KR20240010220A - Manufacturing method of Fe-xSi(x=4-10.0wt%) alloy powder core by high temperature forming - Google Patents

Manufacturing method of Fe-xSi(x=4-10.0wt%) alloy powder core by high temperature forming Download PDF

Info

Publication number
KR20240010220A
KR20240010220A KR1020220087477A KR20220087477A KR20240010220A KR 20240010220 A KR20240010220 A KR 20240010220A KR 1020220087477 A KR1020220087477 A KR 1020220087477A KR 20220087477 A KR20220087477 A KR 20220087477A KR 20240010220 A KR20240010220 A KR 20240010220A
Authority
KR
South Korea
Prior art keywords
alloy powder
molding
xsi
temperature
powder
Prior art date
Application number
KR1020220087477A
Other languages
Korean (ko)
Inventor
김규진
박정문
이선봉
Original Assignee
주식회사 필리퍼
계명대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 필리퍼, 계명대학교 산학협력단 filed Critical 주식회사 필리퍼
Priority to KR1020220087477A priority Critical patent/KR20240010220A/en
Priority to PCT/KR2023/000798 priority patent/WO2024014639A1/en
Publication of KR20240010220A publication Critical patent/KR20240010220A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/006Amorphous articles
    • B22F3/007Amorphous articles by diffusion starting from non-amorphous articles prepared by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/007Transformation of amorphous into microcrystalline state
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은, 종래의 상온 성형법과 대비하여, 성형 밀도가 높고, 고투자율 및 저철손의 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어를 제조하는 방법 및 그 제조 바업에 의해 제조된 고온 성형에 의한 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어에 관한 것으로, (a) 금속 합금 분말을 절연제(코팅제)로 코팅하는, 코팅 단계, (b) 절연제(코팅제)로 코팅된 금속 합금 분말에 윤활제를 혼합하는, 윤활제 혼합 단계, (c) 코팅된 금속 합금 분말을 상온에서 1차로 성형하는, 1차 성형 단계, (d) 코팅된 금속 합금 분말을 고온에서 2차로 성형하는, 2차 성형 단계, 및 (e) 열처리 단계로 이루어지는 것을 특징으로 하는, 고온 성형에 의한 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어의 제조 방법에 관한 것이다.The present invention provides a method for manufacturing a Fe-xSi (x=4-10.0wt%) alloy metal powder core with high molding density, high magnetic permeability, and low iron loss, and a manufacturing process thereof, compared to the conventional room temperature molding method. It relates to a Fe-xSi (x=4-10.0wt%) alloy powder magnetic core manufactured by high-temperature molding, (a) coating step of coating metal alloy powder with an insulating agent (coating agent), (b) insulation. A lubricant mixing step of mixing a lubricant with a metal alloy powder coated with an agent (coating agent), (c) a primary molding step of first molding the coated metal alloy powder at room temperature, (d) the coated metal alloy powder A method for manufacturing an Fe-xSi (x=4-10.0wt%) alloy metal powder core by high-temperature molding, characterized in that it consists of a secondary molding step, which involves secondary molding at a high temperature, and (e) a heat treatment step. It's about.

Description

고온 성형에 의한 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어의 제조 방법{Manufacturing method of Fe-xSi(x=4-10.0wt%) alloy powder core by high temperature forming}Manufacturing method of Fe-xSi(x=4-10.0wt%) alloy powder core by high temperature forming}

본 발명은, 종래의 상온 성형법과 대비하여, 성형 밀도가 높고, 고투자율 및 저철손의 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어를 제조하는 방법 및 그 제조 바업에 의해 제조된 고온 성형에 의한 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어에 관한 것이다.The present invention provides a method for manufacturing a Fe-xSi (x=4-10.0wt%) alloy metal powder core with high molding density, high magnetic permeability, and low iron loss, and a manufacturing process thereof, compared to the conventional room temperature molding method. It relates to a Fe-xSi (x=4-10.0wt%) alloy powder core manufactured by high-temperature molding.

Fe-xSi(x=4-10.0wt%) 합금 분말은 Si함량이 높아질수록 연성이 직선적으로 떨어지며, 3.5wt% 이상부터는 상온에서 압연시에 표면 크랙이 발생하며, 분말 성형시에도 진밀도의 80%를 넘기기가 매우 어렵다, 이로 인하여 분말을 상온 성형한 압분자심 코어는 실효투자율이 60을 넘기기가 어려우며, 철손값도 매우 높아서 전기 자동차, 태양광 등의 대전류용 부품에의 적용이 곤란하다.The ductility of Fe-xSi (x=4-10.0wt%) alloy powder decreases linearly as the Si content increases, and from 3.5wt% or more, surface cracks occur when rolling at room temperature, and the true density is reduced to 80% even during powder molding. It is very difficult to exceed %. For this reason, the effective permeability of powder magnetic cores made by molding powder at room temperature is difficult to exceed 60, and the iron loss value is also very high, making it difficult to apply to high-current components such as electric vehicles and solar energy.

압분자심 코어의 제조 방법에 관한 선행기술로 등록특허공보 제10-1640559호(2016. 07. 12. 등록)에는, (i) 자기코어의 특성과 페이스트의 작업성을 고려하여, 폴리머수지를 소정의 시간동안 균일하게 교반하여 유기비히클(vehicle)을 제조하는 단계(s10); (ii) 자성분말을 인산처리하여 상기 자성분말 입자의 표면을 세정 및 연마하고, 상기 유기비히클에 상기 인산처리된 자성분말을 첨가하는 단계(s20); (iii) 상기 자성분말과 상기 유기비히클을 혼련(roll mixing milling)하는 단계(s30);를 포함하여 이루어지고, 상기 (ii)단계에서의 상기 자성분말의 첨가는, 상기 자성분말 50 wt% 내지 97 wt% 과 상기 유기비히클 3 wt% 내지 50 wt%의 조성비로 이루어지는 것을 특징으로 하는 자성분말페이스트의 제조방법에 관한 기술이 개시되어 있다.As a prior art regarding the manufacturing method of the powder magnetic core, Registered Patent Publication No. 10-1640559 (registered on July 12, 2016) states that (i) considering the characteristics of the magnetic core and the workability of the paste, a polymer resin was used; Preparing an organic vehicle by uniformly stirring for a predetermined time (s10); (ii) cleaning and polishing the surface of the magnetic powder particles by treating the magnetic powder with phosphoric acid, and adding the phosphoric acid-treated magnetic powder to the organic vehicle (s20); (iii) a step (s30) of rolling mixing milling the magnetic powder and the organic vehicle, and the addition of the magnetic powder in step (ii) is performed in an amount of 50 wt% to 50 wt% of the magnetic powder. A technology for manufacturing a magnetic powder paste is disclosed, which is characterized in that it consists of a composition ratio of 97 wt% and the organic vehicle of 3 wt% to 50 wt%.

