KR20240012195A - Method for manufacturing magnesia granules with dense structure, high thermal conductivity magnesia composition, and thermal interface material using the same - Google Patents

Method for manufacturing magnesia granules with dense structure, high thermal conductivity magnesia composition, and thermal interface material using the same Download PDF

Info

Publication number
KR20240012195A
KR20240012195A KR1020220089827A KR20220089827A KR20240012195A KR 20240012195 A KR20240012195 A KR 20240012195A KR 1020220089827 A KR1020220089827 A KR 1020220089827A KR 20220089827 A KR20220089827 A KR 20220089827A KR 20240012195 A KR20240012195 A KR 20240012195A
Authority
KR
South Korea
Prior art keywords
magnesia
borate
powder
weight
clause
Prior art date
Application number
KR1020220089827A
Other languages
Korean (ko)
Inventor
유영철
권오성
Original Assignee
(주)석경에이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)석경에이티 filed Critical (주)석경에이티
Priority to KR1020220089827A priority Critical patent/KR20240012195A/en
Publication of KR20240012195A publication Critical patent/KR20240012195A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

본 발명은, 다음의 제조방법을 제공한다.
(a) MgO 분말을 이용하여 건/습식으로 전하(+, -)를 조절하는 단계
(b) 상기 전하 조절이 된 MgO 분말에 보레이트계 화합물과 건/습식으로 혼합하는 단계
(c) 상기 분말에 전하가 다른 보레이트 화합물을 혼합하는 단계
  상기 보레이트 화합물은 알카리 금속 및 알카리 토금속을 함유한 보레이트 화합물이나 보레이트 유리 조성물을 1종 이상 사용한 것을 포함하며,
(d) 상기 혼합된 분말을 건습식으로 교반 시간 및 건조조건을 조절하여 그레뉼화 하는 단계
(e ) 상기 그레뉼입자에 전화가 다른 열전도성이 높은 소재를 혼합하는 단계
   상기 열전도성이 높은 물질로는 BN, AlN, Si3N4등의 나이트 레이트계 화합물, SiC, ZrC 등의 카바이드계 화합물 중 1종 이상을 포함하며
(f) 상기 분말을 열처리하는 단계:를 포함하고 열처리하여 마그네시아 세부의 기공이 없는 상태로 치밀화하고, 또한 마그네시아 그레뉼 표면에 유리 피막 형성층과 열전도성이 높은 소재가 표면에 형성되는 것을 특징으로 하는 마그네시아 제조 방법.
본 발명의 제조방법에 의해 기공이 없는 치밀한 구조의 마그네시아 그레뉼을 제조할 수 있어 열전도성을 높일 수 있을 뿐만 아니라, 소결에 따른 유리 피막 형성으로 인해 흡습성이 개선된 마그네시아를 얻을 수 있고 유리 전이 온도가 낮은(<1500℃이하) 마그네슘계 보레이트 화합물이나 보레이트계 Glass를 첨가하여 소결시 소결온도를 낮출 수 있는 장점이 있다.
The present invention provides the following manufacturing method.
(a) Step of controlling charge (+, -) in dry/wet method using MgO powder
(b) mixing the charge-controlled MgO powder with a borate-based compound in a dry/wet manner
(c) mixing borate compounds with different charges into the powder
The borate compound includes one or more borate compounds or borate glass compositions containing alkali metal and alkaline earth metal,
(d) Granulating the mixed powder by adjusting the stirring time and drying conditions in a wet and dry manner.
(e) Mixing the granule particles with a different material with high thermal conductivity.
The high thermal conductivity material includes one or more of nitrate-based compounds such as BN, AlN, Si 3 N 4 , and carbide-based compounds such as SiC and ZrC.
(f) heat-treating the powder, wherein the powder is heat-treated to densify the magnesia details in a pore-free state, and a glass film formation layer and a highly thermally conductive material are formed on the surface of the magnesia granule. How to make magnesia.
By using the manufacturing method of the present invention, magnesia granule with a dense structure without pores can be manufactured, which not only improves thermal conductivity, but also obtains magnesia with improved hygroscopicity due to the formation of a glass film through sintering, and has a lower glass transition temperature. There is an advantage in that the sintering temperature can be lowered during sintering by adding magnesium-based borate compounds or borate-based glass with low temperature (<1500℃ or less).

