효시키는 단계를 포함하는 방법에 의해 제조될 수 있으나, 이에 제한되지 않는다. 또한, 상기 방법은 상기 부추 발효물을 알코올로 추출하여 부추 발효물의 추출물을 제조하는 단계를 추가 포함할 수 있으나, 이에 제한되지 않는다.The fermented chive product may be produced by a method including mixing water or MRS and chive juice, then inoculating Lactobacillus plantarum SK4719 strain and fermenting, but is not limited to this. In addition, the method may further include, but is not limited to, the step of extracting the fermented leek product with alcohol to produce an extract of the fermented leek product.

상기 부추 발효물 또는 이의 추출물은 가금 병원성 세균에 대해 항균 활성을 가지며, 예를 들어, 살모넬라 갈리나룸(Salmonella Gallinarum), 살모넬라 풀로룸(S. pullorum), 살모넬라 타이피(S. typhi), 살모넬라 티피뮤리움(S. typhimurium), 살모넬라 파라타이피(S. paratyphi), 살모넬라 엔터라이티디스(S. enteritidis), 살모넬라 아나툼(S. anatum), 엔테로코커스 페칼리스(Enterococcus faecalis), 대장균(E. coli), 황색포도상구균(Staphylococcus aureus), 클로스트리듐 페르프린젠스(Clostridium perfringens) 등의 병원성 세균에 대해 항균 활성을 가질 수 있으나, 이에 제한되지 않는다. The fermented chives or extracts thereof have antibacterial activity against poultry pathogenic bacteria, for example, Salmonella Gallinarum, S. pullorum , Salmonella typhi , and Salmonella typhi. Murium ( S. typhimurium ), Salmonella paratyphi ( S. paratyphi ), Salmonella enteritidis ( S. enteritidis ), Salmonella anatum ( S. anatum ), Enterococcus faecalis, Escherichia coli ( E coli ), Staphylococcus aureus , and Clostridium perfringens, but are not limited to this.

상기 부추 발효물 또는 이의 추출물은 조류인플루엔자 바이러스를 저해할 수 있으나, 이에 제한되지 않는다.The fermented chive or extract thereof may inhibit avian influenza virus, but is not limited thereto.

상기 물 또는 MRS와 상기 부추 착즙액은 95~85 : 5~15의 부피비로 혼합된 것일 수 있으며, 예를 들어, 90 : 10의 부피비로 혼합된 것일 수 있으나, 이에 제한되지 않는다.The water or MRS and the chive juice may be mixed at a volume ratio of 95 to 85:5 to 15, for example, may be mixed at a volume ratio of 90:10, but are not limited thereto.

상기 부추 발효물의 추출물은 캄프테롤(kaempferol), 캄프페롤 3-O-β-소포로사이드(kaempferol 3-O-β-sophoroside), 캄프페롤-3-O-루티노사이드(kaempferol-3-O-rutinoside), 캄프레롤 3-O-글루코사이드(kaempferol 3-O-glucoside), 옥소디하이드록시-옥타데센산(oxodihydroxy-octadecenoic acid), (Z)-5,8,11-트리히드록시옥타덱-9-에노익산((Z)-5,8,11-trihydroxyoctadec-9-enoic acid), 9(S)-HpOTrE, 지방산 유도체, 9S-HOTrE(9S-hydroxy-10E,12Z,15Z-octadecatrienoic acid), (6Z,9Z,12Z,15Z)-옥타데카테트라에노에이트((6Z,9Z,12Z,15Z)-octadecatetraenoate), 9-OxoOTrE (9-oxo-10e,12z,15z-octadecatrienoic acid), 12(13)-에폭시-9Z-옥타데센산(12(13)-epoxy-9Z-octadecenoic acid) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상의 화합물을 포함할 수 있으나, 이에 제한되지 않는다.The extract of the fermented chives contains kaempferol, kaempferol 3- O -β-sophoroside, and kaempferol-3- O -rutinoside . - O -rutinoside), kaempferol 3- O -glucoside, oxodihydroxy-octadecenoic acid, (Z)-5,8,11 - trihydride Roxyoctadec-9-enoic acid ((Z)-5,8,11-trihydroxyoctadec-9-enoic acid), 9(S)-HpOTrE, fatty acid derivative, 9S-HOTrE(9S-hydroxy-10E,12Z,15Z -octadecatrienoic acid), (6Z,9Z,12Z,15Z)-octadecatetraenoate ((6Z,9Z,12Z,15Z)-octadecatetraenoate), 9-OxoOTrE (9-oxo-10e,12z,15z-octadecatrienoic acid), 12(13)-epoxy-9Z-octadecenoic acid, and combinations thereof, but is not limited thereto. .

하기의 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 내용을 구체화하기 위한 것일 뿐 이에 의해 본 발명이 한정되는 것은 아니다.The present invention will be described in more detail through the following examples. However, the following examples are only for illustrating the content of the present invention and are not intended to limit the present invention.

<실시예 1> 부추 발효물의 최적 농도 결정<Example 1> Determination of optimal concentration of fermented chives

실험에 사용한 부추는 일반마트(서울시 광진구)에서 판매하는 그린벨트 부추를 사용하였으며, 녹즙기(Angel-7700, Korea)를 이용하여 착즙하였다. 부추로부터 분리된 락토바실러스 플란타룸 SK4719(KACC 92270P)를 발효 미생물로 사용하였다.The chives used in the experiment were green belt chives sold at a general supermarket (Gwangjin-gu, Seoul), and were juiced using a green juicer (Angel-7700, Korea). Lactobacillus plantarum SK4719 (KACC 92270P) isolated from chives was used as a fermentation microorganism.

부추 착즙액을 MRS 배지 (MFCC) 및 멸균수 (WFCC)에서 발효하였다. 락토바실러스 플란타룸 SK4719의 발효를 위한 최적 농도를 찾기 위해, MRS 및 물 중의 부추 착즙액을 0, 5, 10, 20, 25, 30, 35, 40% (v/v)의 농도로 준비하고 락토바실러스 플란타룸 SK4719 (107 log10 CFU/ml; 1%, w/v)를 접종하였다. 30℃ 및 100 rpm에서 18시간 동안 인큐베이션한 후 생존 세포수를 계수하고 pH를 측정하였다. pH는 pH meter (ISTEC 735P, Korea)를 사용하여 측정하고 생존 세포수는 MRS agar (Difco, USA) 상에서 드롭 플레이트 방법으로 확인하였다. 30℃에서 락토바실러스 플란타룸 SK4719를 사용한 부추즙의 발효의 최적 시간을 확인하기 위해, 일정 시간 간격(0, 6, 12, 18, 24, 30, 36, 42, 48 h)마다 생존 세포수를 계수하고 pH를 측정하였다. 모든 실험은 3회 반복 실험하였다.Chive juice was fermented in MRS medium (MFCC) and sterilized water (WFCC). To find the optimal concentration for fermentation of Lactobacillus plantarum SK4719, MRS and chive juice in water were prepared at concentrations of 0, 5, 10, 20, 25, 30, 35, and 40% (v/v). Lactobacillus Plantarum SK4719 (107 log10 CFU/ml; 1%, w/v) was inoculated. After incubation at 30°C and 100 rpm for 18 hours, the number of viable cells was counted and pH was measured. The pH was measured using a pH meter (ISTEC 735P, Korea), and the number of viable cells was confirmed using the drop plate method on MRS agar (Difco, USA). To determine the optimal time for fermentation of leek juice using Lactobacillus plantarum SK4719 at 30°C, the number of viable cells was measured at certain time intervals (0, 6, 12, 18, 24, 30, 36, 42, 48 h). were counted and the pH was measured. All experiments were repeated three times.