또한, 등록특허공보 제10-1499297호(2015. 02. 27. 등록)에는, 분말간의 절연제로서 인산코팅 및 폴리이미드계에 의한 2회 코팅을 실시하고, 고온에서 분말의 윤활이 가능한 MoS2 혹은 흑연분말을 사용하여, 200~550℃에서의 자동 압축성형을 통하여 고주파 특성 및 실효투자율이 100kHz에서 85이상이면서 철손(50kHz, 0.1T)이 300mW/cc이하로 매우 낮은 비정질 및 나노결정 합금 압분자심 코아를 제조하는 방법에 관한 기술이 개시되어 있다.In addition, in Registered Patent Publication No. 10-1499297 (registered on February 27, 2015), two coats of phosphoric acid coating and polyimide are applied as insulators between powders, and MoS 2 , which can lubricate powders at high temperatures, is applied. Alternatively, using graphite powder, an amorphous and nanocrystalline alloy pressure can be produced through automatic compression molding at 200-550℃, with high-frequency characteristics and effective permeability of over 85 at 100kHz, and very low iron loss (50kHz, 0.1T) of less than 300mW/cc. A technology for manufacturing a molecular core is disclosed.

또한, 등록특허공보 제10-160483호(2016. 03. 24. 등록)에는, 고압수분사법 및 급랭응고법에 의하여 제조된 분말의 포화속밀도가 1.5T이상이며, 본 분말을 이용하여 온간성형법에 의해 압분자심코아를 제조시에 철손값이 50kHz 및 1000Gauss하 에서 300mW/cc이하를 나타내며, 종래의 상온성형시에 불가했던 실효투자율이 100kHz하에서 150이상의 나노결정 압분자심코아를 제조하는 방법에 관한 기술이 개시되어 있다.In addition, in Registered Patent Publication No. 10-160483 (registered on March 24, 2016), the saturation density of the powder manufactured by the high-pressure water injection method and the rapid solidification method is 1.5T or more, and the warm forming method using this powder When manufacturing a metal powder core, the iron loss value is less than 300 mW/cc under 50 kHz and 1000 Gauss, and the effective permeability is more than 150 under 100 kHz, which was impossible during conventional room temperature molding. The technology has been disclosed.

또한, 공개특허공보 제10-2018-0034682(2018. 03. 08. 공개)에는, Fe계 연자성 합금에 관한 것으로, 더욱 상세하게는 높은 포화자속밀도를 가져 소형 및 경량화된 부품으로 구현이 적합하며, 자기손실이 적어 뛰어난 자기적 성능을 발현할 수 있는 Fe계 연자성 합금 및 이를 통한 자성부품에 관한 기술이 개시되어 있다.In addition, Publication Patent No. 10-2018-0034682 (published on March 8, 2018) relates to Fe-based soft magnetic alloy, and more specifically, has a high saturation magnetic flux density, making it suitable for implementation as small and lightweight parts. In addition, a technology related to Fe-based soft magnetic alloy that can exhibit excellent magnetic performance with low magnetic loss and magnetic components using the same is disclosed.

특허문헌 1 : 등록특허공보 제10-1640559호(2016. 07. 12. 등록)Patent Document 1: Registered Patent Publication No. 10-1640559 (registered on July 12, 2016) 특허문헌 2 : 등록특허공보 제10-1499297호(2015. 02. 27. 등록)Patent Document 2: Registered Patent Publication No. 10-1499297 (registered on February 27, 2015) 특허문헌 3 : 등록특허공보 제10-160483호(2016. 03. 24. 등록)Patent Document 3: Registered Patent Publication No. 10-160483 (registered on March 24, 2016) 특허문헌 4 : 공개특허공보 제10-2018-0034682(2018. 03. 08. 공개)Patent Document 4: Public Patent Publication No. 10-2018-0034682 (published on March 8, 2018)

상기 선행기술들에서 알 수 있는 것과 같이, 상온에 비하여 400℃ 이상의 고온에서 성형하면 성형 밀도가 확연히 증가함을 알 수 있다. 그렇지만 성형 온도를 높여야 하므로, 고온에서 견딜 수 있는 윤활제 및 절연제를 필요로 하고, 절연 코팅제가 연화함에 따라 분말의 충진이 균일하지 않아서 압분자심 코어의 무게가 일정하지 않게 되어, 연자기 특성이 균일하지 않다는 문제점을 가진다.As can be seen from the above prior arts, it can be seen that the molding density significantly increases when molded at a high temperature of 400°C or higher compared to room temperature. However, since the molding temperature must be increased, lubricants and insulation that can withstand high temperatures are required, and as the insulating coating softens, the powder filling is not uniform, so the weight of the powder core becomes inconsistent, and the soft magnetic properties are reduced. It has the problem of not being uniform.

본 발명은, 상기와 같은 문제점을 해결하고자 하는 것으로, Fe-xSi(x=4-10.0wt%) 합금 분말의 절연성 및 결합성을 높여 주기 위하여 절연 코팅을 한 후, 고온에서도 윤활성을 유지하는 금속산화물계 윤활제를 적용, 혼합하여 성형용 분말을 제조한 다음, 상온에서 최종 부품보다 성형 크기를 작게 하여 최종 2차용 금형에 쉽게 장입이 가능하도록 설계, 제작한 금형에서 1차 성형을 하는 것을 목적으로 한다.The present invention is intended to solve the above problems, and after applying an insulating coating to increase the insulation and bonding properties of Fe-xSi (x = 4-10.0wt%) alloy powder, the metal maintains lubricity even at high temperatures. The purpose is to manufacture powder for molding by applying and mixing an oxide-based lubricant, and then perform primary molding in a mold designed and manufactured to make the molding size smaller than the final part at room temperature so that it can be easily charged into the final secondary mold. do.

또한, 본 발명은 1차 성형 코어를 400℃ 이상으로 유지한 2차 금형에 삽입한 후, 2차 성형하여, 압분자심 코어의 밀도가 6.6g/cc 이상이며, 진밀도의 90% 이상까지 도달할 수 있으며, 자동 성형 기술에 의해 실효투자율을 높이고, 철손값이 낮은 압분자심 코어를 제조하고자 하는 것을 목적으로 한다. In addition, in the present invention, the primary molded core is inserted into a secondary mold maintained at 400°C or higher, and then secondary molded, so that the density of the powder core is 6.6g/cc or more, up to 90% or more of the true density. The purpose is to manufacture a powder magnetic core with low iron loss and increased effective permeability through automatic molding technology.

또한, 본 발명은 성형 밀도가 높고, 표면 크랙이 없으며, 입자간 절연이 양호하여 주파수 의존성이 적으며, 고주파수 대역에서도 변화없는 고투자율을 갖는 Fe-xSi(x=4-10.0wt%) 압분자심 코어를 제조하는 것을 목적으로 한다. In addition, the present invention is a Fe-xSi (x=4-10.0wt%) powder molecule with high molding density, no surface cracks, good inter-particle insulation, low frequency dependence, and high permeability that does not change even in the high frequency band. The purpose is to manufacture a seam core.

본 발명은 상기와 같은 과제를 해결하고자 하는 것으로, [1] (a) 금속 합금 분말을 절연제(코팅제)로 코팅하는, 코팅 단계, (b) 절연제(코팅제)로 코팅된 금속 합금 분말에 윤활제를 혼합하는, 윤활제 혼합 단계, (c) 코팅된 금속 합금 분말을 상온에서 1차로 성형하는, 1차 성형 단계, (d) 코팅된 금속 합금 분말을 고온에서 2차로 성형하는, 2차 성형 단계, 및 (e) 열처리 단계로 이루어지는 것을 특징으로 하는, 고온 성형에 의한 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어의 제조 방법에 관한 것이다.The present invention seeks to solve the above problems, [1] (a) a coating step of coating a metal alloy powder with an insulating agent (coating agent); (b) a metal alloy powder coated with an insulating agent (coating agent); a lubricant mixing step of mixing a lubricant; (c) a primary molding step of first molding the coated metal alloy powder at room temperature; (d) a second molding step of secondarily molding the coated metal alloy powder at a high temperature; , and (e) a heat treatment step. It relates to a method of manufacturing an Fe-xSi (x=4-10.0wt%) alloy powder core by high-temperature forming.