Description

치밀구조를 가진 마그네시아 그레뉼 제조 방법 및 고열전도성 마그네시아 조성물, 이를 이용한 열계면 소재{Method for manufacturing magnesia granules with dense structure, high thermal conductivity magnesia composition, and thermal interface material using the same}Method for manufacturing magnesia granules with dense structure, high thermal conductivity magnesia composition, and thermal interface material using the same {Method for manufacturing magnesia granules with dense structure, high thermal conductivity magnesia composition, and thermal interface material using the same}

본 발명은 치밀한 구조의 마그네시아 그레뉼의 제조방법에 관한 것이다.The present invention relates to a method for producing densely structured magnesia granules.

고출력 LED나 파워 디바이스 등의 고전력이 소모되고, 열이 많이 발생하는 부품 제작에 있어서, 부품의 신뢰성 및 장수명 보장을 위해 방열 패키지가 사용되고 있다. 일반적으로, 방열 패키지는 고열전도성 절연기판, 금속히트싱크 (Metal Heat Sink)로 이루어져 있다. 고열전도성 절연기판과 금속히트싱크 사이에는 방열접착제인 열계면 소재(TIM: Thermal Interface Material)가 사용된다. 열계면 소재는 고열전도성 절연기판과 금속히트싱크를 서로 밀착시키는 접착제 역할을 하거나 방열 부품으로 단독 사용된다. 이러한 열계면 소재는 폴리머와 고열전도성 금속 또는 세라믹 필러 소재의 복합체로 이루어진다. 열계면 소재는 폴리머에 Al2O3 필러를 포함시켜 주로 사용되고 있다. 그러나 Al2O3 필러 소재는 열전도도가 20-30 W/mK으로 다소 낮아서 개선될 필요가 있다. 한편, MgO는 원료 가격이 Al2O3 와 동등 수준이며, 열전도도가 30-60 W/mK으로 Al2O3 필러 소재에 비해 열전도성이 우수하다. 뿐만 아니라, MgO는 10Ohmㆍcm 이상의 비저항을 보여 전기 절연성이 우수하다. 이에 따라 Al2O3 필러 대신 MgO 필러가 사용되면, Al2O3 기반 열계면 소재의 열전도도를 개선할 수 있어서 TIM용 필러로서 유용하다. 하지만, MgO는 흡습성이 비교적 높기 때문에 수분 흡수에 의해 열전도도가 저하된다. 그리고 수분 흡수에 의해 MgO 표면에 발생하는 Mg(OH)2는 고분자와의 복합을 어렵게 하여 TIM으로 제조가 어려울 뿐만 아니라, 체적 팽창으로 인해 폴리머 소재와 분리될 가능성이 높은 점 등의 문제가 발생하기 쉽다. 이러한 점이 MgO를 열전도성 세라믹 필러로의 실용화에 장애 요소가 되고 있다. 이에 따라, MgO를 TIM용 열전도성 세라믹 필러로 개발하기 위해서는 내흡습성을 개선시킬 수 있는 기술 개발이 선행되어야 한다. 한편, MgO는 알루미나(Al2O3)에 비해 열전도도가 30-60 W/mK으로 높은 장점이 있다. 그러나, 알루미나(Al2O3)가 약 1500~1600℃에서 소결되는 반면, 마그네시아(MgO)는 1700℃ 이상 고온에서 소결되는 단점이 있어 마그네시아(MgO) 소결 조건의 개선이 필요하다. 그 동안 마그네시아(MgO)의 저온 소결 시도는 있었으나, 열전도도를 유지하면서 소결 온도를 낮추는 방열 세라믹 소재 연구는 없었다. 따라서, 마그네시아(MgO)의 고열전도 특성은 유지하면서 알루미나(Al2O3)의 소결온도인 1500℃ 보다 낮은 온도에서 소결이 가능하도록 하여 가격 경쟁력이 있는 저가의 고열전도성 산화물 신소재의 개발 연구가 필요하다.When manufacturing parts that consume high power and generate a lot of heat, such as high-output LEDs or power devices, heat dissipation packages are used to ensure reliability and long life of the parts. Generally, a heat dissipation package consists of a highly thermally conductive insulating substrate and a metal heat sink. A thermal interface material (TIM), a heat dissipating adhesive, is used between the high thermal conductivity insulating substrate and the metal heat sink. Thermal interface material acts as an adhesive that adheres a high thermal conductivity insulating board and a metal heat sink to each other, or is used alone as a heat dissipation component. These thermal interface materials are made of a composite of a polymer and a highly thermally conductive metal or ceramic filler material. Thermal interface materials are mainly used by including Al 2 O 3 filler in polymer. However, the