동결건조된 비발효 및 발효 부추즙(20 g)을 200 ml 80% (v/v) 메탄올과 혼합한 후 진탕 인큐베이터(30℃, 100 rpm)에서 30분간 진탕하고, 30℃ 이하에서 15분간 초음파처리하였다. 혼합물을 13,500 rpm (4℃, 10 min)에서 원심분리하여 상청액을 수득하였다. 이 과정을 5회 반복하여 수득한 상청액을 혼합하고 45℃에서 회전 증발시킨 후 동결건조하여 분석때까지 freeze-dried 및 kept at -80℃에서 보관하였다.Freeze-dried non-fermented and fermented chive juice (20 g) was mixed with 200 ml 80% (v/v) methanol, shaken in a shaking incubator (30℃, 100 rpm) for 30 minutes, and sonicated for 15 minutes at 30℃ or lower. Processed. The mixture was centrifuged at 13,500 rpm (4°C, 10 min) to obtain the supernatant. This process was repeated 5 times, and the obtained supernatants were mixed, rotary evaporated at 45°C, freeze-dried, freeze-dried, and kept at -80°C until analysis.

그 결과, 도 1에서 볼 수 있는 바와 같이, MRS와 부추즙을 함께 0시간 발효했을 때, pH는 0%에서 5.5에서 35%에서 5.8였다. 18시간 발효 후에, pH는 0%에서 3.9이고 35%에서 3.8로 pH는 18시간 발효 후 1.3 이상 감소하였다. pH의 감소는 유기산의 생성에 의한 것이다. As a result, as can be seen in Figure 1, when MRS and leek juice were fermented together for 0 hours, the pH ranged from 5.5 at 0% to 5.8 at 35%. After 18 hours of fermentation, the pH was 3.9 at 0% and 3.8 at 35%. The pH decreased by more than 1.3 after 18 hours of fermentation. The decrease in pH is due to the production of organic acids.

또한, 도 2에서 볼 수 있는 바와 같이, 물과 부추즙을 함께 발효했을 때, pH는 18시간의 발효시 -5% 사이의 농도에서는 급격히 감소했으며 10%의 농도까지 감소를 유지했다. 발효 0시간에서 pH는 6.6에서 7.1로 증가했으나, 18시간 발효 후에 pH는 10% 농도에서 3.27로 감소했다. 락토바실러스 플란타룸 SK4719 생존 세포는 0-35%의 부추즙과 MRS를 18시간 동안 발효했을 때 증가하였다. 비-유산균은 부추즙의 농도가 증가할수록 잘 자라는 반면, 유산균은 감소하였다. 물과 10%의 부추즙을 함께 발효했을 때, 가장 낮은 pH 및 가장 높은 세포 생존률을 보였다. 유사하게, MRS와 10%의 부추즙을 함께 발효했을 때 락토바실러스 플란타룸 SK4719의 높은 생존률 및 낮은 pH를 보였다(도 1). 그러므로, 10% (v/v)의 부추즙이 락토바실러스 플란타룸 SK4719의 발효에 적합하였다. In addition, as can be seen in Figure 2, when water and leek juice were fermented together, the pH decreased rapidly at a concentration between -5% and maintained the decrease up to a concentration of 10% during 18 hours of fermentation. At 0 hours of fermentation, pH increased from 6.6 to 7.1, but after 18 hours of fermentation, pH decreased to 3.27 at 10% concentration. Lactobacillus Plantarum SK4719 viable cells increased when 0-35% chive juice and MRS were fermented for 18 hours. Non-lactic acid bacteria grew better as the concentration of chive juice increased, while lactic acid bacteria decreased. When fermented with water and 10% chive juice, the lowest pH and highest cell survival rate were observed. Similarly, high survival rate and low survival rate of Lactobacillus plantarum SK4719 when co-fermented with MRS and 10% chive juice. pH was shown (Figure 1). Therefore, 10% (v/v) of chive juice was suitable for fermentation of Lactobacillus plantarum SK4719.

도 3에 도시된 바와 같이, 시간 프로파일링으로 24시간이 부추즙 발효에 최적임을 확인하였다. 락토바실러스 플란타룸 SK4719을 이용하여 물과 부추즙을 발효했을 때, 24시간에 가장 높은 8.1의 CFU를 보였으며, pH도 7.3에서 4.4로 급격히 감소하였다. MRS와 부추즙을 발효했을 때에는, pH가 6.2에서 3.9로 감소하였다. 락토바실러스 플란타룸 SK4719이 초기 7.6 CFU/ml에서 15시간 발효시에는 9.5로 증가하였다. 이전 연구에서, 락토바실러스 플란타룸 SK4719를 MRS와 발효했을 때 12시간 이내에 9 CFU/ml의 생존수를 보였었다 (Niu et al., 2019).As shown in Figure 3, time profiling confirmed that 24 hours was optimal for fermentation of leek juice. When water and chive juice were fermented using Lactobacillus Plantarum SK4719, the highest CFU of 8.1 was seen at 24 hours, and the pH also rapidly decreased from 7.3 to 4.4. When MRS and leek juice were fermented, the pH decreased from 6.2 to 3.9. Lactobacillus plantarum SK4719 is initially When fermented for 15 hours at 7.6 CFU/ml, it increased to 9.5. In a previous study, Lactobacillus plantarum SK4719 was fermented with MRS, showing a viable count of 9 CFU/ml within 12 hours (Niu et al., 2019).

<실시예 2> 부추즙 추출물의 생활성 화합물의 분석 <Example 2> Analysis of bioactive compounds of chive juice extract

총 페놀 및 플라보노이드 함량Total phenol and flavonoid content

샘플의 총 페놀 함량을 Folin-Ciocalteu method (Dudonne et al., 2009)로 측정하였다. 20 μl의 샘플(10 mg/ml in 80% (v/v) MeOH) 및 100 μl의 0.2 N Fc reagent (Sigma f-9252)을 혼합하고 암흑에서 5분간 반응시켰다. 80 μl의 7.5% Na2CO3을 혼합한 후, 실온의 암흑에서 60분간 반응시켰다. 갈산을 표준 용액으로 사용하였다. ELISA reader(Synergy 2, BioTek Instruments Inc.)를 사용하여 750 nm에서의 흡광도를 측정하였다. 총 페놀은 추출물(mg GAE/g)의 g 당 등량의 갈산의 mg으로 표시하였다.The total phenolic content of the samples was measured using the Folin-Ciocalteu method (Dudonne et al., 2009). 20 μl of sample (10 mg/ml in 80% (v/v) MeOH) and 100 μl of 0.2 N Fc reagent (Sigma f-9252) were mixed and incubated for 5 minutes in the dark. 80 μl of 7.5% Na 2 CO 3 was mixed and reacted for 60 minutes in the dark at room temperature. Gallic acid was used as a standard solution. Absorbance was measured at 750 nm using an ELISA reader (Synergy 2, BioTek Instruments Inc.). Total phenols were expressed as mg of equivalent gallic acid per gram of extract (mg GAE/g).

총 플라보노이드 함량(TFC) 측정을 위해, 20 μl의 샘플 (10 mg/ml in 80% MeOH), 180 μl의 90% 디에틸렌 글리콜 및 20 μl의 1 N NaOH을 96 웰 플레이트에서 혼합하고 실온의 암흑에서 60분간 반응시켰다. 퀘르세틴을 표준 용액으로 사용하였다. ELISA reader를 사용하여 415 nm에서 흡광도를 측정하였다. TFC는 추출물(mg QE/g)의 g 당 등량 퀘르세틴의 mg로서 표시하였다.For total flavonoid content (TFC) determination, 20 μl of sample (10 mg/ml in 80% MeOH), 180 μl of 90% diethylene glycol and 20 μl of 1 N NaOH were mixed in a 96 well plate and incubated in the dark at room temperature. It was reacted for 60 minutes. Quercetin was used as a standard solution. Absorbance was measured at 415 nm using an ELISA reader. TFC was expressed as mg of equivalent quercetin per gram of extract (mg QE/g).

