KR20240026387A - Manufacturing method of biodegradable polymer film with microfibrillated cellulose derived from sweetpumkin peel and biodegradable polymer film prepared by the method - Google Patents

Manufacturing method of biodegradable polymer film with microfibrillated cellulose derived from sweetpumkin peel and biodegradable polymer film prepared by the method Download PDF

Info

Publication number
KR20240026387A
KR20240026387A KR1020220103918A KR20220103918A KR20240026387A KR 20240026387 A KR20240026387 A KR 20240026387A KR 1020220103918 A KR1020220103918 A KR 1020220103918A KR 20220103918 A KR20220103918 A KR 20220103918A KR 20240026387 A KR20240026387 A KR 20240026387A
Authority
KR
South Korea
Prior art keywords
pla
polymer film
biodegradable polymer
cellulose
present
Prior art date
Application number
KR1020220103918A
Other languages
Korean (ko)
Inventor
정영훈
김가영
강혜지
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020220103918A priority Critical patent/KR20240026387A/en
Publication of KR20240026387A publication Critical patent/KR20240026387A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • C08B1/003Preparation of cellulose solutions, i.e. dopes, with different possible solvents, e.g. ionic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명은 단호박껍질 유래 미세섬유상 셀룰로오스를 포함하는 생분해성 고분자 필름의 제조방법 및 이로부터 제조된 생분해성 고분자 필름에 관한 것으로, 순수 PLA에 비해 가공성이 우수한 장점이 있다.The present invention relates to a method for producing a biodegradable polymer film containing microfibrous cellulose derived from sweet pumpkin skin and a biodegradable polymer film manufactured therefrom, which has the advantage of superior processability compared to pure PLA.

Description

단호박껍질 유래 미세섬유상 셀룰로오스를 포함하는 생분해성 고분자 필름의 제조방법 및 이로부터 제조된 생분해성 고분자 필름{Manufacturing method of biodegradable polymer film with microfibrillated cellulose derived from sweetpumkin peel and biodegradable polymer film prepared by the method}Method for manufacturing a biodegradable polymer film containing microfibrillated cellulose derived from sweet pumpkin peel and a biodegradable polymer film manufactured therefrom

본 발명은 단호박껍질 유래 미세섬유상 셀룰로오스를 포함하는 생분해성 고분자 필름의 제조방법 및 이로부터 제조된 생분해성 고분자 필름에 관한 것이다.The present invention relates to a method for producing a biodegradable polymer film containing microfibrous cellulose derived from sweet pumpkin peel and a biodegradable polymer film manufactured therefrom.

생분해성(biodegradable) 고분자는 토양 중의 미생물 등에 의해 분해될 수 있는 친환경적인 소재로, 최근 환경문제에 따라 필요성이 인식되고 있다. 생분해성 고분자는 천연 고분자, 합성 고분자 등으로 분류된다.Biodegradable polymers are eco-friendly materials that can be decomposed by microorganisms in the soil, and the need for them has been recognized due to recent environmental problems. Biodegradable polymers are classified into natural polymers and synthetic polymers.

곡물에서 추출되는 전분(starch), 꽃게나 새우의 껍질에서 얻을 수 있는 키틴(chitin), 곡물이나 나무에서 얻을 수 있는 셀룰로오스(cellulose) 등이 생분해되는 천연 고분자이다. 천연 고분자는 다른 생분해성 고분자에 비해 가공성은 다소 떨어지나 가격이 저렴하고, 자원이 풍부하여 공급이 원활할 뿐만 아니라 독성 우려가 낮은 장점이 있다. 합성에 의한 생문해성 고분자로는 PCL(poly(caprolactone)), PLA(poly(lactic acid)), PGA(poly(glycolic acid)) 등이 있다. 특히 PLA는 강도가 우수하지만 가공성이 취약한 단점이 있다.Starch extracted from grains, chitin obtained from crab or shrimp shells, and cellulose obtained from grains or trees are natural biodegradable polymers. Natural polymers have somewhat lower processability than other biodegradable polymers, but have the advantage of being inexpensive, providing smooth supply due to abundant resources, and having low toxicity concerns. Synthetic bio-literate polymers include PCL (poly(caprolactone)), PLA (poly(lactic acid)), and PGA (poly(glycolic acid)). In particular, PLA has excellent strength, but has the disadvantage of poor processability.

생분해성 고분자는 포장 완충제, 코팅제, 농업용 필름, 식음료 포장 용기, 일회용 접시 등에 점차 사용이 확대되고 있으나, 생분해성 고분자 특유의 물성이나 가공성을 개선하고자 하는 시도가 이루어지고 있다.Biodegradable polymers are increasingly being used in packaging buffers, coatings, agricultural films, food and beverage packaging containers, and disposable plates, but attempts are being made to improve the unique physical properties and processability of biodegradable polymers.

이에 본 발명은 미세섬유상 셀룰로오스(microfibrillated cellulose)를 이용하여 열에 취약한 생분해성 고분자의 단점을 개선한 생분해성 고분자 필름을 제공한다.Accordingly, the present invention provides a biodegradable polymer film that improves the disadvantages of biodegradable polymers that are vulnerable to heat by using microfibrillated cellulose.

KRKR 10-2021-0127342 10-2021-0127342 AA

본 발명은 열에 취약한 생분해성 고분자의 물성을 개선하여 가공성이 향상된 생분해성 고분자 필름을 제공하는 것을 목적으로 한다.The purpose of the present invention is to provide a biodegradable polymer film with improved processability by improving the physical properties of biodegradable polymers that are vulnerable to heat.