Al 2 O 3 filler material needs to be improved because its thermal conductivity is somewhat low at 20-30 W/mK. Meanwhile, the raw material price of MgO is Al 2 O 3 It is at the same level as and has a thermal conductivity of 30-60 W/mK, which is superior to that of Al 2 O 3 filler material. In addition, MgO has excellent electrical insulation properties, showing a resistivity of over 10 Ohm·cm. Accordingly, when MgO filler is used instead of Al 2 O 3 filler, the thermal conductivity of the Al 2 O 3 -based thermal interface material can be improved, making it useful as a filler for TIM. However, because MgO has relatively high hygroscopicity, thermal conductivity decreases due to moisture absorption. In addition, Mg(OH)2 generated on the surface of MgO due to moisture absorption makes it difficult to composite with polymers, which not only makes it difficult to manufacture as TIM, but also causes problems such as the high possibility of separation from the polymer material due to volume expansion. easy. This is an obstacle to the practical use of MgO as a thermally conductive ceramic filler. Accordingly, in order to develop MgO as a thermally conductive ceramic filler for TIM, the development of technology to improve moisture absorption resistance must be preceded. On the other hand, MgO has the advantage of having a high thermal conductivity of 30-60 W/mK compared to alumina (Al 2 O 3 ). However, while alumina (Al2O3) is sintered at about 1500-1600°C, magnesia (MgO) has the disadvantage of being sintered at a high temperature of over 1700°C, so the sintering conditions for magnesia (MgO) need to be improved. Although there have been attempts at low-temperature sintering of magnesia (MgO), there has been no research on heat-dissipating ceramic materials that lower the sintering temperature while maintaining thermal conductivity. Therefore, research is needed to develop low-cost, high thermal conductivity new oxide materials that are price competitive by maintaining the high thermal conductivity characteristics of magnesia ( MgO ) and enabling sintering at a temperature lower than 1500°C, the sintering temperature of alumina (Al 2 O 3 ). do.

본 발명은 기공이 없는 치밀한 구조의 마그네시아 그레뉼을 제조할 수 있어 열전도성을 높일 수 있을 뿐만 아니라, 소결에 따른 유리 피막 형성으로 인해 흡습성이 개선된 마그네시아를 제조하는 것을 목적으로 한다.The purpose of the present invention is to manufacture magnesia granule with a dense structure without pores, which not only improves thermal conductivity, but also has improved hygroscopicity due to the formation of a glass film due to sintering.

본 발명은 기공이 없는 치밀한 구조의 마그네시아 그레뉼을 제조할 수 있어 열전도성을 높일 수 있을 뿐만 아니라, 소결에 따른 유리 피막 형성으로 인해 흡습성이 개선된 마그네시아를 얻을 수 있다.The present invention can produce magnesia granule with a dense structure without pores, which not only improves thermal conductivity, but also obtains magnesia with improved hygroscopicity due to the formation of a glass film due to sintering.