그 결과, 표 1에 나타낸 바와 같이, 물 발효의 경우(p<0.05), 발효 후에 폴리페놀 함량이 24% 증가하고 플라보노이드 함량이 27% 감소하였다. TFC의 감소는 프로바이오틱스에 의해 방출되는 효소에 의한 플라보노이드 화합물의 감수분해 때문이다. 종래 연구에서 플라보노이드의 초기 대사는 장으로 잘 흡수되지 않으므로 이점이 있다고 보고되었다(Lotito et al., 2011). 용월(Graptopetalum paraguayense E. Walther)을 락토바실러스 플란타룸 SK4719 BCRC 10357으로 발효시켰을 때, 플라보노이드 및 페놀 화합물은 각각 17.2 및 92.2 μg/mg에서 22.9 및 111 μg/mg로 증가하였다 (Wu et al., 2011).As a result, as shown in Table 1, in the case of water fermentation (p<0.05), the polyphenol content increased by 24% and the flavonoid content decreased by 27% after fermentation. The decrease in TFC is due to meiolysis of flavonoid compounds by enzymes released by probiotics. Previous studies have reported that the initial metabolism of flavonoids is advantageous because they are poorly absorbed into the intestines (Lotito et al., 2011). When Graptopetalum paraguayense E. Walther was fermented with Lactobacillus plantarum SK4719 BCRC 10357, flavonoid and phenolic compounds increased from 17.2 and 92.2 μg/mg to 22.9 and 111 μg/mg, respectively (Wu et al., 2011).

알리신 및 티올 농도Allicin and thiol concentrations

티올 농도는 96 웰 플레이트에서 실온에서 10분간 100 μl의 희석 샘플 (50 mg/ml) 및 100 μl의 1.5 mM 5,5’-dithiobis (2-nitro-benzoic acid) (DTNB)을 첨가하여 측정하였다. 412 nm에서 흡광도를 측정하고, 티올 함량을 식물 추출물(μM CE/g)의 g 당 시스테인 등량의 μM로 표시하였다. Thiol concentration was measured by adding 100 μl of diluted sample (50 mg/ml) and 100 μl of 1.5 mM 5,5'-dithiobis (2-nitro-benzoic acid) (DTNB) in a 96 well plate for 10 minutes at room temperature. . Absorbance was measured at 412 nm, and thiol content was expressed as μM of cysteine equivalent per g of plant extract (μM CE/g).

알리신 함량을 측정하기 위해, 시스테인을 50 mM HEPES 버퍼를 이용하여 10, 20, 30, 40, 50 μM로 희석하였다. 100 μl의 샘플(50 mg/ml) 및 100 μl의 L-시스테인(250 μM)을 96 웰 플레이트에서 10분간 반응시켰다. 혼합물 중 100 μl을 100 μl의 1.5 mM (DTNB)와 10분간 반응시켰다. 412 nm에서 흡광도를 측정하고, 알리신 농도를 하기 식으로 계산하였다. 알리신 농도는 식물 추출물(μM CE/g)의 g 당 시스테인 등량의 μM로 표시하였다. To measure allicin content, cysteine was diluted to 10, 20, 30, 40, and 50 μM using 50 mM HEPES buffer. 100 μl of sample (50 mg/ml) and 100 μl of L-cysteine (250 μM) were reacted in a 96 well plate for 10 minutes. 100 μl of the mixture was reacted with 100 μl of 1.5 mM (DTNB) for 10 minutes. Absorbance was measured at 412 nm, and allicin concentration was calculated using the following formula. Allicin concentration was expressed as μM of cysteine equivalent per gram of plant extract (μM CE/g).

위 식에서, a는 샘플 내의 티올이고, b는 L-시스테인과의 반응 후 티올이고, c는 첨가된 L-시스테인이다.In the above formula, a is the thiol in the sample, b is the thiol after reaction with L-cysteine, and c is the added L-cysteine.

그 결과, 물 발효의 경우, 티올 및 알리신의 함량은 24시간 발효 후 각각 52% (p<0.05) 및 17% (p>0.05) 감소하였다. 발효 중에 알리신 함량은 이의 휘발 특성 및 락토바실러스 플란타룸 SK4719의 사용에 의해 감소하였다. 종래 문헌(Yang et al., 2014)에서 부추를 락토바실러스 플란타룸 SK4719 LK8과 48시간 동안 발효했을 때 알리신은 85.45% 감소하고 티올은 39.37% 증가함을 보고하였다. 그러나, MRS 배지에서의 발효의 경우는 유의한 변화는 관찰되지 않았는데, 이는 MRS 배지 함유 추출물의 어두운 색 때문인 것으로 보인다.As a result, in the case of water fermentation, the contents of thiol and allicin decreased by 52% (p<0.05) and 17% (p>0.05), respectively, after 24 hours of fermentation. During fermentation, allicin content was reduced due to its volatile nature and the use of Lactobacillus plantarum SK4719. In the previous literature (Yang et al., 2014), chives were treated with Lactobacillus plantarum SK4719. It was reported that when fermented with LK8 for 48 hours, allicin decreased by 85.45% and thiol increased by 39.37%. However, no significant changes were observed in the case of fermentation in MRS medium, which is likely due to the dark color of the extract containing MRS medium.

<실시예 3> 발효 부추즙 추출물의 생물학적 활성<Example 3> Biological activity of fermented chive juice extract

항산화 활성antioxidant activity

96 웰 플레이트에서 180 μl의 2,2-diphenyl-1-picrylhyd razyl (DPPH) stock solution (0.2 mM in 80% (v/v) methanol) 및 20 μl의 샘플(5 mg/ml)을 혼합하고 실온의 암흑에서 30분간 두었다. 트롤록스를 80% MeOH로 희석한 100, 200, 400, 600, 및 800 μM의 농도로 표준으로서 사용하였다. ELISA reader를 사용하여 517 nm에서 흡광도를 측정하였다. DPPH 스캐빈저 활성을 하기 식으로 계산하였다.Mix 180 μl of 2,2-diphenyl-1-picrylhyd razyl (DPPH) stock solution (0.2 mM in 80% (v/v) methanol) and 20 μl of sample (5 mg/ml) in a 96 well plate and store at room temperature. It was left in the dark for 30 minutes. Trolox was used as a standard at concentrations of 100, 200, 400, 600, and 800 μM diluted in 80% MeOH. Absorbance was measured at 517 nm using an ELISA reader. DPPH scavenger activity was calculated using the following equation.

위 식에서, A0은 517nm에서 대조의 흡광도이고, A1은 517nm에서 샘플의 흡광도이다.In the above equation, A 0 is the absorbance of the control at 517 nm and A 1 is the absorbance of the sample at 517 nm.

그 결과, 도 4에 도시된 바와 같이, 물 및 MRS 배지에서 24시간 발효한 후 부추즙의 항산화 활성이 각각 24% 및 9%로 상당히 감소하였다(p<0.05). 이는 부추즙의 발효 후 플라보노이드 및 유기황 화합물인 알리신 및 티올의 감소에 의한 것이다. As a result, as shown in Figure 4, the antioxidant activity of leek juice was significantly reduced to 24% and 9%, respectively, after fermentation in water and MRS medium for 24 hours (p<0.05). This is due to the reduction of flavonoids and organosulfur compounds, allicin and thiol, after fermentation of chive juice.

부추즙의 항균 및 항바이러스 활성Antibacterial and antiviral activity of chive juice

아가 웰 분산 검정으로 실시예 1에서와 같이 제조한 발효된 부추즙 추출물의 활성을 확인하였다. 100 mg/ml의 발효된 부추즙 추출물을 물(WFCC) 및 MRS(MFCC)과 혼합한 후, 100 μl를 병원균 함유 NA 아가 플레이트의 웰에 첨가하고 37℃에서 24시간 동안 인큐베이션하였다.The activity of the fermented chive juice extract prepared as in Example 1 was confirmed by agar well dispersion assay. After mixing 100 mg/ml of fermented chive juice extract with water (WFCC) and MRS (MFCC), 100 μl was added to the wells of the pathogen-containing NA agar plate and incubated at 37°C for 24 hours.

또한, cytopathic effect (CPE) reduction assay으로 항바이러스 테스트를 실시하여, WFCC 및 MFCC의 메탄올 추출물에 의한 MDCK(Madin-Darby Canine Kidney) 세포의 바이러스-유도 용균 보호 효과를 확인하였다. MDCK 세포를 37℃, 5% CO2 습식 인큐베이터에서 10% 우태아혈청(FBS) 및 1% penicillin-streptomycin (P/S)을 함유하는 Dulbecco’s modified Eagle 배지 (DMEM, Gibco BRI, USA)에서 배양하였다. 조류인플루엔자, A H1N1 바이러스(A/Puerto Rico/8/34)를 바이러스 성장 배지 (VGM)에서 배양하였다. VGM 은0.3% 우혈청 알부민(BSA) 및 1% P/S를 함유하는 DMEM으로 제조하였다. In addition, an antiviral test was performed using a cytopathic effect (CPE) reduction assay to confirm the protective effect against virus-induced lysis of MDCK (Madin-Darby Canine Kidney) cells by methanol extracts of WFCC and MFCC. MDCK cells were cultured in Dulbecco's modified Eagle medium (DMEM, Gibco BRI, USA) containing 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (P/S) in a humid incubator at 37°C and 5% CO 2. . Avian influenza, A H1N1 virus (A/Puerto Rico/8/34) was cultured in virus growth medium (VGM). VGM was prepared with DMEM containing 0.3% bovine serum albumin (BSA) and 1% P/S.