또한, 본 발명은 [2] 상기 [1]에 있어서, 상기 금속 합금 분말은, 상온 성형에서 취성이 높고, 강도가 커서 성형 밀도가 진밀도의 80% 이상이 불가한 Fe-xSi(x=4-10wt%) 합금 또는 Fe-10wt%Si-6wt%Al 합금(Sendust)인 것을 특징으로 하는, 고온 성형에 의한 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어의 제조 방법에 관한 것이다.In addition, the present invention [2] In the above [1], the metal alloy powder is Fe-xSi (x = 4 -10wt%) alloy or Fe-10wt%Si-6wt%Al alloy (Sendust) in the manufacturing method of Fe-xSi (x=4-10.0wt%) alloy powder magnetic core by high temperature forming. It's about.

또한, 본 발명은 [3] 상기 [1]에 있어서, 상기 (b) 금속 합금 분말을 절연제(코팅제)로 코팅하는, 코팅 단계는, 코팅제로는 폴리이미드(polyimid)계, 페놀(phenol)계, 폴리실라젠(polysilazane), 인산(H3PO4) 중에서 적어도 하나 이상을 포함하며, 코팅제의 양은, 총 질량의 0.5~3.0wt%로 하는 것을 특징으로 하는, 고온 성형에 의한 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어의 제조 방법에 관한 것이다.In addition, the present invention [3] in [1] above, the coating step (b) of coating the metal alloy powder with an insulating agent (coating agent) includes a polyimide-based coating agent or a phenol-based coating agent. Fe-xSi (x= 4-10.0wt%) relates to a method of manufacturing an alloy powder core.

또한, 본 발명은 [4] 상기 [1]에 있어서, 상기 (c) 절연제(코팅제)로 코팅된 금속 합금 분말에 윤활제를 혼합하는, 윤활제 혼합 단계는, 윤활제로, MoS2 또는 흑연 분말 중 적어도 하나를 포함하며, 윤활제 분말의 평균 입경은 1~10㎛로 하며, 윤활제의 양은, 총 질량의 0.5~2.0wt%로 하는 것을 특징으로 하는, 고온 성형에 의한 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어의 제조 방법에 관한 것이다.In addition, the present invention [4] In [1] above, the lubricant mixing step of mixing the lubricant with the metal alloy powder coated with the (c) insulating agent (coating agent) includes MoS 2 or graphite powder as the lubricant. Fe-xSi (x=4- 10.0wt%) relates to a method of manufacturing an alloy powder core.

또한, 본 발명은 [5] 상기 [1]에 있어서, 상기 (c) 코팅된 비정질 금속합금 분말을 상온에서 1차로 성형하는, 1차 성형 단계는, 성형 압력을 12-25톤/cm2의 범위로 하며, 상기 (d) 코팅된 비정질 금속합금 분말을 고온에서 2차로 성형하는, 2차 성형 단계는, 성형 온도를 400~700℃의 범위로 하며, 성형 압력을 12~25톤/cm2의 범위로 하며, 상기 1차 성형 단계에서의 금형의 내경 및 외경은, 2차 성형 단계에서의 금형의 내경 및 외경보다 2~7% 크게 형성하는 것을 특징으로 하는, 고온 성형에 의한 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어의 제조 방법에 관한 것이다..In addition, the present invention [5] In [1] above, the primary molding step (c) of first molding the coated amorphous metal alloy powder at room temperature is performed at a molding pressure of 12-25 tons/cm 2 . In the secondary molding step (d), where the coated amorphous metal alloy powder is secondarily molded at a high temperature, the molding temperature is in the range of 400 to 700 ° C. and the molding pressure is 12 to 25 tons / cm 2. Fe-xSi by high temperature molding, characterized in that the inner diameter and outer diameter of the mold in the first molding step are 2 to 7% larger than the inner diameter and outer diameter of the mold in the second molding step. (x=4-10.0wt%) This relates to a method of manufacturing an alloy powder core.

또한, 본 발명은 [6] 상기 [1]에 있어서, 상기 (e) 열처리 단계는, 금속 합금 분말의 재결정화가 일어나는 온도이며, 소결이 되지않은 온도인700~900℃ 온도에서 처리하며, 열처리 분위기는, 비활성 가스 또는 환원성 가스 분위기로 하고, 열처리 시간은 30~120분으로 하는 것을 특징으로 하는, 고온 성형에 의한 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어의 제조 방법에 관한 것이다.In addition, the present invention [6] in [1] above, the heat treatment step (e) is the temperature at which recrystallization of the metal alloy powder occurs, and is performed at a temperature of 700 to 900°C, which is the temperature at which no sintering occurs, and is performed in a heat treatment atmosphere. is a method for manufacturing an Fe-xSi (x=4-10.0wt%) alloy metal powder core by high-temperature molding, which is characterized in that an inert gas or reducing gas atmosphere is used and the heat treatment time is 30 to 120 minutes. It's about.

또한, 본 발명은 [7] 상기 [1] 내지 [6] 중의 어느 하나의 압분자심 코어의 제조 방법에 의하여 제조된, 고온 성형에 의한 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어에 관한 것이다.In addition, the present invention [7] is a Fe-xSi (x = 4-10.0wt%) alloy press produced by the manufacturing method of the metal powder core of any one of [1] to [6] above, by high temperature forming. It's about the molecular core.

본 발명은, 상기와 같은 구성으로 이루어지는 것이므로, 상온 및 고온에서의 2회 성형에 의하여 압분자심 코어의 크랙 발생을 줄이고, 6.6g/cm3 이상의 성형 밀도를 지니면서 종전 상온 성형시에 불가능하였던 실효투자율이 90 이상인 Fe-xSi(x=4-10.0wt%) 압분자심 코어를 경제적이며, 연속적으로 제조할 수 있게 된다. Since the present invention consists of the above-described configuration, it reduces the occurrence of cracks in the powder core by molding twice at room temperature and high temperature, and has a molding density of 6.6 g/cm 3 or more, which was impossible during conventional room temperature molding. It is possible to economically and continuously manufacture Fe-xSi (x=4-10.0wt%) powder cores with an effective permeability of 90 or more.

도 1은 본 발명에 따른 압분자심 코어의 제조 공정도
1 is a manufacturing process diagram of a powder magnetic core according to the present invention.