또한, 유리전이 온도가 낮은(<1500℃이하) 마그네슘계 보레이트 화합물이나 보레이트계 Glass를 첨가하여 소결시 소결온도를 낮출 수 있는 장점이 있다.In addition, there is an advantage that the sintering temperature can be lowered during sintering by adding a magnesium-based borate compound or borate-based glass with a low glass transition temperature (<1500°C or lower).

도 1은 MgO 및 보레이트계 화합물을 포함하는 마그네시아 그래뉼의 개념도,
도 2는 상기 도 1의 마그네시아 그래뉼에 유리피막층이 형성된 그래뉼의 개념도,
도 3은 상기 도 2의 유리피막층에 고열전도층이 추가로 형성된 그래뉼의 개념도이다.
1 is a conceptual diagram of magnesia granules containing MgO and a borate-based compound;
Figure 2 is a conceptual diagram of a granule in which a glass film layer is formed on the magnesia granule of Figure 1;
Figure 3 is a conceptual diagram of a granule in which a high heat conductive layer is additionally formed on the glass film layer of Figure 2.

본 발명은,The present invention,

(a) MgO 분말을 이용하여 건/습식으로 전하(+, -)를 조절하는 단계(a) Step of controlling charge (+, -) in dry/wet method using MgO powder

(b) 상기 전하 조절이 된 MgO 분말에 보레이트계 화합물과 건/습식으로 혼합하는 단계 (b) mixing the charge-controlled MgO powder with a borate-based compound in a dry/wet manner

(c) 상기 분말에 전하가 다른 보레이트 화합물을 혼합하는 단계(c) mixing borate compounds with different charges into the powder

  상기 보레이트 화합물은 알카리 금속 및 알카리 토금속을 함유한 보레이트 화합물이나 보레이트 유리 조성물을 1종 이상 사용한 것을 포함하며,The borate compound includes one or more borate compounds or borate glass compositions containing alkali metal and alkaline earth metal,

(d) 상기 혼합된 분말을 건습식으로 교반 시간 및 건조조건을 조절하여 그레뉼화 하는 단계(d) Granulating the mixed powder by adjusting the stirring time and drying conditions in a wet and dry manner.

(e ) 상기 그레뉼입자에 전화가 다른 열전도성이 높은 소재를 혼합하는 단계(e) Mixing the granule particles with a different material with high thermal conductivity.

   상기 열전도성이 높은 물질로는 BN, AlN, Si3N4등의 나이트 레이트계 화합물, SiC, ZrC 등의 카바이드계 화합물 중 1종 이상을 포함하며The high thermal conductivity material includes one or more of nitrate-based compounds such as BN, AlN, Si 3 N 4 , and carbide-based compounds such as SiC and ZrC.

(f) 상기 분말을 열처리하는 단계:를 포함하고 (f) heat treating the powder:

열처리하여 마그네시아 세부의 기공이 없는 상태로 치밀화 하고, 또한 마그네시아 그레뉼 표면에 유리 피막 형성층과 열전도성이 높은 소재가 표면에 형성되는 것을 특징으로 하는 마그네시아 제조 방법에 관한 것이다.It relates to a method for producing magnesia, which is characterized in that the magnesia details are densified without pores by heat treatment, and a glass film formation layer and a highly thermally conductive material are formed on the surface of the magnesia granule.

