KR20240034667A - 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 - Google Patents

음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
KR20240034667A
KR20240034667A KR1020230117606A KR20230117606A KR20240034667A KR 20240034667 A KR20240034667 A KR 20240034667A KR 1020230117606 A KR1020230117606 A KR 1020230117606A KR 20230117606 A KR20230117606 A KR 20230117606A KR 20240034667 A KR20240034667 A KR 20240034667A
Authority
KR
South Korea
Prior art keywords
negative electrode
weight
active material
parts
silicon
Prior art date
Application number
KR1020230117606A
Other languages
English (en)
Inventor
김영재
이재욱
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to PCT/KR2023/013299 priority Critical patent/WO2024054019A1/ko
Publication of KR20240034667A publication Critical patent/KR20240034667A/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 출원은 음극 조성물, 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지에 관한 것이다.

Description

음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 {NEGATIVE ELECTRODE COMPOSITION, NEGATIVE ELECTRODE FOR LITHIUM SECONDARY BATTERY COMPRISING SAME AND LITHIUM SECONDARY BATTERY COMPRISING NEGATIVE ELECTRODE}
본 출원은 2022년 09월 07일에 한국특허청에 제출된 한국 특허 출원 제10-2022-0113646호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 출원은 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지에 관한 것이다.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학 반응을 이용한 발전, 축전 분야이다.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차 전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차 전지의 수요가 급격히 증가하고 있다. 이러한 이차 전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차 전지가 상용화되어 널리 사용되고 있다. 또, 이 같은 고용량 리튬 이차 전지용 전극으로서, 단위 체적 당 에너지 밀도가 더 높은 고밀도 전극을 제조하기 위한 방법에 대해 연구가 활발히 진행되고 있다.
일반적으로 이차 전지는 양극, 음극, 전해질 및 분리막으로 구성된다. 음극은 양극으로부터 나온 리튬 이온을 삽입하고 탈리시키는 음극 활물질을 포함하며, 상기 음극 활물질로는 방전 용량이 큰 실리콘계 입자가 사용될 수 있다.
특히 최근 고 밀도 에너지 전지에 대한 수요에 따라, 음극 활물질로서, 흑연계 소재 대비 용량이 10배 이상 큰 Si/C나 SiOx와 같은 실리콘계 화합물을 사용하여 용량을 늘리는 방법에 대한 연구가 활발히 진행되고 있다. 하지만 고용량 소재인 실리콘계 화합물의 경우, 기존에 사용되는 흑연과 비교할 때, 용량이 크지만, 충전 과정에서 급격하게 부피가 팽창하여 도전 경로를 단절시켜 전지 특성을 저하시키는 문제점이 있다.
이에, 실리콘계 화합물을 음극 활물질로서 사용할 때의 문제점을 해소하기 위하여 구동 전위를 조절시키는 방안, 추가적으로 활물질층 상에 박막을 더 코팅하는 방법, 실리콘계 화합물의 입경을 조절하는 방법과 같은 부피 팽창 자체를 억제시키는 방안 혹은 도전 경로가 단절되는 것을 방지하기 위한 다양한 방안 등이 논의되고 있지만, 상기 방안들의 경우, 되려 전지의 성능을 저하시킬 수 있으므로, 적용에 한계가 있어, 여전히 실리콘계 화합물의 함량이 높은 음극 전지 제조의 상용화에는 한계가 있다.
따라서, 용량 특성 극대화를 위한 실리콘계 음극을 제작하는 공정에 있어, 상기와 같은 충방전에 따른 부피 팽창, 도전성 경로 훼손 및 표면 깨짐 현상을 방지할 수 있는 음극 조성물에 대한 연구가 필요하다.
일본 공개특허공보 제2009-080971호
실리콘계 음극은 충전 및 방전에 따른 부피 팽창을 잡아주기 위해 음극 바인더가 사용되고 또한 도전성 경로를 유지 시켜주기 위해 다양한 종류의 음극 도전재가 사용되고 있으나, 여전히 충방전에 따른 부피팽창의 문제 및 수명특성의 문제가 해결되지 않고 있다
상기의 문제점을 개선하기 위한 연구 결과, 도전재로서 일정한 조성을 갖는 도전재를 포함하고 바인더의 함량을 조절하는 경우 이를 제어할 수 있음을 발견하였다.
이에 본 출원은 상기 문제를 해결할 수 있는 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지에 관한 것이다.
본 명세서의 일 실시상태는 실리콘계 활물질; 선형 도전재; 및 음극 바인더;를 포함하는 음극 조성물로, 상기 실리콘계 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 90 중량부 이상 포함하고, 상기 선형 도전재는 SWCNT; 및 MWCNT를 포함하고, 상기 음극 조성물 100 중량부 기준 상기 실리콘계 활물질은 80 중량부 이상 95 중량부 이하를 포함하고, 상기 실리콘계 활물질 100 중량부 기준 상기 음극 바인더는 3 중량부 이상 10 중량부 이하를 포함하는 것인 음극 조성물을 제공한다.
또 다른 일 실시상태에 있어서, 음극 집전체층; 및 상기 음극 집전체층의 일면 또는 양면에 형성된 본 출원에 따른 음극 조성물을 포함하는 음극 활물질층;을 포함하는 리튬 이차 전지용 음극을 제공하고자 한다.
마지막으로, 양극; 본 출원에 따른 리튬 이차 전지용 음극; 상기 양극과 상기 음극 사이에 구비된 분리막; 및 전해질;을 포함하는 리튬 이차 전지를 제공하고자 한다.
본 출원에 따른 음극 조성물의 경우, 음극의 용량 증가를 위하여 실리콘계 활물질을 포함하면서도 선형 도전재를 포함하여 전술한 문제를 해결하였다. 구체적으로 짧은 거리의 도전 네트워크를 만족시킬 수 있는 MWCNT와 긴거리와 바인더 강성을 높힐 수 있는 SWCNT가 사용된 것으로 상기 조성을 만족하는 도전재를 사용하여 음극 조성물 내 활물질의 비율을 높이고 음극 슬러리의 고형분을 높힐 수 있어, 셀 자체의 성능을 개선할 수 있는 특징을 갖게 된다.
또한, 상기와 같이 도전 네트워크를 확보함과 동시에 실리콘계 활물질의 부피 팽창에 따른 문제를 잡아주기 위하여 실리콘계 활물질을 기준으로 일정 함량의 바인더가 포함된다.
즉, 본 발명에 따른 음극 조성물은 용량 극대화를 위하여 실리콘계 활물질을 적용하는 음극에 있어서, 포함되는 실리콘계 활물질의 비율을 특정하고, 상기 비율에 맞춰 부피 팽창 및 완화를 효과적으로 잡아줄 수 있는 음극 바인더의 중량부 및 도전 네트워크 확보와 강성을 잡아줄 수 있는 선형 도전재의 조성을 최적화 한 것을 주된 특징으로 한다.
상기와 같은 조성 및 함량을 갖는 음극 조성물을 음극에 적용하는 경우, 실리콘계 활물질을 사용하는 경우의 장점을 유지할 수 있음과 동시에 수명 특성 저하 및 도전 네트워크 단절 등의 문제를 해결하였다는 것을 본 발명의 주된 목적으로 한다.
도 1은 본 출원의 일 실시상태에 따른 리튬 이차 전지용 음극의 적층 구조를 나타낸 도이다.
도 2는 본 출원의 일 실시상태에 따른 리튬 이차 전지의 적층 구조를 나타낸 도이다.
본 발명을 설명하기에 앞서, 우선 몇몇 용어를 정의한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
본 명세서에 있어서, 'p 내지 q'는 'p 이상 q 이하'의 범위를 의미한다.
본 명세서에 있어서, "비표면적"은 BET법에 의해 측정한 것으로서, 구체적으로는 BEL Japan사의 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출된 것이다. 즉 본 출원에 있어서 BET 비표면적은 상기 측정 방법으로 측정된 비표면적을 의미할 수 있다.
본 명세서에 있어서, "Dn"은 입도 분포를 의미하며, 입도에 따른 입자 개수 누적 분포의 n% 지점에서의 입도를 의미한다. 즉, D50은 입도에 따른 입자 개수 누적 분포의 50% 지점에서의 입도(중심 입도)이며, D90은 입도에 따른 입자 개수 누적 분포의 90% 지점에서의 입도를, D10은 입도에 따른 입자 개수 누적 분포의 10% 지점에서의 입도이다. 한편, 중심 입도는 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다.
본 출원의 일 실시상태에 있어서, 입도 또는 입경은 입자를 이루는 알갱이 하나하나의 평균 지름이나 대표 지름을 의미할 수 있다.
본 명세서에 있어서, 중합체가 어떤 단량체를 단량체 단위로 포함한다는 의미는 그 단량체가 중합 반응에 참여하여 중합체 내에서 반복 단위로서 포함되는 것을 의미한다. 본 명세서에 있어서, 중합체가 단량체를 포함한다고 할 때, 이는 중합체가 단량체를 단량체 단위로 포함한다는 것과 동일하게 해석되는 것이다.
본 명세서에 있어서, '중합체'라 함은 '단독 중합체'라고 명시되지 않는 한 공중합체를 포함한 광의의 의미로 사용된 것으로 이해한다.
본 명세서에 있어서, 중량 평균 분자량(Mw) 및 수평균 분자량(Mn)은 분자량 측정용으로 시판되고 있는 다양한 중합도의 단분산 폴리스티렌 중합체(표준 시료)를 표준물질로 하고, 겔 투과 크로마토그래피(Gel Permeation Chromatography; GPC)에 의해 측정한 폴리스티렌 환산 분자량이다. 본 명세서에 있어서, 분자량이란 특별한 기재가 없는 한 중량 평균 분자량을 의미한다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 이하의 설명에 한정되지 않는다.