본 발명은, 도 1에 나타나 있는 것과 같이, (a) Fe-xSi(x=4-10.0wt%) 분말을 절연제(코팅제)로 코팅하는, 코팅 단계, (b) 절연제(코팅제)로 코팅된 Fe-xSi(x=4-10.0wt%) 분말에 윤활제를 혼합하는, 윤활제 혼합 단계, (c) 코팅된Fe-xSi(x=4-10.0wt%) 분말을 상온에서 1차로 성형하는, 1차 성형 단계, (d) 코팅된 Fe-xSi(x=4-10.0wt%) 분말을 고온에서 2차로 성형하는, 2차 성형 단계, 및 (e) 열처리 단계로 이루어지는 것으로, 아래에서는 상기 각각의 단계들에 대해서 구체적으로 설명한다.The present invention, as shown in Figure 1, (a) a coating step of coating Fe-xSi (x = 4-10.0wt%) powder with an insulating agent (coating agent), (b) an insulating agent (coating agent) A lubricant mixing step of mixing a lubricant with the coated Fe-xSi (x=4-10.0wt%) powder, (c) primary molding of the coated Fe-xSi (x=4-10.0wt%) powder at room temperature. , a primary molding step, (d) a secondary molding step of secondly molding the coated Fe-xSi (x=4-10.0wt%) powder at high temperature, and (e) a heat treatment step, as described below. Each step is explained in detail.

[(a) 코팅 단계][(a) Coating step]

본 발명에 사용하는 Fe-xSi(x=4-10wt%) 합금 분말은, 기계적 합금화법, 급냉 응고법, 수분사법, 가스분사법 등에 의해 제조될 수 있다.The Fe-xSi (x=4-10wt%) alloy powder used in the present invention can be manufactured by mechanical alloying method, rapid solidification method, water injection method, gas injection method, etc.

상기 Si함량이 4wt% 미만이면 손실값이 높으며, 10wt%를 초과하면 포화자속밀도가 1.7T 이하로 낮아지며, 철손도 조금씩 높아진다. 따라서 본 발명에서 상기와 같이 Si 함량을 한정한다. If the Si content is less than 4wt%, the loss value is high, and if it exceeds 10wt%, the saturation magnetic flux density is lowered to 1.7T or less, and the iron loss also gradually increases. Therefore, in the present invention, the Si content is limited as above.

다만, 본 발명에서는 상기 Fe-xSi(x=4-10wt%) 합금 분말 이외에, 취성이 높고 경도가 높아서 성형시에 성형 밀도의 80% 이상이 곤란한 소재인 센더스트(Fe-SiAl 합금)등도 적용이 가능하다.However, in the present invention, in addition to the Fe-xSi (x=4-10wt%) alloy powder, Sendust (Fe-SiAl alloy), which is a material that is brittle and has high hardness, making it difficult to achieve more than 80% of the molding density during molding, is also applied. This is possible.

본 발명의 상기 (a) 코팅 단계는, Fe-xSi(x=4-10wt%) 합금 분말의 절연성 및 성형시의 결합력을 높이기 위하여, 합금 분말에 절연제(코팅제)를 코팅하는 것이다.In the coating step (a) of the present invention, an insulating agent (coating agent) is coated on the Fe-xSi (x=4-10wt%) alloy powder in order to increase the insulating properties and bonding strength during molding.

상기 코팅 단계에서의 코팅제는, 절연성 및 성형시의 결합력을 부여하기 위해서 연화점이 Fe-xSi(x=4-10wt%) 합금 분말의 열처리 온도보다 낮아야 하며, 200~800℃의 온도에서도 적정 결합 강도를 나타내면서, 성형 압력에 따라 압분자심 코어의 형상을 유지하면서 크랙 발생을 억제할 수 있어야 한다. The coating agent in the coating step must have a softening point lower than the heat treatment temperature of Fe-xSi (x=4-10wt%) alloy powder in order to provide insulation and bonding strength during molding, and has an appropriate bonding strength even at a temperature of 200 to 800°C. It must be possible to suppress the occurrence of cracks while maintaining the shape of the powder core according to the molding pressure.

적정한 절연제(코팅제)로는, 폴리실라젠, 인산, 폴리이미드(polyimid)계 등이 바람직하다. 이외에도 인산 및 폴리실라젠(polysilazane) 등도 적용할 수 있다.As an appropriate insulating agent (coating agent), polysilazine, phosphoric acid, polyimide, etc. are preferable. In addition, phosphoric acid and polysilazane can also be applied.

코팅제의 양은, 총 질량의 0.5~3.0wt%로 제한하는 것이 바람직하다.The amount of coating agent is preferably limited to 0.5 to 3.0 wt% of the total mass.

코팅제가 0.5wt% 미만에서는, 접합 강도가 약하여 Fe-xSi(x=4-10wt%)합금 분말의 벌크화가 곤란하며, 3.0wt%를 초과하게 되면 Fe-xSi(x=4-10wt%)합금 분말의 입자 간 접합 강도는 강해지지만 성형체 중에 Fe-xSi(x=4-10wt%)합금 분말의 양이 적게 되어 연자기 특성이 저하되기 때문이다. If the coating agent is less than 0.5wt%, the bonding strength is weak, making it difficult to bulk up the Fe-xSi (x=4-10wt%) alloy powder, and if it exceeds 3.0wt%, the Fe-xSi (x=4-10wt%) alloy powder will be difficult to bulk up. This is because although the bonding strength between powder particles becomes stronger, the amount of Fe-xSi (x=4-10wt%) alloy powder in the molded body decreases, resulting in a decrease in soft magnetic properties.

상기 총 질량은, 제조되는 압분자심 코어를 구성하는 Fe-xSi(x=4-10wt%)합금 분말과 코팅제를 더한 질량을 의미한다. The total mass refers to the mass of the Fe-xSi (x = 4-10 wt%) alloy powder and coating agent that constitutes the powder core to be manufactured.

[(b) 윤활제 혼합 단계][(b) Lubricant mixing step]

본 발명의 (b) 윤활제 혼합 단계는, 상기 (a) 코팅 단계에서, 절연제(코팅제)로 코팅된 Fe-xSi(x=4-10wt%) 합금 분말에 윤활제를 혼합하는 단계이다.The (b) lubricant mixing step of the present invention is a step of mixing a lubricant with the Fe-xSi (x=4-10wt%) alloy powder coated with an insulating agent (coating agent) in the (a) coating step.

상기 절연제(코팅제)를 혼합하여 제조한 Fe-xSi(x=4-10wt%) 합금 분말의 고온 윤활성을 부여하기 위해서는, MoS2 또는 흑연 분말이 바람직하며, 윤활제 분말의 평균 입경은 1~10㎛ 정도가 바람직하다. In order to provide high-temperature lubricity to the Fe-xSi (x=4-10wt%) alloy powder prepared by mixing the above insulating agent (coating agent), MoS 2 or graphite powder is preferable, and the average particle size of the lubricant powder is 1 to 10. About ㎛ is preferable.

이때 윤활제의 양은, 상기 총 질량의 0.5~2.0wt%로 제한하는 것이 바람직하다. 0.5wt% 미만에서는 분말간의 윤활성이 결여되며 이로 인하여 성형용 펀치에 손상을 끼치게 되고, 2.0%를 초과하게 되면 연자기 특성이 저하되고 경제성이 떨어지게 된다. At this time, the amount of lubricant is preferably limited to 0.5 to 2.0 wt% of the total mass. If it is less than 0.5wt%, lubricity between powders is lacking, which may cause damage to the molding punch, and if it exceeds 2.0%, soft magnetic properties deteriorate and economic efficiency decreases.