우선, 50 mg/ml의 물(WFCC) 및 MRS(MFCC) 중의 락토바실러스 플란타룸 SK4719 발효된 부추즙 (10% v/v)의 MeOH 추출물을 VGM에 5회 희석하여 샘플 용액(10 mg/ml)을 제조하였다. MDCK 세포를 96-웰 플레이트에 접종하고 37℃, 5% CO2 습식 인큐베이터에서 밤새 배양하였다. 그런 다음, MDCK 세포에 50% tissue culture infective dose (TCID50)의 influenza A H1N1 바이러스를 감염시키고 37℃, 5% CO2 습식 인큐베이터에서 인큐베이션하였다. 그런 다음, 세포를 PBS (pH 7.0)로 세척하고, 10 mg/ml에서부터 3-배 계열 희석된 메탄올 추출물을 첨가하였다. 48시간 동안 인큐베이션한 후, 추출물의 항-인플루엔자 활성을 CPE 환원의 현미경 직접 관찰 및 crystal violet uptake method으로 확인하였다.First, Lactobacillus plantarum SK4719 in water (WFCC) and MRS (MFCC) at 50 mg/ml. A sample solution (10 mg/ml) was prepared by diluting the MeOH extract of fermented leek juice (10% v/v) in VGM five times. MDCK cells were seeded in a 96-well plate and cultured overnight in a wet incubator at 37°C and 5% CO 2 . Then, MDCK cells were infected with 50% tissue culture infective dose (TCID50) of influenza A H1N1 virus and incubated in a wet incubator at 37°C and 5% CO 2 . The cells were then washed with PBS (pH 7.0), and 3-fold serially diluted methanol extracts were added starting at 10 mg/ml. After incubation for 48 hours, the anti-influenza activity of the extract was confirmed by direct microscopic observation of CPE reduction and the crystal violet uptake method.

S. Typhi, S. Typhimurium, S. Paratyphi, S. Enteritidis, S. Anatum, E. faecalis, E. coli, St. aureus, C. perfringens와 같은 병원균에 대한 물(WFCC) 및 MRS 배지(MFCC) 중의 락토바실러스 플란타룸 SK4719 발효된 부추즙 추출물 (100 mg/ml)의 항균 활성을 확인한 결과, 도 5에 도시된 바와 같이, 두 추출물 모두 가금류 병원균에 대해 높은 항균 활성을 보였으며, 이러한 발효된 부추즙 추출물의 항균 활성은 플라보노이드 함량에 의한 것으로 보인다. S. Typhi, S. Typhimurium, S. Paratyphi, S. Enteritidis, S. Anatum, E. faecalis , E. coli , St. Lactobacillus plantarum SK4719 in water (WFCC) and MRS medium (MFCC) against pathogens such as aureus and C. perfringens. As a result of confirming the antibacterial activity of the fermented chive juice extract (100 mg/ml), both extracts showed high antibacterial activity against poultry pathogens, as shown in Figure 5, and the antibacterial activity of the fermented chive juice extract was This appears to be due to the flavonoid content.

물 및 MRS 중의 발효된 부추즙 추출물 WFCC 및 MFCC)은 표 2에 나타난 바와 같은 항바이러스 활성을 보였다. WFCC 추출물은 1.1 mg/ml의 농도에서 항바이러스 활성을 보였으며 MFCC 추출물은 3.3 mg/ml의 농도에서 항바이러스 활성을 보였다. 이는 WFCC가 MFCC보다 더 많은 생활성 화합물을 하유하고 있기 때문이며, WFCC의 에탄올 추출물에 함유된 캄프페롤(kaempferol) 및 이의 글리코사이드가 항-인플루엔자 활성을 보이고 있다고 여겨진다.Fermented chive juice extracts (WFCC and MFCC) in water and MRS showed antiviral activity as shown in Table 2. The WFCC extract showed antiviral activity at a concentration of 1.1 mg/ml, and the MFCC extract showed antiviral activity at a concentration of 3.3 mg/ml. This is because WFCC contains more bioactive compounds than MFCC, and kaempferol and its glycosides contained in the ethanol extract of WFCC are believed to exhibit anti-influenza activity.

<실시예 4><Example 4> UHPLC-LTQ-Orbitrap-MS/MS 분석UHPLC-LTQ-Orbitrap-MS/MS analysis

물 발효된 부추즙 추출물 (10 mg/mL)의 대사산물 프로파일링을 UHPLC-LTQ- Orbitrap-MS/MS(ultra-high-performance liquid chromatography-linear trap quadrupole-orbitrap-tandem mass spectrometry)를 사용하여 실시하였다. Chloramphenicol (2.5 mg/mL)을 내부 표준으로 사용하였다(IS). 5 μL의 샘플 주 입 용량을 0.3 mL/min의 유속으로 Vanquish binary pump H system (Thermo Fisher Scientific, Waltham, MA, USA), auto-sampler, 및 column compartment가 구비된 UHPLC 시스템에 주입하였다. 40℃의 컬럼 온도를 유지하면서 Phenomenex KINETEX C18 column (100 mm × 2.1 mm, 1.7 μm particle size; Torrance, CA, USA)로 크 로마토그래피 분리를 실시하였다. 이동상은 물 중의 0.1% 포름산(v/v, solvent A) 및 아세토니트릴 중의 0.1% 포름산(v/v, solvent B)으로 구성되었다. 이동상 용매 구배는 하기와 같이 프로그래밍하였다: 1분간 5% solvent B, 9분 동안 100% solvent B로 단계적 증가, 및 1분간 유지 후 3분간 5% solvent B로 감소. MS 데이 터를 ion-trap mass spectrometer 및 HESI-II probe를 구비한 Orbitrap Velos ProTM 시스템을 사용하여 수집하였다. 100-2000 m/z 범위에서 매스 스펙트럼을 획 득하였다. 프로브 히터 및 모세관 온도를 각각 300℃ 및 350℃로 설정하였다. 모세 관 전압은 네가티브 및 포지티브 모드에서 각각 2.5 KV 및 3.7 KV으로 설정하였 다. UHPLC-LTQ-Orbitrap-MS/MS 데이터를 Xcalibur software (version 2.00, ThermoFisher Scientific)로 획득하여 Xcalibur software를 사용하여 netCDF format (*.cdf)으로 전환하였다. 피크 검출, 보유 시간 수집, 및 정열(alignment) 은 MetAlign software package (http://www.metalign.nl)을 사용하여 실시하였다. UHPLCLTQ-Orbitrap-MS/MS으로 평가된 대사산물의 MW, RT, 및 mass fragmentation patterns (MSn) 데이터를 문헌 및 공개된 온라인 데이터베이스로부터 입수한 데이 터와 비교하여 확인하였다.Metabolite profiling of water-fermented chive juice extract (10 mg/mL) was performed using ultra-high-performance liquid chromatography-linear trap quadrupole-orbitrap-tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS/MS). did. Chloramphenicol (2.5 mg/mL) was used as an internal standard (IS). A sample injection volume of 5 μL was injected into a UHPLC system equipped with a Vanquish binary pump H system (Thermo Fisher Scientific, Waltham, MA, USA), auto-sampler, and column compartment at a flow rate of 0.3 mL/min. Chromatographic separation was performed using a Phenomenex KINETEX C18 column (100 mm × 2.1 mm, 1.7 μm particle size; Torrance, CA, USA) while maintaining the column temperature at 40°C. The mobile phase consisted of 0.1% formic acid in water (v/v, solvent A) and 0.1% formic acid in acetonitrile (v/v, solvent B). The mobile phase solvent gradient was programmed as follows: 5% solvent B over 1 minute, step up to 100% solvent B over 9 minutes, hold for 1 minute, then decrease to 5% solvent B over 3 minutes. MS data were collected using an Orbitrap Velos ProTM system equipped with an ion-trap mass spectrometer and HESI-II probe. Mass spectra were acquired in the 100-2000 m/z range. The probe heater and capillary temperatures were set at 300°C and 350°C, respectively. The capillary voltage was set at 2.5 KV and 3.7 KV in negative and positive modes, respectively. UHPLC-LTQ-Orbitrap-MS/MS data were acquired with Xcalibur software (version 2.00, ThermoFisher Scientific) and converted to netCDF format (*.cdf) using Xcalibur software. Peak detection, retention time collection, and alignment were performed using the MetAlign software package ( http://www.metalign.nl) . The MW, RT, and mass fragmentation patterns (MSn) data of metabolites evaluated by UHPLCLTQ-Orbitrap-MS/MS were confirmed by comparing them with data obtained from the literature and public online databases.

