KR20240009619A - Manufacture method of Eco-Friendly Hot-melt film - Google Patents

Manufacture method of Eco-Friendly Hot-melt film Download PDF

Info

Publication number
KR20240009619A
KR20240009619A KR1020220086718A KR20220086718A KR20240009619A KR 20240009619 A KR20240009619 A KR 20240009619A KR 1020220086718 A KR1020220086718 A KR 1020220086718A KR 20220086718 A KR20220086718 A KR 20220086718A KR 20240009619 A KR20240009619 A KR 20240009619A
Authority
KR
South Korea
Prior art keywords
hot melt
bio
eco
present
film
Prior art date
Application number
KR1020220086718A
Other languages
Korean (ko)
Inventor
장지상
이재정
김경규
최경석
박치균
Original Assignee
(주)아셈스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)아셈스 filed Critical (주)아셈스
Priority to KR1020220086718A priority Critical patent/KR20240009619A/en
Publication of KR20240009619A publication Critical patent/KR20240009619A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/423Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing cycloaliphatic groups
    • C08G18/4233Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing cycloaliphatic groups derived from polymerised higher fatty acids or alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/771Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Abstract

본 발명은 친환경 핫멜트 제조방법에 관한 것으로, 상세하게는, 환경오염을 줄이고 자원 낭비를 미연에 방지하기 위하여 바이오 기반 폴리올의 종류 및 다양한 쇄연장제의 종류에 따라 열가소성 폴리우레탄(Thermoplastic Poly Urethane, TPU) 을 합성하고, 이를 이용하여 친환경 핫멜트 접착제를 제조하는 방법에 관한 것이다.The present invention relates to an eco-friendly hot melt manufacturing method. Specifically, in order to reduce environmental pollution and prevent resource waste, thermoplastic poly urethane (TPU) can be prepared according to the type of bio-based polyol and various types of chain extenders. ) and a method of producing an eco-friendly hot melt adhesive using it.

Description

친환경 핫멜트 제조방법{Manufacture method of Eco-Friendly Hot-melt film}{Manufacture method of Eco-Friendly Hot-melt film}

본 발명은 친환경 핫멜트 제조방법에 관한 것으로, 상세하게는, 환경오염을 줄이고 자원 낭비를 미연에 방지하기 위하여 바이오 기반 폴리올의 종류 및 다양한 쇄연장제의 종류에 따라 열가소성 폴리우레탄(Thermoplastic Poly Urethane, TPU) 을 합성하고, 이를 이용하여 친환경 핫멜트 접착제를 제조하는 방법에 관한 것이다.The present invention relates to an eco-friendly hot melt manufacturing method. Specifically, in order to reduce environmental pollution and prevent resource waste, thermoplastic poly urethane (TPU) can be prepared according to the type of bio-based polyol and various types of chain extenders. ) and a method of producing an eco-friendly hot melt adhesive using it.

핫멜트 (hot-melt)란 상온에서 고형분 100%의 무용매형 접착제로서 사용시에 가열 용융하여 각종 피착제에 도포하고, 냉각하여 고화시킴으로써 접착력을 발현시키는 접착제의 하나로, 가전 분야는 물론 포장, 제본, 목가공 등의 분야에서 널리 사용되고 있다. 핫멜트는 고온에서 가열 용융되어 도포 즉시 냉각됨으로써 연속 작업이 가능하고, 휘발분이 발생하지 않아 도포 두께의 조절이 간단하고 고르게 되며, 화재의 위험성이 없는 것으로, 일반적으로 베이스 폴리머, 접착부여 수지 및 왁스의 3가지 성분을 주요 성분으로 하여 구성되며, 필요에 따라 산화방지제, 가소제, 난연제 등이 배합되어 사용된다.Hot-melt is a solvent-free adhesive with 100% solid content at room temperature. When used, it is an adhesive that develops adhesive power by heating and melting, applying to various adherends, and then cooling and solidifying. It is used in the home appliance field as well as packaging, bookbinding, and wood. It is widely used in fields such as processing. Hot melt is heated and melted at a high temperature and cooled immediately after application, enabling continuous operation. It does not generate volatile matter, making it simple and even to control the application thickness. There is no risk of fire. It is generally used for base polymers, adhesive resins, and waxes. It is composed of three main ingredients, and antioxidants, plasticizers, and flame retardants are mixed and used as needed.

그러나, 기존의 핫멜트 접착제는 포장, 제본, 목가공, 전기 및 전자 분야 등에 공통적으로 범용되는 것으로서, 전자부품에 특수하게 적용하기에는 내열성과 내한성, 접착성 및 열충격 강도 등에 있어 만족할만한 효과를 얻지 못하였다.However, existing hot melt adhesives are commonly used in packaging, bookbinding, woodworking, electrical and electronic fields, etc., and have not achieved satisfactory effects in terms of heat resistance, cold resistance, adhesion, and thermal shock strength for special application to electronic components. .