[(c) 1차 성형 단계][(c) 1st forming step]

본 발명의 (c) 1차 성형 단계는, 상기 (b) 윤활제 혼합 단계에서, 윤활제가 혼합된 절연제(코팅제)로 코팅된 Fe-xSi(x=4-10wt%) 합금 분말을 1차로 성형하는 단계이다.In the (c) primary molding step of the present invention, in the (b) lubricant mixing step, Fe-xSi (x=4-10wt%) alloy powder coated with an insulating agent (coating agent) mixed with a lubricant is first molded. This is the step.

본 발명의 상기 Fe-xSi(x=4-10wt%) 합금 분말에 대한 성형은, 2차에 걸쳐 성형을 진행한다.Molding of the Fe-xSi (x=4-10wt%) alloy powder of the present invention is carried out in two stages.

상기 (c) 1차 성형 단계에서의 성형은, 상온에서 이루어지며, 성형 압력은 12-25톤/cm2의 범위에서 이루어진다.Molding in the first forming step (c) is performed at room temperature, and the molding pressure is in the range of 12-25 tons/cm 2 .

또한, 1차 성형 단계에서의 1차 금형은, 아래에서 설명하는 (d) 2차 성형 단계에서 1차 성형 코어가 2차 금형에 용이하게 삽입될 수 있도록 2차 금형의 크기에 비하여 작게 하는 것이 바람직하다.In addition, the primary mold in the primary molding step should be made smaller than the size of the secondary mold so that the primary molding core can be easily inserted into the secondary mold in the secondary molding step (d) described below. desirable.

이때, 상기 1차 성형 단계에서의 1차 금형의 외경은, 2차 금형 대비 2~7% 작은 범위가 되도록 하는 것이 바람직하다. 2% 미만이 되면 1차 성형 코어가 2차 금형에 쉽게 삽입되지 않으며, 7%를 초과하게 되면, 2차 성형시에 표면 크랙이 발생할 수 있고, 성형 밀도가 감소한다.At this time, it is preferable that the outer diameter of the first mold in the first molding step is 2 to 7% smaller than that of the second mold. If it is less than 2%, the primary molding core cannot be easily inserted into the secondary mold, and if it exceeds 7%, surface cracks may occur during secondary molding, and molding density decreases.

한편, 1차 금형의 내경은, 외경과 반대로, 2차 금형 대비 2~7% 큰 범위가 되도록 하는 것이 바람직하다. 2% 미만이 되면 1차 성형 코어가 2차 금형에 쉽게 삽입되지 않으며, 7%를 초과하게 되면, 2차 성형시에 표면 크랙이 발생할 수 있고, 성형 밀도가 감소한다.Meanwhile, the inner diameter of the primary mold, as opposed to the outer diameter, is preferably 2 to 7% larger than that of the secondary mold. If it is less than 2%, the primary molding core cannot be easily inserted into the secondary mold, and if it exceeds 7%, surface cracks may occur during secondary molding, and molding density decreases.

[(d) 2차 성형 단계][(d) 2nd forming step]

본 발명의 (d) 2차 성형 단계는, 상기 (c) 1차 성형 단계에서 성형된 1차 성형 코어를 2차로 성형하는 단계이다.The (d) secondary molding step of the present invention is a step of secondarily molding the primary molding core formed in the (c) primary molding step.

상기 (d) 2차 성형 단계에서의 성형은, 상기 1차 성형 코어을 2차 금형에 삽입하여 성형하며, 이때 성형 온도는 400∼700℃의 고온 영역에서 이루어지며, 성형 압력은 12∼25톤/cm2의 범위에서 이루어진다.Molding in the (d) secondary molding step is performed by inserting the primary molding core into the secondary mold. At this time, the molding temperature is performed in a high temperature range of 400 to 700 ° C., and the molding pressure is 12 to 25 tons / It is done in the range of cm2 .

이때, 상기 성형 온도가 400℃보다 낮으면 6.6g/cm3 이상의 성형 밀도가 나오지 않으며, 700℃를 초과하게 되면, 금형의 수명이 급격히 떨어지며, 금형 파손이 발생할 수 있다.At this time, if the molding temperature is lower than 400°C, a molding density of 6.6 g/cm 3 or more is not achieved, and if it exceeds 700°C, the lifespan of the mold decreases rapidly and mold damage may occur.

한편, 성형 압력이 12톤/cm2 미만이 되면, 6.0g/cm3 이상의 성형 밀도가 나오지 않으며, 25톤/cm2을 초과하게 되면, 금형의 수명이 급격히 떨어지며, 금형 파손이 발생할 수 있다.On the other hand, if the molding pressure is less than 12 tons/cm 2 , the molding density does not exceed 6.0 g/cm 3 , and if it exceeds 25 tons/cm 2 , the lifespan of the mold rapidly decreases and mold damage may occur.

[(e) 열처리 단계][(e) Heat treatment step]

본 발명의 (e) 열처리 단계는, 상기 (d) 2차 성형 단계에서 성형된 2차 성형 코어를 열처리하는 단계이다.The (e) heat treatment step of the present invention is a step of heat treating the secondary molding core formed in the (d) secondary molding step.

상기 2차 성형 코어의 열처리 온도는, Fe-xSi(x=4-10wt%) 절연체의 분해 및 소결이 일어나지 않는 온도에서 열처리를 행하여야 하며, 바람작히게는 700∼900℃로 한다. 700℃보다 낮은 온도로 하면 충분한 조직의 재결정화가 이루어지지 않으며, 900℃보다 높은 온도로 하면, 분말간 소결이 일어날 수 있다.The heat treatment temperature of the secondary molded core should be performed at a temperature at which decomposition and sintering of the Fe-xSi (x=4-10wt%) insulator does not occur, and is preferably set at 700 to 900°C. If the temperature is lower than 700°C, sufficient recrystallization of the structure will not occur, and if the temperature is higher than 900°C, sintering between powders may occur.

열처리 분위기는, 비활성 가스 또는 환원성 가스 분위기로 하고, 시간은 30~60분 정도로 하는 것이 바람직하다. 열처리 시간이 너무 짧으면 충분한 응력제거 및 결정화가 이루어지지 않으며, 너무 길면 생산성이 저하되기 때문이다. The heat treatment atmosphere is preferably an inert gas or reducing gas atmosphere, and the time is preferably about 30 to 60 minutes. If the heat treatment time is too short, sufficient stress relief and crystallization are not achieved, and if the heat treatment time is too long, productivity decreases.

아래에서는 본 발명을 더 상세한 실시예에 기초하여 설명한다. 다만 본 발명이 아래에서 설명하는 실시예로만 한정되는 것은 아니다.Below, the present invention is explained based on more detailed examples. However, the present invention is not limited to the embodiments described below.