포지티브 및 네가티브 모드에서 측정한 WFCC의 크로마토그램을 도 6에 나타냈다. 종합적으로, 플라보놀 및 지방산에 속하는 12개의 다른 이차 대사물질을 확인하였다. 확인된 화합물은 캄프테롤(kaempferol), 캄프페롤 3-O-β-소포로사이 드(kaempferol 3-O-β-sophoroside), 캄프페롤-3-O-루티노사이드(kaempferol-3-O- rutinoside), 캄프레롤 3-O-글루코사이드(kaempferol 3-O-glucoside), 옥소디하이 드록시-옥타데센산(oxodihydroxy-octadecenoic acid), (Z)-5,8,11-트리히드록시옥 타덱-9-에노익산((Z)-5,8,11-trihydroxyoctadec-9-enoic acid), 9(S)-HpOTrE, 지방 산 유도체, 9S-HOTrE(9S-hydroxy-10E,12Z,15Z-octadecatrienoic acid), (6Z,9Z,12Z,15Z)-옥타데카테트라에노에이트((6Z,9Z,12Z,15Z)-octade catetraenoate), 9-OxoOTrE (9-oxo-10e,12z,15z-octadecatrienoic acid), 12(13)-에폭시-9Z-옥타데센산(12(13)-epoxy-9Z-octadecenoic acid)이다(표 3). Chromatograms of WFCC measured in positive and negative modes are shown in Figure 6. Overall, 12 different secondary metabolites belonging to flavonols and fatty acids were identified. The identified compounds are kaempferol, kaempferol 3- O -β-sophoroside, and kaempferol-3- O -rutinoside . O - rutinoside), kaempferol 3- O -glucoside, oxodihydroxy-octadecenoic acid, (Z)-5,8,11 - trihydride Roxyoctadec-9-enoic acid ((Z)-5,8,11-trihydroxyoctadec-9-enoic acid), 9(S)-HpOTrE, fatty acid derivative, 9S-HOTrE(9S-hydroxy-10E,12Z, 15Z-octadecatrienoic acid), (6Z,9Z,12Z,15Z)-octadecatetraenoate ((6Z,9Z,12Z,15Z)-octade catetraenoate), 9-OxoOTrE (9-oxo-10e,12z,15z -octadecatrienoic acid), 12(13)-epoxy-9Z-octadecenoic acid (12(13)-epoxy-9Z-octadecenoic acid) (Table 3).

<실시예 5> 부추 사료 첨가제<Example 5> Chive feed additive

실험에 사용한 부추는 일반마트 (서울시 광진구)에서 판매하는 그린벨트 부추를 사 용하였으며, 녹즙기(Angel-7700, Korea)를 이용하여 착즙하였다. 착즙 후, 물 90%, 부추즙 10%를 혼합하여 비발효, 발효부추 사료첨가제 제조에 사용하였으 며, 발효부추 사료첨가제는 위 혼합액을 30℃, 100 rpm으로 18시간 배양하였다. 상 기 발효는 실시예 1에 기재된 바와 같이 부추로부터 분리된 락토바실러스 플란타룸 SK4719(KACC 92270P)를 발효 미생물로 사용하여 실시하였다.The chives used in the experiment were green belt chives sold at a general supermarket (Gwangjin-gu, Seoul), and were juiced using a green juicer (Angel-7700, Korea). After the juice was extracted, 90% of water and 10% of chive juice were mixed and used to prepare non-fermented and fermented chive feed additives. The fermented chive feed additive was cultured for 18 hours at 30°C and 100 rpm of the above mixture. The fermentation was carried out using Lactobacillus plantarum SK4719 (KACC 92270P) isolated from chives as a fermenting microorganism as described in Example 1.

비발효 및 발효부추 사료첨 가제는 총 사료원료의 3% 수준으로 첨가하고 교반기 (HC 123132-50 0L, Korea)를 이용하여 10분 교반한 후, 육계에 급이하였다. Non-fermented and fermented leek feed additives were added at a level of 3% of the total feed ingredients, stirred for 10 minutes using a stirrer (HC 123132-50 0L, Korea), and then fed to broilers.

항생제는 Enramycin-10 제 품을 사용하였으며, 총 육계 사료량의 0.01%를 첨가, 교반기로 10분 간 배합한 후 육계에 급여하였다. 육계 전기, 후기 사료 원료의 조성 등은 하기 표 4에 기재된 바와 같다.Enramycin-10 was used as an antibiotic, and 0.01% of the total amount of broiler feed was added, mixed with a stirrer for 10 minutes, and then fed to broiler chickens. The composition of feed raw materials in the early and late stages of broiler chickens is shown in Table 4 below.

<실시예 6> 동물 실험<Example 6> Animal experiment

실험사료 및 실험설계Experimental feed and experimental design

처리구당 5반복으로 반복당 40수의 초생추를 입식하였으며 완전임의 배치 하여 진행하였다. 본 실험에 사용한 기본 실험 사료는 옥수수와 대두박 위주로 하였으며, 육계 전기 사료의 ME는 3,100 kcal/kg, 후기는 3,150 kcal/kg로 제조하였다. 개시일로부터 3주차까지는 전기 사료를 급여, 3~5주차에는 후기 사료를 각각 급여하였다.For each treatment group, 40 seedlings were stocked in 5 repetitions, and they were placed completely randomly. The basic experimental feed used in this experiment was mainly corn and soybean meal, and the ME of the early broiler feed was 3,100 kcal/kg and the ME of the latter was 3,150 kcal/kg. From the start date, the first phase feed was fed until the 3rd week, and the second phase feed was fed from the 3rd to the 5th week.

공시동물 및 사양관리Public animal and specification management

공시동물로 육계 Ross308 품종의 수컷 병아리 800수 (개시체중: 134.5±0.2 g)를 사용하였으며, 상기 표 5에 나타낸 바와 같이 4 처리구로나누어 실험을 5회 반복하였다. 펜(반복)당 40 수씩 입식하였으며, 실험은 2019년 8월 26일부터 9월 23일까지 4주간 실시하였다.As test animals, 800 male chicks (starting weight: 134.5 ± 0.2 g) of the broiler Ross308 breed were used, and the experiment was repeated 5 times by dividing them into 4 treatment groups as shown in Table 5 above. 40 animals were stocked per pen (repetition), and the experiment was conducted for 4 weeks from August 26 to September 23, 2019.

실험 계사는 콘크리트 바닥이 설치된 무창 계사이며, 왕겨를 사용하여 5㎝ 두께로 깔아주었다. 계사 내 온도는 27.8±1.6℃ 및 습도 74.8±8. 1%의 환경에서 실험하였으며, 실내 온도는 처음 1주간은 32±1℃로 한 뒤 매주 2℃씩 감소시켜 실험 종료 마지막 주에는 25±1℃가 유지 되도록 하였다. 점등은 실험 시작부터 실험 종료시까지 24시간 점등 하였으며, 사료와 물은 각각 무제한 급여(ad-libitum)하였다. The experimental cage was a no-window cage with a concrete floor, and rice husk was used to spread it to a thickness of 5 cm. The temperature inside the house was 27.8±1.6℃ and humidity 74.8±8. The experiment was conducted in a 1% environment, and the room temperature was set at 32 ± 1℃ for the first week and then decreased by 2℃ every week to maintain 25 ± 1℃ at the end of the experiment. The lights were on for 24 hours from the start of the experiment to the end of the experiment, and feed and water were fed ad libitum.