단호박껍질과 NaOH를 혼합하여 셀룰로오스를 추출하는 단계(a); 상기 셀룰로오스를 미세섬유화하하여 미세섬유상셀룰로오스를 제조하는 단계 (b); 및 PLA와 상기 미세섬유상셀룰로오스를 컴파운딩하여 필름을 제조하는 단계(c);를 포함하는, 생분해성 고분자 필름의 제조방법을 제공한다.Step (a) of extracting cellulose by mixing sweet pumpkin peel and NaOH; Step (b) of producing microfibrous cellulose by converting the cellulose into microfibrils; and step (c) of producing a film by compounding PLA and the microfibrous cellulose.

본 발명에 있어서, 상기 단계 (a)의 NaOH는, 바람직하게는 0.5~2%(v/v) NaOH인 것이 좋다.In the present invention, the NaOH in step (a) is preferably 0.5 to 2% (v/v) NaOH.

본 발명에 있어서, 상기 단계 (a)의 단호박껍질과 NaOH의 혼합은, 바람직하게는 5~8%(w/v)의 농도로 단호박껍질이 첨가된 NaOH 용액인 것이 좋다.In the present invention, the mixture of sweet pumpkin peel and NaOH in step (a) is preferably a NaOH solution to which sweet pumpkin peel is added at a concentration of 5 to 8% (w/v).

본 발명에 있어서, 상기 단계 (b)의 미세섬유화는, 25,000 내지 38,000 RPM에서 40~180분간 블렌딩하는 것이 좋다.In the present invention, the microfiberization in step (b) is preferably blended at 25,000 to 38,000 RPM for 40 to 180 minutes.

본 발명에 있어서, 상기 미세섬유상셀룰로오스는, 149.81 ~ 302.25 nm의 입도를 가지는 것이 좋다.In the present invention, the microfibrous cellulose preferably has a particle size of 149.81 to 302.25 nm.

본 발명에 있어서, 상기 단계 (c)는, PLA 펠렛과 미세섬유상셀룰로오스를 160~200℃에서 컴파운딩한 뒤 성형하는 것이 좋다.In the present invention, step (c) is preferably performed after compounding PLA pellets and microfibrous cellulose at 160 to 200°C.

본 발명에 있어서, 상기 생분해성 고분자 필름은, 바람직하게는 PLA에 비해 유리전이온도가 증가한 것이 좋다.In the present invention, the biodegradable polymer film preferably has an increased glass transition temperature compared to PLA.

또한, 본 발명은 상기 제조방법에 의해 제조된 생분해성 고분자 필름을 제공한다.Additionally, the present invention provides a biodegradable polymer film manufactured by the above manufacturing method.

본 발명의 생분해성 고분자 필름은 가공성이 우수한 이점이 있으며 기존의 생분해성 고분자와 유사한 특성을 가지므로, 열에 취약한 생분해성 고분자를 대체하여 사용할 수 있다.The biodegradable polymer film of the present invention has the advantage of excellent processability and has similar characteristics to existing biodegradable polymers, so it can be used as a replacement for biodegradable polymers that are vulnerable to heat.

도 1은 본 발명의 일 실시예에 있어서, 단호박껍질 전처리 여부에 따른 미세섬유상 셀룰로오스의 성분을 비교한 도이다.
도 2는 본 발명의 일 실시예에 있어서, 미세섬유상 셀룰로오스의 분산성 분석 결과와 침전 정도를 관찰한 결과를 나타낸 도이다.
도 3은 본 발명의 일 실시예에 있어서, 단호박껍질을 이용하여 제조한 셀룰로오스의 FT-IR 분석 결과를 나타낸 도이다.
도 4는 본 발명의 일 실시예에 있어서, 단호박껍질을 이용하여 제조한 셀룰로오스의 주사전자현미경 분석 결과를 나타낸 도이다.
도 5는 본 발명의 일 실시예에 있어서, 순수 PLA와 본 발명의 PLA/SP의 인장강도, 영률, 연신율, 표면 소수성 특성을 비교한 도이다.
도 6은 본 발명의 일 실시예에 있어서, 순수 PLA와 본 발명의 PLA/SP의 손실탄성률, 유리전이온도를 비교한 도이다.
도 7은 본 발명의 일 실시예에 있어서, 순수 PLA와 본 발명의 PLA/SP의 색도를 분석한 도이다.
도 8은 본 발명의 일 실시예에 있어서, 순수 PLA와 본 발명의 PLA/SP의 FT-IR 분석 결과를 나타낸 도이다.
도 9는 본 발명의 일 실시예에 있어서, 순수 PLA와 본 발명의 PLA/SP의 주사전자현미경 분석 결과를 나타낸 도이다.
Figure 1 is a diagram comparing the components of microfibrous cellulose according to whether or not sweet pumpkin peel was pretreated, according to an embodiment of the present invention.
Figure 2 is a diagram showing the results of analyzing the dispersibility of microfibrous cellulose and observing the degree of precipitation, according to an embodiment of the present invention.
Figure 3 is a diagram showing the results of FT-IR analysis of cellulose manufactured using sweet pumpkin skin in one embodiment of the present invention.
Figure 4 is a diagram showing the results of scanning electron microscopy analysis of cellulose manufactured using sweet pumpkin peel, in one embodiment of the present invention.
Figure 5 is a diagram comparing the tensile strength, Young's modulus, elongation, and surface hydrophobicity properties of pure PLA and PLA/SP of the present invention in one embodiment of the present invention.
Figure 6 is a diagram comparing the loss modulus and glass transition temperature of pure PLA and PLA/SP of the present invention in one embodiment of the present invention.
Figure 7 is a diagram analyzing the chromaticity of pure PLA and PLA/SP of the present invention in one embodiment of the present invention.
Figure 8 is a diagram showing the results of FT-IR analysis of pure PLA and PLA/SP of the present invention in one embodiment of the present invention.
Figure 9 is a diagram showing the results of scanning electron microscopy analysis of pure PLA and PLA/SP of the present invention in one embodiment of the present invention.