본 명세서의 일 실시상태는 실리콘계 활물질; 선형 도전재; 및 음극 바인더;를 포함하는 음극 조성물로, 상기 실리콘계 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 90 중량부 이상 포함하고, 상기 선형 도전재는 SWCNT; 및 MWCNT를 포함하고, 상기 음극 조성물 100 중량부 기준 상기 실리콘계 활물질은 80 중량부 이상 95 중량부 이하를 포함하고, 상기 실리콘계 활물질 100 중량부 기준 상기 음극 바인더는 3 중량부 이상 10 중량부 이하를 포함하는 것인 음극 조성물을 제공한다.
본 출원에 따른 음극 조성물의 경우, 용량 극대화를 위하여 실리콘계 활물질을 적용하는 음극에 있어서, 포함되는 실리콘계 활물질의 비율을 특정하고, 상기 비율에 맞춰 부피 팽창 및 완화를 효과적으로 잡아줄 수 있는 음극 바인더의 중량부 및 도전 네트워크 확보와 강성을 잡아줄 수 있는 선형 도전재의 조성을 최적화 한 것을 주된 특징으로 한다.
이하에서는 본 출원에 따른 음극 조성물에 대하여 자세히 설명한다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 90 중량부 이상 포함할 수 있다.
또 다른 일 실시상태에 있어서, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 90 중량부 이상, 바람직하게는 92 중량부 이상, 더욱 바람직하게는 93 중량부 이상을 포함할 수 있으며, 100 중량부 이하, 바람직하게는 99 중량부 이하, 더욱 비람직하게는 95 중량부 이하를 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 SiOx (x=0)일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 특히 순수 실리콘(Si)을 실리콘계 활물질로서 사용할 수 있다. 순수 실리콘(Si)을 실리콘계 활물질로 사용한다는 것은 상기와 같이 실리콘계 활물질을 전체 100 중량부를 기준으로 하였을 때, 다른 입자 또는 원소와 결합되지 않은 순수의 Si(SiOx (x=0))를 상기 범위로 포함하는 것을 의미할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질의 결정립 크기가 200 nm 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 실리콘계 활물질의 결정립 크기가 200 nm 이하, 바람직하게는 130 nm 이하, 더욱 바람직하게는 110 nm 이하, 더더욱 바람직하게는 100 nm 이하, 구체적으로 95 nm 이하, 더 구체적으로 91 nm 이하일 수 있다. 상기 실리콘계 활물질의 결정립 크기가 10 nm 이상, 바람직하게는 15 nm 이상의 범위를 가질 수 있다.
상기 실리콘계 활물질은 상기의 결정립 크기를 갖는 것으로, 제조 공정상의 공정 조건을 변화하여 실리콘계 활물질의 결정립 크기를 조절할 수 있다. 이 때 상기 범위를 만족하여 결정립계(grain boundary)가 넓게 분포하도록 하여, 리튬 이온의 삽입 시, 균일하게 들어가게 되어 실리콘 입자 내 리튬 이온 삽입시 걸리는 응력을 감소시킬 수 있고, 이에 따라 입자의 깨짐을 완화할 수 있다. 그 결과 음극의 수명 안정성을 개선할 수 있는 특징을 갖게 된다. 결정립 크기가 상기 범위를 초과하는 경우 입자 내 결정립계가 좁게 분포하게 되고, 이 경우, 입자내 리튬 이온이 불균일하게 삽입되어, 이온 삽입에 따른 응력이 커 입자 깨짐현상이 발생하게 된다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 1 nm 이상 200 nm 이하의 결정립 분포를 갖는 결정 조직을 포함하며, 상기 실리콘계 활물질 전체 면적 기준 상기 결정 조직의 면적 비율이 5% 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 실리콘계 활물질 전체 면적 기준 상기 결정 조직의 면적 비율이 5% 이하, 3% 이하일 수 있으며, 0.1% 이상일 수 있다.
즉, 본 출원에 따른 실리콘계 활물질은 결정립 크기가 200 nm 이하를 갖는 것으로, 결정 조직 하나의 크기가 작게 형성되고 상기의 면적 비율을 만족할 수 있다. 이에 따라 결정립계(grain boundary)의 분포가 넓어질 수 있고, 이에 따라 전술한 효과가 나타날 수 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질에 포함되는 결정 조직의 개수가 20개 이상일 수 있다.
또 다른 일 실시상태에 있어서, 상기 실리콘계 활물질에 포함되는 결정 조직의 개수가 20개 이상, 30개 이상, 35개 이상일 수 있으며, 60개 이하, 50개 이하의 범위를 만족할 수 있다.
즉, 전술한 바와 같이 실리콘계 활물질이 결정립 크기가 상기 범위를 만족하며, 또한 결정 조직의 개수가 상기 범위를 만족하는 경우 실리콘계 활물질 자체의 강도가 적절한 범위를 갖게 되어 전극 내 포함될 때 유연성을 부여할 수 있으며, 또한 부피 팽창을 효율적으로 억제할 수 있는 특징을 갖게 된다.
본 출원에 있어서, 결정립은 금속 또는 재료에 있어, 현미경적인 크기의 불규칙한 형상의 집합으로 되어 있는 결정입자를 의미하며, 상기 결정립 크기는 관찰된 결정립 입자의 지름을 의미할 수 있다. 즉 본 출원에 있어서, 결정립 크기는 입자내에 동일 결정방향을 공유하는 도메인(domain)의 크기를 의미하는 것으로, 물질의 사이즈(size)를 표현하는 입도 또는 입경의 크기와는 상이한 개념을 갖는다.
본 출원의 일 실시상태에 있어서, 결정립 크기는 XRD 분석을 통하여 FWHM(Full Width at Half Maximum)값으로 계산할 수 있다. L을 제외한 나머지 값은 실리콘계 활물질의 XRD 분석을 통하여 측정하고, Debey-Scherrer 식을 통하여 FWHM과 결정립 크기는 반비례의 관계에 있다는 것을 통하여 결정립 크기를 측정할 수 있다. 이 때 Debey-Scherrer 식은 하기 식 1-1과 같다.
[식 1-1]
FWHM=Kλ / LCosθ
상기 식 1-1에 있어서,
L은 결정립 크기를, K는 상수이며, θ는 bragg angle이고, λ는 X-ray의 파장을 의미한다.
또한, 상기 결정립의 형상은 다양하여 3차원적으로 측정할 수 있으며, 일반적으로 결정립의 크기는 일반적으로 사용되는 서클법, 직경측정법으로 측정할 수 있으나, 이에 한정되지 않는다.
상기 직경측정법은 대상이되는 입자의 현미경 사진 상에 선 1개의 길이가 L mm인 5-10개의 평형선을 긋고 선상의 결정립수 z를 세어 평균하여 측정할 수 있다. 이때 전부 들어가는 것만 세고 걸치는 것은 제외한다. 선의 수를 P, 배율을 V라 하면 평균 입자직경은 하기 식 1-2로 계산할 수 있다.
[식 1-2]
Dm = (L*P*103)/(zV) (um)
또한, 상기 서클법은 대상이되는 입자의 현미경 사진 상에 정해진 직경의 원을 그린 후 원안에 들어가는 결정립의 수와 경계선에 걸리는 결정립의 수로 결정립의 평균면적을 구하는 방법으로 하기 식 1-3로 계산될 수 있다.
[식 1-3]
Fm = (Fk * 106) /((0.67n + z) V2)(um2)
상기 식 1-3에 있어서, Fm 은 평균 입자면적, Fk 는 사진 위의 측정면적, z는 원 내부에 들어가는 입자 수, n은 원호에 걸리는 입자 수, 및 V는 현미경의 배율을 각각 의미한다.
본 출원의 일 실시상태에 있어서, 실리콘계 활물질은 표면적이 0.25 m2/g 이상일 수 있다.
또 다른 일 실시상태에 있어서, 상기 실리콘계 활물질은 표면적이 0.25 m2/g 이상, 바람직하게는 0.28 m2/g 이상, 더욱 바람직하게는 0.30 m2/g 이상, 구체적으로는 0.31 m2/g 이상, 더욱 구체적으로 0.32 m2/g 이상일 수 있다. 상기 실리콘계 활물질은 표면적이 3 m2/g 이하, 바람직하게는 2.5 m2/g 이하, 더욱 바람직하게는 2.2 m2/g 이하의 범위를 만족할 수 있다. 표면적은 (질소를 사용하여) DIN 66131에 따라 측정될 수 있다.
상기 실리콘계 활물질은 상기의 표면적을 갖는 것으로, 제조 공정상의 공정 조건 및 실리콘계 활물질의 성장 조건을 변화하여 실리콘계 활물질의 표면적의 크기를 조절할 수 있다. 즉 본 출원에 따른 제조 방법으로 실리콘계 활물질을 제조하는 경우 거친 표면에 의해 동일 입도를 가지는 입자 대비 넓은 표면적을 갖게 되는 것으로, 이 때 상기 범위를 만족하여 바인더와의 결합력이 높아짐에 따라 충방전 사이클 반복에 따른 전극의 크랙을 완화할 수 있는 특징을 갖게 된다.
또한 리튬 이온의 삽입 시, 균일하게 들어가게 되어 실리콘 입자 내 리튬 이온 삽입시 걸리는 응력을 감소시킬 수 있고, 이에 따라 입자의 깨짐을 완화할 수 있다. 그 결과 음극의 수명 안정성을 개선할 수 있는 특징을 갖게 된다. 표면적 크기가 상기 범위 미만인 경우, 동일 입도를 갖는 경우에도 표면이 매끄럽게 형성되어, 바인더와의 결합력이 떨어지게되어 전극 크랙이 발생하며, 이 경우, 입자내 리튬 이온이 불균일하게 삽입되어, 이온 삽입에 따른 응력이 커 입자 깨짐현상이 발생하게 된다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 하기 식 2-1의 범위를 만족한다.
[식 2-1]
X1/Y1 ≤ 0.960
상기 식 2-1에 있어서,
X1은 실리콘계 활물질의 실제 면적이며,
Y1은 실리콘계 활물질 동일 둘레의 구형 입자 면적을 의미한다.
상기 식 2-1의 측정은 입형 분석기를 활용하여 측정할 수 있다. 구체적으로 본 출원에 따른 실리콘계 활물질을 공기 분사를 통하여 유리판 위 흩날린 뒤, 흩날려진 실리콘계 활물질 입자를 그림자 이미지 촬영하여 사진 내 10,000개의 실리콘계 활물질 입자 형상을 측정할 수 있다. 이 때 식 2-1은 10,000개의 입자에 대한 평균을 표현한 값이다. 상기의 이미지로부터 본 출원에 따른 식 2-1을 측정할 수 있으며, 상기 식 2-1은 실리콘계 활물질의 구형화도(Circularity)로 표현될 수 있다. 구형화도는 식 [4π*실리콘계 활물질의 실제 면적/(경계)2]로 표시될 수도 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질의 구형화도는 예를 들어 0.960이하, 예를 들어 0.957 이하일 수 있다. 상기 실리콘계 활물질의 구형화도는 0.8 이상, 예를 들어 0.9 이상, 구체적으로 0.93 이상, 더 구체적으로 0.94 이상, 예컨대 0.941 이상일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 하기 식 2-2의 범위를 만족한다.
[식 2-2]
X2/Y2 ≤ 0.995
상기 식 2-2에 있어서,
Y2은 실리콘계 활물질의 실제 둘레이고
X2은 실리콘계 활물질의 외접도형의 둘레이다.
상기 식 2-2의 측정은 입형 분석기를 활용하여 측정할 수 있다. 구체적으로 본 출원에 따른 실리콘계 활물질을 공기 분사를 통하여 유리판 위 흩날린 뒤, 흩날려 진 실리콘계 활물질 입자를 그림자 이미지 촬영하여 사진 내 10,000개의 실리콘계 활물질 입자 형상을 측정할 수 있다. 이 때 식 2-2는 10,000개의 입자에 대한 평균을 표현한 값이다. 상기의 이미지로부터 본 출원에 따른 식 2-2를 측정할 수 있으며, 상기 식 2-2는 실리콘계 활물질의 Convexity로 표현될 수 있다.