체중, 사료섭취량 및 사료효율Body weight, feed intake and feed efficiency

일당사료섭취량 (ADFI), 일당증체량 (ADG), 사료효율(Feed/Gain)을 측정하였 다. 체중과 사료섭취량은 실험 개시일로부터 종료 시까지 매주 측정하였으며, 체중 은 한 pen 내 모든 입식 수수를 한꺼번에 측정하여 마리당 평균 체중으로 구하였 다. 일당 사료섭취량은 총 급여량에서 사료잔량 및 소실량을 제외한 값을 섭취 일 수로 나누어 계산하였으며, 이를 매주 증체한 체중을 고려하여 일당증체량을 산출 하였다. 사료효율은 각 기간 당 증체량과 사료섭취량의 비율로 계산하였다.Daily feed intake (ADFI), daily weight gain (ADG), and feed efficiency (Feed/Gain) were measured. Body weight and feed intake were measured every week from the start date of the experiment until the end, and body weight was calculated as the average weight per animal by measuring all the stocked sorghum in one pen at the same time. The daily feed intake was calculated by dividing the total feed amount minus the feed remaining and loss amount by the number of days of intake, and the daily weight gain was calculated by considering the weekly weight gain. Feed efficiency was calculated as the ratio of weight gain and feed intake for each period.

시료 채취sample collection

사양실험 종료일에 pen당 2수씩 임의로 선별, 처리구당 10수 씩 도계하여 시료를 채취하였다. 채취한 시료는 혈액, 가슴육, 다리육, 장기(간, 비장, F낭), 소장(십이지장, 공장, 회장) 및 맹장을 채취하였다. At the end of the feeding experiment, samples were collected by randomly selecting 2 animals per pen and slaughtering 10 animals per treatment group. Samples collected included blood, breast meat, leg meat, organs (liver, spleen, F-sac), small intestine (duodenum, jejunum, ileum), and cecum.

혈액은 이산화탄소를 이용하여 도살, 심장채혈 방법을 사용하여 채혈 실시하 였고, EDTA 처리된 채혈튜브에 주입한 후 4℃에 보관하였다. 이후 1500rpm * g에서 10분간 원심분리를 통하여 혈청을 분리하였으며 혈청은 -20℃에 보관하였다.Blood was slaughtered using carbon dioxide and collected using a heart blood collection method, injected into an EDTA-treated blood collection tube, and stored at 4°C. Afterwards, the serum was separated by centrifugation at 1500 rpm * g for 10 minutes, and the serum was stored at -20°C.

육질 특성meat quality characteristics

계육의 상대적 중량은 처리구별 선별한 육계의 체중과 채취한 계육(가슴육, 다리육)의 무게를 측정하여 생체중 100 g당 계육의 무게를 비율로 나타내었다.The relative weight of chicken meat was measured by measuring the weight of selected broiler meat for each treatment group and the weight of collected chicken meat (breast meat, leg meat), and expressed as a ratio of the weight of chicken meat per 100 g of live weight.

가열감량(Cooking loss)은 시료를 원형의 일정한 모양으로 정형한 후, poly ethylene bag에 넣어 75℃ water bath (C-WBE,Chang Shin co., Korea)에서 30 분간 가열하였다. 이후 상온에서 10분간 방냉시켰으며 가열 전, 후의 무게 차이를 비교하여 감량된 양을 산출하였다. For cooking loss, the sample was shaped into a circular shape, placed in a poly ethylene bag, and heated in a 75°C water bath (C-WBE, Chang Shin co., Korea) for 30 minutes. Afterwards, it was left to cool at room temperature for 10 minutes, and the weight loss was calculated by comparing the weight difference before and after heating.

* Cooking loss(%) = Sample weight before coo king - Sample weight after cooking / Sample weight before cooking × 100 * Cooking loss(%) = Sample weight before cooking - Sample weight after cooking / Sample weight before cooking × 100

육색은 시료의 표면을 색도계(Chromameter, CR210, minolta, Japan)을 사용하여 명도 (lightness)를 나타내는 L*값, 적색도 (redness)를 나타내는 a*값과 황색도 (yellowness)를 나타내는 b*값을 측정하였다. 이때의 표준색은 L*값이 97.69, a*값이 -0.43, b*값이 +1.98인 calibration plate를 사용하였다.Meat color is measured using a colorimeter (Chromameter, CR210, Minolta, Japan) on the surface of the sample. L* value indicates lightness, a* value indicates redness, and b* value indicates yellowness. was measured. The standard color at this time was a calibration plate with an L* value of 97.69, a* value of -0.43, and b* value of +1.98.

pH는 가슴육 및 다리육의 1 c m 깊이에 pH meter (Hanna Instruments, Nusfalau, Romania)를 넣었을 때, 나타난 수치로 산출하였으며 샘플당 3회 측정하였다.pH was calculated as the value displayed when a pH meter (Hanna Instruments, Nusfalau, Romania) was placed at a depth of 1 cm of breast meat and leg meat, and was measured three times per sample.

장기(간, 비장, F낭) 무게 측정Weighing organs (liver, spleen, F-cyst)

적출 한 장기(간, 비장, F낭)의 무게는 지방 등 이물질을 제거한 후 저울 (EL4002, Mettlertoledo)을 이용해 측정하였으며 생체중 100 g당 무게의 비율로 계산하였다.The weight of the extracted organs (liver, spleen, and F-cyst) was measured using a scale (EL4002, Mettlettoledo) after removing foreign substances such as fat, and was calculated as a ratio of weight per 100 g of live weight.

소장(십이지장, 공장, 회장) 및 맹장의 길이와 무게Length and weight of the small intestine (duodenum, jejunum, ileum) and cecum

부추 사료첨가제 및 항생제의 사료 내 첨가에 따른 소장 및 맹장의 길이와 무게를 측정하였다. 소장은 십이지장, 공장 및 회장의 3부위로 나누어 측정하였으며, 무게는 소장 및 맹장 내의 내용물을 제거한 후 측정하였다. The length and weight of the small intestine and cecum were measured according to the addition of chive feed additives and antibiotics to the feed. The small intestine was measured by dividing it into three parts: duodenum, jejunum, and ileum, and the weight was measured after removing the contents of the small intestine and cecum.

소장(십이지장, 공장, 회장) 및 맹장 내 생균수 검사Testing the number of viable bacteria in the small intestine (duodenum, jejunum, ileum) and cecum

소장 및 맹장 내 생균수 검사는 MRS, NA, Macconkey, ST(Streptococcus thermophilus), SS(Salmonella shigella) (Difco, USA) 평판배지로 표준한천배양 법을 사용하여 측정하였다. 장 내 내용물은 처리구당 8수의 내용물을 사용하였으 며, 시료 1g을 멸균된 distill water 9㎖에 넣은 후 균질화 과정을 거쳐 순차적으 로 희석하였다. The number of viable bacteria in the small intestine and cecum was measured using standard agar culture using MRS, NA, Macconkey, ST (Streptococcus thermophilus), and SS (Salmonella shigella) (Difco, USA) plate media. The contents of the intestines were 8 times per treatment group, and 1 g of sample was added to 9 ml of sterilized distill water and sequentially diluted through a homogenization process.

그 후 각각의 배지에 10㎕을 분주하여 spotting한 후 37℃ 인큐베이터에서 24시간동안 배양하였다. 나타난 유효 colony 수를 측정하여 CFU/g을 계산, log10 값으로 환산하였다. 모든 실험은 3반복으로 진행 하였다.After that, 10㎕ was dispensed into each medium, spotted, and cultured in an incubator at 37°C for 24 hours. The number of effective colonies was measured, CFU/g was calculated, and converted to log10 value. All experiments were conducted in 3 repetitions.