특히, 최근 그 수요가 급증하고 있는 전자부품 또는 전기부품의 경우 회로판 (printed circuit board, PCB)에 전자부품들을 부착시키기 위해서는 바람직한 특성을 갖는 핫멜트가 요구된다. PCB는 종이 에폭시 또는 유리 에폭시계의 기판 위에 구리 막을 입혀 필요한 회로를 인쇄하고 그 이외의 부분은 제거하여 제작되는 것으로, IC 기타의 부품들이 다수 부착된다. 따라서 전자 부품 또는 전기 부품에 적용하는 핫멜트는 바람직한 전기적 특성, 예를 들어 다른 부품들을 구성하는 재료들을 분해시키는 경향이 적고, 높은 저항성과 같은 전기적 특성 뿐 아니라 전자부품들의 다른 소자들에 손상을 주지 않기 위해서는 낮은 온도에서 상기 접착제 조성물을 도포시킬 수 있을 정도의 충분히 낮은 융점을 갖되 부품의 조립 및 후속 공정에서 요구되는 높은 온도에서도 그 결합력이 파손되지 않을 만큼 충분한 고온 저항성을 가져야 한다.In particular, in the case of electronic or electrical components, the demand of which has recently been rapidly increasing, a hot melt with desirable characteristics is required to attach the electronic components to a printed circuit board (PCB). A PCB is manufactured by covering a paper epoxy or glass epoxy board with a copper film, printing the necessary circuits, and removing the remaining parts, and many IC and other components are attached. Therefore, hot melts applied to electronic or electrical components not only have desirable electrical properties, such as a low tendency to decompose the materials that make up other components, and high resistance, but also do not damage other elements of the electronic components. In order to do this, it must have a sufficiently low melting point to allow the adhesive composition to be applied at low temperatures, but must have sufficient high temperature resistance so that its bonding strength is not broken even at the high temperatures required for assembly of parts and subsequent processes.

그러나, 현재까지 대부분의 핫멜트 조성물은 주로 종이 또는 부직 산업에 이용되거나, 자동차 내장재 등의 접착용으로만 개발되었으며, 전자부품 또는 전기부품에 적용하기 위해 물성을 개선시킨 특수한 핫멜트에 대해서는 극히 일부만이 개발되어 일부 다국적 기업만이 이에 관한 기술을 가지고 있을 뿐이다.However, to date, most hot melt compositions have been mainly used in the paper or nonwoven industries or have been developed only for adhesion to automobile interior materials, etc., and only a very small number of special hot melt compositions with improved physical properties for application to electronic or electrical components have been developed. Therefore, only some multinational companies have the technology for this.

상기의 예들에서 알 수 있는 바와 같이, 핫멜트 필름의 적용은 점점 늘어나고 있는 추세이며, 이러한 기술과 소재들의 개발이 매우 중요한 반면 환경적인 부분에 대한 고려도 그 요구가 점점 강조되고 있다.As can be seen from the examples above, the application of hot melt films is increasing, and while the development of these technologies and materials is very important, the need for environmental considerations is also increasingly emphasized.

지구온난화와 석유자원의 문제를 해결을 위해 지속성장 가능한 바이오매스 활용이 중요해지고 있으며, 최근 환경에 대한 이슈가 커지면서 환경부하를 저감하기 위해 국제적 환경 규제 및 무역규제가 시행되고 있는데 자동차의 경우 이에 대한 대응책으로 안전하고 쾌적한 친환경 자동차 및 사업장을 구축하기 위하여 환경 경영체계를 개선 및 강화해 나가고 있으며 연료뿐만 아니라 부품 및 내장재의 바이오매스를 이용한 플라스틱의 사용 요구가 증가되는 추세이다.The use of biomass that can grow sustainably is becoming important to solve the problems of global warming and oil resources. As environmental issues have recently grown, international environmental and trade regulations are being implemented to reduce the environmental load. In the case of automobiles, these regulations are being implemented. As a countermeasure, the environmental management system is being improved and strengthened to build safe and comfortable eco-friendly vehicles and workplaces, and the demand for the use of plastics using biomass for parts and interior materials as well as fuel is increasing.

한국등록특허 제10-0400876호Korean Patent No. 10-0400876

본 발명은 상기와 같은 환경적인 문제를 해결하기 위한 것으로, 구체적으로는 환경오염을 줄이고 자원 낭비를 미연에 방지하기 위하여 바이오매스 기반의 열가소성 폴리우레탄(Thermoplastic Poly Urethane, TPU) 핫멜트 접착제를 개발하여 자동차 업계의 친환경적인 요구와 동시에 내열성 및 강인성을 충족시킬 수 있는 친환경 핫멜트 접착제를 제공하기 위한 것이다.The present invention is intended to solve the above-mentioned environmental problems, and specifically, to reduce environmental pollution and prevent resource waste, a biomass-based thermoplastic polyurethane (TPU) hot melt adhesive was developed to be used in automobiles. The purpose is to provide an eco-friendly hot melt adhesive that can meet the industry's eco-friendly requirements while also meeting heat resistance and toughness.