본 출원의 일 실시상태에 있어서, X2/Y2 ≤ 0.996, 바람직하게는 X2/Y2 ≤ 0.995의 범위를 만족할 수 있으며, 0.8≤ X2/Y2, 바람직하게는 0.9≤ X2/Y2, 더욱 바람직하게는 0.95≤ X2/Y2, 구체적으로 0.98≤ X2/Y2의 범위를 만족할 수 있다.
상기 식 2-1 또는 상기 식 2-2의 값이 작으면 작을수록 실리콘계 활물질의 거칠기가 크다는 것을 의미할 수 있으며, 상기와 같은 범위를 갖는 실리콘계 활물질을 사용함에 따라 바인더와의 결합력이 높아짐에 따라 충방전 사이클 반복에 따른 전극의 크랙을 완화할 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 0.01μm 이상 30μm 이하의 입도 분포를 가지는 실리콘계 입자를 포함할 수 있다.
상기 실리콘계 활물질이 0.01μm 이상 30μm 이하의 입도 분포를 갖는 실리콘계 입자를 포함한다는 것은, 상기 범위 내의 입도를 갖는 개별의 실리콘계 입자를 다수로 포함한다는 것을 의미하며, 포함되는 실리콘계 입자의 개수는 제한되지 않는다.
상기 실리콘계 입자의 입도는 구형인 경우, 그 지름으로 표시될 수 있지만, 구형이 아닌 다른 모양인 경우에도 상기 구형인 경우와 대비하여 입도를 측정할 수 있으며, 일반적으로 당업계에서 측정하는 방법으로 개별 실리콘계 입자의 입도를 측정할 수 있다.
한편, 본원 발명의 상기 실리콘계 활물질의 평균 입경(D50)은 5㎛ 내지 10㎛일 수 있으며, 구체적으로 5.5㎛ 내지 8㎛일 수 있고, 보다 구체적으로 6㎛ 내지 7㎛일 수 있다. 상기 평균 입경이 상기 범위에 포함되는 경우, 입자의 비표면적이 적합한 범위로 포함하여, 음극 슬러리의 점도가 적정 범위로 형성 된다. 이에 따라, 음극 슬러리를 구성하는 입자들의 분산이 원활하게 된다. 또한, 실리콘계 활물질의 크기가 상기 하한값의 범위 이상의 값을 갖는 것으로, 음극 슬러리 내에서 도전재와 바인더로 이루어진 복합체에 의해 실리콘 입자, 도전재들의 접촉 면적이 우수하여, 도전 네트워크가 지속될 가능성이 높아져서 용량 유지율이 증가된다. 한편, 상기 평균 입경이 상기 범위를 만족하는 경우, 지나치게 큰 실리콘 입자들이 배제되어 음극의 표면이 매끄럽게 형성되며, 이에 따라 충방전 시 전류 밀도 불균일 현상을 방지할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 일반적으로 특징적인 BET 비표면적을 갖는다. 실리콘계 활물질의 BET 비표면적은 바람직하게는 0.01 내지 150.0 m2/g, 더욱 바람직하게는 0.1 내지 100.0 m2/g, 특히 바람직하게는 0.2 내지 80.0 m2/g, 가장 바람직하게는 0.2 내지 18.0 m2/g이다. BET 비표면적은 (질소를 사용하여) DIN 66131에 따라 측정된다.
본 출원의 일 실시상태에 있어서, 실리콘계 활물질은 예컨대 결정 또는 비정질 형태로 존재할 수 있으며, 바람직하게는 다공성이 아니다. 규소 입자는 바람직하게는 구형 또는 파편형 입자이다. 대안으로서 그러나 덜 바람직하게는, 규소 입자는 또한 섬유 구조를 가지거나 또는 규소 포함 필름 또는 코팅의 형태로 존재할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 상기 음극 조성물 100 중량부 기준 80 중량부 이상 95 중량부 이하를 포함할 수 있다.
또 다른 일 실시상태에 있어서, 상기 실리콘계 활물질은 상기 음극 조성물 100 중량부 기준 80 중량부 이상, 바람직하게는 83 중량부 이상, 더욱 바람직하게는 85 중량부 이상을 포함할 수 있으며, 95 중량부 이하, 바람직하게는 93 중량부 이하, 더욱 바람직하게는 91 중량부 이하를 포함할 수 있다.
본 출원에 따른 음극 조성물은 용량이 현저히 높은 실리콘계 활물질을 상기의 범위로 사용하는 것이다. 즉, 상기 범위를 초과하여 사용하는 경우 본원 발명의 선형 도전재 및 바인더의 조합을 사용하더라도 수명 특성을 잡지 못하여 오히려 셀 성능 평가가 좋지 않은 결과를 초래하고, 상기 범위 미만으로 사용하는 경우 수명 특성은 확보할 수 있지만 용량 특성 및 에너지 밀도가 크게 줄어들어 같은 용량을 갖는 음극의 제조한다면 활물질층의 두께가 늘어 급속충전의 성능 또한 좋지 않게 된다.
본 출원은 부피 팽창을 제어할 수 있음과 동시에 용량 특성을 극대화할 수 있는 정도의 상기와 같은 범위의 실리콘계 활물질을 사용하는 것으로 후술하는 선형 도전재 및 바인더의 함량을 최적화한 것을 특징으로 한다.
충방전 과정에서 부피 팽창율을 잡아줄 수 있으며 용량 특성에는 문제를 일으키지 않는 특정의 탄소계 물질을 일정 함량 포함하여 고용량 특성을 나타냄과 동시에 전극의 수명 특성을 향상할 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 비구형 형태를 가질 수 있고 그 구형화도는 예를 들어 0.9 이하, 예를 들어 0.7 내지 0.9, 예를 들어 0.8 내지 0.9, 예를 들어 0.85 내지 0.9이다.
본 출원에 있어서, 상기 구형도(circularity)는 하기 식 1로 결정되며, A는 면적이고, P는 경계선이다.
[식 1]
4πA/P2
종래에는 음극 활물질로서 흑연계 화합물만을 사용하는 것이 일반적이었으나, 최근에는 고용량 전지에 대한 수요가 높아짐에 따라, 용량을 높이기 위하여 실리콘계 활물질을 혼합하여 사용하려는 시도가 늘어나고 있다. 다만, 실리콘계 활물질의 경우, 상기와 같이 실리콘계 활물질 자체의 특성을 일부 조절한다고 하더라도, 충/방전 과정에서 부피가 급격하게 팽창하여, 음극 활물질 층 내에 형성된 도전 경로를 훼손시키는 문제가 일부 발생될 수 있다.
따라서, 본 출원의 일 실시상태에 있어서, 상기 음극 도전재로서 선형 도전재를 포함하며, 상기 선형 도전재는 SWCNT; 및 MWCNT를 포함할 수 있다.
일반적으로, 기존 실리콘계 음극에는 점형 도전재; 및 면형 도전재가 함께 포함될 수 있다. 하지만 본 출원에 따른 도전재는 선형 도전재만을 포함하며 상기 선형 도전재는 SWCNT 및 MWCNT를 포함하는 것을 특징으로 한다.
상기 점형 도전재는 음극에 도전성을 향상시키기 위해 사용될 수 있고, 화학적 변화를 유발하지 않으면서 도전성을 가지는 것으로 구형 또는 점형태의 도전재를 의미한다. 구체적으로 상기 점형 도전재는 천연 흑연, 인조 흑연, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙, 도전성 섬유, 플루오로카본, 알루미늄 분말, 니켈 분말, 산화아연, 티탄산 칼륨, 산화 티탄 및 폴리페닐렌 유도체로 이루어진 군에서 선택된 적어도 1종일 수 있으며, 바람직하게는 높은 도전성을 구현하며, 분산성이 우수하다는 측면에서 카본 블랙을 포함할 수 있다.
상기 면형 도전재는 음극 내에서 실리콘 입자들 간의 면 접촉을 증가시켜 도전성을 개선하고, 동시에 부피 팽창에 따른 도전성 경로의 단절을 억제하는 역할을 할 수 있는 것으로 판상형 도전재 또는 벌크(bulk)형 도전재로 표현될 수 있다. 상기 면형 도전재는 판상형 흑연, 그래핀, 그래핀 옥사이드, 및 흑연 플레이크로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 바람직하게는 판상형 흑연일 수 있다.
먼저 점형 도전재로 실리콘계 음극에 카본 블랙을 사용하는 경우 공정에 있어 가격적으로 저렴하다는 장점이 있지만 그 역할을 하기 위하여 음극 조성물 중 높은 비율로 포함되어야 한다. 이와 같이 높은 비율의 점형 도전재를 사용할 수 밖에 없어 고온에서의 가스 발생이 문제가 되고 있으며, 가스 발생에 따라 음극의 안정성이 떨어지는 문제가 발생하였다.
또한 면형 도전재로 사용되는 판상형 흑연의 경우 적절한 가격을 가지며 적당한 강성을 가져 무른 형태로 실리콘계 음극을 압연함에 있어 완충 역할을 하게 되고, 또한 높은 비표면적을 가져 활물질간의 도전 네트워크를 형성할 수 있는 특징을 갖는다. 다만, 면형 도전재의 경우 사용되는 실리콘계 활물질에 대비하여 일정 부분 이상의 함량이 포함되어야 해서, 상기와 같은 성질을 가짐에도 불구하고 실리콘계 활물질을 음극 활물질 내 고함량 포함하는데 제한이 생겼으며, 이에 따라 용량 특성의 극대화를 이루지 못하는 문제가 발생하였다.
또한, 전술한 점형 도전재 및 면형 도전재를 적절하게 조합하여 일정 문제를 해결하려는 시도가 있었으나, 여전히 점형 도전재 및 면형 도전재의 상기의 문제를 해결하지 못하였다.
하지만 본 출원에 따른 음극 도전재는 선형 도전재만을 포함하며, 특히 선형 도전재가 SWCNT; 및 MWCNT를 포함하는 것을 특징으로 한다.
본 출원에 있어서 상기 SWCNT는 비표면적이 900m2/g 내지 1500m2/g이고, 평균 직경(Mean diameter)이 50nm 이상 450 nm 이하일 수 있다.
본 출원의 일 실시상태에 있어서 상기 SWCNT는 평균 직경(Mean diameter)이 50nm 이상 450 nm 이하이며, 길이가 5μm 이상 20μm 이하이고, 평균 종횡비가 15 내지 100인 것을 사용할 수 있다.
상기 SWCNT의 경우 상기와 같이 길고 높은 비표면적을 가지고 있어서 실리콘계 활물질 간의 도전 네트워크 형성에 가장 효과적인 특징을 갖는다. 다만 SWCNT의 경우 가격이 매우 비싸다는 단점이 있고, 또한 상기 SWCNT를 과량으로 적용하는 경우 함께 사용되는 SWCNT 분산제가 함께 포함되어 강성이 떨어지게 된다.
본 출원에 있어서, 상기 MWCNT는 비표면적이 100m2/g 내지 500m2/g이고, 평균 직경(Mean diameter)이 10nm 이상 20 nm 이하일 수 있다.
본 출원에 있어서, 상기 MWCNT는 평균 직경(Mean diameter)이 10nm 이상 20 nm 이하, 길이가 300nm 이상 1000nm 이하, 평균 종횡비가 15 내지 100인 것을 사용할 수 있따.
상기 MWCNT의 경우 SWCNT에 비하여 상기와 같이 비표면적이 작고 길이 측면에서 열위하지만, 전술한 점형 도전재 및 면형 도전재에 대비하여 매우 우수한 성능을 갖는 물질에 해당한다.
본 출원에서 SWCNT는 높은 비표면적과 종행비가 크다는 것으로, 상대적으로 MWCNT는 뭉쳐진 형태(번들 형태)로 사용되어 실리콘계 활물질의 표면에 위치하여 활물질 간의 연결은 어렵다. 즉 SWCNT는 장거리 연결을 MWCNT는 입자 표면 및 바인더 컴퍼지트와 혼합하는 역할로 사용된다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질 100 중량부 기준 상기 선형 도전재는 0.5 중량부 이상 10 중량부 이하인 것인 음극 조성물을 제공한다.