부추 사료첨가제 급여에 따른 육계 혈액 내 일반성분 분석Analysis of general components in broiler blood according to feeding of chive feed additive

혈액 내 조성을 측정하기 위해 실험 종료 시 처리구당 10수씩 임의 선 발한 육계로부터 심장채혈 방법을 이용하여 혈액을 채취하였다. 채취한 혈액은 3,000 rpm, 15분간 원심분리기 (HA-12,Korea)를 이용해 분리된 혈청을 가지고 분석에 이용하였다.To measure blood composition, blood was collected from 10 randomly selected broiler chickens per treatment group using the heart blood collection method at the end of the experiment. The collected blood was used for analysis with serum separated using a centrifuge (HA-12, Korea) at 3,000 rpm for 15 minutes.

분석 항목은GGT, GOT, GPT, LDH, ALP, Glucose, BUN, Creatine, Uric acid, Total cholesterol, HDL, LDL, Triglyceride, Total protein, Albumin 등 총 15가 지 혈액 성분을 측정하였다.A total of 15 blood components were measured, including GGT, GOT, GPT, LDH, ALP, Glucose, BUN, Creatine, Uric acid, Total cholesterol, HDL, LDL, Triglyceride, Total protein, and Albumin.

HDL-cholesterol (%)은 Total cholesterol 함량 중 HDL이 차지하는 비율을, LDL+VLDL의 값은 Total cholesterol 함량에서 HDL의 함량을 차감하여 계산하였다.HDL-cholesterol (%) was calculated by subtracting the HDL content from the total cholesterol content, and the LDL+VLDL value was calculated by subtracting the HDL content from the total cholesterol content.

상기 분석 결과를 표 6에 나타냈다.The results of the above analysis are shown in Table 6.

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본 질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으 로 해석되어야 할 것이다.So far, the present invention has been examined focusing on its preferred embodiments. A person skilled in the art to which the present invention pertains will understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the equivalent scope should be construed as being included in the present invention.

국립농업과학원National Institute of Agricultural Sciences KACC92270PKACC92270P 2019070920190709

Claims (12)

부추 발효물 또는 이의 추출물을 포함하는, 사료 첨가제 조성물로서,
상기 부추 발효물의 추출물은 알코올 추출물인 것이며,
상기 부추 발효물의 추출물은 캄프테롤(kaempferol), 캄프페롤 3-O-β-소포로사이드(kaempferol 3-O-β-sophoroside), 캄프페롤-3-O-루티노사이드(kaempferol-3-O-rutinoside), 캄프레롤 3-O-글루코사이드(kaempferol 3-O-glucoside), 옥소디하이드록시-옥타데센산(oxodihydroxy-octadecenoic acid), (Z)-5,8,11-트리히드록시옥타덱-9-에노익산((Z)-5,8,11-trihydroxyoctadec-9-enoic acid), 9(S)-HpOTrE, 지방산 유도체, 9S-HOTrE(9S-hydroxy-10E,12Z,15Z-octadecatrienoic acid), (6Z,9Z,12Z,15Z)-옥타데카테트라에노에이트((6Z,9Z,12Z,15Z)-octadecatetraenoate), 9-OxoOTrE (9-oxo-10e,12z,15z-octadecatrienoic acid), 12(13)-에폭시-9Z-옥타데센산(12(13)-epoxy-9Z-octadecenoic acid) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상의 화합물을 포함하는 것인, 사료 첨가제 조성물.
A feed additive composition comprising fermented chives or extracts thereof,
The extract of the fermented leek product is an alcohol extract,
The extract of the fermented chives contains kaempferol, kaempferol 3- O -β-sophoroside, and kaempferol-3- O -rutinoside . - O -rutinoside), kaempferol 3- O -glucoside, oxodihydroxy-octadecenoic acid, (Z)-5,8,11 - trihydride Roxyoctadec-9-enoic acid ((Z)-5,8,11-trihydroxyoctadec-9-enoic acid), 9(S)-HpOTrE, fatty acid derivative, 9S-HOTrE(9S-hydroxy-10E,12Z,15Z -octadecatrienoic acid), (6Z,9Z,12Z,15Z)-octadecatetraenoate ((6Z,9Z,12Z,15Z)-octadecatetraenoate), 9-OxoOTrE (9-oxo-10e,12z,15z-octadecatrienoic A feed additive composition comprising one or more compounds selected from the group consisting of acid), 12(13)-epoxy-9Z-octadecenoic acid, and combinations thereof.
제1항에 있어서,
상기 부추 발효물은 락토바실러스 플란타룸 SK4719 균주를 이용하여 발효된 것인, 사료 첨가제 조성물.
According to paragraph 1,
The feed additive composition wherein the chive fermented product is fermented using Lactobacillus plantarum SK4719 strain.
제2항에 있어서,
상기 부추 발효물은 물 또는 MRS와 부추 착즙액을 혼합하여 발효된 것인, 사료 첨가제 조성물.
According to paragraph 2,
The feed additive composition wherein the fermented chive is fermented by mixing water or MRS and chive juice.
제3항에 있어서,
상기 물 또는 MRS와 상기 부추 착즙액은 95~85 : 5~15의 부피비로 혼합된 것인, 사료 첨가제 조성물.
According to paragraph 3,
A feed additive composition wherein the water or MRS and the chive juice are mixed in a volume ratio of 95 to 85:5 to 15.
1) 부추를 착즙하여 부추 착즙액을 제조하는 단계;
2) 1) 단계에서 제조한 부추 착즙액을 물 또는 MRS와 혼합하여 혼합물을 제조하는 단계; 및
3) 2) 단계에서 제조한 혼합물을 락토바실러스 플란타룸 SK4719 균주를 이용하여 발효하는 단계;를 포함하는 사료 첨가제 조성물의 제조방법.
1) Squeezing chives to produce chive juice;
2) mixing the chive juice prepared in step 1) with water or MRS to prepare a mixture; and
3) Fermenting the mixture prepared in step 2) using Lactobacillus plantarum SK4719 strain. A method of producing a feed additive composition comprising a.
제5항에 있어서,
상기 2) 단계에서 물 또는 MRS와 상기 부추 착즙액은 95~85 : 5~15의 부피비로 혼합된 것인, 제조방법.
According to clause 5,
In step 2), water or MRS and the chive juice are mixed in a volume ratio of 95 to 85: 5 to 15.
제5항에 있어서,
상기 3) 단계의 발효하는 단계는 12~24시간 동안 실시하는 것인, 제조방법.
According to clause 5,
A manufacturing method in which the fermentation step of step 3) is performed for 12 to 24 hours.
제5항에 있어서,
상기 부추 발효물을 알코올로 추출하여 부추 발효물의 추출물을 제조하는 단계를 추가로 포함하는 것인, 제조방법.
According to clause 5,
A production method further comprising the step of extracting the fermented chive product with alcohol to produce an extract of the fermented chive product.
부추 발효물 또는 이의 추출물을 포함하는, 가금 병원성 세균 및 조류인플루엔자 바이러스 억제용 조성물로서,
상기 부추 발효물의 추출물은 캄프테롤(kaempferol), 캄프페롤 3-O-β-소포로사이드(kaempferol 3-O-β-sophoroside), 캄프페롤-3-O-루티노사이드(kaempferol-3-O-rutinoside), 캄프레롤 3-O-글루코사이드(kaempferol 3-O-glucoside), 옥소디하이드록시-옥타데센산(oxodihydroxy-octadecenoic acid), (Z)-5,8,11-트리히드록시옥타덱-9-에노익산((Z)-5,8,11-trihydroxyoctadec-9-enoic acid), 9(S)-HpOTrE, 지방산 유도체, 9S-HOTrE(9S-hydroxy-10E,12Z,15Z-octadecatrienoic acid), (6Z,9Z,12Z,15Z)-옥타데카테트라에노에이트((6Z,9Z,12Z,15Z)-octadecatetraenoate), 9-OxoOTrE (9-oxo-10e,12z,15z-octadecatrienoic acid), 12(13)-에폭시-9Z-옥타데센산(12(13)-epoxy-9Z-octadecenoic acid) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상의 화합물을 포함하는 것인, 바이러스 억제용 조성물.
A composition for inhibiting poultry pathogenic bacteria and avian influenza virus, comprising fermented chives or extracts thereof,
The extract of the fermented chives contains kaempferol, kaempferol 3- O -β-sophoroside, and kaempferol-3- O -rutinoside . - O -rutinoside), kaempferol 3- O -glucoside, oxodihydroxy-octadecenoic acid, (Z)-5,8,11 - trihydride Roxyoctadec-9-enoic acid ((Z)-5,8,11-trihydroxyoctadec-9-enoic acid), 9(S)-HpOTrE, fatty acid derivative, 9S-HOTrE(9S-hydroxy-10E,12Z,15Z -octadecatrienoic acid), (6Z,9Z,12Z,15Z)-octadecatetraenoate ((6Z,9Z,12Z,15Z)-octadecatetraenoate), 9-OxoOTrE (9-oxo-10e,12z,15z-octadecatrienoic A composition for inhibiting a virus, comprising at least one compound selected from the group consisting of 12(13)-epoxy-9Z-octadecenoic acid, 12(13)-epoxy-9Z-octadecenoic acid, and combinations thereof. .
제9항에 있어서,
상기 부추 발효물은 락토바실러스 플란타룸 SK4719 균주를 이용하여 발효된 것인, 가금 병원성 세균 및 조류인플루엔자 바이러스 억제용 조성물.
According to clause 9,
A composition for inhibiting poultry pathogenic bacteria and avian influenza virus, wherein the chive fermented product is fermented using Lactobacillus plantarum SK4719 strain.
제10항에 있어서,
상기 부추 발효물은 물 또는 MRS와 부추 착즙액을 혼합하여 발효된 것인, 가금 병원성 세균 및 조류인플루엔자 바이러스 억제용 조성물.
According to clause 10,
The chive fermented product is a composition for inhibiting poultry pathogenic bacteria and avian influenza virus, which is fermented by mixing water or MRS and chive juice.
1) 부추를 착즙하여 부추 착즙액을 제조하는 단계;
2) 1) 단계에서 제조한 부추 착즙액을 물 또는 MRS와 혼합하여 혼합물을 제조하는 단계; 및
3) 2) 단계에서 제조한 혼합물을 락토바실러스 플란타룸 SK4719 균주를 이용하여 발효하는 단계;를 포함하는 부추 내 폴리페놀 함량을 증가시키는 방법.
1) Squeezing chives to produce chive juice;
2) mixing the chive juice prepared in step 1) with water or MRS to prepare a mixture; and
3) Fermenting the mixture prepared in step 2) using Lactobacillus plantarum SK4719 strain; A method of increasing the polyphenol content in chives, including the step.
KR1020240046424A 2021-01-28 2024-04-05 Composition for feed additive comprising fermentation product of allium tuberosum for inhibiting poultry pathogenic microorganism and avian influenza viruses KR20240049533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020240046424A KR20240049533A (en) 2021-01-28 2024-04-05 Composition for feed additive comprising fermentation product of allium tuberosum for inhibiting poultry pathogenic microorganism and avian influenza viruses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210012568A KR20220109196A (en) 2021-01-28 2021-01-28 Composition for feed additive comprising fermentation product of allium tuberosum for inhibiting poultry pathogenic microorganism and avian influenza viruses
KR1020240046424A KR20240049533A (en) 2021-01-28 2024-04-05 Composition for feed additive comprising fermentation product of allium tuberosum for inhibiting poultry pathogenic microorganism and avian influenza viruses