본 발명은 단호박껍질과 NaOH를 혼합하여 셀룰로오스를 추출하는 단계 (a); 상기 셀룰로오스를 미세섬유화하하여 미세섬유상셀룰로오스를 제조하는 단계 (b); 및 PLA와 상기 미세섬유상셀룰로오스를 컴파운딩하여 필름을 제조하는 단계 (c);를 포함하는, 생분해성 고분자 필름의 제조방법을 제공한다.The present invention includes the steps of extracting cellulose by mixing sweet pumpkin peel and NaOH; Step (b) of producing microfibrous cellulose by converting the cellulose into microfibrils; and step (c) of producing a film by compounding PLA and the microfibrous cellulose.

미세섬유상셀룰로오스(microfibrillated cellulose)는 미세섬유상으로 얻어지는 셀룰로오스로, 팽윤 상태이며, 점성이 균일하게 분산되어있어 안정한 상태를 유지한다. 미세섬유상셀룰로오스는 일반적으로 식품 첨가물로 사용되며, 점증제, 제조용제, 안정제, 피막제로도 사용된다.Microfibrillated cellulose is cellulose obtained in the form of microfibres. It is in a swollen state and its viscosity is uniformly dispersed to maintain a stable state. Microfibrous cellulose is generally used as a food additive, and is also used as a thickener, manufacturing solvent, stabilizer, and coating agent.

본 발명에 있어서, 상기 단계 (a)의 NaOH는, 바람직하게는 0.5~2%(v/v) NaOH인 것이 좋다. 더욱 바람직하게는 1%(v/v) NaOH를 사용하는 것이 좋다. 본 발명은 단호박껍질을 NaOH와 혼합함에 셀룰로오스를 포함하는 물질(cellulosic material)을 효과적으로 추출할 수 있다.In the present invention, the NaOH in step (a) is preferably 0.5 to 2% (v/v) NaOH. More preferably, it is good to use 1% (v/v) NaOH. The present invention can effectively extract cellulosic material by mixing sweet pumpkin peel with NaOH.

본 발명에 있어서, 상기 단계 (a)의 단호박껍질과 NaOH의 혼합은, 바람직하게는 5~8%(w/v)의 농도로 단호박껍질이 첨가된 NaOH 용액인 것이 좋다. 더욱 바람직하게는, 단호박껍질의 함량이 6.5%(w/v)인 것이 좋으며, 일 예로, 단호박껍질 49g과 NaOH 700ml를 혼합하는 것일 수 있다. 이러한 경우 단호박으로부터 셀룰로오스를 가장 효과적으로 추출할 수 있었다.In the present invention, the mixture of sweet pumpkin peel and NaOH in step (a) is preferably a NaOH solution to which sweet pumpkin peel is added at a concentration of 5 to 8% (w/v). More preferably, the content of sweet pumpkin skin is 6.5% (w/v). For example, 49 g of sweet pumpkin skin may be mixed with 700 ml of NaOH. In this case, cellulose could be extracted most effectively from sweet pumpkin.

본 발명에 있어서, 상기 단계 (b)의 미세섬유화는, 25,000 내지 38,000 RPM에서 40~180분간 블렌딩하는 것이 좋다. 더욱 바람직하게는 36,000 내지 38,000 RPM에서 40~80분간 블렌딩하는 것이 좋다.In the present invention, the microfiberization in step (b) is preferably blended at 25,000 to 38,000 RPM for 40 to 180 minutes. More preferably, blending is performed at 36,000 to 38,000 RPM for 40 to 80 minutes.

본 발명에 있어서, 상기 단계 (c)는, PLA 펠렛과 미세섬유상셀룰로오스를 160~200℃에서 혼합한 뒤 성형하는 것이 좋다. 더욱 바람직하게는, 현탁액 상태의 미세섬유상셀룰로오스를 건조하여 파우더화한 뒤, PLA 펠렛과 180℃에서 컴파운딩(혼합) 하는 것이 좋다. 이후, 원하는 크기의 성형틀에서 성형하여 PLA/SP 필름 시트를 제조할 수 있다.In the present invention, step (c) is preferably performed by mixing PLA pellets and microfibrous cellulose at 160 to 200°C. More preferably, the suspended microfibrous cellulose is dried and powdered, and then compounded (mixed) with PLA pellets at 180°C. Afterwards, a PLA/SP film sheet can be manufactured by molding in a mold of the desired size.

또한, 본 발명은 상기 제조방법에 의해 제조된 생분해성 고분자 필름을 제공한다.Additionally, the present invention provides a biodegradable polymer film manufactured by the above manufacturing method.

본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 '%'는 별도의 언급이 없는 경우, 고체/고체는 (w/w) %, 고체/액체는 (w/v) %, 그리고 액체/액체는 (v/v) %이다.Throughout this specification, '%' used to indicate the concentration of a specific substance means (w/w) % for solid/solid, (w/v) % for solid/liquid, and Liquid/liquid is (v/v) %.

