KR20230174389A - Fireproof construction method for tunnel - Google Patents

Fireproof construction method for tunnel Download PDF

Info

Publication number
KR20230174389A
KR20230174389A KR1020220075264A KR20220075264A KR20230174389A KR 20230174389 A KR20230174389 A KR 20230174389A KR 1020220075264 A KR1020220075264 A KR 1020220075264A KR 20220075264 A KR20220075264 A KR 20220075264A KR 20230174389 A KR20230174389 A KR 20230174389A
Authority
KR
South Korea
Prior art keywords
weight
tunnel
fireproof
construction method
fire
Prior art date
Application number
KR1020220075264A
Other languages
Korean (ko)
Inventor
차재호
차수빈
Original Assignee
차재호
차수빈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 차재호, 차수빈 filed Critical 차재호
Priority to KR1020220075264A priority Critical patent/KR20230174389A/en
Publication of KR20230174389A publication Critical patent/KR20230174389A/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/08Lining with building materials with preformed concrete slabs
    • E21D11/086Methods of making concrete lining segments
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5035Silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • C04B41/522Multiple coatings, for one of the coatings of which at least one alternative is described
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/14Layout of tunnels or galleries; Constructional features of tunnels or galleries, not otherwise provided for, e.g. portals, day-light attenuation at tunnel openings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Paints Or Removers (AREA)

Abstract

본 발명은 터널 내화 시공방법에 관한 것이다. 구체적으로, 본 발명은 화재로부터 터널을 보호하기 위한 내화시공을 저비용으로 간단하게 수행할 수 있는 동시에, 터널 내벽의 오염을 억제할 수 있고 저압 살수에 의해서도 저농도 오염 제거가 가능하며 고농도 오염 제거를 위한 고압 살수 세척시에도 장기간 내화 기능을 유지할 수 있도록 하고, 나아가 화재시 유독가스가 배출되지 않도록 하는 터널 내화 시공방법에 관한 것이다.The present invention relates to a tunnel fireproof construction method. Specifically, the present invention can simply perform fireproofing construction to protect a tunnel from fire at low cost, while suppressing contamination of the inner wall of the tunnel, enabling low-concentration contamination removal even by low-pressure watering, and providing high-concentration contamination removal. This relates to a tunnel fireproof construction method that maintains fireproof function for a long period of time even during high-pressure water spray cleaning and further prevents toxic gases from being emitted in the event of a fire.

Description

터널 내화 시공방법{Fireproof construction method for tunnel}Fireproof construction method for tunnel}

본 발명은 터널 내화 시공방법에 관한 것이다. 구체적으로, 본 발명은 화재로부터 터널을 보호하기 위한 내화시공을 저비용으로 간단하게 수행할 수 있는 동시에, 터널 내벽의 오염을 억제할 수 있고 저압 살수에 의해서도 저농도 오염 제거가 가능하며 고농도 오염 제거를 위한 고압 살수 세척시에도 장기간 내화 기능을 유지할 수 있도록 하고, 나아가 화재시 유독가스가 배출되지 않도록 하는 터널 내화 시공방법에 관한 것이다.The present invention relates to a tunnel fireproof construction method. Specifically, the present invention can simply perform fireproofing construction to protect a tunnel from fire at low cost, while suppressing contamination of the inner wall of the tunnel, enabling low-concentration contamination removal even by low-pressure watering, and providing high-concentration contamination removal. This relates to a tunnel fireproof construction method that maintains fireproof function for a long period of time even during high-pressure water spray cleaning and further prevents toxic gases from being emitted in the event of a fire.

최근 전 세계적으로 도로 및 철도터널에 대형화재가 빈번하게 발생하고 있으며 이로 인해 경제적, 사회적으로 심각한 손실이 발생하고 있다. 특히, 터널 화재는 지상 구조물 화재와 달리 닫힌 공간에서 발생하기 때문에 표준 화재곡선에 비해 매우 급격한 온도상승이 일어나고 화재지속시간도 길다. 따라서, 터널 화재 발생시 소화 및 구조활동에 필요한 피난과 대응시간을 확보하여 인명 피해는 물론 도로 및 터널의 손상 및 통행불편을 줄이기 위한 내화 시공이 필요하다.Recently, large-scale fires have occurred frequently in road and railway tunnels around the world, causing serious economic and social losses. In particular, unlike fires in ground structures, tunnel fires occur in closed spaces, so the temperature rises very rapidly and the fire duration is long compared to the standard fire curve. Therefore, fire-resistant construction is necessary to secure evacuation and response time necessary for fire extinguishing and rescue activities in the event of a tunnel fire, thereby reducing casualties as well as damage to roads and tunnels and traffic inconveniences.

특히, 터널은 화재시 고온이 발생할 수 있는 화물차가 통행하므로 화재에 의한 폭렬 및 구조재료의 역학적 특성저하와 같은 손상 위협에 대하여 안정성 확보가 매우 중요한 실정이고, 나아가 터널 내벽을 형성하는 콘크리트가 철근이 삽입된 철근 콘크리트인 경우 화재시 철근 부재의 급격한 온도 상승으로 인해 콘크리트 부재가 폭렬하거나 균열이 발생하는 등 손상에 의해 지지력이 크게 저하될 수 있다.In particular, since cargo vehicles that can generate high temperatures in the event of fire pass through tunnels, it is very important to ensure stability against damage threats such as explosions caused by fire and deterioration of the mechanical properties of structural materials. Furthermore, the concrete forming the inner wall of the tunnel is made of rebar. In the case of inserted reinforced concrete, the bearing capacity may be greatly reduced due to damage such as explosion or cracking of the concrete member due to a rapid increase in temperature of the reinforcing bar member in the event of a fire.