[실시예 1][Example 1]

고압의 수분사법에 의해 제조된 Fe-6.5wt%Si 합금 분말(평균 입경 약 25㎛) 1000g에 폴리이미드 20g을 메틸렌클로라이드(methylene chloride) 용액에 녹여 제조된 용액으로 코팅 처리를 한 후, 건조 처리를 하여 폴리이미드가 평균입경 약 15㎛의 Fe-6.5wt%Si 합금 분말의 표면에 균일하게 코팅되도록 복합 입자 분말을 제조하여, 건조한 다음에 평균 입경이 3㎛인 MoS2분말 10g을 균일하게 혼합하였다.1000g of Fe-6.5wt%Si alloy powder (average particle diameter about 25㎛) prepared by high-pressure water injection method was coated with a solution prepared by dissolving 20g of polyimide in a methylene chloride solution, and then dried. A composite particle powder was prepared so that the polyimide was uniformly coated on the surface of the Fe-6.5wt%Si alloy powder with an average particle diameter of about 15㎛, dried, and then evenly mixed with 10g of MoS 2 powder with an average particle diameter of 3㎛. did.

혼합된 복합 입자 분말을 상온 상태에서 2차 금형 대비 2% 크기를 조정한 외경 12.45mm, 내경 7.77mm인 금형 다이스의 내부에 2.50g 정도로 자동 장입한 후 18톤/㎠의 압력으로 분당 10타의 속도로 성형하여 1차 성형 코어을 제조하였다.The mixed composite particle powder is automatically charged at room temperature at about 2.50 g into the inside of a mold die with an outer diameter of 12.45 mm and an inner diameter of 7.77 mm, adjusted in size by 2% compared to the secondary mold, and then at a speed of 10 strokes per minute at a pressure of 18 tons/㎠. The first molded core was manufactured by molding.

1차 성형 코어를 외경 12.7mm, 내경 7.65mm이며, 600℃로 유지된 성형 다이스의 내부에 투입한 후, 18톤/㎠의 압력으로 분당 10타의 속도로 장입하여 2차 성형 코어을 제조하였다.The primary molding core had an outer diameter of 12.7 mm and an inner diameter of 7.65 mm and was placed inside a molding die maintained at 600°C, and then charged at a rate of 10 strokes per minute at a pressure of 18 tons/cm2 to produce a secondary molding core.

2차 성형 코어은, 질소(N2) 가스 분위기의 800℃에서 30분간 열처리하여 최종의 압분자심 코어로 제조하였다.The secondary molded core was manufactured into the final powder core by heat treatment at 800°C for 30 minutes in a nitrogen (N 2 ) gas atmosphere.

제조된 상태의 압분자심 코어에 대해 측정된 밀도, 크랙 발생 유무 및 여러 주파수 대역의 실효 투자율(effective permeability)의 특성을 표 1에 나타내었다. Table 1 shows the density, presence or absence of cracks, and effective permeability in various frequency bands measured for the as-manufactured powder core.

여기서, 압분자심 코어의 밀도는 압분자심 코어의 중량을 압분자심 코어의 체적으로 나누어 계산된 값이며, 크랙 발생 유무는 10개의 압분자심 코어 제조시에 1개 이상 크랙 발생시에 크랙 발생으로 판단하였으며, 실효 투자율은 LCR meter를 이용하여 각각의 주파수 대역에서 10mOe의 외부 자장하에서 측정된 값이다.Here, the density of the powder magnetic core is a value calculated by dividing the weight of the powder magnetic core by the volume of the powder magnetic core, and the presence or absence of cracks is determined by determining whether one or more cracks occur when manufacturing 10 powder magnetic cores. It was determined that the effective permeability was measured under an external magnetic field of 10mOe in each frequency band using an LCR meter.

[실시예 2][Example 2]

1차 금형의 크기를 2차 금형의 외경 및 내경 대비 7%의 공차를 준 외경 11.81mm, 내경 7.09mm로 한 것 이외에는, 실시예 1과 동일하게 실시하였다. The same procedure as in Example 1 was carried out, except that the size of the first mold was set to an outer diameter of 11.81 mm and an inner diameter of 7.09 mm, which gave a tolerance of 7% compared to the outer and inner diameters of the second mold.

제조된 압분자심 코어에 대한 제 특성을 표 1 에 나타내었다. The characteristics of the manufactured powder core are shown in Table 1.

[실시예 3] [Example 3]

2차 성형시의 성형온도를 400℃로 하여 성형하는 것 이외에는 실시예 1과 동일하게 실시하였다. The second molding was carried out in the same manner as in Example 1 except that the molding temperature during the second molding was set to 400°C.

제조된 압분자심에 대한 제 특성을 표 1에 나타내었다. The characteristics of the manufactured powder core are shown in Table 1.

[실시예 4][Example 4]

고압의 수분사법에 의해 제조된 Fe-10wt%Si-6wt%Al(Sendust) 합금 분말(평균입경 약 30㎛)을 사용하고, 열처리 온도를 750℃에서 열처리하는 것 이외에는 실시예 1과 동일하게 실시하였다. The same procedure as in Example 1 was carried out except that Fe-10wt%Si-6wt%Al(Sendust) alloy powder (average particle diameter about 30㎛) prepared by high-pressure water injection method was used and heat treatment was performed at a heat treatment temperature of 750°C. did.

제조된 압분자심 코어에 대한 제 특성을 표 1에 나타내었다. The characteristics of the manufactured powder core are shown in Table 1.

아래에서는, 본 발명의 비교예를 설명한다.Below, comparative examples of the present invention are described.

[비교예 1][Comparative Example 1]

1차 금형의 크기를 2차 금형의 외경 및 내경 대비 1.5%의 공차를 준 외경 12.51mm, 내경 7.51mm로 한 것 이외에는, 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was carried out, except that the size of the first mold was set to an outer diameter of 12.51 mm and an inner diameter of 7.51 mm, with a tolerance of 1.5% compared to the outer and inner diameters of the second mold.

제조된 압분자심 코어에 대한 제 특성을 표 1에 나타내었다. The characteristics of the manufactured powder core are shown in Table 1.

[비교예 2][Comparative Example 2]

1차 금형의 크기를 2차 금형의 외경 및 내경 대비 8%의 공차를 준 외경 11.68mm, 내경 7.01mm로 한 것 이외에는, 실시예 1과 동일하게 실시하였다. The same procedure as in Example 1 was carried out, except that the size of the first mold was set to an outer diameter of 11.68 mm and an inner diameter of 7.01 mm, which gave an 8% tolerance compared to the outer and inner diameters of the second mold.

제조된 압분자심 코어에 대한 제 특성을 표 1에 나타내었다. The characteristics of the manufactured powder core are shown in Table 1.

[비교예 3][Comparative Example 3]

2차 성형시에 성형 온도를 300℃로 하여 성형하는 것 이외에는, 실시예 1과 동일하게 실시하였다. The second molding was carried out in the same manner as in Example 1, except that the molding temperature was set to 300°C.

제조된 압분자심 코어에 대한 제 특성을 표 1에 나타내었다. The characteristics of the manufactured powder core are shown in Table 1.