이하, 실시예 및 실험예를 통하여 본 발명을 보다 자세히 설명한다. 다만, 하기 실시예 및 실험예는 본 발명에 대한 예시로 제시되는 것으로, 당업자에게 주지 저명한 기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있고, 이에 의해 본 발명이 제한되지는 않는다. 본 발명은 후술하는 특허청구범위의 기재 및 그로부터 해석되는 균등 범주 내에서 다양한 변형 및 응용이 가능하다.Hereinafter, the present invention will be described in more detail through examples and experimental examples. However, the following examples and experimental examples are provided as examples of the present invention, and if it is judged that a detailed description of a technology or configuration well known to those skilled in the art may unnecessarily obscure the gist of the present invention, the detailed description is omitted. It can be done, and the present invention is not limited thereby. The present invention is capable of various modifications and applications within the description of the claims described below and the scope of equivalents interpreted therefrom.

<실험예 1> 단호박껍질 전처리에 따른 셀룰로오스 성분 비교<Experimental Example 1> Comparison of cellulose composition according to pretreatment of sweet pumpkin peel

단호박껍질(SP) 49g과 1%(v/v) NaOH 700 mL를 혼합하고 70℃에서 60분 반응시킨 뒤 수세 및 세척하였다. 이후 45℃에서 3일간 건조하였다. 블렌더 Vitamix TNC5200 blender(vitamix, japan)를 사용하여 37,000 RPM으로 80분간 블렌딩하여 미세섬유상셀룰로오스(microfibrillated cellulose)를 제조하였다. NaOH 전처리 여부에 따른 셀룰로오스 성분 비교를 위해 HPLC를 수행하였다.49 g of sweet pumpkin peel (SP) and 700 mL of 1% (v/v) NaOH were mixed and reacted at 70°C for 60 minutes, then washed and washed. Afterwards, it was dried at 45°C for 3 days. Microfibrillated cellulose was prepared by blending for 80 minutes at 37,000 RPM using a blender Vitamix TNC5200 blender (Vitamix, Japan). HPLC was performed to compare cellulose components with and without NaOH pretreatment.

미국 에너지부 재생에너지 연구소(Department of Energy, Nation Renewable Energy Laboratory)에서 제공한 Laboratory Analytical Procedure의 방법을 참고하였다. 시료를 72%(w/w) 황산 3 mL 으로 30 ℃에서 1시간 반응 후 serum bottle로 옮기고, 증류수 84 mL를 넣어 4%로 희석한 뒤 121 ℃에서 추가로 1시간 반응시켰다. 반응이 끝난 후 필터를 사용하여 고체를 분리하고 상등액은 탄산칼슘(calcium carbonate)을 이용하여 pH 6-8로 중화하였다. 중화한 시료를 HPLC 분석하였다. 글루칸(glucan) 함량은 글루코오스 (glucose), 즉 셀룰로오스 함량을 의미한다.The method of the Laboratory Analytical Procedure provided by the U.S. Department of Energy, Nation Renewable Energy Laboratory was referred to. The sample was reacted with 3 mL of 72% (w/w) sulfuric acid at 30°C for 1 hour, then transferred to a serum bottle, diluted to 4% with 84 mL of distilled water, and reacted at 121°C for an additional hour. After the reaction was completed, the solid was separated using a filter, and the supernatant was neutralized to pH 6-8 using calcium carbonate. The neutralized sample was analyzed by HPLC. Glucan content refers to glucose, that is, cellulose content.

도 1에 실험 결과를 기재하였다. 전처리 과정을 거치지 않은 경우, 글루칸 함량이 상대적으로 높고, 리그닌 함량은 상대적으로 낮은 반면, 전처리 과정을 거친 경우에는 글루칸 함량이 비교적 낮고, 리그닌 함량이 증가하였다. 이에 따라, 본래 리그닌 함량이 낮은 식품의 세포벽에 화학적 전처리를 함으로써 셀룰로오스 가수분해 정도를 증가시킨 것으로 판단되었다.The experimental results are shown in Figure 1. When no pretreatment process was performed, the glucan content was relatively high and the lignin content was relatively low, whereas when the pretreatment process was performed, the glucan content was relatively low and the lignin content increased. Accordingly, it was determined that chemical pretreatment of the cell walls of foods with originally low lignin content increased the degree of cellulose hydrolysis.

<실험예 2> 셀룰로오스의 미소섬유화 여부 확인<Experimental Example 2> Confirmation of microfibrilization of cellulose

2-1. 침전검사(sedimentation test)2-1. Sedimentation test

상기 실험예 1과 같이 단호박껍질(SP)과 1%(v/v) NaOH를 혼합하고 블렌더 Vitamix TNC5200 blender(vitamix, japan)를 사용하여 37,000 RPM 조건으로 각각 40분, 80분 블렌딩하였다. 시료를 0.2, 0.4, 0.8%(v/v)로 희석한 뒤, 침전물이 가라앉도록 48시간 방치하였다. 대조군으로 Borreggard와 Avicel을 사용하였다. 도 2a에 침전검사 결과(x축: 농도, y축: Hs(침전된 높이)/Ho(침전 전 높이)를, 도 2b에 셀룰로오스 섬유가 완전히 가라앉은 후 침전물의 높이를 측정한 결과를 나타내었다.As in Experimental Example 1, sweet pumpkin peel (SP) and 1% (v/v) NaOH were mixed and blended at 37,000 RPM for 40 minutes and 80 minutes, respectively, using a blender Vitamix TNC5200 blender (Vitamix, Japan). The sample was diluted to 0.2, 0.4, and 0.8% (v/v) and left for 48 hours for the precipitate to settle. Borreggard and Avicel were used as controls. Figure 2a shows the results of the sedimentation test (x-axis: concentration, y-axis: Hs (height before sedimentation)/Ho (height before sedimentation)), and Figure 2b shows the results of measuring the height of the sediment after the cellulose fibers have completely settled. .