또 다른 일 실시상태에 있어서, 상기 실리콘계 활물질 100 중량부 기준 상기 선형 도전재는 0.5 중량부 이상 10 중량부 이하, 바람직하게는 0.6 중량부 이상 8 중량부 이하, 더욱 바람직하게는 0.6 중량부 이상 7 중량부 이하를 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 도전재가 선형 도전재를 포함하며 상기 조성 및 비율을 만족함에 따라, 기존 리튬 이차 전지의 수명 특성에는 큰 영향을 미치지 않으며, 충전 및 방전이 가능한 포인트가 많아져 높은 C-rate에서 출력 특성이 우수한 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질 100 중량부 기준 상기 MWCNT는 0.3 중량부 이상 6 중량부 이하이고, 상기 SWCNT는 0.1 중량부 이상 1.5 중량부 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 실리콘계 활물질 100 중량부 기준 상기 MWCNT는 0.3 중량부 이상 6 중량부 이하, 바람직하게는 1.0 중량부 이상 5.5 중량부 이하, 더욱 바람직하게는 2.0 중량부 이상 3.5 중량부 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 실리콘계 활물질 100 중량부 기준 상기 SWCNT는 0.3 중량부 이상 1.5 중량부 이하, 바람직하게는 0.5 중량부 이상 1.0 중량부 이하일 수 있다.
즉 본 출원에 따른 선형 도전재의 경우 SWCNT를 단독으로 적용하기 보다는, 전술한 가격적 문제 및 강성의 문제를 해결하기 위하여 도전 네트워크 형성에는 SWCNT보다는 열위한 물질인 MWCNT를 상기 중량부로 함께 포함한 것을 특징으로 한다. 즉 상기와 같이 선형 도전재의 중량부를 조절하고, 그 중 SWCNT와 MWCNT의 비율을 각각 조절하여 가격적 측면에서도 우수하며, 또한 SWCNT를 단독으로 적용하는 경우와 동등하거나 우수한 효과를 나타낼 수 있음을 연구를 통하여 확인하였다.
결국 선형 도전재를 포함하여, 점형 및 면형 도전재를 사용하는 경우에 비하여 전술한 실리콘계 음극 활물질을 고함량 포함할 수 있어 용량 특성을 우수하게 형성할 수 있으며, 또한 선형 도전재로 상기와 같은 조합을 사용하여 일정한 부피 팽창에도 도전 네트워크를 확보할 수 있고, 더욱이 후술하는 음극 바인더를 조절하여 부피 팽창도 또한 함께 해결할 수 있었다.
본 출원에 따른 음극 도전재의 경우 양극에 적용되는 양극 도전재와는 전혀 별개의 구성을 갖는다. 즉 본 출원에 따른 음극 도전재의 경우 충전 및 방전에 의해서 전극의 부피 팽창이 매우 큰 실리콘계 활물질들 사이의 접점을 잡아주는 역할을 하는 것으로, 양극 도전재는 압연될 때 완충 역할의 버퍼 역할을 하면서 일부 도전성을 부여하는 역할로, 본원 발명의 음극 도전재와는 그 구성 및 역할이 전혀 상이하다.
또한, 본 출원에 따른 음극 도전재는 실리콘계 활물질에 적용되는 것으로, 흑연계 활물질에 적용되는 도전재와는 전혀 상이한 구성을 갖는다. 즉 흑연계 활물질을 갖는 전극에 사용되는 도전재는 단순히 활물질 대비 작은 입자를 갖기 때문에 출력 특성 향상과 일부의 도전성을 부여하는 특성을 갖는 것으로, 본원 발명과 같이 실리콘계 활물질과 함께 적용되는 음극 도전재와는 구성 및 역할이 전혀 상이하다.
본 출원의 일 실시상태에 있어서, 상기 음극 바인더는 고무계 바인더; 및 수계 바인더로 이루어진 군에서 선택되는 1 이상을 포함하는 것인 음극 조성물을 제공한다.
본 출원의 일 실시상태에 있어서, 상기 음극 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.
본 출원의 일 실시상태에 따른 음극 바인더는 실리콘계 활물질의 부피 팽창 및 완화에 있어, 음극 구조의 뒤틀림, 구조 변형을 방지하기 위해 활물질 및 도전재를 잡아주는 역할을 하는 것으로, 상기 역할을 만족하면 일반적인 바인더 모두를 적용할 수 있으며, 구체적으로 수계 바인더를 사용할 수 있고 더욱 구체적으로는 PAM계 바인더를 사용할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 바인더는 수계 바인더를 포함하고, 상기 음극 바인더는 상기 음극 조성물 100 중량부 기준 5 중량부 이상 15 중량부 이하인 것인 리튬 이차 전지용 음극을 제공한다.
또 다른 일 실시상태에 있어서, 상기 음극 바인더는 상기 음극 조성물 100 중량부 기준 5 중량부 이상 15 중량부 이하, 바람직하게는 7 중량부 이상 13 중량부 이하, 더욱 바람직하게는 9 중량부 이상 12 중량부 이하일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질 100 중량부 기준 상기 음극 바인더는 3 중량부 이상 10 중량부 이하를 포함할 수 있다.
또 다른 일 실시상태에 있어서, 상기 실리콘계 활물질 100 중량부 기준 상기 음극 바인더는 3 중량부 이상 10 중량부 이하, 바람직하게는 3.5 중량부 이상 9.5 중량부 이하, 더욱 바람직하게는 4 중량부 이상 9 중량부 이하일 수 있다.
본 출원에 따른 리튬 이차 전지용 음극의 경우 용량 특성 극대화를 위하여 실리콘계 활물질을 상기 중량부 사용하는 것으로, 기존의 탄소계 활물질을 주된 활물질로 사용하는 경우에 비하여 충방전시 부피 팽창이 크게 된다. 이에 따라 상기 함량부의 음극 바인더를 포함하여 강성이 큰 실리콘계 활물질의 충방전에 따른 부피 팽창을 효율적으로 잡아줄 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 음극 집전체층; 및 상기 음극 집전체층의 일면 또는 양면에 형성된 본 출원에 따른 음극 조성물을 포함하는 음극 활물질층;을 포함하는 리튬 이차 전지용 음극을 제공한다.
도 1은 본 출원의 일 실시상태에 따른 리튬 이차 전지용 음극의 적층 구조를 나타낸 도이다. 구체적으로, 음극 집전체층(10)의 일면에 음극 활물질층(20)을 포함하는 리튬 이차 전지용 음극(100)을 확인할 수 있으며, 도 1은 음극 활물질층이 일면에 형성된 것을 나타내나, 음극 집전체층의 양면에 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 리튬 이차 전지용 음극은 음극 집전체층의 일면 또는 양면에 상기 음극 조성물을 포함하는 음극 슬러리를 도포 및 건조하여 형성될 수 있다.
이 때 상기 음극 슬러리는 전술한 음극 조성물; 및 슬러리 용매;를 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 슬러리의 고형분 함량은 5% 이상 55% 이하를 만족할 수 있다.
또 다른 일 실시상태에 있어서, 상기 음극 슬러리의 고형분 함량은 5% 이상 55% 이하, 바람직하게는 7% 이상 35%이하, 더욱 바람직하게는 10% 이상 30% 이하의 범위를 만족할 수 있다.
상기 음극 슬러리의 고형분 함량이라는 것은 상기 음극 슬러리 내에 포함되는 음극 조성물의 함량을 의미할 수 있으며, 음극 슬러리 100 중량부를 기준으로 상기 음극 조성물의 함량을 의미할 수 있다.
상기 음극 슬러리의 고형분 함량이 상기 범위를 만족하는 경우, 음극 활물질층 형성시 점도가 적당하여 음극 조성물의 입자 뭉침 현상을 최소화하여 음극 활물질층을 효율적으로 형성할 수 있는 특징을 갖게 된다. 또한 본 출원에 따른 음극 조성물은 선형 도전재를 포함하여 실리콘계 활물질을 고함량 포함한 것으로, 급속 충전 성능 및 셀 성능이 우수한 특징을 갖는다.
본 출원의 일 실시상태에 있어서, 상기 슬러리 용매는 음극 조성물을 용해할 수 있으면, 제한없이 사용할 수 있으며, 구체적으로 물, 아세톤 또는 NMP를 사용할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 집전체층은 일반적으로 1㎛ 내지 100㎛의 두께를 가진다. 이러한 음극 집전체층은, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 집전체층의 두께는 1μm 이상 100μm 이하이며, 상기 음극 활물질층의 두께는 10μm 이상 500μm 이하인 것인 리튬 이차 전지용 음극을 제공한다.
본 출원에 있어서, 상기 음극 활물질층은 음극 집전체층의 일면에 형성되었을 때, 즉 단층 음극 활물질층의 두께를 의미할 수 있다.
다만, 두께는 사용되는 음극의 종류 및 용도에 따라 다양하게 변형할 수 있으며 이에 한정되지 않는다.
본 출원의 일 실시상태에 있어서, 상기 음극 활물질층의 공극률은 10% 이상 60% 이하의 범위를 만족할 수 있다.
또 다른 일 실시상태에 있어서, 상기 음극 활물질층의 공극률은 10% 이상 60% 이하, 바람직하게는 20% 이상 50% 이하, 더욱 바람직하게는 30% 이상 45% 이하의 범위를 만족할 수 있다.
상기 공극률은 음극 활물질층에 포함되는 실리콘계 활물질; 도전재; 및 바인더의 조성 및 함량에 따라 변동되는 것으로, 특히 본 출원에 따른 실리콘계 활물질; 및 도전재를 특정 조성 및 함량부 포함함에 따라 상기 범위를 만족하는 것으로, 이에 따라 전극에 있어 전기 전도도 및 저항이 적절한 범위를 갖는 것을 특징으로 한다.
본 출원의 일 실시상태에 있어서, 양극; 본 출원에 따른 리튬 이차 전지용 음극; 상기 양극과 상기 음극 사이에 구비된 분리막; 및 전해질;을 포함하는 리튬 이차 전지를 제공한다.
도 2는 본 출원의 일 실시상태에 따른 리튬 이차 전지의 적층 구조를 나타낸 도이다. 구체적으로, 음극 집전체층(10)의 일면에 음극 활물질층(20)을 포함하는 리튬 이차 전지용 음극(100)을 확인할 수 있으며, 양극 집전체층(50)의 일면에 양극 활물질층(40)을 포함하는 리튬 이차 전지용 양극(200)을 확인할 수 있으며, 상기 리튬 이차 전지용 음극(100)과 리튬 이차 전지용 양극(200)이 분리막(30)을 사이에 두고 적층되는 구조로 형성됨을 나타낸다.
본 명세서의 일 실시상태에 따른 이차 전지는 특히 상술한 리튬 이차 전지용 음극을 포함할 수 있다. 구체적으로, 상기 이차 전지는 음극, 양극, 상기 양극 및 음극 사이에 개재된 분리막 및 전해질을 포함할 수 있으며, 상기 음극은 상술한 음극과 동일하다. 상기 음극에 대해서는 상술하였으므로, 구체적인 설명은 생략한다.