또한, 본 발명은 상기 (a) 단계의 전하 조절제로는 마그네시아 분말  전체 100 중량%에 대해 0.01 ~ 10 중량%를 포함하는 것을 특징으로 하며,In addition, the present invention is characterized in that the charge control agent in step (a) includes 0.01 to 10% by weight based on 100% by weight of the total magnesia powder,

(b) 단계의 보레이트계 화합물로는 마그네시아 분말 전체 100 중량%에 대해 0.01 ~ 10 중량 %를 포함하는 것을 특징으로 하며,The borate-based compound in step (b) is characterized in that it contains 0.01 to 10% by weight based on 100% by weight of the total magnesia powder,

(c) 단계의 보레이트계 유리조성물로는 마그네시아 분말  전체 100 중량%에 대해 0.01 ~ 10 중량%를 포함하는 것을 특징으로 하며,The borate-based glass composition of step (c) is characterized in that it contains 0.01 to 10% by weight based on 100% by weight of the magnesia powder,

(d) 단계의 보레이트계 화합물로는 마그네시아 분말  전체 100 중량%에 대해 0.01 ~ 10 중량 %를 포함하는 것을 특징으로 한다.The borate-based compound in step (d) is characterized in that it contains 0.01 to 10% by weight based on 100% by weight of the total magnesia powder.

또한 상기 혼합하는 단계는 습식 또는 건식으로 1분에서 72시간 혼합하여 혼합물을 형성하는 것을 특징으로 한다.In addition, the mixing step is characterized by mixing wet or dry for 1 minute to 72 hours to form a mixture.

또한 상기 습식 혼합 후 건조시 건조 온도는 상온~100℃ 1분에서 24시간 건조하는 것을 특징으로 한다.In addition, when drying after wet mixing, the drying temperature is characterized by drying at room temperature to 100°C for 1 minute for 24 hours.

또한 (e) 단계의 그레뉼입자의 크기는 0.5㎛ ~ 500㎛인 것을 특징으로 한다.In addition, the size of the granule particles in step (e) is characterized in that it is 0.5㎛ ~ 500㎛.

또한 (f) 단계에서 열처리 온도는 800 ~ 1800℃에서 열처리하는 것을 특징으로 하며,In addition, in step (f), the heat treatment temperature is characterized by heat treatment at 800 ~ 1800 ℃,

(g) 단계의 보레이트계 화합물로는 마그네시아 분말  전체 100 중량%에 대해 0.01 ~ 10 중량%를 포함하고,The borate-based compound in step (g) includes 0.01 to 10% by weight based on 100% by weight of the magnesia powder,

(f)단계에서 마그네시아 그레뉼 표면에 유리피막 형성층이 형성되는 것을 특징으로 한다.In step (f), a glass film formation layer is formed on the surface of the magnesia granule.

10. MgO 20. 보레이트계 화합물
100. 마그네시아 그래뉼 110. 유리피막층
120. 고열전도층
10. MgO 20. Borate-based compound
100. Magnesia granule 110. Glass film layer
120. High thermal conductivity layer

Claims (11)