Hs(침전된 높이)/Ho(침전 전 높이)가 1에 가까울수록 분산성이 높음을 의미하며, 도 2a에서 보듯이, 80분 블렌딩한 경우 분산성이 가장 우수하였다. 특히, 상 용화 미세섬유상 셀룰로오스인 Borreggard에 비해서도 분산성이 우수하였다. 반면, 40분 블렌딩한 경우에는 분산성이 비교적 낮았으나 Borreggard과 유사한 분산성을 보였다.The closer Hs (height before sedimentation)/Ho (height before sedimentation) is to 1, the higher the dispersibility is. As shown in Figure 2a, the dispersibility was the best when blended for 80 minutes. In particular, it had excellent dispersibility compared to Borreggard, a commercially available microfibrous cellulose. On the other hand, when blended for 40 minutes, dispersibility was relatively low, but dispersibility was similar to Borreggard.

도 2b에서 보듯이, 블렌딩 하지 않은 경우(0 min) 침전이 일어난 반면, 40분, 80분 블렌딩 한 경우 분산성이 우수하였다.As shown in Figure 2b, precipitation occurred when not blended (0 min), whereas dispersibility was excellent when blended for 40 and 80 minutes.

2-2. FT-IR(Fourier transform infrared spectroscopy)2-2. Fourier transform infrared spectroscopy (FT-IR)

하기 표 1과 같이 단호박껍질(SP)을 이용하여 제조한 시료들의 전처리 여부, 블렌더 사용 여부에 따른 성분 차이를 확인하기 위해 FTIR(Nicolet iS5 FTIR Spectrometer, Thermo Scientific, Waltham, MA)분석을 수행하였다. 제조방법은 상기 실시예 1을 참고하였다. As shown in Table 1 below, FTIR (Nicolet iS5 FTIR Spectrometer, Thermo Scientific, Waltham, MA) analysis was performed to determine differences in the composition of samples prepared using sweet pumpkin peel (SP) depending on whether or not a blender was used. For the manufacturing method, refer to Example 1 above.

미세섬유상셀룰로오스는 현탁액 상으로 존재하고 있으므로 잘 혼합한 뒤, 지름 5 cm의 페트리디쉬에 분주하고 충분히 건조시켰다. ATR-FTIR(Nicolet iS5 FTIR Spectrometer with iD7 ATD accessory, Thermo Scientific, Waltham, MA, USA)을 이용하여 건조된 미세섬유상셀룰로오스를 약 16회 스캔하였다.Since microfibrous cellulose exists in a suspension state, it was mixed well, dispensed into a Petri dish with a diameter of 5 cm, and dried sufficiently. The dried microfibrous cellulose was scanned approximately 16 times using ATR-FTIR (Nicolet iS5 FTIR Spectrometer with iD7 ATD accessory, Thermo Scientific, Waltham, MA, USA).

NaoH 전처리 여부NaoH preprocessing or not 블렌딩 (min)Blending (min) 제조예 1Manufacturing Example 1 전처리하지 않음No preprocessing 00 제조예 2Production example 2 전처리Pretreatment 00 제조예 3Production example 3 전처리Pretreatment 8080

도 3에서 보듯이, 세가지 시료 모두 셀룰로오스가 가지는 작용기를 가지는 것을 확인하였다. 3300 cm-1의 피크는 셀룰로오스의 OH기이며, 2800-2900 cm-1의 피크는 셀룰로오스의 CH기, 1160 cm-1의 피크는 셀룰로오스의 C-O-C기를 나타낸다. 한편 제조된 셀룰로오스는 화학적, 기계적 처리 이후에도 식물 유래 셀룰로오스에서 고유하게 확인할 수 있는 특성을 가진다. As shown in Figure 3, it was confirmed that all three samples had the functional groups that cellulose has. The peak at 3300 cm -1 represents the OH group of cellulose, the peak at 2800-2900 cm -1 represents the CH group of cellulose, and the peak at 1160 cm -1 represents the COC group of cellulose. Meanwhile, the manufactured cellulose has properties that can be identified uniquely from plant-derived cellulose even after chemical and mechanical treatment.

2-3. 주사전자현미경(SEM) 분석2-3. Scanning electron microscopy (SEM) analysis

상기 표 1에 따른 시료의 형태학적 특성을 확인하기 위해 SEM 분석을 수행하였다. SEM 이미지를 도 4에 나타내었다. 제조예 1(SFX0)은 단호박껍질 원물 시료로 다른 시료에 비해 입자의 사이즈가 큰 것으로 확인되었으며, 제조예 2(SF0)는 NaOH 전처리에 따라 세포의 표면이 부서져 금이 가고 울퉁불퉁하거나 불규칙적인 표면이 관찰되었다. 한편, 제조예 3(SF80)은 가느다란 섬유가 관찰되어 미세섬유상 셀룰로오스임(MFC, microfibrilated cellulose)이 확인되었으며, 관찰된 섬유의 사이즈는 약 226.03 nm였다.SEM analysis was performed to confirm the morphological characteristics of the samples according to Table 1 above. The SEM image is shown in Figure 4. Preparation Example 1 (SFX0) was a raw sweet pumpkin peel sample, and the particle size was confirmed to be larger than other samples, and Preparation Example 2 (SF0) showed that the surface of the cells was broken due to NaOH pretreatment, resulting in cracks, bumps, or irregular surfaces. was observed. Meanwhile, in Preparation Example 3 (SF80), thin fibers were observed, confirming that it was microfibrilated cellulose (MFC), and the size of the observed fibers was about 226.03 nm.