상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성되며, 상기 양극 활물질을 포함하는 양극 활물질층을 포함할 수 있다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질은 통상적으로 사용되는 양극 활물질일 수 있다. 구체적으로, 상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; LiFe3O4 등의 리튬 철 산화물; 화학식 Li1+c1Mn2-c1O4 (0≤c1≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-c2Mc2O2 (여기서, M은 Co, Mn, Al, Cu, Fe, Mg, B 및 Ga으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c2≤0.6를 만족한다)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-c3Mc3O2 (여기서, M은 Co, Ni, Fe, Cr, Zn 및 Ta 으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c3≤0.6를 만족한다) 또는 Li2Mn3MO8 (여기서, M은 Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택된 적어도 어느 하나이다.)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. 상기 양극은 Li-metal일 수도 있다.
본 출원의 일 실시상태에 있어서, 양극 활물질은 니켈 (Ni), 코발트 (Co) 및 망간(Mn)을 포함하는 리튬 복합 전이금속 화합물을 포함하고, 상기 리튬 복합 전이금속 화합물은 단입자 또는 이차 입자를 포함하고, 상기 단입자의 평균 입경(D50)은 1㎛ 이상일 수 있다.
예컨대, 상기 단입자의 평균입경(D50)은 1 ㎛ 이상 12 ㎛ 이하, 1 ㎛ 이상 8 ㎛ 이하, 1 ㎛ 이상 6㎛ 이하, 1 ㎛ 초과 12 ㎛ 이하, 1 ㎛ 초과 8 ㎛ 이하, 또는 1 ㎛ 초과 6㎛ 이하일 수 있다.
상기 단입자는 평균 입경(D50)이 1㎛ 이상 12㎛ 이하의 소입경으로 형성되더라도, 그 입자 강도가 우수할 수 있다. 예를 들면, 상기 단입자는 650 kgf/cm2의 힘으로 압연시 100 내지 300MPa의 입자강도를 가질 수 있다. 이에 따라, 상기 단입자를 650 kgf/cm2의 강한 힘으로 압연하더라도, 입자의 깨짐에 의한 전극 내 미립자 증가 현상이 완화되며, 이에 의해 전지의 수명 특성이 개선된다.
상기 단입자는 전이금속 전구체와 리튬 원료 물질을 혼합하고 소성하여 제조될 수 있다. 상기 이차 입자는 상기 단입자와 다른 방법으로 제조될 수 있으며, 그 조성은 단입자의 조성과 같을 수도 있고 다를 수도 있다.
상기 단입자를 형성하는 방법은 특별히 제한되지 않으나, 일반적으로 소성 온도를 높여 과소성하여 형성할 수 있으며, 과소성에 도움이 되는 입성장 촉진제 등의 첨가제를 사용하거나, 시작 물질을 변경하는 방법 등으로 제조할 수 있다.
예컨대, 상기 소성은 단입자를 형성할 수 있는 온도로 수행된다. 이를 형성하기 위해서는 이차 입자 제조 시보다 높은 온도에서 소성이 수행되어야 하며, 예를 들면, 전구체 조성이 동일한 경우에 이차 입자 제조 시보다 30℃ 내지 100℃ 정도 높은 온도에서 소성이 되어야 한다. 상기 단입자 형성을 위한 소성 온도는 전구체 내 금속 조성에 따라 달라질 수 있으며, 예를 들면, 니켈(Ni)의 함량이 80몰% 이상인 고함량 니켈(High-Ni) NCM계 리튬 복합 전이금속 산화물을 단입자로 형성하고자 경우, 소성 온도는 700℃ 내지 1000℃, 바람직하게는 800℃ 내지 950℃ 정도일 수 있다. 소성 온도가 상기 범위를 만족할 때, 전기화학적 특성이 우수한 단입자를 포함하는 양극 활물질이 제조될 수 있다. 소성 온도가 790℃ 미만인 경우에는 이차 입자 형태인 리튬 복합전이금속 화합물을 포함하는 양극 활물질이 제조될 수 있으며, 950℃를 초과할 경우, 소성이 과도하게 일어나 층상 결정 구조가 제대로 형성되지 않아 전기화학적 특성이 저하될 수 있다.
본 명세서에 있어서, 상기 단입자라는 것은 종래의 수십 내지 수백개의 일차 입자들이 응집하여 형성되는 이차 입자와 구별하기 위해 사용되는 용어로, 1개의 일차 입자로 이루어진 단일 입자와 30개 이하의 일차 입자들의 응집체인 유사-단입자 형태를 포함하는 개념이다.
구체적으로, 본 발명에서 단입자는 1개의 일차 입자로 이루어진 단일 입자 또는 30개 이하의 일차 입자들의 응집체인 유사-단입자 형태일 수도 있고, 이차 입자는 수백개의 일차 입자들이 응집된 형태일 수도 있다.
본 출원의 일 실시상태에 있어서, 상기 양극 활물질인 리튬 복합 전이금속 화합물은 이차 입자를 더 포함하고, 상기 단입자의 평균 입경(D50)은 상기 이차 입자의 평균 입경(D50) 보다 작다.
본 발명에서 단입자는 1개의 일차 입자로 이루어진 단일 입자 또는 30개 이하의 일차 입자들의 응집체인 유사-단입자 형태일 수 있고, 이차 입자는 수백개의 일차 입자들이 응집된 형태일 수 있다.
전술한 리튬 복합 전이금속 화합물은 이차 입자를 더 포함할 수 있다. 이차 입자란 일차 입자들이 응집하여 형성된 형태를 의미하며, 1개의 일차 입자, 1개의 단일 입자 또는 30개 이하의 일차 입자들의 응집체인 유사-단입자 형태를 포함하는 단입자의 개념과 구별될 수 있다.
상기 이차 입자의 입경(D50)은 1 ㎛ 내지 20 ㎛, 2 ㎛ 내지 17 ㎛, 바람직하게는 3 ㎛ 내지 15 ㎛일 수 있다. 상기 이차 입자의 비표면적(BET)은 0.05 m2/g 내지 10 m2/g 일 수 있고, 바람직하게는 0.1 m2/g 내지 1 m2/g 일 수 있으며, 더욱 바람직하게는 0.3 m2/g 내지 0.8 m2/g 일 수 있다.
본 출원의 추가의 실시상태에 있어서, 상기 이차 입자는 일차 입자의 응집체이고, 상기 일차 입자의 평균 입경(D50)은 0.5㎛ 내지 3㎛이다. 구체적으로, 상기 이차 입자는 수백 개의 일차 입자들이 응집된 형태일 수 있고, 상기 일차 입자의 평균 입경(D50)이 0.6㎛ 내지 2.8㎛, 0.8㎛ 내지 2.5㎛, 또는 0.8㎛ 내지 1.5㎛일 수 있다.
일차 입자의 평균 입경(D50)이 상기 범위를 만족할 경우, 전기 화학적 특성이 우수한 단입자 양극 활물질을 형성할 수 있다. 일차 입자의 평균 입경(D50)이 너무 작으면, 리튬 니켈계 산화물 입자를 형성하는 일차 입자의 응집 개수가 많아져 압연 시에 입자 깨짐 발생 억제 효과가 떨어지고, 일차 입자의 평균 입경(D50)이 너무 크면 일차 입자 내부에서의 리튬 확산 경로가 길어져 저항이 증가하고 출력 특성이 떨어질 수 있다.
본 출원의 추가의 실시상태에 따르면, 상기 단입자의 평균 입경(D50)은 상기 이차 입자의 평균 입경(D50) 보다 작은 것을 특징으로 한다. 이로써, 상기 단입자는 소입경으로 형성되더라도 그 입자 강도가 우수할 수 있고, 이로 인하여 입자의 깨짐에 의한 전극 내 미립자 증가 현상이 완화되며, 이에 의해 전지의 수명특성이 개선될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 단입자의 평균 입경(D50)은 상기 이차 입자의 평균 입경(D50) 보다 1 ㎛ 내지 18 ㎛ 작다.
예컨대, 상기 단입자의 평균 입경(D50)은 상기 이차 입자의 평균 입경(D50) 보다 1 ㎛ 내지 16 ㎛ 작을 수 있고, 1.5 ㎛ 내지 15㎛ 작을 수 있고, 또는 2 ㎛ 내지 14㎛ 작을 수 있다.
단입자의 평균 입경(D50)이 이차 입자의 평균 입경(D50) 보다 작은 경우, 예컨대 상기 범위를 만족할 때, 상기 단입자는 소입경으로 형성되더라도 그 입자 강도가 우수할 수 있고, 이로 인하여 입자의 깨짐에 의한 전극 내 미립자 증가 현상이 완화되어, 전지의 수명특성 개선 및 에너지 밀도 개선 효과가 있다.
본 출원의 추가의 실시상태에 따르면, 상기 단입자는 상기 양극 활물질 100 중량부 대비 15 중량부 내지 100 중량부로 포함된다. 상기 단입자는 상기 양극 활물질 100 중량부 대비 20 중량부 내지 100 중량부, 또는 30 중량부 내지 100 중량부 포함될 수 있다.
예컨대, 상기 단입자는 상기 양극 활물질 100 중량부 대비 15 중량부 이상, 20 중량부 이상, 25중량부 이상, 30 중량부 이상, 35 중량부 이상, 40 중량부 이상, 또는 45 중량부 이상 포함될 수 있다. 상기 단입자는 상기 양극 활물질 100 중량부 대비 100 중량부 이하 포함될 수 있다.
상기 범위의 단입자를 포함할 때, 전술한 음극 재료와 조합되어 우수한 전지 특성을 나타낼 수 있다. 특히, 상기 단입자가 15 중량부 이상인 경우, 전극 제작 후 압연 과정에서 입자 깨짐에 의한 전극 내 미립자 증가 현상이 완화될 수 있으며, 이에 의해 전지의 수명특성이 개선될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 리튬 복합 전이금속 화합물은 이차 입자를 더 포함할 수 있고, 상기 이차 입자는 상기 양극 활물질 100 중량부 대비 85 중량부 이하일 수 있다. 상기 이차 입자는 상기 양극 활물질 100 중량부 대비 80 중량부 이하, 75 중량부 이하, 또는 70 중량부 이하일 수 있다. 상기 이차 입자는 상기 양극 활물질 100 중량부 대비 0 중량부 이상일 수 있다.
상기 범위를 만족할 때, 단입자의 양극 활물질의 존재에 의한 전술한 효과를 극대화할 수 있다. 이차 입자의 양극 활물질을 포함하는 경우, 그 성분은 전술한 단입자 양극 활물질로 예시된 것과 같은 성분일 수 있고, 다른 성분일 수 있으며, 단입자 형태가 응집된 형태를 의미할 수 있다.
본 출원의 일 실시상태에 있어서, 양극 활물질층 100 중량부 중의 양극 활물질은 80 중량부 이상 99.9 중량부 이하, 바람직하게는 90 중량부 이상 99.9 중량부 이하, 더욱 바람직하게는 95 중량부 이상 99.9 중량부 이하, 더더욱 바람직하게는 98 중량부 이상 99.9 중량부 이하로 포함될 수 있다.
상기 양극 활물질층은 앞서 설명한 양극 활물질과 함께, 양극 도전재 및 양극 바인더를 포함할 수 있다.
이때, 상기 양극 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
또, 상기 양극 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
상기 분리막으로는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해질 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라하이드로푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해질에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.
본 발명의 일 실시상태는 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
<제조예>
<음극의 제조>
실리콘계 활물질로서 Si(평균 입경(D50): 3.5㎛), SWCNT, MWCNT 및 바인더로서 폴리아크릴아마이드(PAM)를 하기 표 1의 중량비로 음극 슬러리 형성용 용매로서 증류수에 첨가하여 음극 슬러리를 제조하였다 (고형분 농도 28중량%).
상기 SWCNT는 BET 비표면적이 1000~1500m2/g을 만족하고, 종횡비가 10000 이상이며, 평균 직경이 1.0μm 이상을 만족하였다. 또한 MWCNT는 비표면적이 100~500m2/g수준을 만족하고, 평균 diameter가 10~20μm, wall 개수가 5~20 내외를 만족하였다.