종래 터널의 내화시공 방법은 섬유혼입콘크리트 등의 내화 콘크리트를 사용하는 방법, 콘크리트 내벽에 내화 패널을 부착하는 방법, 콘크리트 내벽에 내화 피복제를 도포하는 방법 등이 있다.Conventional fire-resistant construction methods for tunnels include using fire-resistant concrete such as fiber-mixed concrete, attaching fire-resistant panels to concrete inner walls, and applying fire-resistant coating materials to concrete inner walls.

여기서, 내화 콘크리트를 사용하는 방법은 경화되기 전의 콘크리트 내부에 내화제를 분산시키는 방법으로서 고점도의 콘크리트 내부에 내화제를 균일하게 분산시키는 것이 어려워 다량의 내화제를 분산시키는 경우 콘크리트의 강도 등의 물성이 저하되는 문제가 있다.Here, the method of using fireproof concrete is to disperse the fireproofing agent inside the concrete before hardening. It is difficult to uniformly disperse the fireproofing agent inside the high-viscosity concrete, and when a large amount of fireproofing agent is dispersed, the physical properties such as strength of the concrete are affected. There is a problem with this degradation.

또한, 콘크리트 내벽에 내화 패널을 부착하는 방법은 콘크리트 내벽에 일정 크기의 내화 패널들을 부착하여 조립하는 방법으로서 터널마다 내부 규격이나 곡률 등이 상이하기 때문에 규격화가 어렵고 내화 패널을 부착하는 작업이 복잡하고 장시간 소요되는 문제가 있다.In addition, the method of attaching a fireproof panel to a concrete inner wall is a method of attaching fireproof panels of a certain size to the concrete inner wall and assembling them. Since the internal specifications and curvatures of each tunnel are different, standardization is difficult and the work of attaching the fireproof panel is complicated and There is a problem with it taking a long time.

나아가, 콘크리트 내벽에 내화 피복제를 도포하는 방법은 콘크리트 내벽에 내화 피복제를 도포하여 일정 두께로 내화층을 형성하는 방법으로서 터널 내벽의 오염 제거를 위한 정기적인 고압 살수 세척시 내화층의 불충분한 내구성으로 적어도 부분적으로 내화층이 제거되어 내화 기능이 상실되거나 단축되는 문제가 있으며, 이러한 내화층의 내구성 향상을 위해 에폭시계 접착제를 내화층 위에 도포하는 경우 화재시 연소에 의해 유독가스가 배출되는 등의 문제가 있다.Furthermore, the method of applying a fire-resistant coating to the concrete inner wall is a method of applying a fire-resistant coating to the concrete inner wall to form a fire-resistant layer with a certain thickness, which prevents the fire-resistant layer from becoming insufficient during regular high-pressure water spray cleaning to remove contamination from the tunnel inner wall. Due to durability, there is a problem that the fire resistance function is lost or shortened when the fire resistance layer is at least partially removed, and when an epoxy adhesive is applied on the fire resistance layer to improve the durability of the fire resistance layer, toxic gases are emitted due to combustion in the event of a fire. There is a problem.

따라서, 저비용으로 간단하게 수행할 수 있는 동시에, 터널 내벽의 오염을 억제할 수 있고 저압 살수에 의해서도 저농도 오염 제거가 가능하며 고농도 오염 제거를 위한 고압 살수 세척시에도 장기간 내화 기능을 유지할 수 있도록 하고, 나아가 화재시 유독가스가 배출되지 않도록 하는 터널 내화 시공방법이 절실히 요구되고 있는 실정이다.Therefore, it can be performed simply at low cost, and at the same time, contamination of the inner wall of the tunnel can be suppressed, low-concentration contamination can be removed even by low-pressure spraying, and fire resistance can be maintained for a long time even during high-pressure spray cleaning to remove high-concentration contamination. Furthermore, there is an urgent need for tunnel fire-resistant construction methods that prevent toxic gases from being released in the event of a fire.

본 발명은 저비용으로 간단하게 수행할 수 있는 터널 내화 시공방법을 제공하는 것을 목적으로 한다.The purpose of the present invention is to provide a tunnel fireproofing construction method that can be performed simply at low cost.

또한, 본 발명은 터널 내벽의 오염을 억제할 수 있고 저압 살수에 의해서도 저농도 오염 제거가 가능하며 고농도 오염 제거를 위한 고압 살수 세척시에도 장기간 내화 기능을 유지할 수 있는 터널 내화 시공방법을 제공하는 것을 목적으로 한다.In addition, the purpose of the present invention is to provide a tunnel fireproofing construction method that can suppress contamination of the inner walls of a tunnel, remove low-concentration contamination even with low-pressure water spraying, and maintain fireproof function for a long period of time even when washing with high-pressure water spraying to remove high-concentration contamination. Do it as

나아가, 본 발명은 화재시 유독가스가 배출되지 않도록 하는 터널 내화 시공방법을 제공하는 것을 목적으로 한다.Furthermore, the purpose of the present invention is to provide a tunnel fireproof construction method that prevents toxic gases from being discharged in the event of a fire.