WidthWidth 전처리 전Before pretreatment 전처리 후After pretreatment MFCMFC 단호박껍질Sweet pumpkin peel ≥ 10 μm≥ 10 μm 226.03 ± 76.22 nm226.03 ± 76.22 nm

<실험예 3> PLA/SP 필름의 제조<Experimental Example 3> Production of PLA/SP film

미세섬유상셀룰로오스(MFC) 현탁액을 약 4~5일간 -80℃에서 동결건조하여 미세섬유상셀룰로오스 파우더를 제조하였다. internal mixer를 이용하여 PLA 펠렛(pellet)과 180℃에서 10분간 50 RPM으로 용융 컴파운딩(혼합)하고, 8 × 8 cm의 틀을 이용하여 hand press 180℃, 2000 psi에서 3분간 성형하여 PLA/SP 필름 시트를 제조하였다.Microfibrous cellulose (MFC) suspension was freeze-dried at -80°C for about 4 to 5 days to prepare microfibrous cellulose powder. Using an internal mixer, melt compounding (mixing) with PLA pellets at 180°C for 10 minutes at 50 RPM, and using an 8 × 8 cm mold, hand press at 180°C and 2000 psi for 3 minutes to form PLA/ SP film sheets were prepared.

<실험예 4> PLA/SP 필름의 물성 확인<Experimental Example 4> Confirmation of physical properties of PLA/SP film

4-1. 인장강도, 영률, 연신율, 표면 소수성 특성 확인4-1. Check tensile strength, Young's modulus, elongation, and surface hydrophobicity characteristics

상기 실험예 3에서 제조한 PLA와 PLA/SP 필름의 물성을 확인하기 위해, 시편을 1 × 8 cm의 직사각형 모양의 스트랩으로 준비하였다. 물성 특성은 ASTM D 882 standard test method for tensile proprties of thin plastic sheeting을 참고하였으며 Universal testing machine을 이용하여 실험하였다. 표면 소수성 특성은 1 × 1cm 사이즈의 시편을 사용하여 Dynamic contact angle measuring devices and tensiometer를 이용하여 실험하였다.To confirm the physical properties of the PLA and PLA/SP films prepared in Experimental Example 3, a specimen was prepared as a rectangular strap of 1 × 8 cm. The physical properties were tested using ASTM D 882 standard test method for tensile proprties of thin plastic sheeting and using a universal testing machine. Surface hydrophobic properties were tested using 1 × 1 cm sized specimens using dynamic contact angle measuring devices and tensiometer.

도 5a에 인장강도(tensile stress), 영률(Young's modulus) 및 연신율(elongation)을, 도 5b에 표면의 소수성 특성을 확인한 결과를 도시하였다. 생분해성 플라스틱인 PLA에 단호박껍질 유래 마이크로섬유상 셀룰로오스를 혼합하여도 인장강도, 영률, 연신율은 순수 PLA와 유사한 특성을 보였다. 한편, 표면의 소수성 특성 또한 순수 PLA와 PLA/SP의 유의미한 차이는 확인되지 않았다. 즉, 본 발명의 PLA/SP는 순수 PLA와 유사한 물성을 보이는 것으로 확인되었다.Figure 5a shows the tensile stress, Young's modulus, and elongation, and Figure 5b shows the results of confirming the hydrophobic properties of the surface. Even when microfibrous cellulose derived from pumpkin peel was mixed with PLA, a biodegradable plastic, the tensile strength, Young's modulus, and elongation showed similar characteristics to pure PLA. Meanwhile, no significant difference in the hydrophobic properties of the surface was found between pure PLA and PLA/SP. In other words, it was confirmed that the PLA/SP of the present invention showed similar physical properties to pure PLA.

4-2. 열적 특성4-2. thermal properties

1 × 4 cm의 직사각형 모양의 순수 PLA와 PLA/SP 필름을 1Hz의 주파수와 -10℃ ~ -120℃ 사이에서 5℃/min의 가열 속도에 노출시켜 Dynamic Mechanical Analyzer를 사용하여 열적 특성을 분석하였다. Rectangular pure PLA and PLA/SP films of 1 .

도 6a에 손실탄성률(loss modulus)을, 도 6b에 유리전이온도를 나타내었다. PLA는 일반적으로 50~60℃에서 가공되는데, 열에 약한 순수 PLA는 손실탄성률이 급격하게 감소하는 반면, 본 발명의 PLA/SP 필름은 비교적 손실탄성률 감소 정도가 적었다. 또한, 이러한 결과와 유사하게, 순수 PLA의 유리전이온도가 56 ℃인 반면, 본 발명의 PLA/SP 필름의 유리전이온도는 57 ℃로 증가한 것을 확인하였다.The loss modulus is shown in Figure 6a, and the glass transition temperature is shown in Figure 6b. PLA is generally processed at 50-60°C, and while pure PLA, which is weak to heat, drastically reduces the loss modulus, the PLA/SP film of the present invention showed a relatively small decrease in the loss modulus. Additionally, similar to these results, it was confirmed that the glass transition temperature of pure PLA was 56°C, while the glass transition temperature of the PLA/SP film of the present invention increased to 57°C.

4-3. 색도 분석4-3. Chromaticity analysis

PLA/SP 필름의 시편을 8 × 8 cm로 준비하고, coloerimeter를 이용해 약 10번 이상의 측정하여 색도를 분석하였다. 실험결과를 표 3 및 도 7에 나타내었다(L : light, a : red, b : yellow, △E : total color difference).A specimen of PLA/SP film was prepared to be 8 × 8 cm, and the chromaticity was analyzed by measuring more than 10 times using a coloerimeter. The experimental results are shown in Table 3 and Figure 7 (L: light, a: red, b: yellow, △E: total color difference).

LL aa bb △E(0~100)△E(0~100) PLAPLA 85.81±0.2985.81±0.29 -0.10±0.02-0.10±0.02 -1.19±0.15-1.19±0.15 -- PLA/SPPLA/SP 79.66±0.9779.66±0.97 -3.16±0.12-3.16±0.12 8.96±0.828.96±0.82 75.1375.13

표 3에서 보듯이, 본 발명의 PLA/SP 필름은 단호박껍질을 이용한 미세섬유상셀룰로오스 본연의 색으로 인해 황색도가 기존 PLA의 b 값보다 높은 양수로 확인되었으며, 음수 값일수록 녹색을 띄는 a 값은 음수로 나타났다. 전체적인 색의 차이를 의미하는 △E 값은 1~100까지의 척도에 대한 평가값을 의미하는데, PLA/SP 필름은 약 75로 확인되어, 순수 PLA와의 색 차이가 높은 편으로 판단되었다. 또한 도 7에서 보듯이, 본 발명의 PLA/SP는 순수 PLA에 비해 황색과 녹색빛이 관찰되었다. As shown in Table 3, the PLA/SP film of the present invention was confirmed to have a positive yellowness higher than the b value of existing PLA due to the natural color of microfibrous cellulose made from sweet pumpkin peel, and the a value, which is greener as the negative value. It appeared as a negative number. The △E value, which means the overall color difference, refers to an evaluation value on a scale from 1 to 100, and the PLA/SP film was found to be about 75, so the color difference from pure PLA was judged to be high. Also, as shown in Figure 7, yellow and green colors were observed in the PLA/SP of the present invention compared to pure PLA.

4-4. FT-IR(Fourier transform infrared spectroscopy)4-4. Fourier transform infrared spectroscopy (FT-IR)

본 발명의 PLA/SP 필름과 순수 PLA의 성분 차이를 확인하기 위해, 상기와 같이 FTIR(Nicolet iS5 FTIR Spectrometer, Thermo Scientific, Waltham, MA)분석을 수행하였다.In order to confirm the difference in composition between the PLA/SP film of the present invention and pure PLA, FTIR (Nicolet iS5 FTIR Spectrometer, Thermo Scientific, Waltham, MA) analysis was performed as described above.

도 8에서 보듯이, 본 발명의 PLA/SP는 순수 PLA와 전반적으로 유사한 피크가 확인되었다.As shown in Figure 8, the PLA/SP of the present invention had overall similar peaks to pure PLA.

4-5. 주사전자현미경(SEM) 분석4-5. Scanning electron microscopy (SEM) analysis

본 발명의 PLA/SP 필름과 순수 PLA의 형태학적 특성을 확인하기 위해, 1 × 8 cm 사이즈의 시편을 액체 질소에 약 2분간 담갔다. 부서진 파단 면에 대해서 Field-emission scanning electron을 이용하여 오스뮴 코팅 후 분석하였다.To confirm the morphological characteristics of the PLA/SP film of the present invention and pure PLA, a specimen measuring 1 × 8 cm was immersed in liquid nitrogen for about 2 minutes. The broken fracture surface was analyzed after osmium coating using field-emission scanning electron.

도 9에서 보듯이, 본 발명의 PLA/SP는 순수 PLA와 표면적 특성이 유사하였다. 또한 확대하여 관찰한 결과, 순수 PLA는 매끄러운 반면 본 발명의 PLA/SP 필름은 거칠고 긴 가닥의 섬유들이 관찰되어 미세섬유상 셀룰로오스의 존재를 확인하였다.As shown in Figure 9, the PLA/SP of the present invention had similar surface area characteristics to pure PLA. In addition, as a result of magnified observation, pure PLA was smooth, whereas the PLA/SP film of the present invention had rough and long strands of fibers, confirming the presence of microfibrous cellulose.

Claims (8)