구체적 믹싱 방법으로는 상기 SWCNT, MWCNT 바인더와 물을 homo믹서를 이용하여 2500rpm, 30min 분산시켜 준 후, 상기 실리콘계 활물질을 첨가한 후 2500rpm, 30min을 분산시켜 음극 슬러리를 제작하였다.
음극 집전체층으로서 구리 집전체(두께: 26㎛)의 양면에 상기 음극 슬러리를 87.7mg/25cm2의 로딩량으로 코팅하고, 압연(roll press)하고, 130℃의 진공 오븐에서 10시간 동안 건조하여 음극 활물질층(두께: 33㎛)을 형성하여, 이를 음극으로 하였다(음극의 두께: 41㎛, 음극의 공극률 40.0%).
상기 실시예 1에 있어서, 하기 표 1의 중량부를 변경한 것을 제외하고 상기 실시예 1과 동일하게 음극을 제조하였다.
실리콘계 활물질
(중량부)
SWCNT
(중량부)
MWCNT
(중량부)
음극 바인더
(중량부)
실시예 1 90.901 0.636 2.091 6.373
실시예 2 89.21 0.669 2.542 7.58
실시예 3 93.15 0.559 2.562 3.726
실시예 4 89.16 0.669 2.140 8.029
비교예 1 94.16 0.659 2.354 2.825
비교예 2 88.38 0.619 2.209 8.794
비교예 3 91.32 0 2.283 6.393
비교예 4 92.89 0.650 0 6.456
비교예 5 (Si:C=10:90)
90.5
0.5 3 CMC:SBR=
3:3
비교예 6 (Si:C=10:90)
94.25
0.25 1.5 CMC:SBR=
2:2
상기 표 1에서 중량부는 전체 음극 조성물 100 중량부를 기준으로 한 중량부이며, 하기 표 2는 음극 활물질 100 중량부를 기준으로 한 중량부이다.
실리콘계 활물질
(중량부)
SWCNT
(중량부)
MWCNT
(중량부)
음극 바인더
(중량부)
실시예 1 100 0.7 2.3 7.0
실시예 2 100 0.75 2.85 8.5
실시예 3 100 0.6 2.75 4
실시예 4 100 0.75 2.4 9
비교예 1 100 0.7 2.5 3
비교예 2 100 0.7 2.5 10
비교예 3 100 0 2.5 7
비교예 4 100 0.7 0 7
비교예 5 100 5.5 3.31 6.63
비교예 6 100 2.8 1.66 4.42
<비교예 7>
실리콘계 활물질로서 Si(평균 입경(D50): 3.5㎛), 제1 도전재, 제3 도전재, 및 바인더로서 폴리아크릴아마이드(PAM)를 80:10:0.3:9.7의 중량비로 음극 활물질층 조성물을 준비하였다. 음극 슬러리 형성용 용매로서 증류수에 첨가하여 제1 음극 슬러리를 제조하였다 (고형분 농도 45중량%).
상기 제1 도전재는 카본블랙C (비표면적: 58m2/g, 직경: 37nm)이며, 상기 제3 도전재는 카본나노튜브이다.
믹싱 방법으로는 상기 제1 도전재와 제3 도전재, 바인더와 물을 homo 믹서를 이용하여 2500rpm, 30min 분산시켜 준 후 활물질을 첨가한 후 2500rpm, 30min을 분산시켜 슬러리를 제작하였다.
음극 집전체로서 구리 집전체(두께: 30㎛)의 양면에 상기 음극 슬러리를 99.65mg/25cm2의 로딩량으로 코팅하고, 압연(roll press)하고, 130℃의 진공 오븐에서 10시간 동안 건조하여 음극 활물질층(두께: 37㎛)을 형성하여 이를 음극으로 하였다.(음극의 두께: 41㎛, 음극의 공극률 40.0%)
<비교예 8>
상기 비교예 7에 있어서, 제1 도전재 대신 제2 도전재를 사용한 것을 제외하고 상기 비교예 7과 동일하게 음극을 제조하였다. 상기 제2 도전재는 판상의 흑연 (비표면적: 17m2/g, 평균 입경(D50): 3.5um)이고,
<비교예 9>
실리콘계 활물질로서 SiO(평균 입경(D50): 3.5㎛), 인조 흑연, 제1 도전재, 제3 도전재, 및 바인더로서 CMC:SBR를 4.779:90.794:0.982:0.018:1.127:2.3의 중량비로 음극 활물질층 조성물을 준비하였다. 음극 슬러리 형성용 용매로서 증류수에 첨가하여 음극 슬러리를 제조하였다 (고형분 농도 45중량%).
상기 제1 도전재는 카본블랙C (비표면적: 58m2/g, 직경: 37nm)이며, 상기 제3 도전재는 카본나노튜브이다.
믹싱 방법으로는 상기 제1 도전재와 제3 도전재, 바인더와 물을 homo 믹서를 이용하여 2500rpm, 30min 분산시켜 준 후 활물질을 첨가한 후 2500rpm, 30min을 분산시켜 슬러리를 제작하였다.
음극 집전체로서 구리 집전체(두께: 8㎛)의 양면에 상기 음극 슬러리를 9.312mg/cm2의 로딩량으로 코팅하고, 압연(roll press)하고, 130℃의 진공 오븐에서 10시간 동안 건조하여 음극 활물질층(두께: 114㎛)을 형성하였다.
<이차전지의 제조>
양극 활물질로서 LiNi0.6Co0.2Mn0.2O2(평균 입경(D50): 15㎛), 도전재로서 카본블랙 (제품명: Super C65, 제조사: Timcal), 바인더로서 폴리비닐리덴플루오라이드(PVdF)를 97:1.5:1.5의 중량비로 양극 슬러리 형성용 용매로서 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 슬러리를 제조하였다(고형분 농도 78중량%).
양극 집전체로서 알루미늄 집전체(두께: 12㎛)의 양면에 상기 양극 슬러리를 537mg/25cm2의 로딩량으로 코팅하고, 압연(roll press)하고, 130℃의 진공 오븐에서 10시간 동안 건조하여 양극 활물질층(두께: 65㎛)을 형성하여, 양극을 제조하였다 (양극의 두께: 77㎛, 공극률 26%).
상기 양극과 상기 실시예 1의 음극 사이에 폴리에틸렌 분리막을 개재하고 전해질을 주입하여 실시예 1의 이차전지를 제조하였다.
상기 전해질은 플루오로에틸렌 카보네이트(FEC), 디에틸 카보네이트(DMC)를 30:70의 부피비로 혼합한 유기 용매에 비닐렌 카보네이트를 전해질 전체 중량을 기준으로 3중량%로 첨가하고, 리튬염으로서 LiPF6을 1M 농도로 첨가한 것이었다.
상기 실시예들 및 비교예들의 음극을 사용한 것을 제외하고는 상기와 동일한 방법으로 이차전지를 각각 제조하였다.
실험예 1: Monocell 수명 평가
상기에서 제조한 이차 전지에 대하여 전기 화학 충방전기를 이용하여 수명 평가를 진행하였고, 용량 유지율을 평가하였다. 이차 전지를 충전(1.0C cc/CV 충전 4.2V 0.05C Cut) 및 방전(0.5C CC 방전 3.3V Cut) 조건으로 300cycle을 상온(25℃)에서 진행한 후 용량 유지율을 확인하였다.
하기 식에 의해 300번째 용량 유지율을 평가하였으며, 그 결과를 하기 표 3에 기재하였다.
용량 유지율(%)={(300번째 사이클에서의 방전 용량/(첫 번째 사이클에서의 방전 용량)}
Cycle Retension
(% at 300cycle)
실시예 1 86.8
실시예 2 86.0
실시예 3 85.0
실시예 4 86.4
비교예 1 82.5
비교예 2 83.1
비교예 3 72.4
비교예 4 81.0
비교예 5 65.4
비교예 6 61.2
비교예 7 78.4
비교예 8 82.3
비교예 9 55.1
실험예 2: 사이클 저항 증가율
상기 실험예 1에서 테스트시 100사이클(cycle) 마다 0.33C/0.33C 충/방전(4.2-3.0V)하여 용량 유지율을 측정한 후, SOC50에서 2.5C pulse로 방전하여 전항을 측정하여 저항 증가율을 비교 분석하였다.
상기 저항 증가율 측정 평가에 대하여, 각각 200cycle에서의 데이터를 계산하였으며 그 결과는 하기 표 4와 같았다.
200사이클 이후 저항 증가율(%)
(3.0~4.2 V 범위 1C/0.5C)
실시예 1 10.2
실시예 2 11.4
실시예 3 10.7
실시예 4 9.8
비교예 1 12.1
비교예 2 13.6
비교예 3 15.9
비교예 4 13.4
비교예 5 22.1
비교예 6 27.5
비교예 7 16.8
비교예 8 21.4
비교예 9 35.7
상기 표 3에서 확인할 수 있듯, 본원 발명 실시예 1 내지 4가 비교예 대비 우수한 성능을 보이는 것을 확인할 수 있었다.
구체적으로 비교예 1의 경우, 전도성 네트워크는 적절하게 형성될 수 있지만, 바인더의 비율이 매우 낮아지면서 네트워크간의 연결이 끊어지며 성능이 감소한 결과를 나타내었다.
비교예 2의 경우, 비교예 1과는 달리 바인더의 비율이 너무 높아지면서 네트워크 간의 연결 구조가 단락되는 정도는 적어졌다고 볼 수 있으나, 비전도성 소재인 바인더의 비율이 높아지면서 저항이 증가하여 성능이 감소한 결과를 나타 내었다.
비교예 3 및 비교예 4는 도전재가 SWCNT 또는 MWCNT가 단독으로 적용된 경우이며 실시예 1 대비 각각의 도전재 소재만 제외되고 도전재 자체의 증량은 없었기 때문에 전도성이 약화되며 성능이 떨어진 결과를 나타내었다.
비교예 5 및 6은 Si와 C가 복합된 활물질을 사용하는 경우로, 본원 실시예는 모두 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 90 중량부 이상 포함하는, 즉 Pure Si를 사용하는 경우에 해당한다. 비교예 5 및 6의 경우 본원 실시예 대비 용량 극대화를 이룰 수 없으며, 충전 성능이 Si 대비 매우 떨어지는 흑연이 복합된 것으로, 평가 충전 C-rate가 1.0C의 경우가 해당 전극에 적용하기에는 매우 어려운 조건이기 때문에 Li-plating과 같은 문제가 발생한 결과로 판단되며, 또한 바인더로 CMC:SBR을 사용하는 경우 실리콘계 전지에서 성능 개선이 어렵고, 그로 인해 성능이 급격하게 저하된 것으로 판단된다.
비교예 7 및 8은 점형 도전재인 카본 블랙, 면형 도전재인 판상형 흑연을 적용한 경우에 해당한다. 먼저 카본 블랙의 경우 첨가된 조성 함량이 높아 슬러리의 점도를 매우 높이게 되면서 카본블랙 및 SWCNT의 분산에 영향을 주어 상기와 같은 결과를 나타내었다. 또한 판상형 흑연을 사용한 경우에는 분산에는 큰 영향을 주는 소재가 아니어서 분산 정도에 대한 문제는 없었으나, 도전재의 함량이 높아지며 실리콘계 활물질의 조성 비가 떨어져 동일한 용량을 구현하기 위해 전극 무게 로딩양이 높아지게 되고, 이에 따라 전극이 두꺼워져 성능이 떨어진 결과를 나타내었다. 참고로 비교예 7은 도전재로 인한 전도성 및 분산성이 악화와 함께 전극 두께 증가로 비교예 8 대비 성능이 더욱 열위하였다.
마지막으로 비교예 9의 경우 SiO와 흑연의 혼합 전극에 대한 결과로 성능이 매우 떨어지는 것으로 확인되었다. 이는 충전 성능이 Si 대비 매우 떨어지는 흑연을 주요 활물질로 적용한 결과로, 평가 충전 C-rate가 1.0C의 경우가 흑연 전극에 적용하기에는 매우 어려운 조건이기 때문에 Li-plating과 같은 문제가 발생한 결과로 판단되며, 그로 인해 성능이 급격하게 저하된 것으로 판단된다.
10: 음극 집전체층
20: 음극 활물질층
30: 분리막
40: 양극 활물질층
50: 양극 집전체층
100: 리튬 이차 전지용 음극
200: 리튬 이차 전지용 양극