한편으로, 본 발명은 On the one hand, the present invention

(i) 바이오 지방산(fatty acid) 기반의 폴리에스테르(polyester) 폴리올 60 내지 70 중량%에 열을 가하여 교반하는 단계;(i) heating and stirring 60 to 70% by weight of bio fatty acid-based polyester polyol;

(ii) 상기 폴리올을 이소소르바이드(isosorbide)계 이소시아네이트 20 내지 30 중량% 및 촉매와 반응시키는 단계; 및 (ii) reacting the polyol with 20 to 30% by weight of isosorbide-based isocyanate and a catalyst; and

(iii) 온도를 낮춘 다음 체인 증량제(chain extender) 5 내지 10 중량%와 반응시켜 열가소성 폴리우레탄을 제조하는 단계;를 포함하고,(iii) lowering the temperature and then reacting with 5 to 10% by weight of a chain extender to produce thermoplastic polyurethane,

시차 주사 열량계(Differential Scanning Calorimetry, DSC) 열분석시 40℃ 내지 60℃에서 발견되는 제1 융점 피크; 및 100℃ 내지 110℃에서 발견되는 제2 융점 피크를 포함하는 것을 특징으로 하는, 친환경 핫멜트 제조방법을 제공하는 것을 특징으로 한다.A first melting point peak found at 40°C to 60°C during differential scanning calorimetry (DSC) thermal analysis; And a second melting point peak found at 100°C to 110°C, characterized in that it provides an eco-friendly hot melt manufacturing method.

본 발명에 따르면, Bio-isocyanate 사용으로 기존 제품의 Bio 함량을 1.5~2배 정도 높일 수 있으며 제품을 폐기할 경우 석유 제품 대비 CO2 배출량을 60% 이상 감소시킬 수 있다. 또한, 핫멜트 필름으로 가공하기 때문에 공정 중에 발생된 스크랩이나 파단 필름 등을 재활용하기 쉬우므로 공정 상에 소요되는 비용 절감과 자원순환이 가능하다. According to the present invention, the bio content of existing products can be increased by 1.5 to 2 times by using bio-isocyanate, and when the product is disposed of, CO 2 emissions can be reduced by more than 60% compared to petroleum products. In addition, because it is processed with a hot melt film, it is easy to recycle scrap or broken film generated during the process, thereby reducing costs in the process and recycling resources.

도 1은 본 발명의 일 실시예에 따른 친환경 핫멜트의 합성 메커니즘을 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 핫멜트의 BIO 함량별 비중 및 M.I.를 나타낸 도면이다.
도 3은 본 발명의 일 실시예에 따라 제조된 친환경 핫멜트를 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른 핫멜트의 BIO 함량별 인장강도 및 신장률을 나타낸 도면이다.
도 5는 본 발명의 일 실시예에 따른 핫멜트의 시차 주사 열량계(DSC)를 이용한 열분석 결과를 나타낸 그래프이다.
도 6은 본 발명의 일 실시예에 따른 TPU 수지의 FT-IR 스펙트럼 결과를 나타낸 도면이다.
Figure 1 shows the synthesis mechanism of an eco-friendly hot melt according to an embodiment of the present invention.
Figure 2 is a diagram showing the specific gravity and MI by BIO content of hot melt according to an embodiment of the present invention.
Figure 3 shows an eco-friendly hot melt manufactured according to an embodiment of the present invention.
Figure 4 is a diagram showing the tensile strength and elongation by BIO content of the hot melt according to an embodiment of the present invention.
Figure 5 is a graph showing the results of thermal analysis of hot melt using differential scanning calorimetry (DSC) according to an embodiment of the present invention.
Figure 6 is a diagram showing the FT-IR spectrum results of the TPU resin according to an embodiment of the present invention.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 친환경 핫멜트 제조방법에 관한 것으로, The present invention relates to an eco-friendly hot melt manufacturing method,

(i) 바이오 지방산(fatty acid) 기반의 폴리에스테르(polyester) 폴리올 60 내지 70 중량%에 열을 가하여 교반하는 단계;(i) heating and stirring 60 to 70% by weight of bio fatty acid-based polyester polyol;

(ii) 상기 폴리올을 이소소르바이드(isosorbide)계 이소시아네이트 20 내지 30 중량% 및 촉매와 반응시키는 단계; 및 (ii) reacting the polyol with 20 to 30% by weight of isosorbide-based isocyanate and a catalyst; and

(iii) 온도를 낮춘 다음 체인 증량제(chain extender) 5 내지 10 중량%와 반응시켜 열가소성 폴리우레탄을 제조하는 단계; 포함하는 것을 특징으로 한다.(iii) lowering the temperature and then reacting with 5 to 10% by weight of a chain extender to produce thermoplastic polyurethane; It is characterized by including.

본 발명의 일 실시형태에서, 상기 (i)단계에서 80 내지 90 ℃의 열을 가하는 것을 특징으로 한다.In one embodiment of the present invention, heat of 80 to 90° C. is applied in step (i).

본 발명의 일 실시형태에서, 상기 (ii)단계에서 dibutylamine back-titration (DBA)법을 통해 반응물의 NCO 함량을 확인하여 다음 단계의 진행을 결정하는 것을 특징으로 한다.In one embodiment of the present invention, in step (ii), the NCO content of the reactant is confirmed through dibutylamine back-titration (DBA) to determine the next step.

본 발명의 일 실시형태에서, 상기 (iii)단계에서 미반응 NCO가 존재하지 않을 때까지 반응을 진행하는 것을 특징으로 한다.In one embodiment of the present invention, in step (iii), the reaction is performed until no unreacted NCO exists.

본 발명은 바이오 지방산(fatty acid) 기반의 폴리에스테르(polyester) 폴리올과 이소소르바이드(isosorbide)계 이소시아네이트 및 체인 증량제(chain extender) 등을 기반으로 한 우수한 내열성, 탄성 및 인장물성을 갖춘 높은 함량의 친환경 핫멜트에 관한 것이다.The present invention is a high-content polyester polyol with excellent heat resistance, elasticity, and tensile properties based on bio fatty acid-based polyester polyol, isosorbide isocyanate, and chain extender. It's about eco-friendly hot melt.

본 발명의 일 실시형태에서, 상기 핫멜트는 바이오매스 기반 열가소성 폴리우레탄(Thermoplastic Poly Urethane, TPU)으로 구성되는 것을 특징으로 한다.In one embodiment of the present invention, the hot melt is characterized in that it is composed of biomass-based thermoplastic polyurethane (Thermoplastic Poly Urethane, TPU).

상기 TPU의 물성을 위해 관능기의 당량비를 조절 가능하고, 병용 폴리올의 비율 그리고 쇄연장제의 종류별 비율에 따라 다양한 열가소성 폴리우레탄을 합성할 수 있다(도 1 참조).For the physical properties of the TPU, the equivalence ratio of functional groups can be adjusted, and various thermoplastic polyurethanes can be synthesized depending on the ratio of the polyol used and the ratio of each type of chain extender (see Figure 1).

본 발명의 일 실시형태에서, 상기 바이오 지방산인 바이오매스의 함량이 전체 100% 대비 40% 이상으로 포함되는 것이 바람직하고, 60% 이상으로 포함되는 것이 보다 바람직하다.In one embodiment of the present invention, the content of biomass, which is the bio fatty acid, is preferably 40% or more of the total 100%, and more preferably 60% or more.

본 발명의 일 실시형태에서, 상기 친환경 핫멜트는 시차 주사 열량계(Differential Scanning Calorimetry, DSC) 열분석시 40℃ 내지 60℃에서 발견되는 제1 융점 피크; 및 100℃ 내지 110℃에서 발견되는 제2 융점 피크를 포함하는 것을 특징으로 한다.In one embodiment of the present invention, the eco-friendly hot melt has a first melting point peak found at 40°C to 60°C during thermal analysis by differential scanning calorimetry (DSC); and a second melting point peak found between 100°C and 110°C.

이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다. Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it is obvious to those skilled in the art that the scope of the present invention is not limited to these examples.

실시예 1: Example 1:

교반기, condenser, 질소 주입구가 장착된 500ml 4구 반응기에 수분이 제거된 폴리올을 투입하고 80℃에서 1시간동안 균일하게 교반하였다. 그 후 이소시아네이트를 dropping하고 촉매를 첨가한 다음 반응시켰다. 반응물의 NCO 함량을 dibutylamine back-titration (DBA)법을 통해 확인하였으며, 이론적 NCO 함량에 도달하였을 때 다음 반응을 진행하였다. 온도를 50℃로 낮추고 쇄연장제를 dropping하면서 반응을 진행하여 열가소성 폴리우레탄을 합성하였으며 미반응 NCO가 모두 사라질 때에 반응을 종료하였다. 각 반응 단계에서 생성된 중합체의 구조와 최종적으로 합성된 열가소성 폴리우레탄의 구조를 확인하기 위하여 FT-IR을 측정하였다. The polyol from which moisture was removed was added to a 500 ml four-neck reactor equipped with a stirrer, condenser, and nitrogen inlet, and stirred uniformly at 80°C for 1 hour. After that, the isocyanate was dropped, a catalyst was added, and the reaction was performed. The NCO content of the reactant was confirmed through the dibutylamine back-titration (DBA) method, and when the theoretical NCO content was reached, the next reaction was performed. The temperature was lowered to 50°C and the reaction proceeded while dropping the chain extender to synthesize thermoplastic polyurethane. The reaction was completed when all unreacted NCO disappeared. FT-IR was measured to confirm the structure of the polymer produced in each reaction step and the structure of the finally synthesized thermoplastic polyurethane.

반응 시간에 따라 FT-IR을 측정한 결과, 시간이 경과함에 따라 NCO 특성 peak인 2270cm-1의 peak가 사라진 것을 확인하였으며 3300cm-1 1530cm-1부근에서 우레탄기 중 -NH peak, 1700~1730cm-1에서 우레탄기 중 -C=O-, 1310cm-1 에서 우레탄기 중 -CN- peak를 관찰할 수 있었으며 성공적으로 바이오계 TPU가 합성된 것을 알 수 있었다(도 6 참조). As a result of measuring FT-IR according to the reaction time, it was confirmed that the NCO characteristic peak at 2270cm -1 disappeared as time passed, and -NH peak, 1700~1730cm -1 among urethane groups around 3300cm -1 and 1530cm -1 The -C=O- peak among the urethane groups at 1 and the -CN- peak among the urethane groups at 1310 cm -1 were observed, indicating that bio-based TPU was successfully synthesized (see Figure 6).

도 6을 참조로, TA-1은 OH가가 38.89 mg KOH/g인 폴리올, TA-2는 53.31 mg KOH/g인 폴리올과 TA-3은 48.12 mg KOH/g인 폴리올을 사용하여 TPU를 합성한 결과이다. 동일한 pre-polymer의 당량비로 합성된 TA-1와 TA-2의 결과를 보면 분자량이 낮고 한 종류의 다이올을 사용하여 합성된 폴리올을 사용한 TA-1의 인장강도 및 접착강도가 더 높은 결과를 나타내었다. 또한, 프리폴리머의 당량비를 높인 TA-3의 합성 결과, 물성은 크게 증가되지 않았다.Referring to Figure 6, TA-1 is a polyol with an OH value of 38.89 mg KOH/g, TA-2 is a polyol with an OH value of 53.31 mg KOH/g, and TA-3 is a polyol with an OH value of 48.12 mg KOH/g. It is a result. Looking at the results of TA-1 and TA-2 synthesized with the same pre-polymer equivalent ratio, the tensile strength and adhesive strength of TA-1 using a polyol synthesized using a low molecular weight and one type of diol were found to be higher. indicated. In addition, as a result of synthesizing TA-3 with an increased prepolymer equivalence ratio, the physical properties were not significantly increased.

실험예 1: Experimental Example 1:

최종 Bio 함량 10%, 21%, 30%, 43% TPU Hot melt film에 대한 연구를 진행하였다. Research was conducted on TPU hot melt films with final bio content of 10%, 21%, 30%, and 43%.

① Bio 함량 10% ① Bio content 10%

Bio 함량 10% TPU를 맞추기 위하여 D社의 석유계 TPU 원료 3종류와 Bio 함량 25% TPU 원료 혼합을 진행하였다.In order to achieve TPU with 10% bio content, three types of petroleum-based TPU raw materials from D Company were mixed with TPU raw materials with 25% bio content.

[표 1][Table 1]

② Bio 함량 21%② Bio content 21%

D社로부터 받은 Bio 함량 25% TPU 원료를 사용하였다.(※ 위의 Bio TPU 25% 제품 (8085AP)와 다른 물성의 제품)We used TPU raw material with 25% Bio content received from Company D. (※ Product with different physical properties from the Bio TPU 25% product (8085AP) above)

③ Bio 함량 30%③ Bio content 30%

D社로부터 받은 Bio 함량 33% TPU 원료를 사용하였다.We used TPU raw material with 33% bio content received from Company D.

④ Bio 함량 43%④ Bio content 43%

한국신발피혁연구원으로부터 받은 Bio 함량 47.33% TPU 원료를 사용하여 최종 Bio 함량 43% TPU Hotmelt film 제작을 위한 원료 혼합을 진행하였다.Using TPU raw materials with a bio content of 47.33% received from the Korea Shoe and Leather Research Institute, raw materials were mixed to produce a TPU hotmelt film with a final bio content of 43%.

컴파운드된 TPU 수지에 필름으로 제조하기 위해 아래 표 2의 각종 첨가제를 추가적으로 첨가하였다. Blown Extruder 방식으로 Hot melt 접착 Film를 생산 시 첨가제 중 슬립제의 역할은 더욱 중요하며, T-Die 방식보다 더 높은 비율의 슬립제가 첨가된다. To manufacture the compounded TPU resin into a film, various additives shown in Table 2 below were additionally added. When producing hot melt adhesive film using the blown extruder method, the role of slip agent among additives is more important, and a higher proportion of slip agent is added than with the T-Die method.

[표 2][Table 2]

상기의 배합비율에 따라 만들어진 4종류의 Bio 함량에 따른 수지의 물성 평가를 위해 M.I (Melt Indexer )측정기를 이용하여 밀도, 용융흐름성 값을 측정하였다. 각 물성 평가 항목에 대해 5번씩 실험 측정을 진행하였으며, 평균값으로 최종 결과값을 도출하였다(도 2 참조). To evaluate the physical properties of the four types of resins made according to the above mixing ratio according to the Bio content, density and melt flow values were measured using an M.I (Melt Indexer) meter. Experimental measurements were conducted five times for each property evaluation item, and the final result was derived as the average value (see Figure 2).

실험예 2: Experimental Example 2:

4종류의 Bio 함량에 따른 수지의 필름 형성 여부를 확인하기 위해 압출조건을 달리하여 Blown Extruder 방식으로 필름 제작 실험을 진행하였다. 필름 제작 시 압출조건 인자로 크게는 압출속도, 압출온도가 있으며, 필름의 품질에 더 많은 영향을 주는 압출온도 조건을 125 내지 145 ℃로 변경하며 실험을 진행하였다. (압출속도는 8m/min 를 기준으로 한다.)In order to check whether the resins formed films according to the four types of Bio content, a film production experiment was conducted using the blown extruder method under different extrusion conditions. When producing a film, the extrusion condition factors include extrusion speed and extrusion temperature. The experiment was conducted by changing the extrusion temperature condition, which has a greater influence on the quality of the film, to 125 to 145 °C. (Extrusion speed is based on 8m/min.)

① Bio 함량 10% ① Bio content 10%

압출온도 125℃에서 압출온도가 낮을 경우 발생하는 필름 상에 Gel이 형성되는 것을 확인할 수 있었으며, 압출온도를 135℃ 이상 높였을 때 Gel 형성 문제가 발생하지 않는 것을 확인할 수 있었다. 압출온도가 140℃ 이상 높아질 경우, 원료 수지의 토출량이 증가하면서 필름 두께가 두꺼워져 불일정해지는 것을 육안으로 확인할 수 있었다. Bio 함량 10%-2 원료 수지를 이용한 필름 제조 결과, 135℃~140℃ 압출온도 조건에서 최적의 필름 형성이 이루어지는 것을 확인하였다.At the extrusion temperature of 125℃, it was confirmed that gel was formed on the film, which occurs when the extrusion temperature is low, and it was confirmed that the gel formation problem did not occur when the extrusion temperature was raised to 135℃ or higher. When the extrusion temperature increased above 140°C, it was visually confirmed that the discharge amount of raw resin increased and the film thickness became thicker and more unstable. As a result of film manufacturing using raw material resin with a bio content of 10%-2, it was confirmed that optimal film formation was achieved under extrusion temperature conditions of 135℃~140℃.

② Bio 함량 21%② Bio content 21%

압출온도 115, 120℃에서 필름 상에 Gel이 형성되는 문제가 발생하였고, 압출온도를 125℃ 이상 올렸을 때 Gel 형성이 보이지 않았다. 압출온도가 증가할수록 연신이 잘 되는 것을 확인할 수 있었으나, 압출온도 135℃ 이상에서는 원료 수지의 토출량 증가로 작업성이 불안정해져 필름 와인딩 시 불일정한 장력으로 와인딩이 제대로 되지 않아 필름에 주름이 생기는 문제가 발생하였다. Bio 함량 21% 원료 수지를 이용한 필름 제조 실험 결과, 125℃, 130℃ 압출온도 조건에서 정상 필름 형성이 이루어지는 것을 확인할 수 있었다.There was a problem with gel formation on the film at extrusion temperatures of 115 and 120℃, and no gel formation was seen when the extrusion temperature was raised above 125℃. It was confirmed that stretching improves as the extrusion temperature increases. However, at extrusion temperatures above 135°C, workability becomes unstable due to an increase in the discharge amount of raw resin, and the winding does not work properly due to uneven tension when winding the film, resulting in the problem of wrinkles forming in the film. occurred. As a result of a film manufacturing experiment using raw material resin with 21% bio content, it was confirmed that normal film formation occurred under extrusion temperature conditions of 125℃ and 130℃.

③ Bio 함량 30%③ Bio content 30%

압출온도가 낮을 경우 필름 상에 Gel이 형성되는 문제가 보였으며, 130℃보다 낮은 온도에서 Un-melting으로 인한 Gel 형성 문제가 발생하였다. Bio 함량 30% 원료 수지를 이용한 필름 제조 실험 결과, 135℃의 압출온도 조건에서 정상 필름 형성이 이루어지는 것을 확인할 수 있었다. Bio 함량 21% 원료 수지 대비 최적의 압출온도 조건이 높은 이유는 압출온도에 영향을 미치는 제품 물성 경도로 예측할 수 있었으며, 실제 Bio TPU 21% 제품 경도(Shores A 75~80) 대비 Bio 함량 30% 제품 경도(Shores A 90-95)가 높은 것을 확인할 수 있다.When the extrusion temperature was low, there was a problem with gel formation on the film, and at temperatures lower than 130°C, a gel formation problem occurred due to unmelting. As a result of a film manufacturing experiment using raw material resin with 30% bio content, it was confirmed that normal film formation occurred under the extrusion temperature condition of 135°C. The reason why the optimal extrusion temperature condition is higher compared to the raw material resin with 21% bio content could be predicted by the hardness of the product physical properties that affect the extrusion temperature, and the actual hardness of the 21% bio TPU product (Shores A 75~80) compared to the product with 30% bio content It can be seen that the hardness (Shores A 90-95) is high.

④ Bio 함량 43%④ Bio content 43%

압출온도가 125℃ 이상에서 흐름성이 증가하면서 작업성에 좋지 않은 영향을 주어, 장력이 불일정해지면서 권취 불량이 발생하는 것을 확인할 수 있었다. Bio 함량 43% 원료 수지를 이용한 필름 제조 실험 결과, 120℃의 압출온도 조건에서 정상 필름 형성이 이루어지는 것을 확인할 수 있었다(도 3 참조).It was confirmed that when the extrusion temperature exceeds 125°C, flowability increases and workability is adversely affected, tension becomes inconsistent, and winding defects occur. As a result of a film manufacturing experiment using a raw material resin with a bio content of 43%, it was confirmed that normal film formation occurred under the extrusion temperature condition of 120°C (see Figure 3).

실험예 3: Experimental Example 3:

기존 석유계 TPU Hot melt Film의 가공기술을 확인하고, Bio 함량(10%, 21%, 30%, 43%)별 가공기술 및 조건에 따른 제품의 성능 검증(두께, 인장강도, 인장신도)을 통해 최적의 가공 조건을 도출하였다. 앞서 각 배합비율에 따른 최적의 압출온도 조건을 참고하여 가공 조건을 도출하였으며, TPU Hot melt film 제품 성능 검증을 위한 자체 물성 테스트를 진행하였다. 각 물성 평가 항목에 대해 5번씩 실험 측정을 진행하였다(도 4 참조).Confirm the processing technology of existing petroleum-based TPU hot melt film, and verify product performance (thickness, tensile strength, tensile elongation) according to processing technology and conditions for each bio content (10%, 21%, 30%, 43%). Through this, optimal processing conditions were derived. Previously, processing conditions were derived by referring to the optimal extrusion temperature conditions for each mixing ratio, and an in-house physical property test was conducted to verify the performance of the TPU hot melt film product. Experimental measurements were conducted five times for each physical property evaluation item (see Figure 4).

실험예 4: Experimental Example 4:

본 발명에 따른 핫멜트 조성물에 대해 시차 주사 열량계(DSC)를 이용하여 열분석을 하였다. 그 결과는 도 5와 같다. Thermal analysis was performed on the hot melt composition according to the present invention using differential scanning calorimetry (DSC). The results are as shown in Figure 5.

이를 참조하면, 본 발명에 따른 핫멜트 조성물은 40℃ 내지 60℃에서 발견되는 제1 융점 피크 및 100℃ 내지 110℃에서 발견되는 제2 융점 피크를 포함하는 것일 수 있다. 제1 융점 피크를 통해 상기 핫멜트 조성물은 유연성 및 가공성이 우수함을 알 수 있다. 한편, 제2 융점 피크를 통해서는 상기 핫멜트 조성물이 결정성을 가져 일정한 온도가 돼야 안정적으로 용융되고 이 용융온도를 벗어나면 빠르게 냉각되는 것을 알 수 있다. 따라서 상기 핫멜트 조성물을 사용하면 자동차 내장재의 접착 안정성을 확보할 수 있다.With reference to this, the hot melt composition according to the present invention may include a first melting point peak found at 40°C to 60°C and a second melting point peak found at 100°C to 110°C. Through the first melting point peak, it can be seen that the hot melt composition has excellent flexibility and processability. Meanwhile, through the second melting point peak, it can be seen that the hot melt composition has crystallinity and is stably melted only at a certain temperature, and that it cools quickly when it exceeds this melting temperature. Therefore, using the hot melt composition can ensure the adhesion stability of automobile interior materials.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아님은 명백하다. 본 발명이 속한 기술분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.As the specific parts of the present invention have been described in detail above, it is clear to those skilled in the art that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. do. Anyone skilled in the art to which the present invention pertains will be able to make various applications and modifications within the scope of the present invention based on the above contents.

따라서, 본 발명의 실질적인 범위는 첨부된 특허청구범위와 그의 등가물에 의하여 정의된다고 할 것이다.Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (5)

(i) 바이오 지방산(fatty acid) 기반의 폴리에스테르(polyester) 폴리올 60 내지 70 중량%에 열을 가하여 교반하는 단계;
(ii) 상기 폴리올을 이소소르바이드(isosorbide)계 이소시아네이트 20 내지 30 중량% 및 촉매와 반응시키는 단계; 및
(iii) 온도를 낮춘 다음 체인 증량제(chain extender) 5 내지 10 중량%와 반응시켜 열가소성 폴리우레탄을 제조하는 단계;를 포함하고,
시차 주사 열량계(Differential Scanning Calorimetry, DSC) 열분석시 40℃ 내지 60℃에서 발견되는 제1 융점 피크; 및 100℃ 내지 110℃에서 발견되는 제2 융점 피크를 포함하는 것을 특징으로 하는, 친환경 핫멜트 제조방법.
(i) heating and stirring 60 to 70% by weight of bio fatty acid-based polyester polyol;
(ii) reacting the polyol with 20 to 30% by weight of isosorbide-based isocyanate and a catalyst; and
(iii) lowering the temperature and then reacting with 5 to 10% by weight of a chain extender to produce thermoplastic polyurethane,
A first melting point peak found at 40°C to 60°C during differential scanning calorimetry (DSC) thermal analysis; and a second melting point peak found at 100°C to 110°C.
제1항에 있어서, 상기 (i)단계에서 80 내지 90 ℃의 열을 가하는 것을 특징으로 하는, 친환경 핫멜트 제조방법.The method of claim 1, wherein in step (i), heat is applied at a temperature of 80 to 90° C. 제1항에 있어서, 상기 (ii)단계에서 dibutylamine back-titration (DBA)법을 통해 반응물의 NCO 함량을 확인하여 다음 단계의 진행을 결정하는 것을 특징으로 하는, 친환경 핫멜트 제조방법.The method of claim 1, wherein in step (ii), the NCO content of the reactant is confirmed through the dibutylamine back-titration (DBA) method to determine the next step. 제1항에 있어서, 상기 (iii)단계에서 미반응 NCO가 존재하지 않을 때까지 반응을 진행하는 것을 특징으로 하는, 친환경 핫멜트 제조방법.The method of claim 1, wherein in step (iii), the reaction is carried out until no unreacted NCO exists. 제1항에 있어서, 상기 핫멜트의 접착강도가 2.5 kgf/cm 이상인 것을 특징으로 하는, 친환경 핫멜트 제조방법.The method of claim 1, wherein the hot melt has an adhesive strength of 2.5 kgf/cm or more.
KR1020220086718A 2022-07-14 2022-07-14 Manufacture method of Eco-Friendly Hot-melt film KR20240009619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220086718A KR20240009619A (en) 2022-07-14 2022-07-14 Manufacture method of Eco-Friendly Hot-melt film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220086718A KR20240009619A (en) 2022-07-14 2022-07-14 Manufacture method of Eco-Friendly Hot-melt film

Publications (1)

Publication Number Publication Date
KR20240009619A true KR20240009619A (en) 2024-01-23

Family

ID=89713638

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220086718A KR20240009619A (en) 2022-07-14 2022-07-14 Manufacture method of Eco-Friendly Hot-melt film

Country Status (1)

Country Link
KR (1) KR20240009619A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400876B1 (en) 2000-10-27 2003-10-08 성일화학 (주) hot-melt adhesive for electronic components

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400876B1 (en) 2000-10-27 2003-10-08 성일화학 (주) hot-melt adhesive for electronic components

Similar Documents

Publication Publication Date Title
EP0747416B1 (en) Aliphatic polyester resin and process for producing the same
KR102267208B1 (en) Polyester-based resin composition, production method for said polyester-based resin composition, and molded article using said polyester-based resin composition
EP2274356A1 (en) High heat resistant adhesive and sealant compositions
CN102076756A (en) Polymer material and method for production method thereof
KR20160114073A (en) Polyester resin composition and molded article using said polyester resin composition
US20110275767A1 (en) Moisture-curable hot melt adhesive
CN115093530A (en) Bio-based flame-retardant thermoplastic polyurethane elastomer and preparation method thereof
WO2014098178A1 (en) Moisture-curable hot-melt adhesive agent
CN111909348B (en) Reactive polyurethane hot melt adhesive composition and preparation and application thereof
KR20240009619A (en) Manufacture method of Eco-Friendly Hot-melt film
CN111171774B (en) Reactive hot melt adhesive composition
KR20240009198A (en) Manufacture method of Recycling Hot-melt film
KR20240009618A (en) Eco-Friendly Hot-melt film
KR20240009197A (en) Recycling Hot-melt film
CN113993926A (en) Biodegradable resin composition having improved mechanical properties, moldability and weather resistance, and process for producing the same
KR20240009199A (en) Electronic Coomponents using Hot-melt film
KR20240009620A (en) Automobile Headliner using Eco-Friendly Hot-melt film
CN112795351B (en) High-temperature-resistant moisture-curing single-component polyurethane adhesive and preparation method thereof
CN114058249A (en) Polyurethane toughening modified epoxy powder encapsulating material, preparation method and application
JP2674847B2 (en) Reactive hot melt adhesive
JP3252380B2 (en) Thermoplastic polyurethane resin composition and watch band made of the resin composition
CN115926722A (en) Preparation method of recyclable bio-based thermosetting polyurethane hot melt adhesive
CN117659339B (en) Self-repairing yellowing-resistant high-transparency aliphatic polyurethane elastomer and preparation method thereof
KR100811016B1 (en) Thermoplastic polyurethane polymer for adhesives including PEG nano clay, a preparation method thereof and molded articles thereof
EP4053201A1 (en) Compatibilizer and polyester resin composition