(a) MgO 분말을 이용하여 건/습식으로 전하(+, -)를 조절하는 단계
(b) 상기 전하 조절이 된 MgO 분말에 보레이트계 화합물과 건/습식으로 혼합하는 단계
(c) 상기 분말에 전하가 다른 보레이트 화합물을 혼합하는 단계
  상기 보레이트 화합물은 알카리 금속 및 알카리 토금속을 함유한 보레이트 화합물이나 보레이트 유리 조성물을 1종 이상 사용한 것을 포함하며,
(d) 상기 혼합된 분말을 건습식으로 교반 시간 및 건조조건을 조절하여 그레뉼화 하는 단계
(e ) 상기 그레뉼입자에 전화가 다른 열전도성이 높은 소재를 혼합하는 단계
   상기 열전도성이 높은 물질로는 BN, AlN, Si3N4등의 나이트 레이트계 화합물, SiC, ZrC 등의 카바이드계 화합물 중 1종 이상을 포함하며
(f) 상기 분말을 열처리하는 단계:를 포함하고
열처리하여 마그네시아 세부의 기공이 없는 상태로 치밀화 하고, 또한 마그네시아 그레뉼 표면에 유리 피막 형성층과 열전도성이 높은 소재가 표면에 형성되는 것을 특징으로 하는 마그네시아 제조 방법.
(a) Step of controlling charge (+, -) in dry/wet method using MgO powder
(b) mixing the charge-controlled MgO powder with a borate-based compound in a dry/wet manner
(c) mixing borate compounds with different charges into the powder
The borate compound includes one or more borate compounds or borate glass compositions containing alkali metal and alkaline earth metal,
(d) Granulating the mixed powder by adjusting the stirring time and drying conditions in a wet and dry manner.
(e) Mixing the granule particles with a different material with high thermal conductivity.
The high thermal conductivity material includes one or more of nitrate-based compounds such as BN, AlN, Si 3 N 4 , and carbide-based compounds such as SiC and ZrC.
(f) heat treating the powder:
A method of producing magnesia, characterized in that the magnesia details are densified without pores by heat treatment, and a glass film forming layer and a highly thermally conductive material are formed on the surface of the magnesia granule.
제 1항에 있어서,
(a) 단계의 전하 조절제로는 마그네시아 분말  전체 100 중량%에 대해 0.01 ~ 10 중량%를 포함하는 마그네시아 제조 방법.
According to clause 1,
A method for producing magnesia, wherein the charge control agent in step (a) includes 0.01 to 10% by weight based on 100% by weight of the total magnesia powder.
제 1항에 있어서,
(b) 단계의 보레이트계 화합물로는 마그네시아 분말 전체 100 중량%에 대해 0.01 ~ 10 중량 %를 포함하는 마그네시아 제조 방법.
According to clause 1,
A method for producing magnesia including 0.01 to 10% by weight of the borate-based compound in step (b) based on 100% by weight of the total magnesia powder.
제 1항에 있어서,
(c) 단계의 보레이트계 유리조성물로는 마그네시아 분말  전체 100 중량%에 대해 0.01 ~ 10 중량%를 포함하는 마그네시아 제조 방법.
According to clause 1,
A method of producing magnesia containing 0.01 to 10% by weight of the borate-based glass composition in step (c) based on 100% by weight of the total magnesia powder.
제 1항에 있어서,
(d) 단계의 보레이트계 화합물로는 마그네시아 분말  전체 100 중량 %에 대해 0.01 ~ 10 중량 %를 포함하는 마그네시아 제조 방법.
According to clause 1,
A method for producing magnesia including 0.01 to 10% by weight of the borate-based compound in step (d) based on 100% by weight of the total magnesia powder.
제 1항에 있어서,
혼합하는 단계는 습식 또는 건식으로 1분에서 72시간 혼합하여 혼합물을 형성하는 마그네시아 제조방법.
According to clause 1,
A magnesia manufacturing method in which the mixing step is wet or dry mixing for 1 minute to 72 hours to form a mixture.
제 1항에 있어서,
습식 혼합 후 건조시 건조 온도는 상온~100℃ 1분에서 24시간 건조하는 마그네시아 제조방법.
According to clause 1,
A magnesia manufacturing method in which the drying temperature is between room temperature and 100°C for 1 minute for 24 hours after wet mixing.
제 1항에 있어서,
(e) 단계의 그레뉼입자의 크기는 0.5㎛ ~ 500㎛을 갖는 마그네시아 제조 방법.
According to clause 1,
A method of producing magnesia in which the granule particles in step (e) have a size of 0.5 μm to 500 μm.
제 1항에 있어서,
(f) 단계에서 열처리 온도는 800 ~ 1800℃에서 열처리하는 마그네시아 제조 방법.
According to clause 1,
In step (f), the heat treatment temperature is 800 to 1800°C.
제 1항에 있어서,
(g) 단계의 보레이트계 화합물로는 마그네시아 분말  전체 100 중량%에 대해 0.01 ~ 10 중량 %를 포함하는 마그네시아 제조 방법.
According to clause 1,
A method for producing magnesia including 0.01 to 10% by weight of the borate-based compound in step (g) based on 100% by weight of the total magnesia powder.
제 1항에 있어서,
(f)단계에서 마그네시아 그레뉼 표면에 유리피막 형성층이 형성되는 마그네시아 제조 방법.
According to clause 1,
A magnesia manufacturing method in which a glass film formation layer is formed on the surface of the magnesia granule in step (f).
KR1020220089827A 2022-07-20 2022-07-20 Method for manufacturing magnesia granules with dense structure, high thermal conductivity magnesia composition, and thermal interface material using the same KR20240012195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220089827A KR20240012195A (en) 2022-07-20 2022-07-20 Method for manufacturing magnesia granules with dense structure, high thermal conductivity magnesia composition, and thermal interface material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220089827A KR20240012195A (en) 2022-07-20 2022-07-20 Method for manufacturing magnesia granules with dense structure, high thermal conductivity magnesia composition, and thermal interface material using the same