Claims (10)

  1. 실리콘계 활물질; 선형 도전재; 및 음극 바인더;를 포함하는 음극 조성물로,
    상기 실리콘계 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 90 중량부 이상 포함하고,
    상기 선형 도전재는 SWCNT; 및 MWCNT를 포함하고,
    상기 음극 조성물 100 중량부 기준 상기 실리콘계 활물질은 80 중량부 이상 95 중량부 이하를 포함하고,
    상기 실리콘계 활물질 100 중량부 기준 상기 음극 바인더는 3 중량부 이상 10 중량부 이하를 포함하는 것인 음극 조성물.
  2. 청구항 1에 있어서,
    상기 실리콘계 활물질의 결정립 크기가 200 nm 이하인 것인 음극 조성물.
  3. 청구항 1에 있어서,
    상기 실리콘계 활물질 100 중량부 기준 상기 선형 도전재는 0.5 중량부 이상 10 중량부 이하인 것인 음극 조성물.
  4. 청구항 1에 있어서,
    상기 실리콘계 활물질 100 중량부 기준 상기 MWCNT는 0.3 중량부 이상 6 중량부 이하이고, 상기 SWCNT는 0.1 중량부 이상 1.5 중량부 이하인 것인 음극 조성물.
  5. 청구항 1에 있어서,
    상기 MWCNT는 비표면적이 100m2/g 내지 500m2/g이고,
    평균 직경(Mean diameter)이 10nm 이상 20 nm 이하인 것인 음극 조성물.
  6. 청구항 1에 있어서,
    상기 SWCNT는 비표면적이 900m2/g 내지 1500m2/g이고,
    평균 직경(Mean diameter)이 50 nm 이상 450 nm 이하인 것인 음극 조성물.
  7. 청구항 1에 있어서,
    상기 음극 바인더는 고무계 바인더; 및 수계 바인더로 이루어진 군에서 선택되는 1 이상을 포함하는 것인 음극 조성물.
  8. 음극 집전체층; 및
    상기 음극 집전체층의 일면 또는 양면에 형성된 청구항 1 내지 청구항 7 중 어느 한 항에 따른 음극 조성물을 포함하는 음극 활물질층;
    을 포함하는 리튬 이차 전지용 음극.
  9. 청구항 8에 있어서,
    상기 음극 집전체층의 두께는 1μm 이상 100μm 이하이며,
    상기 음극 활물질층의 두께는 10μm 이상 500μm 이하인 것인 리튬 이차 전지용 음극.
  10. 양극;
    청구항 8에 따른 리튬 이차 전지용 음극;
    상기 양극과 상기 음극 사이에 구비된 분리막; 및
    전해질;을 포함하는 리튬 이차 전지.
KR1020230117606A 2022-09-07 2023-09-05 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 KR20240034667A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2023/013299 WO2024054019A1 (ko) 2022-09-07 2023-09-06 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220113646 2022-09-07
KR1020220113646 2022-09-07