조건
번호
condition
number
금속
합금계
metal
alloy system
1차 금형크기1st mold size 2차 성형
온도 (℃)
2nd plastic surgery
Temperature (℃)
크랙발생 유무Whether cracks occur or not 2차금형 장입여부Whether to charge secondary mold 성형밀도
(g/cm3)
Molding density
(g/ cm3 )
실효투자율
(100kHz)
effective investment rate
(100kHz)
포화자속밀도 (T)Saturation magnetic flux density (T)
외경outer diameter 내경inner diameter 실시예1Example 1 1)One) 12.4512.45 7.777.77 600600 XX OO 6.816.81 110110 1.75T1.75T 실시예2Example 2 1)One) 11.8111.81 7.097.09 600600 XX OO 6.766.76 105105 1.721.72 실시예3Example 3 1)One) 12.4512.45 7.777.77 400400 XX OO 6.526.52 9090 1.651.65 실시예4Example 4 2)2) 12.4512.45 7.777.77 600600 XX OO 6.556.55 190190 1.671.67 비교예1Comparative Example 1 1)One) 12.5112.51 7.517.51 600600 -- XX -- -- -- 비교예2Comparative example 2 1)One) 11.6811.68 7.017.01 600600 OO OO 6.726.72 105105 1.701.70 비교예3Comparative example 3 1)One) 12.4512.45 7.777.77 300300 XX OO 6.406.40 6565 1.601.60

1) Fe-6.5wt%Si 2) Fe-10wt%Si-6wt%Al1) Fe-6.5wt%Si 2 ) Fe-10wt%Si-6wt%Al

여기서, 표 1을 참조하면, 1차 금형의 크기가 2차 금형에 비해 1.5% 이하의 공차일 때는 2차 금형에 장입이 어려움을 알 수 있으며, 6% 이상으로 공차가 클 때는 성형 밀도가 떨어지며, 2차 성형시에 크랙이 다량 발생함을 알 수 있다.Here, referring to Table 1, it can be seen that it is difficult to charge the secondary mold when the size of the primary mold has a tolerance of 1.5% or less compared to the secondary mold, and when the tolerance is greater than 6%, the molding density decreases. , it can be seen that a large number of cracks occur during secondary molding.

성형 온도가 400℃ 이하에서는 성형 밀도가 6.5g/cm3을 넘을 수 없으며, 이에 따라 투자율이 90 이상이 불가함을 알 수 있다. When the molding temperature is 400°C or lower, the molding density cannot exceed 6.5 g/cm 3 and, accordingly, it can be seen that the permeability cannot be higher than 90.

이상의 설명은 본 발명을 예시적으로 설명한 것이고, 명세서에 게시된 실시예는 본 발명의 기술사상을 한정하기 위한 것이 아니라 설명하기 위한 것이므로 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 기술사상을 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. The above description is an illustrative description of the present invention, and the embodiments published in the specification are not intended to limit the technical idea of the present invention, but are for illustrative purposes, so those skilled in the art will be familiar with the present invention. Various modifications and variations will be possible without departing from the technical idea of .

그러므로 본 발명의 보호범위는 청구범위에 기재된 사항에 의해 해석되고, 그와 균등한 범위 내에 있는 기술적 사항도 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Therefore, the scope of protection of the present invention should be interpreted based on the matters stated in the claims, and technical matters within the equivalent scope thereof should also be interpreted as being included in the scope of rights of the present invention.

Claims (7)

(a) 금속 합금 분말을 절연제(코팅제)로 코팅하는, 코팅 단계,
(b) 절연제(코팅제)로 코팅된 금속 합금 분말에 윤활제를 혼합하는, 윤활제 혼합 단계,
(c) 코팅된 금속 합금 분말을 상온에서 1차로 성형하는, 1차 성형 단계,
(d) 코팅된 금속 합금 분말을 고온에서 2차로 성형하는, 2차 성형 단계, 및
(e) 열처리 단계로 이루어지는 것을 특징으로 하는,
고온 성형에 의한 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어의 제조 방법.
(a) a coating step of coating the metal alloy powder with an insulating agent (coating agent),
(b) a lubricant mixing step, mixing a lubricant with the metal alloy powder coated with an insulating agent (coating agent);
(c) a primary molding step in which the coated metal alloy powder is first molded at room temperature,
(d) a secondary molding step, in which the coated metal alloy powder is secondarily molded at a high temperature, and
(e) characterized in that it consists of a heat treatment step,
Method for manufacturing Fe-xSi (x=4-10.0wt%) alloy powder core by high-temperature forming.
제1항에 있어서,
상기 금속 합금 분말은, 상온 성형에서 취성이 높고, 강도가 커서 성형 밀도가 진밀도의 80% 이상이 불가한 Fe-xSi(x=4-10wt%) 합금 또는 Fe-10wt%Si-6wt%Al 합금(Sendust)인 것을 특징으로 하는,
고온 성형에 의한 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어의 제조 방법.
According to paragraph 1,
The metal alloy powder is an Fe-xSi (x=4-10wt%) alloy or Fe-10wt%Si-6wt%Al, which has high brittleness and high strength when molded at room temperature, so the molding density cannot be more than 80% of the true density. Characterized by being an alloy (Sendust),
Method for manufacturing Fe-xSi (x=4-10.0wt%) alloy powder core by high-temperature forming.
제1항에 있어서,
상기 (b) 금속 합금 분말을 절연제(코팅제)로 코팅하는, 코팅 단계는,
코팅제로는 폴리이미드(polyimid)계, 페놀(phenol)계, 폴리실라젠(polysilazane), 인산(H3PO4) 중에서 적어도 하나 이상을 포함하며,
코팅제의 양은, 총 질량의 0.5~3.0wt%로 하는 것을 특징으로 하는,
고온 성형에 의한 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어의 제조 방법.
According to paragraph 1,
The coating step (b) of coating the metal alloy powder with an insulating agent (coating agent),
The coating agent includes at least one of polyimide-based, phenol-based, polysilazane, and phosphoric acid (H3PO4),
The amount of coating agent is 0.5 to 3.0 wt% of the total mass,
Method for manufacturing Fe-xSi (x=4-10.0wt%) alloy powder core by high-temperature forming.
제1항에 있어서,
상기 (c) 절연제(코팅제)로 코팅된 금속 합금 분말에 윤활제를 혼합하는, 윤활제 혼합 단계는,
윤활제로, MoS2 또는 흑연 분말 중 적어도 하나를 포함하며,
윤활제 분말의 평균 입경은 1~10㎛로 하며,
윤활제의 양은, 총 질량의 0.5~2.0wt%로 하는 것을 특징으로 하는,
고온 성형에 의한 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어의 제조 방법.
According to paragraph 1,
The (c) lubricant mixing step of mixing a lubricant with the metal alloy powder coated with an insulating agent (coating agent),
As a lubricant, it contains at least one of MoS 2 or graphite powder,
The average particle diameter of the lubricant powder is 1~10㎛,
The amount of lubricant is 0.5 to 2.0 wt% of the total mass,
Method for manufacturing Fe-xSi (x=4-10.0wt%) alloy powder core by high-temperature forming.
제1항에 있어서,
상기 (c) 코팅된 비정질 금속합금 분말을 상온에서 1차로 성형하는, 1차 성형 단계는,
성형 압력을 12-25톤/cm2의 범위로 하며,
상기 (d) 코팅된 비정질 금속합금 분말을 고온에서 2차로 성형하는, 2차 성형 단계는,
성형 온도를 400~700℃의 범위로 하며,
성형 압력을 12~25톤/cm2의 범위로 하며,
상기 1차 성형 단계에서의 금형의 내경 및 외경은, 2차 성형 단계에서의 금형의 내경 및 외경보다 2~7% 크게 형성하는 것을 특징으로 하는,
고온 성형에 의한 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어의 제조 방법.
According to paragraph 1,
The primary molding step (c) is to first mold the coated amorphous metal alloy powder at room temperature,
The molding pressure is in the range of 12-25 tons/cm 2 .
The secondary molding step (d) is to secondarily mold the coated amorphous metal alloy powder at a high temperature,
The molding temperature is in the range of 400~700℃,
The molding pressure is in the range of 12 to 25 tons/cm 2 .
The inner diameter and outer diameter of the mold in the first molding step are 2 to 7% larger than the inner diameter and outer diameter of the mold in the second molding step.
Method for manufacturing Fe-xSi (x=4-10.0wt%) alloy powder core by high-temperature forming.
제1항에 있어서,
상기 (e) 열처리 단계는, 금속 합금 분말의 재결정화가 일어나는 온도이며, 소결이 되지않은 온도인700~900℃ 온도에서 처리하며, 열처리 분위기는, 비활성 가스 또는 환원성 가스 분위기로 하고, 열처리 시간은 30~120분으로 하는 것을 특징으로 하는,
고온 성형에 의한 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어의 제조 방법.
According to paragraph 1,
The heat treatment step (e) is the temperature at which recrystallization of the metal alloy powder occurs, and is performed at a temperature of 700 to 900°C, which is the temperature at which no sintering occurs. The heat treatment atmosphere is an inert gas or reducing gas atmosphere, and the heat treatment time is 30 °C. Characterized by ~120 minutes,
Method for manufacturing Fe-xSi (x=4-10.0wt%) alloy powder core by high-temperature forming.
제1항 내지 제6항의 어느 한 항의 압분자심 코어의 제조 방법에 의하여 제조된,
고온 성형에 의한 Fe-xSi(x=4-10.0wt%) 합금 압분자심 코어.




Manufactured by the manufacturing method of the powder core core of any one of claims 1 to 6,
Fe-xSi (x=4-10.0wt%) alloy metal powder core made by high-temperature forming.




KR1020220087477A 2022-07-15 2022-07-15 Manufacturing method of Fe-xSi(x=4-10.0wt%) alloy powder core by high temperature forming KR20240010220A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220087477A KR20240010220A (en) 2022-07-15 2022-07-15 Manufacturing method of Fe-xSi(x=4-10.0wt%) alloy powder core by high temperature forming
PCT/KR2023/000798 WO2024014639A1 (en) 2022-07-15 2023-01-17 Method for manufacturing fe-xsi(x=4-10.0wt%) alloy compressed powder core by high-temperature molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220087477A KR20240010220A (en) 2022-07-15 2022-07-15 Manufacturing method of Fe-xSi(x=4-10.0wt%) alloy powder core by high temperature forming

Publications (1)

Publication Number Publication Date
KR20240010220A true KR20240010220A (en) 2024-01-23

Family

ID=89537021

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220087477A KR20240010220A (en) 2022-07-15 2022-07-15 Manufacturing method of Fe-xSi(x=4-10.0wt%) alloy powder core by high temperature forming

Country Status (2)

Country Link
KR (1) KR20240010220A (en)
WO (1) WO2024014639A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0160483B1 (en) 1992-12-31 1998-11-16 전원중 Cutting method for hollow fiber membrane module
KR101499297B1 (en) 2012-12-04 2015-03-05 배은영 High permeability amorphous powder core and making process using by warm temperarture pressing
KR101640559B1 (en) 2014-11-21 2016-07-18 (주)창성 A manufacturing method of magnetic powder paste for a molded inductor by molding under a room temperature condition and magnetic powder paste manufactured thereby.
KR20180034682A (en) 2015-08-25 2018-04-04 몰렉스 엘엘씨 A communication node having a digital plane interface

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183121A (en) * 2004-12-28 2006-07-13 Jfe Steel Kk Iron based powder for powder magnetic core and powder magnetic core using the same
JP2008243967A (en) * 2007-03-26 2008-10-09 Tdk Corp Powder magnetic core
JP5417074B2 (en) * 2009-07-23 2014-02-12 日立粉末冶金株式会社 Powder magnetic core and manufacturing method thereof
US20130008890A1 (en) * 2010-03-20 2013-01-10 Daido Electronics Co., Ltd. Reactor method of manufacture for same
KR20150008652A (en) * 2013-07-15 2015-01-23 삼성전기주식회사 Soft magnetic composite, method for preparing thereof, and electronic elements comprising core material the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0160483B1 (en) 1992-12-31 1998-11-16 전원중 Cutting method for hollow fiber membrane module
KR101499297B1 (en) 2012-12-04 2015-03-05 배은영 High permeability amorphous powder core and making process using by warm temperarture pressing
KR101640559B1 (en) 2014-11-21 2016-07-18 (주)창성 A manufacturing method of magnetic powder paste for a molded inductor by molding under a room temperature condition and magnetic powder paste manufactured thereby.
KR20180034682A (en) 2015-08-25 2018-04-04 몰렉스 엘엘씨 A communication node having a digital plane interface

Also Published As

Publication number Publication date
WO2024014639A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
KR101499297B1 (en) High permeability amorphous powder core and making process using by warm temperarture pressing
CN104190945B (en) The preparation method of a kind of amorphous metal soft magnetic-powder core
JP5053195B2 (en) Powder magnetic core and manufacturing method thereof
US6544352B2 (en) Method for the compaction of soft magnetic powder
KR20230173414A (en) Power core manufacturing method and power core manufactured by the method
KR20110089237A (en) Method for producing soft magnetic material and method for producing dust core
KR20240010220A (en) Manufacturing method of Fe-xSi(x=4-10.0wt%) alloy powder core by high temperature forming
JP2002170707A (en) Dust core having high electric resistance and its manufacturing method
US20070269332A1 (en) Method for Producing Composite Soft Magnetic Material Having High Strength and High Specific Resistance
CN115966360A (en) Impregnation liquid and application thereof, and preparation method and application of magnetic powder core
CN111863424A (en) Polyimide/inorganic oxide composite coated iron-silicon magnetic powder core and preparation method thereof
CN113380527B (en) Preparation method of toughening release agent and application of toughening release agent in preparation of sintered NdFeB
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
CN115083716A (en) Iron-silicon magnetic powder core and preparation method thereof and inductor
KR100344010B1 (en) Amorphous metal alloy powder cores for high frequency range and method for making the same
WO2014175555A1 (en) High-performance sendust powder core and method for production thereof
KR20240003268A (en) Amorphous composite powder core production method for high frequency
KR100499013B1 (en) Fe-Si alloy powder cores and fabrication process thereof
KR20160018013A (en) Fe-based nano-crystallization alloy
KR20200139990A (en) Method for manufacturing smd inductor core using amorphous metal alloy powder by warm forming
CN115719667A (en) Low-loss amorphous nano soft magnetic composite material for MHz frequency and preparation method thereof
KR102466860B1 (en) HEAT TREATMENT CONDITION OF Fe-Ni TYPE SOFT MAGNETIC ALLOY POWDER, CORE USING THEREOF AND MANUFACTURING METHOD THEREOF
KR102617701B1 (en) Soft magnetic powder composition for inductor core and method for manufacturing inductor core using the composition
CN112635189B (en) Production method of high-yield iron-nickel magnetic powder core
JPS61264105A (en) Production of high-strength sintered member

Legal Events

Date Code Title Description
E902 Notification of reason for refusal