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020210012568A Division KR20220109196A (en) 2021-01-28 2021-01-28 Composition for feed additive comprising fermentation product of allium tuberosum for inhibiting poultry pathogenic microorganism and avian influenza viruses

Publications (1)

Publication Number Publication Date
KR20240049533A true KR20240049533A (en) 2024-04-16

Family

ID=82837057

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020210012568A KR20220109196A (en) 2021-01-28 2021-01-28 Composition for feed additive comprising fermentation product of allium tuberosum for inhibiting poultry pathogenic microorganism and avian influenza viruses
KR1020240046424A KR20240049533A (en) 2021-01-28 2024-04-05 Composition for feed additive comprising fermentation product of allium tuberosum for inhibiting poultry pathogenic microorganism and avian influenza viruses

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020210012568A KR20220109196A (en) 2021-01-28 2021-01-28 Composition for feed additive comprising fermentation product of allium tuberosum for inhibiting poultry pathogenic microorganism and avian influenza viruses

Country Status (1)

Country Link
KR (2) KR20220109196A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190033987A (en) 2017-09-22 2019-04-01 김창섭 Manufacturing method of chicken feed including chives

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190033987A (en) 2017-09-22 2019-04-01 김창섭 Manufacturing method of chicken feed including chives

Also Published As

Publication number Publication date
KR20220109196A (en) 2022-08-04

Similar Documents

Publication Publication Date Title
Alagawany et al. Paenibacillus polymyxa (LM31) as a new feed additive: Antioxidant and antimicrobial activity and its effects on growth, blood biochemistry, and intestinal bacterial populations of growing Japanese quail
Kumar et al. Effect of black cumin seeds on growth performance, nutrient utilization, immunity, gut health and nitrogen excretion in broiler chickens
Brenes et al. Essential oils in poultry nutrition: Main effects and modes of action
Abouelezz et al. Nutritional impacts of dietary oregano and Enviva essential oils on the performance, gut microbiota and blood biochemicals of growing ducks
Makled et al. Comparative influence of dietary probiotic, yoghurt, and sodium butyrate on growth performance, intestinal microbiota, blood hematology, and immune response of meat-type chickens
Akyildiz et al. Application of plant extracts as feed additives in poultry nutrition
KR101255166B1 (en) The manufacturing method of natural fermented feed additive and obtained chicken and duck by using the feed additive
KR101748368B1 (en) Fermentation feed for domestic animal comprising liquid fermented sulfuric
Abbas et al. Effect of Different Levels of Basil and Peppermint an Essential Oils on Productive and Physiological Performance of Two Lines of Growing Quail (Coturnix Coturnix Japonica).
Tong et al. Effects of Plotytarya strohilacea Sieb. et Zuce tannin on the growth performance, oxidation resistance, intestinal morphology and cecal microbial composition of broilers
Abd El-Hack et al. Impacts of Purslane (Portulaca oleracea) extract supplementation on growing Japanese quails' growth, carcass traits, blood indices, nutrients digestibility and gut microbiota
Jabri et al. Effect of Olive leaves extract supplementation in drinking water on zootechnical performances and cecal microbiota balance of broiler chickens
Ahmad et al. Effects of replacing antibiotic growth promoters (AGPS) with botanical extracts and oils in feed of laying hens on production, performance and some microbial counts in feces.
Lee et al. Comparison of the dietary supplementation of Lactobacillus plantarum, and fermented and non-fermented Artemisia annua on the performance, egg quality, serum cholesterol, and eggyolk-oxidative stability during storage in laying hens
KR20240049533A (en) Composition for feed additive comprising fermentation product of allium tuberosum for inhibiting poultry pathogenic microorganism and avian influenza viruses
Pasaribu et al. Effectiveness of bioactive combinations of several plant substances to inhibit the growth of Escherichia coli and Salmonella sp.
Belali et al. Effects of short-term and combined use of thyme powder and aqueous extract on growth performance, carcass and organ characteristics, blood constituents, enzymes, immunity, intestinal morphology and fatty acid profile of breast meat in broilers
Rahimian et al. Potential use of protexin probiotic and black pepper powder on Cobb 500 broiler chicks.
Thirumeignanam et al. Evaluation of natural antimicrobial substances blend as a replacement for antibiotic growth promoters in broiler chickens: Enhancing growth and managing intestinal bacterial diseases
Arani et al. The effect of using kombucha on blood antibody level and proventriculus and gizzard tissue cells in broiler chicks
Haghkhah et al. Phytochemical analysis of garlic hydro-alcoholic extract and evaluation of its anti-bacterial effect on enterohemorrhagic Escherichia coli in Vitro and ex Vivo
Nguyen et al. In vitro evaluation of antibacterial activity of garlic allium sativum against poultry pathogens and effect of garlic supplementation on duckling growth performance
KR20110094871A (en) Poultry feed additives including fermented plum by-products
Pourhossein et al. Investigation on the effects of different levels of Citrus sinensis peel extract on gastrointestinal microbial population in commercial broilers
Hasan-Al-Sharif et al. Lemongrass (Cymbopogon Citratus) Essential Oil Improves Gut Health and Production Performance in Broiler: A Review

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal