KR20240000032A - Composition for preventing, improving or treating breast cancer comprising LRRK2 protein - Google Patents

Composition for preventing, improving or treating breast cancer comprising LRRK2 protein Download PDF

Info

Publication number
KR20240000032A
KR20240000032A KR1020220076349A KR20220076349A KR20240000032A KR 20240000032 A KR20240000032 A KR 20240000032A KR 1020220076349 A KR1020220076349 A KR 1020220076349A KR 20220076349 A KR20220076349 A KR 20220076349A KR 20240000032 A KR20240000032 A KR 20240000032A
Authority
KR
South Korea
Prior art keywords
lrrk2
protein
breast cancer
cells
pharmaceutical composition
Prior art date
Application number
KR1020220076349A
Other languages
Korean (ko)
Inventor
박희세
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020220076349A priority Critical patent/KR20240000032A/en
Publication of KR20240000032A publication Critical patent/KR20240000032A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/45Transferases (2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57492Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hospice & Palliative Care (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 LRRK2 단백질을 유효성분으로 포함하는 유방암의 예방 또는 치료용 약학적 조성물에 관한 것이다. 본 발명의 일 실시예에 따른 LRRK2 단백질을 유효성분으로 포함하는 조성물을 이용하면, LRRK2 단백질이 Notch1 단백질의 분해에 중요한 역할을 하는 Fbw7 단백질과 결합함으로써, Notch1 단백질과 Fbw7 단백질의 결합을 증가시켜 Notch1 단백질의 분해를 조절함으로써, Notch1 의존성 유방암을 효과적으로 예방 또는 치료할 수 있다.The present invention relates to a pharmaceutical composition for preventing or treating breast cancer containing LRRK2 protein as an active ingredient. When using a composition containing LRRK2 protein as an active ingredient according to an embodiment of the present invention, the LRRK2 protein binds to Fbw7 protein, which plays an important role in decomposing Notch1 protein, thereby increasing the binding between Notch1 protein and Fbw7 protein, thereby increasing Notch1 By controlling protein degradation, Notch1-dependent breast cancer can be effectively prevented or treated.

Description

LRRK2 단백질을 포함하는 유방암의 예방, 개선 또는 치료용 조성물{Composition for preventing, improving or treating breast cancer comprising LRRK2 protein}Composition for preventing, improving or treating breast cancer comprising LRRK2 protein {Composition for preventing, improving or treating breast cancer comprising LRRK2 protein}

본 발명은 LRRK2 단백질을 포함하는 유방암의 예방, 개선 또는 치료용 조성물에 관한 것이다.The present invention relates to a composition for preventing, improving or treating breast cancer containing the LRRK2 protein.

유방암은 전세계적으로 여성에게 최다빈도로 발생하는 암 질환 중 하나이다. 세계 보건기구에 따르면 2012년 기준 약 160만 건에 육박하는 새로운 유방암 사례들이 보고되었고, 이 중 사망한 사례는 약 55만 건에 이르는 것으로 보고되었다. 유방암의 치료는 유방암의 종류에 따라 다르게 이루어지고 있다. 예를 들면, 에스트로겐 수용체 양성 유방암에는 에스트로겐 수용체 활성화를 저해하는 약물들인 선택적 에스트로겐 수용체 모듈레이터(selective estrogen receptor modulators, SERMs)가 주로 사용되며, 타목시펜(tamoxifen)과 같은 호르몬 치료제가 대표적이다. 그러나, 타목시펜과 같은 호르몬 요법은 내성 문제 및 자궁내막암 발병 위험 등 문제가 있고, 삼중음성 유방암 치료제는 재발 및 불량한 예후 등의 문제가 있어, 새로운 유방암 치료제 개발이 계속해서 요구되고 있다.Breast cancer is one of the cancer diseases that occurs most frequently in women worldwide. According to the World Health Organization, as of 2012, nearly 1.6 million new cases of breast cancer were reported, of which approximately 550,000 deaths were reported. Breast cancer treatment is carried out differently depending on the type of breast cancer. For example, selective estrogen receptor modulators (SERMs), which are drugs that inhibit estrogen receptor activation, are mainly used for estrogen receptor-positive breast cancer, and hormonal treatments such as tamoxifen are representative examples. However, hormone therapy such as tamoxifen has problems such as resistance and risk of developing endometrial cancer, and triple-negative breast cancer treatment has problems such as recurrence and poor prognosis, so the development of new breast cancer treatment continues to be required.

한편, LRRK2(leucin-rich repeat kinase-2) 단백질은 류신 풍부 반복 키나아제 집단(leucin-rich repeat kinase family)에 속하는 단백질로, 알츠하이머병과 관련된 경도인지 손상의 전가, L-도파 유도 운동 이상증, 및 뉴런 전구 분화와 관련된 CNS 장애와 관련됨이 보고되었다. 또한, LRRK2 단백질의 G2019S 변이체는 급성 골수성 백혈병뿐만 아니라, 신장암, 유방암, 폐암, 전립선암 등과 같은 비-피부 암 발생 증가와 관련이 있다는 것이 보고된 바 있다. Meanwhile, the LRRK2 (leucin-rich repeat kinase-2) protein is a protein belonging to the leucin-rich repeat kinase family, and is implicated in the transmission of mild cognitive impairment related to Alzheimer's disease, L-dopa-induced dyskinesia, and neurons. It has been reported to be associated with CNS disorders related to progenitor differentiation. In addition, it has been reported that the G2019S variant of the LRRK2 protein is associated with an increase in the incidence of non-skin cancers such as kidney cancer, breast cancer, lung cancer, and prostate cancer, as well as acute myeloid leukemia.

본 발명자들은, LRRK2 단백질이 Notch1 의존성 유방암의 종양 형성을 억제하는 Fbw7 단백질을 안정화하는 것을 확인하여 LRRK2 단백질이 유방암의 치료에 유용하게 사용될 수 있음을 규명함으로써 본 발명을 완성하였다.The present inventors completed the present invention by confirming that LRRK2 protein stabilizes Fbw7 protein, which suppresses Notch1-dependent breast cancer tumor formation, and confirmed that LRRK2 protein can be usefully used in the treatment of breast cancer.

대한민국 등록특허 제10-2061142호Republic of Korea Patent No. 10-2061142

본 발명의 일 목적은 LRRK2(leucine-rich repeat kinase 2) 단백질을 유효성분으로 포함하는 유방암의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.One object of the present invention is to provide a pharmaceutical composition for preventing or treating breast cancer containing LRRK2 (leucine-rich repeat kinase 2) protein as an active ingredient.

본 발명의 다른 목적은 LRRK2 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 벡터 또는 상기 벡터로 형질전환된 LRRK2 과발현 세포주, 또는 이의 배양액을 유효성분으로 포함하는 유방암의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.Another object of the present invention is to provide a pharmaceutical composition for the prevention or treatment of breast cancer containing as an active ingredient a vector containing a polynucleotide encoding the LRRK2 protein, an LRRK2 overexpressing cell line transformed with the vector, or a culture medium thereof. .

본 발명의 또 다른 목적은 LRRK2 단백질을 유효성분으로 포함하는 유방암의 전이 억제용 약학적 조성물을 제공하는 것이다.Another object of the present invention is to provide a pharmaceutical composition for inhibiting metastasis of breast cancer containing LRRK2 protein as an active ingredient.

본 발명의 또 다른 목적은 a) LRRK2 단백질을 발현하는 유방암 세포에 피검물질을 처리하는 단계; b) 상기 단계 a)의 세포에서 LRRK2 단백질의 발현 수준을 측정하는 단계; 및 c) 상기 단계 b)의 LRRK2 단백질의 발현 수준이 피검물질을 처리하지 않은 대조군과 비교하여 증가한 피검물질을 선별하는 단계를 포함하는 유방암 치료제 또는 전이 억제제의 스크리닝 방법을 제공하는 것이다.Another object of the present invention is a) treating breast cancer cells expressing LRRK2 protein with a test substance; b) measuring the expression level of LRRK2 protein in the cells of step a); and c) selecting a test substance in which the expression level of the LRRK2 protein in step b) is increased compared to a control group not treated with the test substance.

본 발명의 일 양상은 LRRK2(leucine-rich repeat kinase 2) 단백질을 유효성분으로 포함하는 유방암의 예방 또는 치료용 약학적 조성물을 제공한다.One aspect of the present invention provides a pharmaceutical composition for preventing or treating breast cancer containing LRRK2 (leucine-rich repeat kinase 2) protein as an active ingredient.

본 명세서에서 사용된 용어, "LRRK2(leucin-rich repeat kinase-2) 단백질"은 류신 풍부 반복 키나아제 집단(leucin-rich repeat kinase family)에 속하는 단백질로, 종간 유사성이 높은 2,527개의 아미노산 배열로 구성되어 있다. LRRK2 단백질은 하나의 단백질 안에 GTP 가수분해효소(guanosine triphosphatase; GTPase)와 세린-트레오닌 키나아제(Serine-threonine kinase) 활성을 모두 갖는 특징이 있다. 발현된 LRRK2 단백질은 뇌를 포함한 다양한 기관과 조직에서 관찰되고 있으며, 세포수준에서는 세포질 또는 세포막 및 미토콘드리아 외막에서 존재한다. 또한, LRRK2 단백질은 기능상 중요한 5개의 도메인(domain)을 가지고 있어, 자가인산화 작용(Autophosphorylation)에 의한 자가활성조절작용과 단백질 상호작용 및 효소작용을 통해 세포의 기능을 조절한다. As used herein, the term "LRRK2 (leucin-rich repeat kinase-2) protein" is a protein belonging to the leucin-rich repeat kinase family, and is composed of 2,527 amino acid sequences with high similarity between species. there is. The LRRK2 protein has the characteristic of having both guanosine triphosphatase (GTPase) and serine-threonine kinase activities in one protein. Expressed LRRK2 protein is observed in various organs and tissues, including the brain, and at the cellular level, it exists in the cytoplasm or cell membrane and outer mitochondrial membrane. In addition, the LRRK2 protein has five functionally important domains and regulates cell function through self-activation regulation through autophosphorylation, protein interaction, and enzyme action.

본 명세서에서 사용된 용어 "유효성분"이란 단독으로 목적하는 활성을 나타내거나 또는 그 자체는 활성이 없는 담체와 함께 활성을 나타낼 수 있는 성분을 의미한다.As used herein, the term “active ingredient” refers to an ingredient that can exhibit the desired activity alone or in combination with a carrier that is not active on its own.

본 명세서에 사용된 용어, "유방암"은 유방의 유관과 소엽에서 발생한 암을 의미한다.As used herein, the term “breast cancer” refers to cancer that occurs in the milk ducts and lobules of the breast.

본 명세서에서 사용된 용어, “예방”은 본 발명에 따른 약학적 조성물의 투여에 의해 유방암을 억제시키거나 발병을 지연시키는 모든 행위를 의미한다.As used herein, the term “prevention” refers to all actions that suppress or delay the onset of breast cancer by administering the pharmaceutical composition according to the present invention.

본 명세서에서 사용된 용어, “치료”는 본 발명에 따른 약학적 조성물의 투여에 의해 유방암에 대한 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.As used herein, the term “treatment” refers to any action in which symptoms of breast cancer are improved or beneficially changed by administration of the pharmaceutical composition according to the present invention.

본 발명의 일 구체예에 따르면, 상기 LRRK2 단백질은 Notch1 단백질의 분해를 촉진하는 것이다. According to one embodiment of the present invention, the LRRK2 protein promotes the degradation of Notch1 protein.

상기 Notch1 단백질에 대하여, Notch 신호전달경로(Notch signaling pathway)는 유전적으로 잘 보존되어 있는 신호전달 기작으로 배아의 발생과 세포의 증식, 혹은 사멸을 조절하는 신호전달 경로이며, 성체의 항상성 유지에 중요한 역할을 한다. 다른 신호전달경로와는 다르게 Notch 신호전달체계는 이차 전달자나 다른 단백질을 통해 신호를 전달하지 않고, 단백질 가수분해(proteolytic cleavage)를 통한 수용체의 분해, 그리고 분해된 수용체의 이동을 통해 신호를 전달한다. Notch 신호전달체계는 여러 조직과 기관에서 다양한 신호전달 경로와 연계하여 세포의 항상성을 조절하는 데에 중추적인 역할을 하는 것으로 알려져 있다. 포유동물은 Notch 신호전달체계에서 수용체 역할을 하는 Notch (Notch-1, -2, -3, -4)와 그 ligand인Jagged (Jagged-1, -2)와 Delta (Delta-1, -3, -4)를 가지고 있다. Notch로 인한 목표 유전자의 발현양의 조절은 Notch ICD의 분해를 통해 조절되는데, 일반적으로 알려진 Notch ICD의 분해방법에는 CDK8이 Notch ICD의 PEST 도메인에 phosphorylation을 하게 되고, Fbw7의 유비퀴틴화로 인해 분해가 촉진되는 방법이 있다. 상기 LRRK2 단백질은 Fbw7과 결합하여 Fbw7의 활성을 조절함으로써 Notch1 단백질의 분해를 촉진한다. 실시예의 실험결과 4를 참조하면, LRRK2가 Fbw7과 Pin1 사이의 상호작용을 저해하여 기저 Fbw7의 폴리유비퀴틴화를 감소시켰다. 따라서, LRRK2 단백질을 유효성분을 포함하는 약학적 조성물은 유방암의 예방 또는 치료용도로 유용하게 활용될 수 있다. Regarding the Notch1 protein, the Notch signaling pathway is a genetically conserved signaling mechanism that regulates embryonic development and cell proliferation or death, and is important for maintaining adult homeostasis. It plays a role. Unlike other signal transduction pathways, the Notch signaling system does not transmit signals through secondary messengers or other proteins, but transmits signals through decomposition of receptors through proteolytic cleavage and movement of the degraded receptors. . The Notch signaling system is known to play a central role in regulating cellular homeostasis in conjunction with various signaling pathways in various tissues and organs. Mammals have Notch (Notch-1, -2, -3, -4), which acts as a receptor in the Notch signaling system, and its ligands, Jagged (Jagged-1, -2) and Delta (Delta-1, -3, It has -4). The regulation of the expression level of target genes due to Notch is controlled through the degradation of Notch ICD. In the generally known method of degradation of Notch ICD, CDK8 phosphorylates the PEST domain of Notch ICD, and ubiquitination of Fbw7 promotes degradation. There is a way. The LRRK2 protein binds to Fbw7 and regulates the activity of Fbw7, thereby promoting the degradation of Notch1 protein. Referring to Experimental Results 4 of the Example, LRRK2 inhibited the interaction between Fbw7 and Pin1, thereby reducing polyubiquitination of basal Fbw7. Therefore, a pharmaceutical composition containing LRRK2 protein as an active ingredient can be usefully used for the prevention or treatment of breast cancer.

본 발명의 다른 양상은 LRRK2 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 벡터 또는 상기 벡터로 형질전환된 LRRK2 과발현 세포주, 또는 이의 배양액을 유효성분으로 포함하는 유방암의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.Another aspect of the present invention is to provide a pharmaceutical composition for the prevention or treatment of breast cancer, comprising as an active ingredient a vector containing a polynucleotide encoding the LRRK2 protein, an LRRK2 overexpressing cell line transformed with the vector, or a culture medium thereof. .

본 발명의 일 구체예에 따르면, 상기 벡터는 선형 DNA, 플라스미드 DNA 및 재조합 바이러스성 벡터로 구성된 군으로부터 선택되는 어느 하나일 수 있다.According to one embodiment of the present invention, the vector may be any one selected from the group consisting of linear DNA, plasmid DNA, and recombinant viral vector.

본 발명의 일 구체예에 따르면, 상기 세포는 조혈 줄기세포, 수지상 세포, 자가이식 종양세포(autologous tumor cells) 및 정착 종양세포(established tumor cells)로 구성된 군으로부터 선택되는 어느 하나일 수 있다.According to one embodiment of the present invention, the cells may be any one selected from the group consisting of hematopoietic stem cells, dendritic cells, autologous tumor cells, and established tumor cells.

본 발명의 일 구체예에 따르면, 상기 재조합 바이러스는 레트로 바이러스, 아데노바이러스, 아데노 부속 바이러스, 헤르페스심플렉스 바이러스 및 렌티바이러스로 구성된 군으로부터 선택된 어느 하나일 수 있다.According to one embodiment of the present invention, the recombinant virus may be any one selected from the group consisting of retrovirus, adenovirus, adeno-associated virus, herpes simplex virus, and lentivirus.

본 발명의 약학적 조성물은 약학적으로 허용되는 담체를 추가로 포함할 수 있다. 상기에서 '약학적으로 허용되는'이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증 등과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 조성물을 말한다. 약학적으로 허용되는 담체로는 예를 들면, 락토스, 전분, 셀룰로스 유도체, 마그네슘 스테아레이트, 스테아르산등과 같은 경구 투여용 담체 및 물, 적합한 오일, 식염수, 수성 글루코스 및 글리콜 등과 같은 비경구 투여용 담체 등이 있으며 안정화제 및 보존제를 추가로 포함할 수 있다. 적합한 안정화제로는 아황산수소나트륨, 아황산나트륨 또는 아스코르브산과 같은 항산화제가 있다. 적합한 보존제로는 벤즈알코늄 클로라이드, 메틸-또는 프로필-파라벤 및 클로로부탄올이 있다.The pharmaceutical composition of the present invention may further include a pharmaceutically acceptable carrier. In the above, 'pharmacologically acceptable' refers to a composition that is physiologically acceptable and does not usually cause allergic reactions such as gastrointestinal disorders, dizziness, or similar reactions when administered to humans. Pharmaceutically acceptable carriers include, for example, carriers for oral administration, such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, etc., and those for parenteral administration, such as water, suitable oils, saline solutions, aqueous glucose and glycols, etc. Carriers, etc., and may additionally contain stabilizers and preservatives. Suitable stabilizers include antioxidants such as sodium bisulfite, sodium sulfite or ascorbic acid. Suitable preservatives include benzalkonium chloride, methyl- or propyl-paraben and chlorobutanol.

본 발명에 따른 약학적 조성물은 상술한 바와 같은 약학적으로 허용되는 담체와 함께 당업계에 공지된 방법에 따라 적합한 형태로 제형화 될 수 있다. 즉, 본 발명의 약학적 조성물은 공지의 방법에 따라 다양한 비경구 또는 경구 투여용 형태로 제조될 수 있다. 비경구 투여용 제형의 대표적인 것으로는 주사용 제형으로 등장성 수용액 또는 현탁액이 바람직하다. 주사용 제형은 적합한 분산제 또는 습윤제 및 현탁화제를 사용하여 당업계에 공지된 기술에 따라 제조할 수 있다. 예를 들면, 각 성분을 식염수 또는 완충액에 용해시켜 주사용으로 제형화될 수 있다. 또한, 경구 투여용 제형으로는, 이에 한정되지는 않으나, 분말, 과립, 정제, 환약 및 캡슐 등이 있다.The pharmaceutical composition according to the present invention can be formulated in a suitable form according to methods known in the art along with a pharmaceutically acceptable carrier as described above. That is, the pharmaceutical composition of the present invention can be prepared in various forms for parenteral or oral administration according to known methods. Representative formulations for parenteral administration include an isotonic aqueous solution or suspension, preferably an injectable formulation. Injectable formulations can be prepared according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. For example, each component can be dissolved in saline solution or buffer solution and formulated for injection. Additionally, dosage forms for oral administration include, but are not limited to, powders, granules, tablets, pills, and capsules.

상기와 같은 방법으로 제형화된 약학적 조성물은 유효량으로 경구, 경피, 피하, 정맥 또는 근육을 포함한 여러 경로를 통해 투여될 수 있다. 상기에서 '유효량'이란 환자에게 투여하였을 때, 예방 또는 치료 효과를 나타내는 양을 말한다. 본 발명에 따른 약학적 조성물의 투여량은 투여 경로, 투여 대상, 연령, 성별 체중, 개인차 및 질병 상태에 따라 적절히 선택할 수 있다.The pharmaceutical composition formulated in the above manner can be administered in an effective amount through various routes including orally, transdermally, subcutaneously, intravenously, or intramuscularly. In the above, ‘effective amount’ refers to the amount that exhibits a preventive or therapeutic effect when administered to a patient. The dosage of the pharmaceutical composition according to the present invention can be appropriately selected depending on the administration route, administration target, age, gender, weight, individual differences, and disease state.

본 발명의 또 다른 양상은 LRRK2 단백질을 유효성분으로 포함하는 유방암의 전이 억제용 약학적 조성물을 제공한다.Another aspect of the present invention provides a pharmaceutical composition for inhibiting metastasis of breast cancer comprising LRRK2 protein as an active ingredient.

여기서 전술한 내용과 공통되는 설명은 과도한 복잡성을 회피하기 위하여 그 기재를 생략한다.Here, explanations that are common to the above-mentioned content are omitted to avoid excessive complexity.

실시예의 실험결과 5, 도 5A 및 5B를 참조하면, LRRK2 단백질이 Fbw7을 매개하여 암세포의 이동을 억제한다. 따라서, LRRK2 단백질을 유효성분으로 포함하는 조성물은 유방암의 전이 억제 용도로 활용될 수 있다. Referring to Experimental Results 5 of Example 5 and FIGS. 5A and 5B, LRRK2 protein mediates Fbw7 to inhibit the migration of cancer cells. Therefore, a composition containing LRRK2 protein as an active ingredient can be used to inhibit metastasis of breast cancer.

본 발명의 일 구체예에 따르면, 상기 LRRK2 단백질은 Notch1 단백질의 분해를 촉진하는 것이다.According to one embodiment of the present invention, the LRRK2 protein promotes the degradation of Notch1 protein.

여기서 전술한 내용과 공통되는 설명은 과도한 복잡성을 회피하기 위하여 그 기재를 생략한다.Here, explanations that are common to the above-mentioned content are omitted to avoid excessive complexity.

본 발명의 또 다른 양상은 a) LRRK2 단백질을 발현하는 유방암 세포에 피검물질을 처리하는 단계; b) 상기 단계 a)의 세포에서 LRRK2 단백질의 발현 수준을 측정하는 단계; 및 c) 상기 단계 b)의 LRRK2 단백질의 발현 수준이 피검물질을 처리하지 않은 대조군과 비교하여 증가한 피검물질을 선별하는 단계를 포함하는 유방암 치료제 또는 전이 억제제의 스크리닝 방법을 제공한다.Another aspect of the present invention includes the steps of a) treating breast cancer cells expressing LRRK2 protein with a test substance; b) measuring the expression level of LRRK2 protein in the cells of step a); and c) selecting a test substance in which the expression level of the LRRK2 protein in step b) is increased compared to a control group not treated with the test substance.

상기 단계 a)의 유방암 세포는 Hs578T, SUM159PT, 4T1, MCF7, BT474, ZR75B, MDA-MB-435, MDA-MB-468, MDA-MB-231, SK-BR-3, 67NR 및 4T07 세포로 이루어진 군으로부터 선택된 어느 하나일 수 있으며, 바람직하게는 MDA-MB-231 세포일 수 있다.The breast cancer cells in step a) consist of Hs578T, SUM159PT, 4T1, MCF7, BT474, ZR75B, MDA-MB-435, MDA-MB-468, MDA-MB-231, SK-BR-3, 67NR and 4T07 cells. It may be any one selected from the group, preferably MDA-MB-231 cells.

본 발명의 일 구체예에 따르면, 상기 단계 b)의 단백질의 발현 수준은 웨스턴 블롯(western blot), 면역침강법(immunoprecipitation), 이중 루시퍼라제 측정법(dual luciferase reporter assay), 효소면역분석법(ELISA) 및 면역조직화학법(immunohistochemistry)으로 이루어진 군으로부터 선택된 어느 하나의 방법으로 측정하는 것이다.According to one embodiment of the present invention, the expression level of the protein in step b) is determined by Western blot, immunoprecipitation, dual luciferase reporter assay, and enzyme-linked immunosorbent assay (ELISA). and immunohistochemistry.

상기 측정은 항체를 이용하는 것일 수 있으며, "항체"란, 단백질 또는 펩티드 분자의 항원성 부위에 특이적으로 결합할 수 있는 단백질성 분자를 의미하는데, 이러한 항체는, 유전자를 통상적인 방법에 따라 발현 벡터에 클로닝하여 상기 마커 유전자에 의해 코딩되는 단백질을 얻고, 얻어진 단백질로부터 통상적인 방법에 의해 제조될 수 있다. 상기 항체의 형태는 특별히 제한되지 않으며 폴리클로날 항체, 모노클로날 항체 또는 항원 결합성을 갖는 것이면 그것의 일부도 본 발명의 항체에 포함되고 모든 면역 글로불린 항체가 포함될 수 있을 뿐만 아니라, 인간화 항체 등의 특수 항체를 포함할 수도 있다. 아울러, 상기 항체는 2개의 전체 길이의 경쇄 및 2개의 전체 길이의 중쇄를 가지는 완전한 형태뿐만 아니라 항체 분자의 기능적인 단편을 포함한다. 항체 분자의 기능적인 단편이란 적어도 항원 결합기능을 보유하고 있는 단편을 의미하며 Fab, F(ab'), F(ab') 2 및 Fv 등이 될 수 있다.The measurement may be performed using an antibody. “Antibody” refers to a proteinaceous molecule that can specifically bind to the antigenic site of a protein or peptide molecule. Such an antibody can be used to express a gene according to a conventional method. A protein encoded by the marker gene is obtained by cloning into a vector, and the obtained protein can be produced by a conventional method. The form of the antibody is not particularly limited, and as long as it is a polyclonal antibody, a monoclonal antibody, or has antigen binding properties, a part of it is included in the antibody of the present invention, and not only all immunoglobulin antibodies can be included, but also humanized antibodies, etc. It may also contain special antibodies. Additionally, the antibodies include intact forms with two full-length light chains and two full-length heavy chains as well as functional fragments of the antibody molecule. A functional fragment of an antibody molecule refers to a fragment that possesses at least an antigen-binding function and may include Fab, F(ab'), F(ab') 2, and Fv.

본 발명의 일 실시예에 따른 LRRK2 단백질을 유효성분으로 포함하는 조성물을 이용하면, LRRK2 단백질이 Notch1 단백질의 분해에 중요한 역할을 하는 Fbw7 단백질과 결합함으로써, Notch1 단백질과 Fbw7 단백질의 결합을 증가시켜 Notch1 단백질의 분해를 조절함으로써, Notch1 의존성 유방암을 효과적으로 예방 또는 치료할 수 있다.When using a composition containing LRRK2 protein as an active ingredient according to an embodiment of the present invention, the LRRK2 protein binds to Fbw7 protein, which plays an important role in decomposing Notch1 protein, thereby increasing the binding between Notch1 protein and Fbw7 protein, thereby increasing Notch1 By controlling protein degradation, Notch1-dependent breast cancer can be effectively prevented or treated.

도 1A 내지 1C는 LRRK2 발현과 Notch 신호전달경로 표적 유전자의 관련성 규명을 위하여 TCGA 데이터베이스가 발표한 임상 데이터의 mRNA 발현에 대한 통합 분석을 수행한 결과이다.
도 2A 내지 2C는 형질감염된 HEK293T 세포에서 Notch1-IC의 전사 활성의 루시퍼라아제 리포터 분석 결과를 나타낸다. 2A는 4xCSL-Luc로, 2B는 Hes1-Luc, 2C는 Hes5-Luc로 형질감염된 결과이다.
도 2D는 HEK293T 세포에서 shLRRK2의 유무에 따라 Notch1-IC의 전사 활성의 루시퍼라아제 리포터 분석 결과이다.
도 2E는 HEK293T 세포 IN-1을 12시간동안 처리하고 Notch1-IC의 전사 활성의 루시퍼라아제 리포터 분석 결과이다.
도 2F는 Nothch1-IC, LRRK2 WT, 또는 LRRK2의 병원성 변이체로 형질감염된 HEK293T 세포에서 Notch1-IC의 전사 활성의 루시퍼라아제 리포터 분석 결과를 나타낸다.
도 2G 및 2H는 Notch-IC와 LRRK2의 결합여부를 확인한 결과이다.
도 2G는 일시적으로 형질감염된 HEK293 세포에서 항-Flag과 함께 항-Myc으로 공동 면역 침전을 분석한 결과이다.
도 2H는 HEK293T 세포에서 Notch1과 LRRK2의 동시 내인성 공동 면역 침전을 분석한 결과이다.
도 3A는 LRRK2의 용량을 달리하여 형질감염한 HEK239T 세포에서 Notch1-IC, Hes1, Hes5, LRRK2의 면역블롯 결과이다.
도 3B는 shCon 및 LRRK2로 형질감염된 MDA-MB 231 세포에서 100 mmol/L cycloheximide를 처리한 후 Notch1-IC의 수준을 면역블롯으로 측정한 결과이다.
도 3C는 일시적으로 형질감염된 HEK293T 세포에 20 μM ALLN, 5 μM MG132 및 5 μM Epoxomicin 을 6시간 동안 처리한 후 Notch1-IC 및 LRRK2의 수준을 면역블롯으로 측정한 결과이다.
도 3D는 일시적으로 형질감염된 HEK293T 세포의 Notch1-IC 전사활성의 루시퍼라아제 리포터 분석 결과이다.
도 4A는 일시적으로 형질감염된 HEK293 세포의 항-Flag 및 항-HA의 공동 면역 침전을 분석한 결과이다.
도 4B는 일시적으로 형질감염된 HEK293T 세포의 Fbw7, Pin1 및 LRRK2의 면역블롯 결과이다.
도 4C 및 4D는 HEK293T 세포를 일시적으로 형질감염시킨 후 MG132를 6시간 동안 처리하고 in vivo Fbw7의 유비퀴틴화를 분석한 결과이다.
도 4E는 일시적으로 형질감염된 HEK293 세포의 항-Xpress 및 항-HA의 공동 면역 침전을 분석한 결과이다.
도 4F는 HEK293T 세포를 일시적으로 형질감염시킨 후 MG132를 6시간 동안 처리하고 in vivo Pin1의 유비퀴틴화를 분석한 결과이다.
도 5A는 LRRK2 또는 shFbw7을 발현하는 MDA-MB-231 세포의 상처 회복 분석의 현미경 사진이다.
도 5B는 LRRK2 또는 shFbw7을 발현하는 MDA-MB-231 세포의 마트리겔 침윤 분석의 현미경 사진이다.
도 5C는 LRRK2 또는 shFbw7을 발현하는 MDA-MB-231 세포의 콜로니 형성 분석의 결과이다.
도 5D는 LRRK2 또는 shFbw7을 발현하는 MDA-MB-231-SQ 세포를 마우스에 주입한 후 종양의 크기를 측정한 결과이다.
Figures 1A to 1C show the results of integrated analysis of mRNA expression of clinical data published by the TCGA database to identify the relationship between LRRK2 expression and Notch signaling pathway target genes.
Figures 2A-2C show the results of luciferase reporter assay of the transcriptional activity of Notch1-IC in transfected HEK293T cells. 2A is the result of transfection with 4xCSL-Luc, 2B is the result of transfection with Hes1-Luc, and 2C is the result of transfection with Hes5-Luc.
Figure 2D shows the results of luciferase reporter assay of the transcriptional activity of Notch1-IC in the presence or absence of shLRRK2 in HEK293T cells.
Figure 2E shows the results of luciferase reporter analysis of the transcriptional activity of Notch1-IC after HEK293T cells were treated with IN-1 for 12 hours.
Figure 2F shows the results of a luciferase reporter assay of the transcriptional activity of Notch1-IC in HEK293T cells transfected with Nothch1-IC, LRRK2 WT, or pathogenic variants of LRRK2.
Figures 2G and 2H show the results of confirming the binding of Notch-IC and LRRK2.
Figure 2G shows the results of co-immunoprecipitation analysis with anti-Myc along with anti-Flag in transiently transfected HEK293 cells.
Figure 2H shows the results of analyzing the simultaneous endogenous co-immunoprecipitation of Notch1 and LRRK2 in HEK293T cells.
Figure 3A shows immunoblot results of Notch1-IC, Hes1, Hes5, and LRRK2 in HEK239T cells transfected with different doses of LRRK2.
Figure 3B shows the results of measuring the level of Notch1-IC by immunoblot after treatment with 100 mmol/L cycloheximide in MDA-MB 231 cells transfected with shCon and LRRK2.
Figure 3C shows the results of measuring the levels of Notch1-IC and LRRK2 by immunoblot after transiently transfected HEK293T cells were treated with 20 μM ALLN, 5 μM MG132, and 5 μM Epoxomicin for 6 hours.
Figure 3D shows the results of luciferase reporter analysis of Notch1-IC transcriptional activity in transiently transfected HEK293T cells.
Figure 4A shows the results of analysis of co-immunoprecipitation of anti-Flag and anti-HA from transiently transfected HEK293 cells.
Figure 4B is an immunoblot result of Fbw7, Pin1, and LRRK2 in transiently transfected HEK293T cells.
Figures 4C and 4D show the results of transiently transfecting HEK293T cells, treating them with MG132 for 6 hours, and analyzing the ubiquitination of Fbw7 in vivo.
Figure 4E shows the results of co-immunoprecipitation analysis of anti-Xpress and anti-HA from transiently transfected HEK293 cells.
Figure 4F shows the results of transiently transfecting HEK293T cells, treating them with MG132 for 6 hours, and analyzing Pin1 ubiquitination in vivo.
Figure 5A is a photomicrograph of a wound repair assay in MDA-MB-231 cells expressing LRRK2 or shFbw7.
Figure 5B is a photomicrograph of Matrigel invasion assay of MDA-MB-231 cells expressing LRRK2 or shFbw7.
Figure 5C is the result of colony formation assay of MDA-MB-231 cells expressing LRRK2 or shFbw7.
Figure 5D shows the results of measuring the size of the tumor after injecting MDA-MB-231-SQ cells expressing LRRK2 or shFbw7 into mice.

이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, one or more specific examples will be described in more detail through examples. However, these examples are intended to illustrate one or more embodiments and the scope of the present invention is not limited to these examples.

실험 방법Experimental method

1. 세포 배양1. Cell culture

HEK293(human embryonic kidney 293) 세포는 10%(v/v) 소 태아 혈청(fetal bovine serum, FBS)과 페니실린/스트렙토마이신 1%이 보충된 DMEM(Dulbecco's modified Eagle's medium)배지에서 95% O2, 5% CO2 조건으로 가습 배양기에서 배양하였다. MDA-MB-231 세포는 10%(v/v) 소 태아 혈청(fetal bovine serum, FBS)과 페니실린/스트렙토마이신 1%이 보충된 RPMI(Rosewell Park Menorial Institute)배지에서 95% CO2 조건으로 가습 배양기에서 배양하였다. 세포 내 플라스미드 DNA 형질주입(transfection)에는 리포펙타민 2000(Lipofectamine 2000; Invitrogen)을 사용하였다.HEK293 (human embryonic kidney 293) cells were grown in DMEM (Dulbecco's modified Eagle's medium) supplemented with 10% (v/v) fetal bovine serum (FBS) and 1% penicillin/streptomycin at 95% O 2 . Cultured in a humidified incubator under 5% CO 2 conditions. MDA-MB-231 cells were humidified under 95% CO 2 conditions in RPMI (Rosewell Park Menorial Institute) medium supplemented with 10% (v/v) fetal bovine serum (FBS) and 1% penicillin/streptomycin. Cultured in an incubator. Lipofectamine 2000 (Invitrogen) was used for plasmid DNA transfection into cells.

2. shRNA의 형질주입2. Transfection of shRNA

Notch1 유전자를 표적으로 하는 짧은 헤어핀 RNA(short hairpin RNA; 이하, shRNA로 기재함) 이 삽입된 pSUPER-derived expression vectors는 Mo, Yoon et al., PNAS(110), 2013 에 기재된 방법에 따라 제작하였다. pSUPER-derived expression vectors inserted with short hairpin RNA (hereinafter referred to as shRNA) targeting the Notch1 gene were constructed according to the method described in Mo, Yoon et al., PNAS (110), 2013. .

Fbw7을 표적으로 하는 shRNA 서열은 5'-CCTTCTCTGGAGAGAGAAA-3'(서열번호 1)이다. LRRK2를 표적으로 하는 shRNA 서열은 5′-CAATGTCAGGTGTTATAATAT-3′(서열번호 2)이다. Pin1을 표적으로 하는 shRNA 서열은 5'-CCTTCTCTGGAGAGAGAAA-3'(서열번호 3)이다. 서열특이성은 BLAST(http://blast.ncbi.nlm.nih.gov/Blast.cgi) 검색으로 확인하고, 어떠한 알려진 포유류 서열과도 일치하지 않는 스크램블 shRNA 서열(5'-AACAGTCGCGTTTGCGACTGG-3', 서열번호 4)을 사용하여 GenBank에서 검증하였다. 대조군 shRNA, Fbw7 shRNA, Pin1 shRNA 또는 LRRK2 shRNA는 리포펙타민 2000을 사용하여 제조사의 프로토콜에 따라 세포에 각각 형질주입하였다.The shRNA sequence targeting Fbw7 is 5'-CCTTCTCTGGAGAGAGAAA-3' (SEQ ID NO: 1). The shRNA sequence targeting LRRK2 is 5′-CAATGTCAGGTGTTATAATAT-3′ (SEQ ID NO: 2). The shRNA sequence targeting Pin1 is 5'-CCTTCTCTGGAGAGAGAAA-3' (SEQ ID NO: 3). Sequence specificity was confirmed by BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) search, and a scrambled shRNA sequence (5'-AACAGTCGCGTTTGCGACTGG-3', sequence that did not match any known mammalian sequence) was identified. Number 4) was used to verify in GenBank. Control shRNA, Fbw7 shRNA, Pin1 shRNA, or LRRK2 shRNA were each transfected into cells using Lipofectamine 2000 according to the manufacturer's protocol.

3. 면역 블롯(Immunoblot analysis)3. Immunoblot analysis

형질주입 48시간 후 세포를 회수하여 RIPA 버퍼(50 mM Tris-HCl(pH 7.5), 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM phenylmethylsulfonyl fluoride(PMSF), 1 mM dithiothreitol(DTT) 및 leupeptin과 aprotinin 각각 2 ㎍/㎖)로 세포를 용해시켰다. 세포 용해물을 12,000xg, 4

Figure pat00001
에서 20분 동안 원심분리하여 수용성 분획을 분리하였다. 상기 수용성 분획에 램리 버퍼(Laemmli buffer)를 첨가하여 끓인 후, 황산 도데실 나트륨-폴리아크릴아미드 전기영동(sodium dodecyl sulfate-polyacrylamide gel electrophoresis; 이하, SDS-PAGE로 기재함)을 수행하였다. 전기영동이 끝난 후 단백질을 PVDF 막(polyvinylidene difluoride membrane)으로 semi-dry transfer cell system을 이용하여 이동시켰다. PVDF 막을 0.1% 트윈-20 및 5% 탈지유(non-fat milk)를 포함하는 PBS(pH 7.4)로 블록킹하였다. 이후 PVDF 막을 1차 항체와 반응시키고, 항 마우스 HRP(horseradish peroxidase)가 연결된 2차 항체와 추가로 반응시켰다. 48 hours after transfection, cells were recovered and incubated in RIPA buffer (50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 Cells were lysed with mM dithiothreitol (DTT) and 2 μg/ml each of leupeptin and aprotinin. Cell lysates were weighed at 12,000xg, 4
Figure pat00001
The water-soluble fraction was separated by centrifugation for 20 minutes. Laemmli buffer was added to the water-soluble fraction and boiled, and then sodium dodecyl sulfate-polyacrylamide gel electrophoresis (hereinafter referred to as SDS-PAGE) was performed. After electrophoresis was completed, the protein was transferred to a PVDF membrane (polyvinylidene difluoride membrane) using a semi-dry transfer cell system. The PVDF membrane was blocked with PBS (pH 7.4) containing 0.1% Tween-20 and 5% non-fat milk. Afterwards, the PVDF membrane was reacted with a primary antibody and further reacted with a secondary antibody linked to anti-mouse horseradish peroxidase (HRP).

사용한 1 차 항체는 항-Myc(9E10), 항-HA(12CA5), 항-Flag M2(Sigma-Aldrich), 항-Hes1(R&D system), 항-LRRK2 (Novus Biologicals), 항-Hes5(EMD Millipore), 항-Notch1, 항-RBP-Jk, 항-Fbw7, 및 항-β-actin (Santa Cruz Biotechnology) 항체이다.The primary antibodies used were anti-Myc (9E10), anti-HA (12CA5), anti-Flag M2 (Sigma-Aldrich), anti-Hes1 (R&D system), anti-LRRK2 (Novus Biologicals), and anti-Hes5 (EMD). Millipore), anti-Notch1, anti-RBP-Jk, anti-Fbw7, and anti-β-actin (Santa Cruz Biotechnology) antibodies.

4. 루시퍼라아제 리포터(Luciferase reporter) 분석4. Luciferase reporter analysis

HEK293 세포에 루시퍼라아제 리포터 플라스미드 (4xCSL-Luc, Hes1-Luc, Hes5-Luc 및 β-갈락토시다아제)를 형질주입하였다. 48시간 후 세포를 회수하여 화학형광(chemiluminescence) 용해 버퍼(1 M K2HPO4 18.3%, 1 M KH2PO4 1.7%, 1 mM PMSF 및 1 mM DTT)로 세포를 용해시키고, 형광측정기 (luminometer; Berthold)로 분석하였다. 루시퍼라아제 리포터 유전자의 활성은 β-갈락토시다아제 활성으로 보정하였다.HEK293 cells were transfected with luciferase reporter plasmids (4xCSL-Luc, Hes1-Luc, Hes5-Luc, and β-galactosidase). After 48 hours, the cells were collected, lysed with chemiluminescence lysis buffer (1 MK 2 HPO 4 18.3%, 1 M KH 2 PO 4 1.7%, 1 mM PMSF, and 1 mM DTT), and measured with a luminometer. ; Berthold). The activity of the luciferase reporter gene was corrected by β-galactosidase activity.

5. 공동 면역 침전(Co-immunoprecipitation) 분석5. Co-immunoprecipitation analysis

형질주입 48시간 후 세포를 차가운 PBS로 세척하였다. RIPA 버퍼로 세포를 용해시키고, 세포 용해물을 12,000xg, 4℃에서 20분 동안 원심분리하였다. 상등액을 분리하여 상기 1차 항체와 반응시킨 후 단백질 A-아가로스 비드(protein Aagarose beads)와 추가로 반응시켰다. 차가운 PBS로 비드를 3회 세척한 후 램리버퍼를 첨가하여 끓였다. 펠렛(pellet)을 95℃에서 5분 동안 가열하고 SDS-PAGE를 수행하였다. 이후 상기 3과 동일한 방법으로 면역 블롯을 수행하였다.48 hours after transfection, cells were washed with cold PBS. Cells were lysed with RIPA buffer, and the cell lysate was centrifuged at 12,000xg at 4°C for 20 minutes. The supernatant was separated and reacted with the primary antibody, and then further reacted with protein A-agarose beads. After washing the beads three times with cold PBS, Laemrebuffer was added and boiled. The pellet was heated at 95°C for 5 minutes and SDS-PAGE was performed. Afterwards, immunoblot was performed in the same manner as in 3 above.

6. 인 비트로(In vitro) 결합 분석6. In vitro binding assay

재조합 GST-Notch1-IC 및 이의 변이 단백질을 pGEX 시스템을 사용하여 E. coli BL21 균주에서 발현시키고, 글루타치온-아가로스 비드(glutathione(GSH)-agarose beads; Sigma)를 사용하여 제조사의 지침에 따라 분리 및 정제하였다. 서로 다른 발현 벡터로 형질주입된 HEK293 세포의 용해물과 동일한 양의 GST 또는 GST-Notch1-IC를 4℃에서 2시간 동안 반응시켰다. 반응이 끝난 후 차가운 PBS로 비드를 3회 세척한 후 램리 버퍼를 첨가하여 끓였다. 침전물(precipitates)은 SDS-PAGE를 수행하여 분리하였고, 풀다운된 단백질은 상기 3과 같은 방법으로 면역 블롯을 수행하여 식별하였다.Recombinant GST-Notch1-IC and its mutant proteins were expressed in E. coli BL21 strain using the pGEX system and isolated using glutathione (GSH)-agarose beads (Sigma) according to the manufacturer's instructions. and purified. Lysates of HEK293 cells transfected with different expression vectors and the same amount of GST or GST-Notch1-IC were reacted at 4°C for 2 hours. After the reaction was over, the beads were washed three times with cold PBS, then Laemmli buffer was added and boiled. Precipitates were separated by SDS-PAGE, and the pulled-down proteins were identified by immunoblotting in the same manner as in 3 above.

7. 면역형광(Immunofluorescence) 염색7. Immunofluorescence staining

세포를 PBS로 희석한 4% 파라포름알데히드(paraformaldehyde)로 고정시키고, PBS로 희석한 0.1% Triton X-100으로 세포의 투과성을 회복시켰다. 이후 세포를 1% 소 혈청 알부빈(bovine serum albumin, BSA)으로 블록킹하였다. 상기 1차 항체를 1:100으로 희석하여 반응시켰다. 1차 항체와 반응시킨 후, PBS로 세포를 3회 세척하였다. 항 마우스 2차 항체와 결합한 Alexa Fluor® 488 또는 Alexa Fluor ® 532 (Invitrogen)를 1:100으로 희석하여 반응시켰다. DNA 염색 TO-PRO®-3 Iodide로 핵을 국소화(localization)하였다. 공초점 현미경(Leica TCS SPE)을 통하여 염색한 세포의 국소화를 평가하였다. 각 이미지는 동일 세포 수준의 단일 Z 섹션의 이미지였다. 최종 이미지는 LAS AF software(Leica)와 함께 공초점 현미경을 사용하여 분석하여 제작하였다.Cells were fixed with 4% paraformaldehyde diluted in PBS, and cell permeability was restored with 0.1% Triton X-100 diluted in PBS. Afterwards, the cells were blocked with 1% bovine serum albumin (BSA). The primary antibody was diluted 1:100 and reacted. After reacting with the primary antibody, the cells were washed three times with PBS. Alexa Fluor® 488 or Alexa Fluor® 532 (Invitrogen) coupled with anti-mouse secondary antibody was diluted 1:100 for reaction. Nuclei were localized with DNA stain TO-PRO®-3 Iodide. The localization of stained cells was evaluated through confocal microscopy (Leica TCS SPE). Each image was an image of a single Z section of the same cell level. The final image was produced by analysis using a confocal microscope with LAS AF software (Leica).

8. 세포 생존력(Viability) 분석8. Cell viability analysis

유방암 세포인 MCF-7 세포를 12 시간 동안 성장시키고 DAPT(N-[(3,5-difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl ester) 1 μM 로 처리하였다. DAPT로 처리한 후, 세포에 트립신을 처리하고 완전 배지(complete medium)에서 재현탁시켰다. 각 샘플에 트리판 블루(trypan blue) 용액을 혼합하였다. 염색된(생존하지 못한) 세포와 염색에서 제외된(생존한) 세포의 수는 혈구계(hemocytometer)로 계수되었다. 대조군은 샘플과 같은 배지에서 동일한 최종 DMSO 농도로 처리되었다. 생존한 세포의 비율, 즉, 총 세포의 수에 대하여 파란색으로 염색된 세포의 수의 비율은 필드(field) 당 100개의 세포를 3회 계수하여 결정하였다.MCF-7 cells, which are breast cancer cells, were grown for 12 hours and treated with 1 μM DAPT (N-[(3,5-difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl ester). . After treatment with DAPT, the cells were trypsinized and resuspended in complete medium. A trypan blue solution was mixed with each sample. The number of stained (non-viable) cells and cells excluded from staining (viable) were counted with a hemocytometer. Controls were treated with the same final DMSO concentration in the same medium as the samples. The ratio of surviving cells, that is, the ratio of the number of blue-stained cells to the total number of cells, was determined by counting 100 cells per field three times.

9. 상처 회복 분석9. Wound recovery analysis

세포를 12-웰 플레이트에 밀집(confluence)되도록 성장시키고, 단층을 P200 마이크로피펫(micropipette) 팁으로 상처를 발생시켰다. 측정 이후, 10% FBS가 보충된 DMEM을 즉시 교체하였다. 상처 치유 이미지는 현미경 시스템을 이용하여 6시간 간격으로 촬영하였다. 세포의 이동 속도는 Image J 프로그램을 이용하여 다른 시점에 스케치된 영역(sketched area)의 거리를 측정하여 계산하였다.Cells were grown to confluence in a 12-well plate, and the monolayer was wounded with a P200 micropipette tip. After measurement, DMEM supplemented with 10% FBS was immediately replaced. Wound healing images were taken at 6-hour intervals using a microscope system. The movement speed of cells was calculated by measuring the distance of the sketched area at different time points using the Image J program.

10. 콜로니 형성(Colony formation) 및 소프트 한천(Soft agar) 분석10. Colony formation and soft agar analysis

콜로니 형성 분석은 6-웰 배양 플레이트에서 하부 아가와 상부 아가로스로 구성된 세포 성장 매트릭스에 500개의 세포를 분주(seeding)하여 수행하였다. 하부층(1.5 ml)은 DMEM 배지, 10% FBS 및 0.5 % 아가를 함유하고, 상부층(1.5 ml)은 DMEM 배지, 10% FBS, 0.35% 아가로스 및 세포 부유물(1 x 103)을 함유하였다. 세포는 3일 마다 공급하였으며, 2 내지 3주 후에 콜로니의 수를 측정하였다.Colony formation analysis was performed by seeding 500 cells on a cell growth matrix consisting of lower agar and upper agarose in a 6-well culture plate. The lower layer (1.5 ml) contained DMEM medium, 10% FBS, and 0.5% agar, and the upper layer (1.5 ml) contained DMEM medium, 10% FBS, 0.35% agarose, and cell suspension (1 x 10 3 ). Cells were supplied every 3 days, and the number of colonies was measured after 2 to 3 weeks.

11. 세포 이동 및 침윤 분석11. Cell migration and invasion assay

트랜스웰 챔버(8 ㎛ 폴리카보네이트 막, Corning)를 이용하여 트랜스웰 이동 분석을 수행하였다. 매트리겔 침윤 분석은 BD BioCoat Growth Factor로 수행하였다. 2.5 x 104 내지 2.5 x 105 개의 세포를 10 ㎍/ml 피브로넥틴으로 코팅된 챔버에 분주한 후, 37℃, 5% CO2 하에서 16시간 동안 배양한 후 필터의 상면에 부착되어 있는 세포들을 면봉으로 제거하였다. 이후, 세포들을 3.7% 포름알데히드 또는 100% 메탄올로 고정한 후, DAPI로 염색하여 바닥면의 세포의 개수를 측정하였다. 이동한 세포의 수는 무작위적으로 선택한 복수의 현미경 시야 내에서 염색된 세포의 수로 결정하였다.Transwell migration analysis was performed using a transwell chamber (8 μm polycarbonate membrane, Corning). Matrigel invasion assay was performed with BD BioCoat Growth Factor. After dispensing 2.5 It was removed. Afterwards, the cells were fixed with 3.7% formaldehyde or 100% methanol, and then stained with DAPI to measure the number of cells on the bottom surface. The number of migrated cells was determined as the number of stained cells within multiple randomly selected microscope fields.

12. 이식(Xenograft) 마우스 전이 모델12. Xenograft mouse metastasis model

암컷 C57BL/6 마우스(Orient Bio, Korea)를 국립암센터의 동물 실험실에서 관리하였다. shCon(대조군), LRRK2 및 Fbw7 용 특정 shRNA를 안정적으로 발현하는 MDA-MB-231-SQ 유방암 세포주(100 ㎕ PBS 내의 1 x 106 cells/ml)를 6주령 암컷 누드 마우스(그룹 당 5마리)의 하부 옆구리 피하에 주사하였다. 4주 이후에, 상기 마우스들은 마취제 과량 투여법을 통해 안락사시켰다. 종양 크기는 디지털 캘리퍼로 측정하고, 종량의 부피를 계산하였다. Female C57BL/6 mice (Orient Bio, Korea) were maintained in the animal laboratory of the National Cancer Center. shCon (control), the MDA-MB-231-SQ breast cancer cell line stably expressing specific shRNAs for LRRK2 and Fbw7 (1 It was injected subcutaneously in the lower flank. After 4 weeks, the mice were euthanized via anesthetic overdose. Tumor size was measured with a digital caliper, and tumor volume was calculated.

13. 통계 분석13. Statistical analysis

실험 결과에 대한 그래프는 SigmaPlot 소프트웨어(SYSTAT)로 작성하였다. 평균값의 통계적 비교는 2개의 데이터 세트에 대해 비대응 스튜던트 양측 t-검정(unpaired Student's 2-tailed t-test)를 사용하여 수행하였다. 모든 통계적 검정에서 p 값이 0.05 미만인 경우 통계적 유의성이 있는 것으로 판단하였다. 모든 실험 결과는 표준 편차(standard deviation, SD)를 계산하고, 실험 및 관련 데이터의 변동을 오차 막대(error bar)로 표시하였다. 데이터는 3개의 독립적인 실험에서 얻은 값의 평균 ± 평균 편차로 표시한 것이다.Graphs of the experimental results were created using SigmaPlot software (SYSTAT). Statistical comparison of means was performed using the unpaired Student's 2-tailed t-test for the two data sets. In all statistical tests, if the p value was less than 0.05, it was judged to be statistically significant. For all experimental results, the standard deviation (SD) was calculated, and variations in the experiment and related data were displayed as error bars. Data are expressed as mean ± mean deviation of values from three independent experiments.

실험 결과Experiment result

1. LRRK2 발현과 유방암 Notch 신호전달경로의 관련성1. Relationship between LRRK2 expression and breast cancer Notch signaling pathway

LRRK2 발현과 Notch 신호전달경로 표적 유전자의 관련성을 규명하기 위하여, The Cancer Genome Atlas(TCGA) 데이터베이스가 발표한 임상 데이터의 mRNA 발현에 대한 통합 분석을 수행하였다. 그 결과, 도 1A에 나타난 바와 같이, LRRK2와 Hes1 및 Hes5 사이의 유의한 음의 상관관계를 발견하였으며, 이는 LRRK2 발현이 Notch 신호전달경로의 활성과 관련이 있음을 시사한다.To identify the relationship between LRRK2 expression and Notch signaling pathway target genes, an integrated analysis of mRNA expression of clinical data published by The Cancer Genome Atlas (TCGA) database was performed. As a result, as shown in Figure 1A, a significant negative correlation was found between LRRK2 and Hes1 and Hes5, suggesting that LRRK2 expression is related to the activity of the Notch signaling pathway.

종양 세포에서 LRRK2의 mRNA 수준을 결정하기 위하여 TCGA 데이터베이스가 발표한 데이터를 분석하였다. 그 결과, 도 1B에 나타난 바와 같이, LRRK2는 유방암 세포주에서 하향조절되는 것으로 나타났다. To determine the mRNA level of LRRK2 in tumor cells, we analyzed data published by the TCGA database. As a result, as shown in Figure 1B, LRRK2 was found to be downregulated in breast cancer cell lines.

LRRK2가 환자의 생존에 미치는 잠재적인 영향을 평가하기 위하여 TCGA 데이터베이스가 발표한 암환자의 생존과 관련된 임상 데이터의 LRRK2의 변이체를 분석하였다. 카플란-마이어 생존분석은 LRRK2 변이체가 유방암에서 전체적인 생존율을 크게 감소시키는 것으로 나타났다. 도 1C에 나타난 바와 같이, LRRK2 변이체는 환자의 생존율이 낮은 것과 관련이 있었다. 또한, LRRK2의 mRNA 수준은 암의 진행과도 상관관계가 있었다.To evaluate the potential impact of LRRK2 on patient survival, we analyzed LRRK2 variants in clinical data related to survival of cancer patients published by the TCGA database. Kaplan-Meier survival analysis showed that LRRK2 variants significantly reduced overall survival in breast cancer. As shown in Figure 1C, LRRK2 variants were associated with poor patient survival. Additionally, the mRNA level of LRRK2 was also correlated with cancer progression.

2. LRRK2에 의한 Notch1 신호전달경로 조절2. Regulation of Notch1 signaling pathway by LRRK2

LRRK2의 수준이 Notch-IC의 전사 활성에 영향을 미치는지 여부를 조사하였다. We investigated whether the level of LRRK2 affects the transcriptional activity of Notch-IC.

그 결과, 도 2A 내지 2C에 나타난 바와 같이, LRRK2의 이소성 발현(ectopic expression)은 용량 의존적으로 Notch-IC의 전사 활성을 감소시켰다. 도 2D에 나타난 바와 같이, 루시퍼라아제 리포터 유전자의 Notch1 유도 발현은 대조군 세포보다 LRRK2 녹다운 세포에서 더 높게 나타났다. 또한, 도 2E에 나타난 바와 같이, HEK293 세포에서 Notch 신호전달경로의 전사 활성은 용량 의존적으로 IN-1, LRRK2 억제제에 의해 증가하였다. 야생형 LRRK2의 과다발현은 Notch1-IC의 전사 활성뿐만 아니라 LRRK2의 체내 변이체들의 전사 활성을 억제하였다. 그러나, 도 2F에 나타난 바와 같이, PD(Parkinson's disease)의 체세포 변이체에서 키나아제 우성 열성 변이체(dominant negative mutant)인 LRRK2 1906M은 Notch1-IC의 전사 활성을 억제하지 않았다.As a result, as shown in Figures 2A to 2C, ectopic expression of LRRK2 decreased the transcriptional activity of Notch-IC in a dose-dependent manner. As shown in Figure 2D, Notch1-induced expression of the luciferase reporter gene was higher in LRRK2 knockdown cells than in control cells. Additionally, as shown in Figure 2E, the transcriptional activity of the Notch signaling pathway in HEK293 cells was increased by IN-1 and LRRK2 inhibitors in a dose-dependent manner. Overexpression of wild-type LRRK2 suppressed the transcriptional activity of Notch1-IC as well as the transcriptional activity of in vivo mutants of LRRK2. However, as shown in Figure 2F, LRRK2 1906M, a kinase dominant recessive mutant in somatic variants of PD (Parkinson's disease), did not inhibit the transcriptional activity of Notch1-IC.

이후, LRRK2의 Notch1-IC과의 상호 작용 능력을 분석하였다. 다음으로, Myc-Notch1-IC를 단독 또는 Flag-GFP-LRRK2의 존재 하에 동시에 발현시키고, 공동 면역 침전 어세이를 수행하였다. 그 결과, 도 2G에서 보는 바와 같이, LRRK2는 Notch1-IC와 효과적으로 공동 침전함을 확인할 수 있었다. 또한, HEK293 세포에서 Notch1-IC는 내인성 LRRK2와 공동 침전하는 것을 확인하였다. 도 2H에서 보는 바와 같이, Notch1-IC는 LRRK2와 강한 상호작용을 보였다.Afterwards, the interaction ability of LRRK2 with Notch1-IC was analyzed. Next, Myc-Notch1-IC was expressed alone or simultaneously in the presence of Flag-GFP-LRRK2, and co-immunoprecipitation assays were performed. As a result, as shown in Figure 2G, it was confirmed that LRRK2 effectively co-precipitates with Notch1-IC. Additionally, Notch1-IC was confirmed to co-precipitate with endogenous LRRK2 in HEK293 cells. As shown in Figure 2H, Notch1-IC showed strong interaction with LRRK2.

이러한 결과는 Notch1-IC와 LRRK2 사이의 직접적인 상호작용을 명확히 보여주고 있으며, 이러한 상호작용을 통해 Notch1의 신호전달경로를 억제한다는 것을 확인할 수 있었다. These results clearly show a direct interaction between Notch1-IC and LRRK2, and it was confirmed that this interaction inhibits the Notch1 signaling pathway.

3. LRRK2의 Fbw7를 매개로 한 Notch1-IC의 분해 촉진3. Promotion of Fbw7-mediated degradation of Notch1-IC by LRRK2

본 발명자들은 Notch1-IC 단백질 수준에 대해 LRRK2가 미치는 영향의 생리학적 관련성을 평가하였다. 도 3A에 나타난 바와 같이, LRRK2의 증가에 따라 내인성 Notch1-IC, Hes1 및 Hes5 단백질 수치가 용량 의존적으로 감소하였다. 또한, 도 3B에 나타난 바와 같이, 내인성 Notch1-IC의 정상 수준(steady-state level)과 반감기는 대조군 세포보다 LRRK2가 과발현된 세포에서 낮았다.We assessed the physiological relevance of the effect of LRRK2 on Notch1-IC protein levels. As shown in Figure 3A, the levels of endogenous Notch1-IC, Hes1, and Hes5 proteins decreased in a dose-dependent manner as LRRK2 increased. Additionally, as shown in Figure 3B, the steady-state level and half-life of endogenous Notch1-IC were lower in LRRK2-overexpressing cells than in control cells.

단백질 수준의 감소가 단백질 분해에 의해 매개되는지 여부를 확인하기 위해 프로테아좀 저해제인 ALLN, MG132 또는 Epoxomicin의 유무에 따른 결과를 확인하였다. 도 3C에서 보는 바와 같이, 프로테아좀 저해제 처리는 LRRK2 매개 Notch1-IC 단백질 분해를 상당히 방지하였으며, 단백질 수준을 안정화시켰다. 이러한 결과는 LRRK2가 프로테아좀 의존 경로를 통해 Notch1-IC의 안정성을 감소시켰음을 나타낸다. To determine whether the decrease in protein levels was mediated by protein degradation, the results were confirmed in the presence or absence of proteasome inhibitors ALLN, MG132, or Epoxomicin. As shown in Figure 3C, proteasome inhibitor treatment significantly prevented LRRK2-mediated Notch1-IC protein degradation and stabilized protein levels. These results indicate that LRRK2 reduced the stability of Notch1-IC through a proteasome-dependent pathway.

LRRK2를 매개로 한 Notch1-IC 분해에 있어서 FBXW7의 역할을 분석하기 위해 LRRK2 siRNA의 존재 또는 부재 하에 LRRK2와 Notch1-IC를 동시에 발현시켰다. 도 3D에 나타난 바와 같이, Fbw7의 녹다운은 LRRK2에 의해 감소된 Notch1-IC의 전사 활성을 회복시켰다. Fbw7과 Notch1-IC 사이의 물리적 연관성은 대조군보다 LRRK2를 과발현시킨 군에서 유의하게 높았다. 또한 Notch1-IC와 Fbw7 사이의 내인성 상호작용은 MDA-MB 231 세포보다 LRRK2 녹다운 세포에서 유의미하게 낮았다. 이러한 결과는 Fbw7이 LRRK2에 의해 매개되는 Notch1-IC의 분해에 중요한 역할을 하는 것을 나타낸다.To analyze the role of FBXW7 in LRRK2-mediated Notch1-IC degradation, LRRK2 and Notch1-IC were co-expressed in the presence or absence of LRRK2 siRNA. As shown in Figure 3D, knockdown of Fbw7 restored the transcriptional activity of Notch1-IC, which was reduced by LRRK2. The physical association between Fbw7 and Notch1-IC was significantly higher in the LRRK2-overexpressing group than in the control group. Additionally, the endogenous interaction between Notch1-IC and Fbw7 was significantly lower in LRRK2 knockdown cells than in MDA-MB 231 cells. These results indicate that Fbw7 plays an important role in the degradation of Notch1-IC mediated by LRRK2.

4. LRRK2가 Pin1과 Fbw7 사이의 상호작용 저해를 통해 Fbw7 단백질 안정성에 미치는 영향 분석4. Analysis of the effect of LRRK2 on Fbw7 protein stability through inhibition of interaction between Pin1 and Fbw7

본 발명자들은 LRRK2가 Fbw7의 조절 작용에 영향을 미치는지 여부를 조사하였다. 도 4A에 나타난 바와 같이, LRRK2는 Fbw7과 상호작용한다. LRRK2 키나아제 활성이 Fbw7의 조절 작용에 영향을 미치는데 필수적인지 분석하였다. 키나아제 활성 변이체(LRRK2 G2019S) 또는 키나아제 우성 열성 변이체(LRRK2 K1906M)를 PD의 체세포 변이체에서 발현시켰다. 도 4B에 나타난 바와 같이, LRRK2 G2019S는 키나아제 우성 열성 변이체(LRRK2 K1906M)와 달리 내인성 Fbw7이 증가하였고, 내인성 Pin1은 감소하였다. The present inventors investigated whether LRRK2 affects the regulatory action of Fbw7. As shown in Figure 4A, LRRK2 interacts with Fbw7. We analyzed whether LRRK2 kinase activity is essential to affect the regulatory action of Fbw7. A kinase active variant (LRRK2 G2019S) or a kinase dominant recessive variant (LRRK2 K1906M) was expressed in somatic variants of PD. As shown in Figure 4B, LRRK2 G2019S, unlike the kinase dominant recessive variant (LRRK2 K1906M), increased endogenous Fbw7 and decreased endogenous Pin1.

또한, LRRK2가 Fbw7의 유비퀴틴화에 미치는 영향을 조사하였다. MG-132의 존재 하에 LRRK2 G2019S 및 LRRK2 K1906M의 유무에 따라 Flag-Fbw7 및 HA-Ubiquitin을 동시에 발현시키고 Fbw7의 유비퀴틴화 상태를 분석하였다. 도 4C에 나타난 바와 같이, LRRK2 G2019S의 존재 하에 Fbw7의 폴리유비퀴틴화가 감소함을 확인할 수 있었다.Additionally, the effect of LRRK2 on the ubiquitination of Fbw7 was examined. Flag-Fbw7 and HA-Ubiquitin were simultaneously expressed in the presence or absence of LRRK2 G2019S and LRRK2 K1906M in the presence of MG-132, and the ubiquitination status of Fbw7 was analyzed. As shown in Figure 4C, it was confirmed that polyubiquitination of Fbw7 was reduced in the presence of LRRK2 G2019S.

또한, MG-132의 존재 하에, 야생형 Fbw7와 Fbw7 T205A를 비교하여 LRRK2에 의해 매개되는 Pin1의 Fbw7의 폴리유비퀴틴화의 기저 수준에 미치는 효과를 조사하였다. 도 4D에 나타난 바와 같이, LRRK2 매개 Fbw7의 유비퀴틴화 수준은 야생형 Fbw7이 발현된 상태에서는 현저하게 낮았으나, Fbw7 T205A 에서는 그렇지 않았다. 또한, LRRK2는 야생형 Fbw7이 발현된 상태에서는 Notch1의 전사 활성의 기저 수준을 억제하였으나, Fbw7 T205A 에서는 그렇지 않았다. 이후, 본 발명자들은 Fbw7과 Pin1 사이의 물리적 연관성에 대해 미치는 LRRK2의 영향을 조사하였다. 그 결과, LRRK2는 Fbw7과 Pin1 사이의 상호작용을 현저히 저해하였다. 또한, 본 발명자들은 Pin1이 Fbw7의 LRRK2 매개 조절에 미치는 영향을 조사하였다. 도 4E에 나타난 바와 같이 LRRK2는 물리적으로 Pin1과 연관되어 있었다. LRRK2가 Pin1의 유비퀴틴화에 미치는 영향을 조사하였다. MG-132의 존재 하에 Xpress-Pin1과 HA-Ubiquitin을 동시에 발현시키고 LRRK2 G2019S 및 LRRK2 K1906M 유무에 따른 Pin1의 유비퀴틴화 상태를 분석하였다. 도 4F에 나타난 바와 같이, Pin1의 폴리유비퀴틴화는 LRRK2 G2019S의 존재 하에서 증가하였다. 또한, LRRK2는 대조군보다 Pin1 녹다운된 경우에 Notch1의 전사 활성의 기저 수준을 더욱 저해하였다. 결론적으로, 이러한 데이터는 LRRK2가 Fbw7과 Pin1 사이의 상호작용을 저해하여 기저 Fbw7의 폴리유비퀴틴화를 감소시키는 것을 의미한다.Additionally, in the presence of MG-132, we compared wild-type Fbw7 and Fbw7 T205A to examine the effect on basal levels of LRRK2-mediated polyubiquitination of Fbw7 by Pin1. As shown in Figure 4D, the level of LRRK2-mediated Fbw7 ubiquitination was significantly low when wild-type Fbw7 was expressed, but not when Fbw7 T205A was expressed. Additionally, LRRK2 suppressed the basal level of Notch1 transcriptional activity when wild-type Fbw7 was expressed, but not in Fbw7 T205A. Next, we investigated the effect of LRRK2 on the physical association between Fbw7 and Pin1. As a result, LRRK2 significantly inhibited the interaction between Fbw7 and Pin1. Additionally, we investigated the effect of Pin1 on LRRK2-mediated regulation of Fbw7. As shown in Figure 4E, LRRK2 was physically associated with Pin1. The effect of LRRK2 on Pin1 ubiquitination was investigated. Xpress-Pin1 and HA-Ubiquitin were simultaneously expressed in the presence of MG-132, and the ubiquitination status of Pin1 was analyzed in the presence or absence of LRRK2 G2019S and LRRK2 K1906M. As shown in Figure 4F, polyubiquitination of Pin1 increased in the presence of LRRK2 G2019S. Additionally, LRRK2 inhibited the basal level of Notch1 transcriptional activity more in the case of Pin1 knockdown than in the control group. In conclusion, these data suggest that LRRK2 inhibits the interaction between Fbw7 and Pin1, thereby reducing polyubiquitination of basal Fbw7.

5. LRRK2의 Fbw7 의존성 종양형성 억제 매개 분석5. Analysis of LRRK2 mediating Fbw7-dependent tumorigenesis inhibition

도 5A에 나타난 바와 같이, MDA-MB-231 세포에서의 세포 이동성 실험은 Fbw7의 존재 하에서 LRRK2의 단백질 수준이 암 세포 이동에 유의하게 영향을 미쳤음에도 불구하고 LRRK2의 과발현이 Fbw7 녹아웃 세포의 세포 이동을 상당히 증가시켰으며, 이는 LRRK2가 Fbw7를 매개하여 암세포의 이동을 억제함을 의미한다. 게다가, MDA-MB-231 세포에서 동시 발현하는 LRRK2 및 Fbw7의 녹다운은 LRRK2에 의해 유도된 세포의 침윤을 저해하였다. 도 5B에 나타난 바와 같이, Fbw7은 LRRK2에 의해 유도되는 암의 침윤 억제에 필수적이다. 마지막으로, 도 5C에 나타난 바와 같이, MDA-MB-231 세포에서 LRRK2를 과발현시키면 콜로니 형성 활성이 현저하게 감소했지만 Fbw7 녹다운 MDA-MB-231 세포에서 LRRK2에 의해 유도된 콜로니 형성 활성의 억제가 감소되지 않았다. 또한, LRRK2 과발현 세포를 주입한 마우스는 대조군 세포를 주입한 마우스와 비교하여 종양 성장이 유의미하게 억제되었다. 그러나, 도 5D에 나타난 바와 같이, LRRK2 및 shFbw7을 동시에 발현시킨 세포를 주입한 마우스에서는 종양 성장에 대한 효과는 관찰되지 않았다. 이러한 결과는 LRRK2가 in vitro 및 in vivo 모두에서 종양형성을 억제하고, LRRK2가 Fbw7를 매개하여 Notch1-IC 저해함으로써 유방암의 종양 형성을 효과적으로 예방할 수 있음을 나타낸다. 종합하면, 이러한 결과는 Fbw7 수준의 조절을 통한 암세포 이동/침윤에서 LRRK2의 새로운 역할을 시사한다.As shown in Figure 5A, cell migration experiments in MDA-MB-231 cells showed that overexpression of LRRK2 decreased cell migration of Fbw7 knockout cells, although the protein level of LRRK2 significantly affected cancer cell migration in the presence of Fbw7. was significantly increased, which means that LRRK2 mediates Fbw7 to inhibit the migration of cancer cells. Moreover, knockdown of LRRK2 and Fbw7 co-expressed in MDA-MB-231 cells inhibited LRRK2-induced cell invasion. As shown in Figure 5B, Fbw7 is essential for suppressing cancer invasion driven by LRRK2. Finally, as shown in Figure 5C, overexpressing LRRK2 in MDA-MB-231 cells significantly reduced colony forming activity, but the inhibition of colony forming activity induced by LRRK2 was reduced in Fbw7 knockdown MDA-MB-231 cells. It didn't work. Additionally, tumor growth was significantly suppressed in mice injected with LRRK2 overexpressing cells compared to mice injected with control cells. However, as shown in Figure 5D, no effect on tumor growth was observed in mice injected with cells co-expressing LRRK2 and shFbw7. These results indicate that LRRK2 inhibits tumor formation both in vitro and in vivo, and that LRRK2 can effectively prevent breast cancer tumor formation by inhibiting Notch1-IC through Fbw7. Taken together, these results suggest a novel role for LRRK2 in cancer cell migration/invasion through regulation of Fbw7 levels.

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been examined focusing on its preferred embodiments. A person skilled in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the equivalent scope should be construed as being included in the present invention.

<110> INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY <120> Composition for preventing, improving or treating breast cancer comprising LRRK2 protein <130> BPN221008 <160> 4 <170> KoPatentIn 3.0 <210> 1 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> Fbw7 shRNA <400> 1 ccttctctgg agagagaaa 19 <210> 2 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> LRRK2 shRNA <400> 2 caatgtcagg tgttataata t 21 <210> 3 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> Pin1 shRNA <400> 3 ccttctctgg agagagaaa 19 <210> 4 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> scramble shRNA <400> 4 aacagtcgcg tttgcgactg g 21 <110> INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY <120> Composition for preventing, improving or treating breast cancer comprising LRRK2 protein <130> BPN221008 <160> 4 <170> KoPatentIn 3.0 <210> 1 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> Fbw7 shRNA <400> 1 ccttctctgg agagagaaa 19 <210> 2 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> LRRK2 shRNA <400> 2 caatgtcagg tgttataata t 21 <210> 3 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> Pin1 shRNA <400> 3 ccttctctgg agagagaaa 19 <210> 4 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> scramble shRNA <400> 4 aacagtcgcg tttgcgactg g 21

Claims (10)

LRRK2 (leucine-rich repeat kinase 2) 단백질을 유효성분으로 포함하는,
유방암의 예방 또는 치료용 약학적 조성물.
Containing LRRK2 (leucine-rich repeat kinase 2) protein as an active ingredient,
Pharmaceutical composition for preventing or treating breast cancer.
청구항 1에 있어서,
상기 LRRK2 단백질은 Notch1 단백질의 분해를 촉진하는 것인,
유방암의 예방 또는 치료용 약학적 조성물.
In claim 1,
The LRRK2 protein promotes the degradation of Notch1 protein,
Pharmaceutical composition for preventing or treating breast cancer.
LRRK2 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 벡터 또는 상기 벡터로 형질전환된 LRRK2 과발현 세포주, 또는 이의 배양액을 유효성분으로 포함하는,
유방암의 예방 또는 치료용 약학적 조성물.
Containing as an active ingredient a vector containing a polynucleotide encoding the LRRK2 protein, an LRRK2 overexpressing cell line transformed with the vector, or a culture medium thereof,
Pharmaceutical composition for preventing or treating breast cancer.
청구항 3에 있어서,
상기 벡터는 선형 DNA, 플라스미드 DNA 및 재조합 바이러스성 벡터로 구성된 군으로부터 선택되는 어느 하나인,
유방암의 예방 또는 치료용 약학적 조성물.
In claim 3,
The vector is any one selected from the group consisting of linear DNA, plasmid DNA, and recombinant viral vector,
Pharmaceutical composition for preventing or treating breast cancer.
청구항 3에 있어서,
상기 세포는 조혈 줄기세포, 수지상 세포, 자가이식 종양세포(autologous tumor cells) 및 정착 종양세포(established tumor cells)로 구성된 군으로부터 선택되는 어느 하나인,
유방암의 예방 또는 치료용 약학적 조성물.
In claim 3,
The cells are any one selected from the group consisting of hematopoietic stem cells, dendritic cells, autologous tumor cells, and established tumor cells,
Pharmaceutical composition for preventing or treating breast cancer.
청구항 4에 있어서,
상기 재조합 바이러스는 레트로 바이러스, 아데노바이러스, 아데노 부속 바이러스, 헤르페스심플렉스 바이러스 및 렌티바이러스로 구성된 군으로부터 선택된 어느 하나인,
유방암의 예방 또는 치료용 약학적 조성물.
In claim 4,
The recombinant virus is any one selected from the group consisting of retrovirus, adenovirus, adeno-associated virus, herpes simplex virus and lentivirus,
Pharmaceutical composition for preventing or treating breast cancer.
LRRK2 단백질을 유효성분으로 포함하는 유방암의 전이 억제용 약학적 조성물.
A pharmaceutical composition for inhibiting metastasis of breast cancer comprising LRRK2 protein as an active ingredient.
청구항 7에 있어서,
상기 LRRK2 단백질은 Notch1 단백질의 분해를 촉진하는 것인,
유방암의 전이 억제용 약학적 조성물.
In claim 7,
The LRRK2 protein promotes the degradation of Notch1 protein,
Pharmaceutical composition for inhibiting metastasis of breast cancer.
a) LRRK2 단백질을 발현하는 유방암 세포에 피검물질을 처리하는 단계;
b) 상기 단계 a)의 세포에서 LRRK2 단백질의 발현 수준을 측정하는 단계; 및
c) 상기 단계 b)의 LRRK2 단백질의 발현 수준이 피검물질을 처리하지 않은 대조군과 비교하여 증가한 피검물질을 선별하는 단계를 포함하는
유방암 치료제 또는 전이 억제제의 스크리닝 방법.
a) treating breast cancer cells expressing LRRK2 protein with a test substance;
b) measuring the expression level of LRRK2 protein in the cells of step a); and
c) comprising the step of selecting a test substance in which the expression level of the LRRK2 protein in step b) is increased compared to the control group that did not treat the test substance.
Screening method for breast cancer therapeutics or metastasis inhibitors.
청구항 9에 있어서,
상기 단계 b)의 단백질의 발현 수준은 웨스턴 블롯(western blot), 면역침강법(immunoprecipitation), 이중 루시퍼라제 측정법(dual luciferase reporter assay), 효소면역분석법(ELISA) 및 면역조직화학법(immunohistochemistry)으로 이루어진 군으로부터 선택된 어느 하나의 방법으로 측정하는 것인,
유방암 치료제 또는 전이 억제제의 스크리닝 방법.
In claim 9,
The expression level of the protein in step b) was determined by Western blot, immunoprecipitation, dual luciferase reporter assay, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry. Measured by any one method selected from the group consisting of,
Screening method for breast cancer therapeutics or metastasis inhibitors.
KR1020220076349A 2022-06-22 2022-06-22 Composition for preventing, improving or treating breast cancer comprising LRRK2 protein KR20240000032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220076349A KR20240000032A (en) 2022-06-22 2022-06-22 Composition for preventing, improving or treating breast cancer comprising LRRK2 protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220076349A KR20240000032A (en) 2022-06-22 2022-06-22 Composition for preventing, improving or treating breast cancer comprising LRRK2 protein

Publications (1)

Publication Number Publication Date
KR20240000032A true KR20240000032A (en) 2024-01-02

Family

ID=89512172

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220076349A KR20240000032A (en) 2022-06-22 2022-06-22 Composition for preventing, improving or treating breast cancer comprising LRRK2 protein

Country Status (1)

Country Link
KR (1) KR20240000032A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102061142B1 (en) 2018-06-19 2019-12-31 가천대학교 산학협력단 Screening methods of anti-cancer agent or metastasis inhibitor for breast cancer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102061142B1 (en) 2018-06-19 2019-12-31 가천대학교 산학협력단 Screening methods of anti-cancer agent or metastasis inhibitor for breast cancer

Similar Documents

Publication Publication Date Title
Zhou et al. Inhibiting neddylation modification alters mitochondrial morphology and reprograms energy metabolism in cancer cells
US10987345B2 (en) Method for assessing the efficacy of IMiDs and composition or combination for use in treating IMiD sensitive diseases
Amir et al. MSF-A interacts with hypoxia-inducible factor-1α and augments hypoxia-inducible factor transcriptional activation to affect tumorigenicity and angiogenesis
Zhang et al. The deubiquitylase USP2 maintains ErbB2 abundance via counteracting endocytic degradation and represents a therapeutic target in ErbB2-positive breast cancer
US9334307B2 (en) Targeting the EGFR-SGLT1 interaction for cancer therapy
US20140199309A1 (en) Fragment of secreted heat shock protein-90alpha (hsp90alpha) as vaccines or epitope for monoclonal antibody drugs or target for small molecule drugs against a range of solid human tumors
US8252807B2 (en) Methods of inhibiting the interaction between S100 and the receptor for advanced glycation end-products
US9937178B2 (en) Methods of identifying and using MDM2 inhibitors
JP6914269B2 (en) Anti-cancer drug screening method that inhibits the binding between AIMP2-DX2 and HSP70
Song et al. SIMPLE is an endosomal regulator that protects against NAFLD by targeting the lysosomal degradation of EGFR
Li et al. PFKFB4 promotes angiogenesis via IL-6/STAT5A/P-STAT5 signaling in breast cancer
US12109212B2 (en) Methods of treating cancer having an active Wnt/β-catenin pathway
KR102686090B1 (en) Screening method for breast cancer therapeutic agent or metastasis inhibitor
Wen et al. TUBA1A licenses APC/C‐mediated mitotic progression to drive glioblastoma growth by inhibiting PLK3
KR20240000032A (en) Composition for preventing, improving or treating breast cancer comprising LRRK2 protein
US20220307031A1 (en) Inhibition of kmt2d for the treatment of cancer
KR101367832B1 (en) Use of Hades as a target for tumor suppressor
US20180066064A1 (en) Biotherapeutics targeting gpr158 for cancer
US20110039789A1 (en) Use of Huntingtin Protein for the Diagnosis and the Treatment of Cancer
JP2022532667A (en) GPCR heteromer inhibitors and their use
Choi et al. NOTCH localizes to mitochondria through the TBC1D15-FIS1 interaction and is stabilized via blockade of E3 ligase and CDK8 recruitment to reprogram tumor-initiating cells
JP5119543B2 (en) Screening method for drugs used in the treatment of colorectal cancer
Wang et al. Lysine methylation promotes NFAT5 activation upon EGFR activation and predicts the efficacy of temozolomide
Sun et al. p53 deficiency mediates cisplatin resistance by upregulating RRM2 and crotonylation of RRM2K283 through the downregulation of SIRT7
Li et al. Decreased NMIIA heavy chain phosphorylation at S1943 promotes mitoxantrone resistance by upregulating BCRP and N-cadherin expression in breast cancer cells