Publications (1)

Publication Number Publication Date
KR20240012195A true KR20240012195A (en) 2024-01-29

Family

ID=89717120

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220089827A KR20240012195A (en) 2022-07-20 2022-07-20 Method for manufacturing magnesia granules with dense structure, high thermal conductivity magnesia composition, and thermal interface material using the same

Country Status (1)

Country Link
KR (1) KR20240012195A (en)

Similar Documents

Publication Publication Date Title
CN108558215A (en) A kind of High strength low heat expansion coefficient micro crystal glass and preparation method thereof
KR102111551B1 (en) Material for radiating Heat and Method of forming the same
JP3960933B2 (en) High thermal conductive heat dissipation material and method for manufacturing the same
TWI827655B (en) Potting composition, method for the electrical insulation of an electrical or electronic component, and electrically insulated component
KR20110023799A (en) A radiating panel using silicon carbide and manufacture method thereof
CN108352366A (en) Electric installation with lapping
KR20240012195A (en) Method for manufacturing magnesia granules with dense structure, high thermal conductivity magnesia composition, and thermal interface material using the same
KR101537660B1 (en) Thermal interface material comprising ceramic composite fiber and manufacturing method thereof
CN107604192A (en) A kind of preparation method of aluminium nitride/aluminium composite material
TW202023995A (en) Potting composition, electrically insulated electrical or electronic component and process for electrical insulation thereof
KR101967856B1 (en) High Thermal Conductive Film and Manufacturing the Same
KR102400549B1 (en) Thermally conductive composition for thermal pads and thermal pads comprising the same
CN111278786B (en) Composite material and method for producing same
KR20200074044A (en) MgO AND METHOD FOR MANUFACTURING THE SAME, AND HIGH THERMAL CONDUCTIVE MgO COMPOSITION, AND MgO CERAMICS USING THE SAME
CN105693260A (en) Low-temperature sintered copper fiber ceramic-based composite substrate
KR20160056333A (en) Alumina ceramics composition and manufacturing method thereof
KR101215120B1 (en) Glass-ceramics for led package and manufacturing method of the same
KR102576375B1 (en) Heat dissipation composition comprising strontium-based fluorescent filler and solvent-free silicone resin
KR102576371B1 (en) Heat dissipation composition comprising strontium-based fluorescent filler and solvent-free epoxy resin
CN106631046A (en) Composite sintering aid for producing aluminum nitride ceramic substrate
KR101419740B1 (en) Bi-layer ceramic substrate for heat dissipation and method for manufacturing the same
KR101742063B1 (en) Silicon Carbide Heatsink and Manufacturing Method Thereof
JPH02279568A (en) Aluminum nitride-based sintered body and its production
JP2664063B2 (en) Aluminum nitride pre-sintered body, aluminum nitride sintered body, and method for producing them
CN106380853A (en) Preparation method of spherical aluminum nitride-silicon rubber composite material