상기 과제를 해결하기 위해, 본 발명은,In order to solve the above problems, the present invention,

터널 내벽을 형성하기 위한 콘크리트 부재를 제조하기 위한 콘크리트의 타설 및 양생 공정; 상기 콘크리트 부재의 일면에 내화층을 형성하는 내화층 형성 공정; 및 상기 내화층 위에 세라믹 보강층을 형성하는 세라믹 보강층 형성 공정을 포함하는, 터널 내화 시공방법을 제공한다.Concrete pouring and curing processes for manufacturing concrete members to form the inner wall of a tunnel; A fire-resistant layer forming process of forming a fire-resistant layer on one surface of the concrete member; and a ceramic reinforcement layer forming process of forming a ceramic reinforcement layer on the fire resistance layer.

여기서, 상기 세라믹 보강층은 경도가 6H 이상인 것을 특징으로 하는, 터널 내화 시공방법을 제공한다.Here, a tunnel fireproof construction method is provided, wherein the ceramic reinforcement layer has a hardness of 6H or more.

또한, 상기 세라믹 보강층은 두께가 200 내지 300 ㎛인 것을 특징으로 하는, 터널 내화 시공방법을 제공한다.In addition, a tunnel fireproofing construction method is provided, wherein the ceramic reinforcement layer has a thickness of 200 to 300 ㎛.

한편, 상기 세라믹 보강층은 일액형 세라믹 코팅제로부터 형성되고, 상기 세라믹 코팅제는 이의 총 중량을 기준으로 콜로이달 실리카 35~55중량%, 에틸알콜 5~12중량%, 황산바륨 0.1~0.23중량%, 옥타티탄산 칼륨 1~2중량%, 및 안료 10~17중량%를 포함하는 A제, 3-글리시딜-옥시프로필-트리메톡시실레인 30~35중량%, 습윤제 0.01~0.2중량%, 제1페인트용 첨가제 0.01~0.2중량%, 제2페인트용 첨가제 0.01~0.2중량%, 1,2-Bis(triethoxysily)ethane 0.5~1.5중량%, 실란올 기능성 실리콘액 0.1~0.8중량%, 포름산 0.01~0.2중량%, 빙초산 0.1~0.2중량% 및 보관안정제 0.1~0.29중량%를 포함하는 B제를 포함하는 것을 특징으로 하는, 터널 내화 시공방법을 제공한다.Meanwhile, the ceramic reinforcement layer is formed from a one-component ceramic coating agent, and the ceramic coating agent contains 35 to 55% by weight of colloidal silica, 5 to 12% by weight of ethyl alcohol, 0.1 to 0.23% by weight of barium sulfate, and octahedron based on the total weight. Agent A containing 1 to 2% by weight of potassium titanate and 10 to 17% by weight of pigment, 30 to 35% by weight of 3-glycidyl-oxypropyl-trimethoxysilane, 0.01 to 0.2% by weight of wetting agent, No. 1 Additive for paint 0.01~0.2% by weight, additive for second paint 0.01~0.2% by weight, 1,2-Bis(triethoxysily)ethane 0.5~1.5% by weight, silanol functional silicone liquid 0.1~0.8% by weight, formic acid 0.01~0.2 A tunnel fireproofing construction method is provided, characterized in that it contains agent B containing 0.1 to 0.2 weight % of glacial acetic acid and 0.1 to 0.29 weight % of a storage stabilizer.

또한, 상기 콘크리트의 타설시 거푸집 내부에 철근을 배치한 상태로 콘크리트 배합제를 타설하여 상기 콘크리트 부재를 철근 콘크리트 부재로 제조하는 것을 특징으로 하는, 터널 내화 시공방법을 제공한다.In addition, a tunnel fireproofing construction method is provided, characterized in that the concrete member is manufactured into a reinforced concrete member by pouring a concrete mix while placing reinforcing bars inside the formwork when pouring the concrete.

그리고, 상기 내화층 형성 공정을 수행하기 전에 상기 콘크리트 부재에서 상기 내화층이 형성되는 표면을 치핑(chipping)이나 라텍스 도포와 와이어 메쉬 또는 메탈라스 부착을 추가로 수행하는 것을 특징으로 하는, 터널 내화 시공방법을 제공한다.In addition, before performing the fire resistance layer forming process, tunnel fire resistance construction is characterized in that chipping or latex application and wire mesh or metal lath attachment are additionally performed on the surface of the concrete member where the fire resistance layer is formed. Provides a method.

나아가, 상기 내화층은 내화 피복제를 뿜칠공법에 의해 도포함으로써 형성되는 것을 특징으로 하는, 터널 내화 시공방법을 제공한다.Furthermore, a tunnel fire-resistant construction method is provided, wherein the fire-resistant layer is formed by applying a fire-resistant coating material by a spray coating method.

여기서, 상기 내화 피복제는 질석(vermiculite cemetitious)을 포함하는 것을 특징으로 하는, 터널 내화 시공방법을 제공한다.Here, a fire-resistant construction method for a tunnel is provided, wherein the fire-resistant coating agent includes vermiculite cemetitious.

한편, 상기 내화층의 두께는 25 내지 45 mm인 것을 특징으로 하는, 터널 내화 시공방법을 제공한다.Meanwhile, a tunnel fireproof construction method is provided, wherein the fireproof layer has a thickness of 25 to 45 mm.

본 발명에 따른 터널 내화 시공방법은 내화 피복제의 뿜칠(분무)공정에 의해 내화층을 형성하고 내화층 위에 일액형 세라믹 코팅제의 분무에 의해 보강층을 형성하는 방식으로 내화층의 표면 1~2mm 아래까지 흡수 후 경화되며 저비용으로 간단하게 수행할 수 있는 우수한 효과를 나타낸다.The tunnel fireproof construction method according to the present invention forms a fireproof layer by spraying a fireproof coating and forms a reinforcement layer by spraying a one-component ceramic coating on the fireproof layer, 1 to 2 mm below the surface of the fireproof layer. It hardens after absorption and shows excellent effects that can be performed simply at low cost.

또한, 본 발명에 따른 터널 내화 시공방법은 내화층 위에 형성되는 세라믹 보강층에 의해 오염을 억제할 수 있고 저압 살수에 의해서도 저농도 오염 제거가 가능하며 고농도 오염 제거를 위한 고압 살수 세척시에도 장기간 내화 기능을 유지할 수 있는 우수한 효과를 나타낸다.In addition, the tunnel fireproofing construction method according to the present invention can suppress contamination by a ceramic reinforcement layer formed on the fireproof layer, can remove low-concentration contamination even by low-pressure water spraying, and maintains a long-term fireproof function even when washing with high-pressure water spray to remove high-concentration contamination. It shows excellent effects that can be maintained.

또한 터널내부의 휘도 향상을 위해 색상을 자유롭게 선택 할 수 있다.Additionally, colors can be freely selected to improve brightness inside the tunnel.

나아가, 본 발명에 따른 터널 내화 시공방법은 내화층 위에 형성되는 세라믹 보강층이 화재시 유독가스를 배출하지 않는 우수한 효과를 나타낸다.Furthermore, the tunnel fireproofing construction method according to the present invention shows an excellent effect in that the ceramic reinforcement layer formed on the fireproof layer does not emit toxic gases in the event of a fire.

도 1은 본 발명에 따른 터널 내화 시공방법의 순서도를 개략적으로 도시한 것이다.
도 2는 실시예에서 고압살수 시험 결과를 나타내는 사진이다.
도 3은 실시예에서 내화 시험 결과를 나타내는 사진이다.
Figure 1 schematically shows a flow chart of the tunnel fireproofing construction method according to the present invention.
Figure 2 is a photograph showing the results of a high-pressure water spray test in an example.
Figure 3 is a photograph showing the fire resistance test results in Examples.

이하, 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되어지는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosure will be thorough and complete, and so that the spirit of the invention can be sufficiently conveyed to those skilled in the art. Like reference numerals refer to like elements throughout the specification.

도 1은 본 발명에 따른 터널 내화 시공방법의 순서도를 개략적으로 도시한 것이다.Figure 1 schematically shows a flow chart of the tunnel fireproofing construction method according to the present invention.

도 1에 도시된 바와 같이, 본 발명에 따른 터널 내화 시공방법은 콘크리트의 타설 및 양생 공정(100), 내화층 형성 공정(200) 및 세라믹 보강층 형성 공정(300)을 순차적으로 포함할 수 있다.As shown in FIG. 1, the tunnel fireproofing construction method according to the present invention may sequentially include a concrete pouring and curing process (100), a fireproof layer forming process (200), and a ceramic reinforcement layer forming process (300).

상기 콘크리트의 타설 및 양생 공정(100)은 터널 내벽을 형성하기 위해 거푸집에 콘크리트 배합제를 타설하고 바이브레이터를 이용하여 배근 사이에 밀실하게 충전될 수 있도록 하고 양생은 상온(20±2℃) 및 상대습도(RH) 50±10%로 항온항습을 유지한 상태로 약 28일간 수행할 수 있다. 또한, 터널 내벽을 철근 콘크리트로 형성하는 경우 거푸집 내부에 철근을 배치한 상태로 콘크리트 배합제를 타설할 수 있다.In the concrete pouring and curing process (100), concrete mix is poured into the formwork to form the inner wall of the tunnel, and a vibrator is used to ensure that the reinforcement is tightly filled, and curing is carried out at room temperature (20 ± 2°C) and relative temperature. It can be carried out for about 28 days while maintaining constant temperature and humidity at a humidity (RH) of 50±10%. Additionally, when the inner wall of the tunnel is formed of reinforced concrete, the concrete mix can be poured with the reinforcing bars placed inside the formwork.

또한, 상기 내화층 형성 공정(200)을 수행하기 전에 전처리로서 콘크리트 표면에 대한 내화층의 접착력을 향상시키기 위해 콘크리트 표면을 치핑(chipping), 라텍스 도포와 와이어메쉬 또는 메탈라스 부착 등을 수행할 수 있고, 다음으로 내화 피복제를 뿜칠공법에 의해 도포할 수 있다. 여기서, 내화 피복제는 터널이나 플랜트의 내화 구조에 널리 적용되는 질석(vermiculite cemetitious)에 플라이애쉬, 고로슬래그 등을 혼입한 소재를 적용할 수 있고, 형성되는 내화층의 두께는 약 25 내지 45 mm일 수 있다. 도포 후 콘크리트 양생과 동일한 양생조건과 기간을 거친다.In addition, before performing the fire-resistant layer forming process 200, as a pre-treatment, the concrete surface can be chipped, latex applied, and wire mesh or metal lath attached to improve the adhesion of the fire-resistant layer to the concrete surface. Next, the fire-resistant coating can be applied by spraying. Here, the fireproof coating can be a material mixed with fly ash, blast furnace slag, etc. in vermiculite cemetitious, which is widely used in fireproof structures of tunnels and plants, and the thickness of the formed fireproof layer is about 25 to 45 mm. It can be. After application, it undergoes the same curing conditions and period as concrete curing.

마지막으로, 세라믹 보강층 형성 공정(300)은 특정한 일액형 세라믹 코팅제를 도포 후 경화함으로써 수행할 수 있다. 여기서, 형성되는 세라믹 보강층은 두께가 200 내지 300 ㎛로 형성될 수 있고, 방오 특성이 우수하고 경도가 6H 이상으로 고압 살수 세척시에도 상기 내화층이 손상되는 것을 효과적으로 억제할 수 있으며, 1,000℃ 이상에서 불연 및 난연 성능을 보유하여 내화 성능을 추가로 향상시킬 뿐만 아니라 화재시에도 유독가스를 배출하지 않아 질식 등에 의한 인명피해를 최소화할 수 있다.Lastly, the ceramic reinforcement layer forming process 300 can be performed by applying and then curing a specific one-component ceramic coating agent. Here, the formed ceramic reinforcement layer may be formed to have a thickness of 200 to 300 ㎛, has excellent antifouling properties, and has a hardness of 6H or more, which can effectively prevent damage to the fire-resistant layer even during high-pressure water spray cleaning, and can be used at temperatures above 1,000°C. It has non-combustible and flame-retardant properties, which not only further improves fire resistance, but also does not emit toxic gases in the event of a fire, minimizing human damage due to asphyxiation.

이로써, 본 발명에 따른 터널 내화 시공방법은 섬유혼입콘크리트 등의 내화 콘크리트나 내화 패널 등을 사용하는 것이 아니라 내화 피복제의 뿜칠공법에 의해 내화층을 형성하고 일액형 세라믹 코팅제의 분무 공정을 통해 세라믹 보강층을 형성하므로 저비용으로 간단하게 수행할 수 있는 동시에, 특정 세라믹 보강층에 의해 터널 내벽의 오염을 억제할 수 있고 저압 살수에 의해서도 저농도 오염 제거가 가능하며 고농도 오염 제거를 위한 고압 살수 세척시에도 장기간 내화 기능을 유지할 수 있도록 하고, 나아가 화재시 유독가스가 배출되지 않도록 하여 질식 등에 의한 인명피해를 최소화할 수 있는 우수한 효과를 나타낸다.Accordingly, the tunnel fire-resistant construction method according to the present invention does not use fire-resistant concrete such as fiber-mixed concrete or fire-resistant panels, but forms a fire-resistant layer by spraying a fire-resistant coating and applying a ceramic coating through a spraying process of a one-component ceramic coating. Since it forms a reinforcing layer, it can be performed simply at low cost. At the same time, contamination of the inner wall of the tunnel can be suppressed by a specific ceramic reinforcing layer, and low-concentration contamination can be removed even with low-pressure water spraying. It is also fire-resistant for a long time even during high-pressure spray cleaning to remove high-concentration contamination. It maintains its function and, furthermore, prevents toxic gases from being emitted in the event of a fire, showing an excellent effect in minimizing casualties due to suffocation, etc.

구체적으로, 상기 일액형 세라믹 코팅제는 이의 총 중량을 기준으로 콜로이달 실리카 35~55중량%, 에틸알콜 5~12중량%, 황산바륨 0.1~0.23중량%, 옥타티탄산 칼륨 1~2중량%, 및 안료 10~17중량%를 포함하는 A제, 3-글리시딜-옥시프로필-트리메톡시실레인 30~35중량%, 습윤제 0.01~0.2중량%, 제1페인트용 첨가제 0.01~0.2중량%, 제2페인트용 첨가제 0.01~0.2중량%, 1,2-Bis(triethoxysily)ethane 0.5~1.5중량%, 실란올 기능성 실리콘액 0.1~0.8중량%, 포름산 0.01~0.2중량%, 빙초산 0.1~0.2중량% 및 보관안정제 0.1~0.29중량%를 포함하는 B제를 함께 포함할 수 있다.Specifically, the one-component ceramic coating agent contains, based on the total weight, 35 to 55% by weight of colloidal silica, 5 to 12% by weight of ethyl alcohol, 0.1 to 0.23% by weight of barium sulfate, 1 to 2% by weight of potassium octatitanate, and Agent A containing 10 to 17% by weight of pigment, 30 to 35% by weight of 3-glycidyl-oxypropyl-trimethoxysilane, 0.01 to 0.2% by weight of wetting agent, 0.01 to 0.2% by weight of additive for the first paint, Second paint additive 0.01~0.2% by weight, 1,2-Bis(triethoxysily)ethane 0.5~1.5% by weight, silanol functional silicone liquid 0.1~0.8% by weight, formic acid 0.01~0.2% by weight, glacial acetic acid 0.1~0.2% by weight and agent B containing 0.1 to 0.29% by weight of a storage stabilizer.

상기 콜로이드 실리카(colloid silica; 일명 실리카졸)는 음전하를 띠는 무정질 실리카(Si02) 미립자가 수중에서 콜로이드 상태를 이루며, 구형의 실리카 미립자구조를 갖는다. 여기서, 상기 콜로이드 실리카는 열에 잘 견디도록 불연성이 우수한 세라믹 도막제로서의 기능을 수행하게 된다. 상기 콜로이달 실리카의 함량이 35중량% 미만시에는 접착력이 약화되는 반면, 55중량% 초과시에는 광택도가 저하되는 단점이 있다.The colloidal silica (aka silica sol) is a negatively charged amorphous silica (Si0 2 ) fine particle that forms a colloidal state in water and has a spherical silica fine particle structure. Here, the colloidal silica functions as a ceramic coating agent with excellent incombustibility and resistance to heat. If the colloidal silica content is less than 35% by weight, the adhesive strength is weakened, while if it exceeds 55% by weight, glossiness is reduced.

상기 에틸 알콜(ethylalcohol)은 C2H5OH의 화학식을 가지며, 여기서는 저온에서 휘발될 경우 모재 주변의 경화 온도를 낮추게 되어 일액형 세라믹 코팅제의 저온 경화 특성을 보조하는 기능을 수행하게 된다. 여기서, 상기 에틸알콜의 함량이 5중량% 미만시 보강층 표면의 레벨성이 약화되는 반면, 12중량% 초과시에는 내화층에 대한 보강층의 부착력이 약화되는 단점이 있다.The ethyl alcohol (ethylalcohol) has the chemical formula of C 2 H 5 OH, and here, when volatilized at low temperature, it lowers the curing temperature around the base material and performs the function of assisting the low temperature curing characteristics of the one-component ceramic coating agent. Here, when the content of ethyl alcohol is less than 5% by weight, the leveling of the surface of the reinforcing layer is weakened, while when it exceeds 12% by weight, there is a disadvantage in that the adhesion of the reinforcing layer to the fire resistance layer is weakened.

상기 황산바륨은 화학식 BaSO4로 구성되고, 안료의 색상 변화를 예방하는 기능을 수행하게 된다. 여기서, 상기 황산바륨의 함량은 0.1중량% 미만시 코팅제의 점도가 저하되어 작업성이 저하되는 반면, 0.23중량% 초과시 보강층의 색상이 쉽게 변색되는 단점이 있다.The barium sulfate has the chemical formula BaSO 4 and functions to prevent color changes in pigments. Here, if the content of barium sulfate is less than 0.1% by weight, the viscosity of the coating agent decreases and workability is reduced, while if it exceeds 0.23% by weight, the color of the reinforcement layer is easily discolored.

상기 옥타티탄산 칼륨은 보강층의 부착 성능을 향상시키기 위한 것으로, 함량이 1중량% 미만시 내화층에 대한 보강층의 부착력이 저하되고, 2중량% 초과시에는 보강층에 크랙이 발생하게 되는 단점이 있다.The potassium octatitanate is used to improve the adhesion performance of the reinforcing layer. When the content is less than 1% by weight, the adhesion of the reinforcing layer to the fireproof layer decreases, and when the content exceeds 2% by weight, cracks occur in the reinforcing layer.

상기 안료는 10중량% 미만시에는 보강층의 색상 구현력이 약화되는 반면에, 17중량% 초과시에는 보강층의 광택도가 저하되는 단점이 있다. 상기 3-글리시딜-옥시프로필-트리메톡시실레인은 광택도를 유지시키기 위한 것으로, 함량이 30중량% 미만시에는 보강층의 광택도가 저하되고 접착력이 약화되는 반면에, 35중량% 초과시에는 보강층의 광택도가 상승되지만 크랙이 발생하게 될 우려가 있다.When the amount of the pigment is less than 10% by weight, the ability to express the color of the reinforcement layer is weakened, while when it exceeds 17% by weight, the gloss of the reinforcement layer is reduced. The 3-glycidyl-oxypropyl-trimethoxysilane is used to maintain gloss. When the content is less than 30% by weight, the gloss of the reinforcing layer decreases and the adhesive strength weakens, whereas when the content exceeds 35% by weight, the gloss of the reinforcing layer decreases and the adhesive strength weakens. Although the glossiness of the reinforcement layer increases, there is a risk of cracks occurring.

상기 습윤제의 함량은 0.01중량% 미만시 보강층의 광택도가 저하되고, 0.2중량% 초과시 내화층에 대한 보강층의 부착력이 약화될 우려가 있고, 상기 제1페인트용 첨가제는 실리콘 첨가제로서, 함량이 0.01중량% 미만시 보강층의 레벨성이 약화되고, 0.2중량% 초과시에는 내화층에 대한 보강층의 부착력이 약화될 우려가 있다.If the content of the wetting agent is less than 0.01% by weight, the gloss of the reinforcing layer decreases, and if it exceeds 0.2% by weight, there is a risk of weakening the adhesion of the reinforcing layer to the fireproof layer. The first paint additive is a silicone additive, and the content is 0.01%. If it is less than 0.2% by weight, the leveling property of the reinforcing layer will be weakened, and if it is more than 0.2% by weight, there is a risk that the adhesion of the reinforcing layer to the fireproof layer will be weakened.

상기 제2페인트용 첨가제는 실리콘 계면활성제로서, 함량이 0.01중량% 미만시에는 보강층의 레벨성이 없으며, 0.2중량% 초과시에는 보강층의 습윤력(wetting)이 저하될 우려가 있다.The second additive for paint is a silicone surfactant. When the content is less than 0.01% by weight, there is no leveling of the reinforcement layer, and when it is more than 0.2% by weight, there is a risk that the wetting power of the reinforcement layer may be reduced.

상기 1,2-Bis(triethoxysily)ethane(1,2-비스(트리에폭시실릴)에탄)은 실록산의 일 예로서, 함량이 0.5중량% 미만시 보강층의 안전성이 약화되고, 1.5중량% 초과시에는 보강층의 pH가 상승하게 되는 단점이 있다.The 1,2-Bis(triethoxysily)ethane (1,2-bis(triepoxysilyl)ethane) is an example of siloxane. When the content is less than 0.5% by weight, the safety of the reinforcement layer is weakened, and when the content exceeds 1.5% by weight, the stability of the reinforcement layer is weakened. There is a disadvantage that the pH increases.

상기 실란올 기능성 실리콘액은 규소 원소에 수산화기(-OH)를 갖는 실란올(Si-OH)기를 포함하고 있으며, 함량이 0.1중량% 미만시에는 유해물질 발생의 우려가 있고, 0.8중량% 초과시에는 내화층에 대한 보강층의 부착력이 약화될 우려가 있다.The silanol functional silicone liquid contains a silanol (Si-OH) group having a hydroxyl group (-OH) on the silicon element. If the content is less than 0.1% by weight, there is a risk of generating harmful substances, and if the content exceeds 0.8% by weight, There is a risk that the adhesion of the reinforcing layer to the fireproof layer may be weakened.

상기 포름산(formic acid)은 유기산의 일종으로서, 함량이 0.01중량% 미만시에는 발열 반응이 미약하고, 0.2중량% 초과시에는 발열 반응이 과다하게 이루어지게 되어 겔 발생의 우려가 있다. 상기 빙초산은 함량이 0.1중량% 미만시에는 발열반응이 미약하고, 0.2중량% 초과시에는 겔 발생의 우려가 있다. 상기 보관안정제는 0.1중량% 미만시에는 세라믹 코팅제의 보관성이 저하되고, 0.29중량% 초과시에는 내화층에 대한 보강층의 부착력이 약화될 우려가 있다.The formic acid is a type of organic acid. When the content is less than 0.01% by weight, the exothermic reaction is weak, and when the content exceeds 0.2% by weight, the exothermic reaction occurs excessively, raising the risk of gel generation. When the glacial acetic acid content is less than 0.1% by weight, the exothermic reaction is weak, and when the content exceeds 0.2% by weight, there is a risk of gel generation. If the storage stabilizer is less than 0.1% by weight, the storage properties of the ceramic coating are reduced, and if it is more than 0.29% by weight, there is a risk that the adhesion of the reinforcing layer to the fireproof layer will be weakened.

상기 일액형 세라믹 코팅제의 제조방법은, 콜로이달 실리카 35~55중량%, 에틸알콜 5~12중량%, 황산바륨 0.1~0.23중량%, 옥타티탄산 칼륨 1~2중량%, 안료 10~17중량%를 포함하는 A제를 교반기 내에 투입하고 교반하는 제1교반단계; 상기 교반기 내에 3-글리시딜-옥시프로필-트리메톡시실레인 30~35중량%, 습윤제 0.01~0.2중량%, 제1페인트용 첨가제 0.01~0.2중량%, 제2페인트용 첨가제 0.01~0.2중량%, 1,2-Bis(triethoxysily)ethane 0.5~1.5중량%, 실란올 기능성 실리콘액 0.1~0.8중량%, 포름산 0.01~0.2중량%, 빙초산 0.1~0.2중량% 및 보관안정제 0.1~0.29중량%를 구비하는 B제를 투입하여 교반하는 제2교반단계; 및 상기 제2교반단계를 거친 일액형 세라믹 코팅제을 냉각시키는 냉각단계;를 포함할 수 있다.The method for producing the one-component ceramic coating agent is 35 to 55% by weight of colloidal silica, 5 to 12% by weight of ethyl alcohol, 0.1 to 0.23% by weight of barium sulfate, 1 to 2% by weight of potassium octatitanate, and 10 to 17% by weight of pigment. A first stirring step of putting agent A containing into a stirrer and stirring it; In the stirrer, 30 to 35% by weight of 3-glycidyl-oxypropyl-trimethoxysilane, 0.01 to 0.2% by weight of wetting agent, 0.01 to 0.2% by weight of additive for first paint, and 0.01 to 0.2% by weight of additive for second paint. %, 1,2-Bis(triethoxysily)ethane 0.5~1.5% by weight, silanol functional silicone liquid 0.1~0.8% by weight, formic acid 0.01~0.2% by weight, glacial acetic acid 0.1~0.2% by weight, and storage stabilizer 0.1~0.29% by weight. A second stirring step of adding and stirring the provided agent B; and a cooling step of cooling the one-component ceramic coating agent that has undergone the second stirring step.