단호박껍질과 NaOH를 혼합하여 셀룰로오스를 추출하는 단계 (a);
상기 셀룰로오스를 미세섬유화하하여 미세섬유상셀룰로오스를 제조하는 단계 (b); 및
PLA와 상기 미세섬유상셀룰로오스를 컴파운딩하여 필름을 제조하는 단계 (c);를 포함하는, 생분해성 고분자 필름의 제조방법.
Step (a) of extracting cellulose by mixing sweet pumpkin peel and NaOH;
Step (b) of producing microfibrous cellulose by converting the cellulose into microfibrils; and
A method for producing a biodegradable polymer film, comprising the step (c) of producing a film by compounding PLA and the microfibrous cellulose.
제1항에 있어서,
상기 단계 (a)의 NaOH는, 0.5~2%(v/v) NaOH인 것인, 방법.
According to paragraph 1,
The method wherein the NaOH in step (a) is 0.5 to 2% (v/v) NaOH.
제1항에 있어서,
상기 단계 (a)의 단호박껍질과 NaOH의 혼합은, 5~8%(w/v)의 농도로 단호박껍질이 첨가된 NaOH 용액인 것인, 방법.
According to paragraph 1,
The mixing of sweet pumpkin peel and NaOH in step (a) is a NaOH solution to which sweet pumpkin peel is added at a concentration of 5 to 8% (w/v).
제1항에 있어서,
상기 단계 (b)의 미세섬유화는, 25,000 내지 38,000 RPM에서 40~180분간 블렌딩하는 것인, 방법.
According to paragraph 1,
The method of microfibrillation in step (b) is blending at 25,000 to 38,000 RPM for 40 to 180 minutes.
제1항에 있어서,
상기 미세섬유상셀룰로오스는, 149.81 ~ 302.25 nm의 입도를 가지는 것인, 방법.
According to paragraph 1,
The method wherein the microfibrous cellulose has a particle size of 149.81 to 302.25 nm.
제1항에 있어서,
상기 단계 (c)는, PLA 펠렛과 미세섬유상셀룰로오스를 160~200℃에서 컴파운딩한 뒤 성형하는 것인, 방법.
According to paragraph 1,
The step (c) is a method of compounding PLA pellets and microfibrous cellulose at 160-200°C and then molding them.
제1항에 있어서,
상기 생분해성 고분자 필름은, PLA 필름에 비해 유리전이온도가 증가한 것인, 방법.
According to paragraph 1,
The biodegradable polymer film has an increased glass transition temperature compared to the PLA film.
제1항의 방법에 의해 제조된 생분해성 고분자 필름.A biodegradable polymer film prepared by the method of claim 1.
KR1020220103918A 2022-08-19 2022-08-19 Manufacturing method of biodegradable polymer film with microfibrillated cellulose derived from sweetpumkin peel and biodegradable polymer film prepared by the method KR20240026387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220103918A KR20240026387A (en) 2022-08-19 2022-08-19 Manufacturing method of biodegradable polymer film with microfibrillated cellulose derived from sweetpumkin peel and biodegradable polymer film prepared by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220103918A KR20240026387A (en) 2022-08-19 2022-08-19 Manufacturing method of biodegradable polymer film with microfibrillated cellulose derived from sweetpumkin peel and biodegradable polymer film prepared by the method

Publications (1)

Publication Number Publication Date
KR20240026387A true KR20240026387A (en) 2024-02-28

Family

ID=90124976

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220103918A KR20240026387A (en) 2022-08-19 2022-08-19 Manufacturing method of biodegradable polymer film with microfibrillated cellulose derived from sweetpumkin peel and biodegradable polymer film prepared by the method

Country Status (1)

Country Link
KR (1) KR20240026387A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210127342A (en) 2020-04-14 2021-10-22 경북대학교 산학협력단 Method for manufacturing a microfibrillated cellulose using a household blender

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210127342A (en) 2020-04-14 2021-10-22 경북대학교 산학협력단 Method for manufacturing a microfibrillated cellulose using a household blender

Similar Documents

Publication Publication Date Title
EP3045573B1 (en) Cellulose nanofibers, method for producing same, aqueous dispersion using cellulose nanofibers, and fiber-reinforced composite material
Marangoni Júnior et al. Sustainable packaging films composed of sodium alginate and hydrolyzed collagen: preparation and characterization
Guleria et al. Mechanical, thermal, morphological, and biodegradable studies of okra cellulosic fiber reinforced starch‐based biocomposites
CN109825045B (en) Graphene composite biomass reinforced PBS/PBAT biodegradable composite material and preparation method thereof
Su et al. Properties of soy protein isolate/poly (vinyl alcohol) blend “green” films: compatibility, mechanical properties, and thermal stability
Chuayjuljit et al. Preparation of microcrystalline cellulose from waste-cotton fabric for biodegradability enhancement of natural rubber sheets
WO2013048144A2 (en) Chitosan and/or chitin composite having reinforced physical properties and use thereof
Xue et al. Ethanol organosolv lignin as a reactive filler for acrylamide‐based hydrogels
Bettini et al. Effect of sawdust surface treatment and compatibilizer addition on mechanical behavior, morphology, and moisture uptake of polypropylene/sawdust composites
Hejazi et al. A study of the effects of acid, plasticizer, cross-linker, and extracted chitin nanofibers on the properties of chitosan biofilm
Šárka et al. Application of wheat B-starch in biodegradable plastic materials.
KR20160072652A (en) Protein-polymer-graphene oxide nanocomposites and nanocomposite films comprising them
Ejara et al. Nanocomposites of PVA/cellulose nanocrystals: Comparative and stretch drawn properties
Taha et al. Profitable exploitation of biodegradable polymer including chitosan blended potato peels’ starch waste as an alternative source of petroleum plastics
KR20240026387A (en) Manufacturing method of biodegradable polymer film with microfibrillated cellulose derived from sweetpumkin peel and biodegradable polymer film prepared by the method
KR20240026386A (en) Manufacturing method of biodegradable polymer film with microfibrillated cellulose derived from grapefruit peel and biodegradable polymer film prepared by the method
KR20240026388A (en) Manufacturing method of biodegradable polymer film with microfibrillated cellulose derived from silver skin and biodegradable polymer film prepared by the method
CN110670408B (en) Hydrophobic slurry and preparation method and application thereof
CN111534071A (en) Straw/polylactic acid composite material and preparation method thereof
Miao et al. Castor oil and microcrystalline cellulose based polymer composites with high tensile strength
US20230322962A1 (en) An efficient green process for the preparation of nanocelluloses, novel modified nanocelluloses and their application
US20220235188A1 (en) Biodegradable biopolymer films
CN113214619B (en) Microfibrillated cellulose and polylactic acid composite material and preparation method thereof
CN114561125A (en) Preparation method of biodegradable starch-based film material
Thakur Soy-based bioplastics