Publications (1)

Publication Number Publication Date
KR20240034667A true KR20240034667A (ko) 2024-03-14

Family

ID=90249139

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230117606A KR20240034667A (ko) 2022-09-07 2023-09-05 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지

Country Status (1)

Country Link
KR (1) KR20240034667A (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009080971A (ja) 2007-09-25 2009-04-16 Tokyo Univ Of Science リチウムイオン電池用負極

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009080971A (ja) 2007-09-25 2009-04-16 Tokyo Univ Of Science リチウムイオン電池用負極

Similar Documents

Publication Publication Date Title
KR20230049029A (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
KR20230048997A (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
KR102634009B1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
KR102601530B1 (ko) 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 리튬 이차 전지용 음극의 제조 방법
KR20240034667A (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
KR102663398B1 (ko) 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
KR20240056435A (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
US20240213558A1 (en) Method for manufacturing lithium secondary battery and lithium secondary battery
KR20240040662A (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지
KR20240056269A (ko) 리튬 이차 전지의 제조 방법 및 리튬 이차 전지
KR20230139409A (ko) 음극 슬러리, 음극 슬러리의 제조 방법, 음극 슬러리를 포함하는 리튬 이차 전지용 음극 및 리튬 이차 전지용 음극의 제조 방법
KR20230050258A (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
KR20240092913A (ko) 패턴을 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
KR20230069008A (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
KR20230139067A (ko) 음극 조성물, 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
KR20240000397A (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
KR20240000399A (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
KR20240031194A (ko) 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
KR20240000400A (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 및 음극을 포함하는 리튬 이차 전지
KR20240104322A (ko) 리튬 이차 전지
KR20230095848A (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
KR20230120555A (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
KR20240031926A (ko) 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
KR20240102290A (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
KR20240102303A (ko) 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal