KR20240009199A - Electronic Coomponents using Hot-melt film - Google Patents

Electronic Coomponents using Hot-melt film Download PDF

Info

Publication number
KR20240009199A
KR20240009199A KR1020220086373A KR20220086373A KR20240009199A KR 20240009199 A KR20240009199 A KR 20240009199A KR 1020220086373 A KR1020220086373 A KR 1020220086373A KR 20220086373 A KR20220086373 A KR 20220086373A KR 20240009199 A KR20240009199 A KR 20240009199A
Authority
KR
South Korea
Prior art keywords
hot melt
bio
film
electronic
electronic components
Prior art date
Application number
KR1020220086373A
Other languages
Korean (ko)
Inventor
장지상
이재정
김경규
최경석
박치균
Original Assignee
(주)아셈스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)아셈스 filed Critical (주)아셈스
Priority to KR1020220086373A priority Critical patent/KR20240009199A/en
Publication of KR20240009199A publication Critical patent/KR20240009199A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/423Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing cycloaliphatic groups
    • C08G18/4233Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing cycloaliphatic groups derived from polymerised higher fatty acids or alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/771Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

본 발명은 재활용 핫멜트를 이용한 전자부품에 관한 것으로, 상세하게는, 환경오염을 줄이고 자원 낭비를 미연에 방지하기 위하여 바이오 기반 열가소성 폴리우레탄(Thermoplastic Poly Urethane, TPU)을 합성하고, 이를 이용하여 제조된 전자부품에 관한 것으로, 전자부품 또는 전기부품, 특히 모니터 등에 사용되는 회로기판 등의 제조에 있어 필요한 고온에서의 인장강도 및 저온에서의 인장 강도가 뛰어날 뿐만 아니라, 내한성, 고온 안정성, 내열성 등에 있어서도 기존의 핫멜트 대비 우수하다.The present invention relates to electronic components using recycled hot melt. Specifically, to reduce environmental pollution and prevent resource waste, bio-based thermoplastic polyurethane (TPU) is synthesized and manufactured using the same. Regarding electronic components, it not only has excellent tensile strength at high temperatures and tensile strength at low temperatures required for manufacturing electronic or electrical components, especially circuit boards used in monitors, etc., but also has excellent cold resistance, high temperature stability, and heat resistance. It is superior to hot melt.

Description

재활용 핫멜트를 이용한 전자부품{Electronic Coomponents using Hot-melt film}Electronic components using recycled hot melt {Electronic Coomponents using Hot-melt film}

본 발명은 재활용 핫멜트를 이용한 전자부품에 관한 것으로, 상세하게는, 환경오염을 줄이고 자원 낭비를 미연에 방지하기 위하여 바이오 기반 열가소성 폴리우레탄(Thermoplastic Poly Urethane, TPU)을 합성하고, 이를 이용하여 제조된 전자부품에 관한 것으로, 전자부품, 특히 모니터 등에 사용되는 회로기판 등의 제조에 있어 필요한 고온에서의 인장강도 및 저온에서의 인장 강도가 뛰어날 뿐만 아니라, 내한성, 고온 안정성, 내열성 등에 있어서도 기존의 핫멜트 대비 우수하다.The present invention relates to electronic components using recycled hot melt. Specifically, to reduce environmental pollution and prevent resource waste, bio-based thermoplastic polyurethane (TPU) is synthesized and manufactured using the same. Regarding electronic components, it not only has excellent tensile strength at high temperatures and low temperatures required for manufacturing electronic components, especially circuit boards used in monitors, etc., but is also superior to existing hot melts in terms of cold resistance, high temperature stability, and heat resistance. great.

핫멜트 (hot-melt)란 상온에서 고형분 100%의 무용매형 접착제로서 사용시에 가열 용융하여 각종 피착제에 도포하고, 냉각하여 고화시킴으로써 접착력을 발현시키는 접착제의 하나로, 가전 분야는 물론 포장, 제본, 목가공 등의 분야에서 널리 사용되고 있다. 핫멜트는 고온에서 가열 용융되어 도포 즉시 냉각됨으로써 연속 작업이 가능하고, 휘발분이 발생하지 않아 도포 두께의 조절이 간단하고 고르게 되며, 화재의 위험성이 없는 것으로, 일반적으로 베이스 폴리머, 접착부여 수지 및 왁스의 3가지 성분을 주요 성분으로 하여 구성되며, 필요에 따라 산화방지제, 가소제, 난연제 등이 배합되어 사용된다.Hot-melt is a solvent-free adhesive with 100% solid content at room temperature. When used, it is an adhesive that develops adhesive power by heating and melting, applying to various adherends, and then cooling and solidifying. It is used in the home appliance field as well as packaging, bookbinding, and wood. It is widely used in fields such as processing. Hot melt is heated and melted at a high temperature and cooled immediately after application, enabling continuous operation. It does not generate volatile matter, making it simple and even to control the application thickness. There is no risk of fire. It is generally used for base polymers, adhesive resins, and waxes. It is composed of three main ingredients, and antioxidants, plasticizers, and flame retardants are mixed and used as needed.

그러나, 기존의 핫멜트 접착제는 포장, 제본, 목가공, 전기 및 전자 분야 등에 공통적으로 범용되는 것으로서, 전자부품에 특수하게 적용하기에는 내열성과 내한성, 접착성 및 열충격 강도 등에 있어 만족할만한 효과를 얻지 못하였다.However, existing hot melt adhesives are commonly used in packaging, bookbinding, woodworking, electrical and electronic fields, etc., and have not achieved satisfactory effects in terms of heat resistance, cold resistance, adhesion, and thermal shock strength for special application to electronic components. .

특히, 최근 그 수요가 급증하고 있는 전자부품 또는 전기부품의 경우 회로판 (printed circuit board, PCB)에 전자부품들을 부착시키기 위해서는 바람직한 특성을 갖는 핫멜트가 요구된다. PCB는 종이 에폭시 또는 유리 에폭시계의 기판 위에 구리 막을 입혀 필요한 회로를 인쇄하고 그 이외의 부분은 제거하여 제작되는 것으로, IC 기타의 부품들이 다수 부착된다. 따라서 전자 부품 또는 전기 부품에 적용하는 핫멜트는 바람직한 전기적 특성, 예를 들어 다른 부품들을 구성하는 재료들을 분해시키는 경향이 적고, 높은 저항성과 같은 전기적 특성 뿐 아니라 전자부품들의 다른 소자들에 손상을 주지 않기 위해서는 낮은 온도에서 상기 접착제 조성물을 도포시킬 수 있을 정도의 충분히 낮은 융점을 갖되 부품의 조립 및 후속 공정에서 요구되는 높은 온도에서도 그 결합력이 파손되지 않을 만큼 충분한 고온 저항성을 가져야 한다.In particular, in the case of electronic or electrical components, the demand of which has recently been rapidly increasing, a hot melt with desirable characteristics is required to attach the electronic components to a printed circuit board (PCB). A PCB is manufactured by covering a paper epoxy or glass epoxy board with a copper film, printing the necessary circuits, and removing the remaining parts, and many IC and other components are attached. Therefore, hot melts applied to electronic or electrical components not only have desirable electrical properties, such as a low tendency to decompose the materials that make up other components, and high resistance, but also do not damage other elements of the electronic components. In order to do this, it must have a sufficiently low melting point to allow the adhesive composition to be applied at low temperatures, but must have sufficient high temperature resistance so that its bonding strength is not broken even at the high temperatures required for assembly of parts and subsequent processes.

그러나, 현재까지 대부분의 핫멜트 조성물은 주로 종이 또는 부직 산업에 이용되거나, 자동차 내장재 등의 접착용으로만 개발되었으며, 전자부품 또는 전기부품에 적용하기 위해 물성을 개선시킨 특수한 핫멜트에 대해서는 극히 일부만이 개발되어 일부 다국적 기업만이 이에 관한 기술을 가지고 있을 뿐이다.However, to date, most hot melt compositions have been mainly used in the paper or nonwoven industries or have been developed only for adhesion to automobile interior materials, etc., and only a very small number of special hot melt compositions with improved physical properties for application to electronic or electrical components have been developed. Therefore, only some multinational companies have the technology for this.

상기의 예들에서 알 수 있는 바와 같이, 핫멜트 필름의 적용은 점점 늘어나고 있는 추세이며, 이러한 기술과 소재들의 개발이 매우 중요한 반면 환경적인 부분에 대한 고려도 그 요구가 점점 강조되고 있다.As can be seen from the examples above, the application of hot melt films is increasing, and while the development of these technologies and materials is very important, the need for environmental considerations is also increasingly emphasized.

지구온난화와 석유자원의 문제를 해결을 위해 지속성장 가능한 바이오매스 활용이 중요해지고 있으며, 최근 환경에 대한 이슈가 커지면서 환경부하를 저감하기 위해 국제적 환경 규제 및 무역규제가 시행되고 있는데 자동차의 경우 이에 대한 대응책으로 안전하고 쾌적한 친환경 자동차 및 사업장을 구축하기 위하여 환경 경영체계를 개선 및 강화해 나가고 있으며 연료뿐만 아니라 부품 및 내장재의 바이오매스를 이용한 플라스틱의 사용 요구가 증가되는 추세이다.The use of biomass that can grow sustainably is becoming important to solve the problems of global warming and oil resources. As environmental issues have recently grown, international environmental and trade regulations are being implemented to reduce the environmental load. In the case of automobiles, these regulations are being implemented. As a countermeasure, the environmental management system is being improved and strengthened to build safe and comfortable eco-friendly vehicles and workplaces, and the demand for the use of plastics using biomass for parts and interior materials as well as fuel is increasing.

한국등록특허 제10-0400876호Korean Patent No. 10-0400876

본 발명은 상기와 같은 환경적인 문제를 해결하기 위한 것으로, 구체적으로는 환경오염을 줄이고 자원 낭비를 미연에 방지하기 위하여 바이오매스 기반의 열가소성 폴리우레탄(Thermoplastic Poly Urethane, TPU) 핫멜트 접착제를 개발하여 전자부품, 특히 모니터 등에 사용되는 회로기판 업계의 친환경적인 요구와 동시에 내열성 및 강인성을 충족시킬 수 있는 핫멜트 접착제 및 이를 적용한 전자부품을 제공하기 위한 것이다.The present invention is intended to solve the above-mentioned environmental problems. Specifically, in order to reduce environmental pollution and prevent resource waste, a biomass-based thermoplastic polyurethane (TPU) hot melt adhesive has been developed to be used in electronics. The purpose is to provide hot melt adhesives and electronic components to which they are applied that can meet the environmentally friendly requirements of the circuit board industry used in parts, especially monitors, etc., as well as heat resistance and toughness.

한편으로, 본 발명은 On the one hand, the present invention

전자부품용 핫멜트에 있어서,In hot melt for electronic components,

바이오 지방산(fatty acid) 기반의 폴리에스테르(polyester) 폴리올;Bio-fatty acid-based polyester polyol;

이소소르바이드(isosorbide)계 이소시아네이트; 및 Isosorbide-based isocyanate; and

체인 증량제(chain extender);를 포함하는 열가소성 폴리우레탄으로 구성된 핫멜트가 적용되는 것을 특징으로 하는, 재활용 핫멜트를 이용한 전자부품을 제공하는 것을 목적으로 한다.The purpose is to provide electronic components using recycled hot melt, characterized in that a hot melt composed of thermoplastic polyurethane containing a chain extender is applied.

본 발명에 따르면, Bio-isocyanate 사용으로 기존 제품의 Bio 함량을 1.5~2배 정도 높일 수 있으며 제품을 폐기할 경우 석유 제품 대비 CO2 배출량을 60% 이상 감소시킬 수 있다. 또한, 핫멜트 필름으로 가공하기 때문에 공정 중에 발생된 스크랩이나 파단 필름 등을 재활용하기 쉬우므로 공정 상에 소요되는 비용 절감과 자원순환이 가능하다. According to the present invention, the bio content of existing products can be increased by 1.5 to 2 times by using bio-isocyanate, and when the product is disposed of, CO 2 emissions can be reduced by more than 60% compared to petroleum products. In addition, because it is processed with a hot melt film, it is easy to recycle scrap or broken film generated during the process, thereby reducing costs in the process and recycling resources.

또한, 본 발명에 따른 재활용 핫멜트는 접착력이 우수할 뿐만 아니라 내한성, 내열성, 열충격 강도 등에 있어 우수한 물성을 나타내므로, 범용 핫멜트에 비해 까다로운 내한, 내열 및 고온과 저온에서의 저항성과 부식 저항성 등을 요하는 전자부품 또는 전기부품의 결착, 예를 들어 회로기판에 소자를 부착하기 위한 것과 같은 전자기기부품 분야에서 효과적인 핫멜트로 사용될 수 있다.In addition, the recycled hot melt according to the present invention not only has excellent adhesion, but also exhibits excellent physical properties in cold resistance, heat resistance, and thermal shock strength, so it requires more difficult cold resistance, heat resistance, resistance at high and low temperatures, and corrosion resistance compared to general-purpose hot melt. It can be used as an effective hot melt in the field of electronic device components, such as for bonding electronic or electrical components, for example, for attaching elements to a circuit board.

도 1은 본 발명의 일 실시예에 따른 핫멜트의 BIO 함량별 비중 및 M.I.를 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따라 제조된 재활용 핫멜트를 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따른 핫멜트의 BIO 함량별 인장강도 및 신장률을 나타낸 도면이다.
도 4는 본 발명의 일 실시에에 따라 합성된 TPU 수지의 인장물성을 측정한 결과를 나타낸 그래프이다.
Figure 1 is a diagram showing the specific gravity and MI by BIO content of a hot melt according to an embodiment of the present invention.
Figure 2 shows a recycled hot melt manufactured according to an embodiment of the present invention.
Figure 3 is a diagram showing the tensile strength and elongation by BIO content of the hot melt according to an embodiment of the present invention.
Figure 4 is a graph showing the results of measuring the tensile properties of a TPU resin synthesized according to an embodiment of the present invention.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 재활용 핫멜트를 이용한 전자부품에 관한 것으로, The present invention relates to electronic components using recycled hot melt,

전자부품용 핫멜트에 있어서,In hot melt for electronic components,

바이오 지방산(fatty acid) 기반의 폴리에스테르(polyester) 폴리올;Bio-fatty acid-based polyester polyol;

이소소르바이드(isosorbide)계 이소시아네이트; 및 Isosorbide-based isocyanate; and

체인 증량제(chain extender);를 포함하는 열가소성 폴리우레탄으로 구성된 핫멜트가 적용되는 것을 특징으로 한다.It is characterized in that a hot melt composed of thermoplastic polyurethane containing a chain extender is applied.

본 발명에 따른 재활용 핫멜트는 전자부품 또는 전기부품, 특히 모니터 등에 사용되는 회로기판 등의 제조에 있어 필요한 고온에서의 인장강도 및 저온에서의 인장 강도가 뛰어날 뿐만 아니라, 내한성, 고온 안정성, 내열성 등에 있어서도 기존의 핫멜트 조성물에 비해 우수하므로 전자부품용 핫멜트로서 효과적으로 이용될 수 있다.The recycled hot melt according to the present invention not only has excellent tensile strength at high temperatures and low temperatures required for manufacturing electronic components or electrical components, especially circuit boards used in monitors, etc., but also has excellent cold resistance, high temperature stability, and heat resistance. Since it is superior to existing hot melt compositions, it can be effectively used as a hot melt for electronic components.

본 발명은 바이오 지방산(fatty acid) 기반의 폴리에스테르(polyester) 폴리올과 이소소르바이드(isosorbide)계 이소시아네이트 및 체인 증량제(chain extender) 등을 기반으로 한 우수한 내열성, 탄성 및 인장물성을 갖춘 높은 함량의 재활용 핫멜트에 관한 것이다.The present invention is a high-content polyester polyol with excellent heat resistance, elasticity, and tensile properties based on bio fatty acid-based polyester polyol, isosorbide isocyanate, and chain extender. It's about recycled hot melt.

본 발명의 일 실시형태에서, 상기 핫멜트는 바이오매스 기반 열가소성 폴리우레탄(Thermoplastic Poly Urethane, TPU)으로 구성되는 것을 특징으로 한다.In one embodiment of the present invention, the hot melt is characterized in that it is composed of biomass-based thermoplastic polyurethane (Thermoplastic Poly Urethane, TPU).

상기 TPU의 물성을 위해 관능기의 당량비를 조절 가능하고, 병용 폴리올의 비율 그리고 쇄연장제의 종류별 비율에 따라 다양한 열가소성 폴리우레탄을 합성할 수 있다.For the physical properties of the TPU, the equivalence ratio of functional groups can be adjusted, and various thermoplastic polyurethanes can be synthesized depending on the ratio of the polyol used and the ratio of each type of chain extender.

본 발명의 일 실시형태에서, 상기 바이오 지방산인 바이오매스의 함량이 전체 100% 대비 40% 이상으로 포함되는 것이 바람직하고, 60% 이상으로 포함되는 것이 보다 바람직하다.In one embodiment of the present invention, the content of biomass, which is the bio fatty acid, is preferably 40% or more of the total 100%, and more preferably 60% or more.

이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다. Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it is obvious to those skilled in the art that the scope of the present invention is not limited to these examples.

실시예 1: Example 1:

교반기, condenser, 질소 주입구가 장착된 500ml 4구 반응기에 수분이 제거된 폴리올을 투입하고 80℃에서 1시간동안 균일하게 교반하였다. 그 후 이소시아네이트를 dropping하고 촉매를 첨가한 다음 반응시켰다. 반응물의 NCO 함량을 dibutylamine back-titration (DBA)법을 통해 확인하였으며, 이론적 NCO 함량에 도달하였을 때 다음 반응을 진행하였다. 온도를 50℃로 낮추고 쇄연장제를 dropping하면서 반응을 진행하여 열가소성 폴리우레탄을 합성하였으며 미반응 NCO가 모두 사라질 때에 반응을 종료하였다. 각 반응 단계에서 생성된 중합체의 구조와 최종적으로 합성된 열가소성 폴리우레탄의 구조를 확인하기 위하여 FT-IR을 측정하였다. The polyol from which moisture was removed was added to a 500 ml four-neck reactor equipped with a stirrer, condenser, and nitrogen inlet, and stirred uniformly at 80°C for 1 hour. After that, the isocyanate was dropped, a catalyst was added, and the reaction was performed. The NCO content of the reactant was confirmed through the dibutylamine back-titration (DBA) method, and when the theoretical NCO content was reached, the next reaction was performed. The temperature was lowered to 50°C and the reaction proceeded while dropping the chain extender to synthesize thermoplastic polyurethane. The reaction was completed when all unreacted NCO disappeared. FT-IR was measured to confirm the structure of the polymer produced in each reaction step and the structure of the finally synthesized thermoplastic polyurethane.

반응 시간에 따라 FT-IR을 측정한 결과, 시간이 경과함에 따라 NCO 특성 peak인 2270cm-1의 peak가 사라진 것을 확인하였으며 3300cm-1 1530cm-1부근에서 우레탄기 중 -NH peak, 1700~1730cm-1에서 우레탄기 중 -C=O-, 1310cm-1 에서 우레탄기 중 -CN- peak를 관찰할 수 있었으며 성공적으로 바이오계 TPU가 합성된 것을 알 수 있었다. As a result of measuring FT-IR according to the reaction time, it was confirmed that the NCO characteristic peak at 2270cm -1 disappeared as time passed, and -NH peak, 1700~1730cm -1 among urethane groups around 3300cm -1 and 1530cm -1 At 1 , -C=O- among the urethane groups, and -CN- peak among the urethane groups at 1310 cm -1 were observed, confirming that bio-based TPU was successfully synthesized.

폴리우레탄 수지 100 중량부에 대하여 대전방지제인 스테아릴디메틸벤질암모늄클로라이드 1 중량부를 혼합하고 성형하여 제조된 두께 200㎛의 상부 핫멜트 필름과, 폴리우레탄 수지 100 중량부로 이루어진 두께 200㎛의 하부 핫멜트 필름을 상호 적층하여, 2층 구조의 핫멜트 필름을 제조하였다.An upper hot melt film with a thickness of 200㎛ prepared by mixing and molding 1 part by weight of stearyldimethylbenzylammonium chloride, an antistatic agent, with 100 parts by weight of polyurethane resin, and a lower hot melt film with a thickness of 200㎛ made of 100 parts by weight of polyurethane resin. By stacking each other, a hot melt film with a two-layer structure was manufactured.

실험예 1: Experimental Example 1:

최종 Bio 함량 10%, 21%, 30%, 43% TPU Hot melt film에 대한 연구를 진행하였다. Research was conducted on TPU hot melt films with final bio content of 10%, 21%, 30%, and 43%.

① Bio 함량 10% ① Bio content 10%

Bio 함량 10% TPU를 맞추기 위하여 D社의 석유계 TPU 원료 3종류와 Bio 함량 25% TPU 원료 혼합을 진행하였다.In order to achieve TPU with 10% bio content, three types of petroleum-based TPU raw materials from D Company were mixed with TPU raw materials with 25% bio content.

[표 1][Table 1]

② Bio 함량 21%② Bio content 21%

D社로부터 받은 Bio 함량 25% TPU 원료를 사용하였다.(※ 위의 Bio TPU 25% 제품 (8085AP)와 다른 물성의 제품)We used TPU raw material with 25% Bio content received from Company D. (※ Product with different physical properties from the Bio TPU 25% product (8085AP) above)

③ Bio 함량 30%③ Bio content 30%

D社로부터 받은 Bio 함량 33% TPU 원료를 사용하였다.We used TPU raw material with 33% bio content received from Company D.

④ Bio 함량 43%④ Bio content 43%

한국신발피혁연구원으로부터 받은 Bio 함량 47.33% TPU 원료를 사용하여 최종 Bio 함량 43% TPU Hotmelt film 제작을 위한 원료 혼합을 진행하였다.Using TPU raw materials with a bio content of 47.33% received from the Korea Shoe and Leather Research Institute, raw materials were mixed to produce a TPU hotmelt film with a final bio content of 43%.

컴파운드된 TPU 수지에 필름으로 제조하기 위해 아래 표 2의 각종 첨가제를 추가적으로 첨가하였다. Blown Extruder 방식으로 Hot melt 접착 Film를 생산 시 첨가제 중 슬립제의 역할은 더욱 중요하며, T-Die 방식보다 더 높은 비율의 슬립제가 첨가된다. To manufacture the compounded TPU resin into a film, various additives shown in Table 2 below were additionally added. When producing hot melt adhesive film using the blown extruder method, the role of slip agent among additives is more important, and a higher proportion of slip agent is added than with the T-Die method.

[표 2][Table 2]

상기의 배합비율에 따라 만들어진 4종류의 Bio 함량에 따른 수지의 물성 평가를 위해 M.I (Melt Indexer )측정기를 이용하여 밀도, 용융흐름성 값을 측정하였다. 각 물성 평가 항목에 대해 5번씩 실험 측정을 진행하였으며, 평균값으로 최종 결과값을 도출하였다(도 1 참조). To evaluate the physical properties of the four types of resins made according to the above mixing ratio according to the Bio content, density and melt flow values were measured using an M.I (Melt Indexer) meter. Experimental measurements were conducted five times for each property evaluation item, and the final result was derived as the average value (see Figure 1).

실험예 2: Experimental Example 2:

4종류의 Bio 함량에 따른 수지의 필름 형성 여부를 확인하기 위해 압출조건을 달리하여 Blown Extruder 방식으로 필름 제작 실험을 진행하였다. 필름 제작 시 압출조건 인자로 크게는 압출속도, 압출온도가 있으며, 필름의 품질에 더 많은 영향을 주는 압출온도 조건을 125 내지 145 ℃로 변경하며 실험을 진행하였다. (압출속도는 8m/min 를 기준으로 한다.)In order to check whether the resins formed films according to the four types of Bio content, a film production experiment was conducted using the blown extruder method under different extrusion conditions. When producing a film, the extrusion condition factors include extrusion speed and extrusion temperature. The experiment was conducted by changing the extrusion temperature condition, which has a greater influence on the quality of the film, to 125 to 145 °C. (Extrusion speed is based on 8m/min.)

① Bio 함량 10% ① Bio content 10%

압출온도 125℃에서 압출온도가 낮을 경우 발생하는 필름 상에 Gel이 형성되는 것을 확인할 수 있었으며, 압출온도를 135℃ 이상 높였을 때 Gel 형성 문제가 발생하지 않는 것을 확인할 수 있었다. 압출온도가 140℃ 이상 높아질 경우, 원료 수지의 토출량이 증가하면서 필름 두께가 두꺼워져 불일정해지는 것을 육안으로 확인할 수 있었다. Bio 함량 10%-2 원료 수지를 이용한 필름 제조 결과, 135℃~140℃ 압출온도 조건에서 최적의 필름 형성이 이루어지는 것을 확인하였다.At the extrusion temperature of 125℃, it was confirmed that gel was formed on the film, which occurs when the extrusion temperature is low, and it was confirmed that the gel formation problem did not occur when the extrusion temperature was raised to 135℃ or higher. When the extrusion temperature increased above 140°C, it was visually confirmed that the discharge amount of raw resin increased and the film thickness became thicker and more unstable. As a result of film manufacturing using raw material resin with a bio content of 10%-2, it was confirmed that optimal film formation was achieved under extrusion temperature conditions of 135℃~140℃.

② Bio 함량 21%② Bio content 21%

압출온도 115, 120℃에서 필름 상에 Gel이 형성되는 문제가 발생하였고, 압출온도를 125℃ 이상 올렸을 때 Gel 형성이 보이지 않았다. 압출온도가 증가할수록 연신이 잘 되는 것을 확인할 수 있었으나, 압출온도 135℃ 이상에서는 원료 수지의 토출량 증가로 작업성이 불안정해져 필름 와인딩 시 불일정한 장력으로 와인딩이 제대로 되지 않아 필름에 주름이 생기는 문제가 발생하였다. Bio 함량 21% 원료 수지를 이용한 필름 제조 실험 결과, 125℃, 130℃ 압출온도 조건에서 정상 필름 형성이 이루어지는 것을 확인할 수 있었다.There was a problem with gel formation on the film at extrusion temperatures of 115 and 120℃, and no gel formation was seen when the extrusion temperature was raised above 125℃. It was confirmed that stretching improves as the extrusion temperature increases. However, at extrusion temperatures above 135°C, workability becomes unstable due to an increase in the discharge amount of raw resin, and the winding does not work properly due to uneven tension when winding the film, resulting in the problem of wrinkles forming in the film. occurred. As a result of a film manufacturing experiment using raw material resin with 21% bio content, it was confirmed that normal film formation occurred under extrusion temperature conditions of 125℃ and 130℃.

③ Bio 함량 30%③ Bio content 30%

압출온도가 낮을 경우 필름 상에 Gel이 형성되는 문제가 보였으며, 130℃보다 낮은 온도에서 Un-melting으로 인한 Gel 형성 문제가 발생하였다. Bio 함량 30% 원료 수지를 이용한 필름 제조 실험 결과, 135℃의 압출온도 조건에서 정상 필름 형성이 이루어지는 것을 확인할 수 있었다. Bio 함량 21% 원료 수지 대비 최적의 압출온도 조건이 높은 이유는 압출온도에 영향을 미치는 제품 물성 경도로 예측할 수 있었으며, 실제 Bio TPU 21% 제품 경도(Shores A 75~80) 대비 Bio 함량 30% 제품 경도(Shores A 90-95)가 높은 것을 확인할 수 있다.When the extrusion temperature was low, there was a problem with gel formation on the film, and at temperatures lower than 130°C, a gel formation problem occurred due to unmelting. As a result of a film manufacturing experiment using raw material resin with 30% bio content, it was confirmed that normal film formation occurred under the extrusion temperature condition of 135°C. The reason why the optimal extrusion temperature condition is higher compared to the raw material resin with 21% bio content could be predicted by the hardness of the product physical properties that affect the extrusion temperature, and the actual hardness of the 21% bio TPU product (Shores A 75~80) compared to the product with 30% bio content It can be seen that the hardness (Shores A 90-95) is high.

④ Bio 함량 43%④ Bio content 43%

압출온도가 125℃ 이상에서 흐름성이 증가하면서 작업성에 좋지 않은 영향을 주어, 장력이 불일정해지면서 권취 불량이 발생하는 것을 확인할 수 있었다. Bio 함량 43% 원료 수지를 이용한 필름 제조 실험 결과, 120℃의 압출온도 조건에서 정상 필름 형성이 이루어지는 것을 확인할 수 있었다(도 2 참조).It was confirmed that when the extrusion temperature exceeds 125°C, flowability increases and workability is adversely affected, tension becomes inconsistent, and winding defects occur. As a result of a film manufacturing experiment using a raw material resin with a bio content of 43%, it was confirmed that a normal film was formed under the extrusion temperature condition of 120°C (see Figure 2).

실험예 3: Experimental Example 3:

기존 석유계 TPU Hot melt Film의 가공기술을 확인하고, Bio 함량(10%, 21%, 30%, 43%)별 가공기술 및 조건에 따른 제품의 성능 검증(두께, 인장강도, 인장신도)을 통해 최적의 가공 조건을 도출하였다. 앞서 각 배합비율에 따른 최적의 압출온도 조건을 참고하여 가공 조건을 도출하였으며, TPU Hot melt film 제품 성능 검증을 위한 자체 물성 테스트를 진행하였다. 각 물성 평가 항목에 대해 5번씩 실험 측정을 진행하였다(도 3 참조).Confirm the processing technology of existing petroleum-based TPU hot melt film, and verify product performance (thickness, tensile strength, tensile elongation) according to processing technology and conditions for each bio content (10%, 21%, 30%, 43%). Through this, optimal processing conditions were derived. Previously, processing conditions were derived by referring to the optimal extrusion temperature conditions for each mixing ratio, and an in-house physical property test was conducted to verify the performance of the TPU hot melt film product. Experimental measurements were conducted five times for each physical property evaluation item (see Figure 3).

실험예 4: Experimental Example 4:

상기 실시예에서 제조한 핫멜트를 200℃에서 용융하여 PCB 기판과 알루미늄 전해액 콘덴서를 접합시킨 시편을 제작한 후, 실온에서 냉각하였다. 제작된 시편을 -40℃로 유지되는 항온기에 100시간 동안 방치한 후, 꺼내어 상기 시편 접합부의 크랙 (crack) 및 들뜸 현상의 발생 여부를 관찰하였다. The hot melt prepared in the above example was melted at 200°C to produce a specimen in which a PCB board and an aluminum electrolyte capacitor were bonded, and then cooled to room temperature. The manufactured specimen was left in a thermostat maintained at -40°C for 100 hours, then taken out and observed for cracks and lifting at the joint of the specimen.

그 결과, 본 발명에 따른 핫멜트는 -40℃에서도 전혀 크랙 및 들뜸 현상이 발생하지 않았다. 따라서 본 발명의 핫멜트는 최소한 -40℃까지는 내한성을 가짐을 확인하였다.As a result, the hot melt according to the present invention did not cause any cracking or lifting even at -40°C. Therefore, it was confirmed that the hot melt of the present invention has cold resistance up to at least -40°C.

실험예 5: Experimental Example 5:

본 발명에 따른 핫멜트를 200℃의 온도로 용융하여 5초 이내에 준비된 피착제의 부착면에 도포한 후 실온에서 1시간 동안 방치하였다. 피착제는 철강을 재질로 하는 길이 100 ±0.5 mm, 너비 25 ±0.5 mm의 시편 두 개가 12.55 ±0.5 mm정도로 겹치도록 하고, 그 사이에 핫멜트 접착제를 도포하여 제작하였다. 상기 시편을 80℃ 또는 25℃의 드라이오븐에서 각각 1시간 동안 방치한 후, 꺼내어 10초 이내에 푸쉬풀 게이지 (push-pull gauge)를 이용하여 10 mm/min의 인장 속도로 시편이 파기될 때가지 잡아 당겨 시편이 파기될 때의 최대 하중을 측정하였다.The hot melt according to the present invention was melted at a temperature of 200°C, applied to the adhesive surface of the prepared adherend within 5 seconds, and left at room temperature for 1 hour. The adherend was manufactured by overlapping two steel specimens with a length of 100 ± 0.5 mm and a width of 25 ± 0.5 mm by about 12.55 ± 0.5 mm, and applying a hot melt adhesive between them. After leaving the specimen in a dry oven at 80℃ or 25℃ for 1 hour, take it out and pull it at a tensile speed of 10 mm/min using a push-pull gauge within 10 seconds until the specimen is destroyed. The maximum load when the specimen was broken by pulling was measured.

그 결과, 본 발명의 핫멜트는 80℃에서의 인장강도는 17∼20 kgf/cm2으로 현저히 높았으며, 25℃에서의 인장접착강도 또한 28∼33 kgf/cm2로 높게 나타나 저온뿐만 아니라 고온에서의 인장접착강도에 있어서도 우수한 특성을 가짐을 확인하였다(도 4 참조).As a result, the hot melt of the present invention had a significantly high tensile strength of 17 to 20 kgf/cm 2 at 80°C, and the tensile adhesive strength at 25°C was also high at 28 to 33 kgf/cm 2 , making it effective not only at low temperatures but also at high temperatures. It was confirmed that it had excellent properties in terms of tensile adhesive strength (see Figure 4).

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아님은 명백하다. 본 발명이 속한 기술분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.As the specific parts of the present invention have been described in detail above, it is clear to those skilled in the art that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. do. Anyone skilled in the art to which the present invention pertains will be able to make various applications and modifications within the scope of the present invention based on the above contents.

따라서, 본 발명의 실질적인 범위는 첨부된 특허청구범위와 그의 등가물에 의하여 정의된다고 할 것이다.Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (3)

전자부품용 핫멜트에 있어서,
바이오 지방산(fatty acid) 기반의 폴리에스테르(polyester) 폴리올;
이소소르바이드(isosorbide)계 이소시아네이트; 및
체인 증량제(chain extender);를 포함하는 열가소성 폴리우레탄으로 구성된 핫멜트가 적용되는 것을 특징으로 하는, 재활용 핫멜트를 이용한 전자부품.
In hot melt for electronic components,
Bio-fatty acid-based polyester polyol;
Isosorbide-based isocyanate; and
Electronic components using recycled hot melt, characterized in that a hot melt composed of thermoplastic polyurethane containing a chain extender is applied.
제1항에 있어서, 상기 바이오 지방산인 바이오매스의 함량이 전체 100% 대비 50% 이상으로 포함되는 것을 특징으로 하는, 재활용 핫멜트를 이용한 전자부품.The electronic component using recycled hot melt according to claim 1, wherein the content of biomass, which is the bio fatty acid, is more than 50% of the total 100%. 제1항에 있어서, 상기 핫멜트의 접착강도가 2.5 kgf/cm 이상인 것을 특징으로 하는, 재활용 핫멜트를 이용한 전자부품.The electronic component using recycled hot melt according to claim 1, wherein the hot melt has an adhesive strength of 2.5 kgf/cm or more.
KR1020220086373A 2022-07-13 2022-07-13 Electronic Coomponents using Hot-melt film KR20240009199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220086373A KR20240009199A (en) 2022-07-13 2022-07-13 Electronic Coomponents using Hot-melt film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220086373A KR20240009199A (en) 2022-07-13 2022-07-13 Electronic Coomponents using Hot-melt film

Publications (1)

Publication Number Publication Date
KR20240009199A true KR20240009199A (en) 2024-01-22

Family

ID=89716419

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220086373A KR20240009199A (en) 2022-07-13 2022-07-13 Electronic Coomponents using Hot-melt film

Country Status (1)

Country Link
KR (1) KR20240009199A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400876B1 (en) 2000-10-27 2003-10-08 성일화학 (주) hot-melt adhesive for electronic components

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400876B1 (en) 2000-10-27 2003-10-08 성일화학 (주) hot-melt adhesive for electronic components

Similar Documents

Publication Publication Date Title
EP2828308B1 (en) Crash-durable adhesive with enhanced stress durability
EP1734095B1 (en) Moisture-curable polyurethane hot melt adhesive
CN102702472B (en) There is the urethane of polyethers and polyester block and alkoxy silane end base
EP2274356A1 (en) High heat resistant adhesive and sealant compositions
WO2008091989A1 (en) Reactive hot melt adhesive with bituminous additive
EP3055372B1 (en) Adhesive articles and related methods
CN111718539A (en) Self-repairing polypropylene material and preparation method thereof
CN106957616B (en) Printable iron-coated film and preparation method thereof
KR20240009199A (en) Electronic Coomponents using Hot-melt film
KR20240009197A (en) Recycling Hot-melt film
KR20240009618A (en) Eco-Friendly Hot-melt film
KR20240009198A (en) Manufacture method of Recycling Hot-melt film
KR20240009620A (en) Automobile Headliner using Eco-Friendly Hot-melt film
KR20240009619A (en) Manufacture method of Eco-Friendly Hot-melt film
WO2015002355A1 (en) Thermoplastic polyurethane hot-melt film
CN103228713A (en) Polylactic acid film or sheet
CN114058249A (en) Polyurethane toughening modified epoxy powder encapsulating material, preparation method and application
US9719000B2 (en) Hot melt adhesive and method of forming the same
WO2005068576A1 (en) Moisture-curable hot-melt adhesive
JP2021070756A (en) Protective film for decorative sheet, and decorative sheet with protective film
CN110655750A (en) Straw powder modified recovered ABS composite material and preparation method thereof
CN110358050A (en) A kind of preparation method of the polyurethane aqueous adhesive of aminosilane coupling agent modifying
CN115926722A (en) Preparation method of recyclable bio-based thermosetting polyurethane hot melt adhesive
JPH07122056B2 (en) Composition for composite type damping material
CN114149558B (en) Aqueous polyurethane dispersion, preparation method and application thereof