상기 제1,2교반단계는 상기 교반기 내의 온도를 25~45℃의 온도 범위에서 50~200rpm의 교반속도로 교반하는 것이다. 상기 제1,2교반단계에서 교반기 내의 온도를 25℃ 미만으로 유지할 경우 보강층의 광택도가 저하되고 일액형 세라믹 코팅제의 바인더 형성이 이루어지지 못하게 되며 내화층에 대한 보강층의 부착력이 저하될 우려가 있다. 한편, 상기 교반기 내의 온도가 45℃를 초과할 경우 내화층에 대한 보강층의 부착력이 저하되고 보강층에 크랙이 발생할 우려가 있다.In the first and second stirring steps, the temperature in the stirrer is stirred at a stirring speed of 50 to 200 rpm in a temperature range of 25 to 45 ° C. If the temperature in the stirrer is maintained below 25°C in the first and second stirring steps, the gloss of the reinforcing layer will decrease, the binder formation of the one-component ceramic coating will not be formed, and there is a risk that the adhesion of the reinforcing layer to the fireproof layer will decrease. . Meanwhile, if the temperature in the stirrer exceeds 45°C, there is a risk that the adhesion of the reinforcing layer to the fireproof layer will decrease and cracks may occur in the reinforcing layer.

상기 교반기의 교반속도가 50rpm 미만일 경우 발열반응이 제대로 이루어지지 못하고, 코팅제의 부착력이 저하될 우려가 있다. 한편, 상기 교반기의 교반속도가 200rpm을 초과할 경우 과도하게 발열되어 코팅제의 광택도가 저하될 우려가 있다. 더 구체적으로, 상기 제1,2교반단계는 주로 33~35℃의 온도 및 120~150rpm의 교반속도 범위에서 이루어지게 된다.If the stirring speed of the stirrer is less than 50 rpm, there is a risk that the exothermic reaction may not occur properly and the adhesion of the coating agent may decrease. On the other hand, if the stirring speed of the stirrer exceeds 200 rpm, there is a risk that excessive heat is generated and the gloss of the coating agent decreases. More specifically, the first and second stirring steps are mainly performed at a temperature of 33 to 35° C. and a stirring speed of 120 to 150 rpm.

실리카 및 색상 성분이 주로 이루어진 상기 A제를 먼저 교반기 내에 투입하고 선 교반하는 이유는 코팅제의 점도 조절을 용이하게 수행할 수 있도록 하기 위함이며, 실레인 산도 4이하의 성분으로 구성된 상기 B제를 상기 선 교반된 A제에 혼합하도록 교반기 내에 투입하고 교반하는 2단계의 교반작업을 수행하게 된다.The reason that the agent A, which mainly consists of silica and color components, is first placed in the stirrer and stirred linearly is to facilitate the control of the viscosity of the coating agent, and the agent B, which consists of a component with a silane acidity of 4 or less, is added to the stirrer and stirred. A two-step stirring operation is performed in which the product is placed in a stirrer and stirred to mix with the pre-stirred agent A.

상기 교반기의 교반 동작시간은 교반온도 및 교반속도에 상반되는 특성을 가지게 되며, 30분~10시간의 동작시간을 가지게 된다. 상기한 교반작업이 완료된 후에 A제와 B제가 혼합된 일액형 세라믹 코팅제를 냉각시키는 냉각단계가 구비되며, 상기 냉각단계는 5~40℃의 냉각 온도 범위 내에서 수행하게 된다.The stirring operation time of the stirrer has characteristics that are opposite to the stirring temperature and stirring speed, and has an operation time of 30 minutes to 10 hours. After the above-mentioned stirring operation is completed, a cooling step is provided to cool the one-component ceramic coating agent mixed with agent A and agent B, and the cooling step is performed within a cooling temperature range of 5 to 40 ° C.

상기 냉각단계에서 코팅제의 냉각온도가 5℃ 미만의 낮은 온도에서 냉각할 경우 빙점에 도달하여 반응이 이루어지지 못할 우려가 있고, 상기 냉각온도가 40℃를 초과할 경우 코팅제의 겔현상으로 인해 내화층에 대한 보강층의 부착력이 저하될 우려가 있다.In the cooling step, if the cooling temperature of the coating agent is cooled at a low temperature of less than 5℃, there is a risk that the reaction may not occur as the freezing point is reached, and if the cooling temperature exceeds 40℃, the fireproof layer may form due to gelling of the coating agent. There is a risk that the adhesion of the reinforcing layer may decrease.

[실시예][Example]

1. 고압 살수 시험1. High pressure water spray test

분말 형태의 질석(vermiculite)계 경량내화 시멘트를 사용해 두께 25 mm로 구조물을 제작한 비교예와 상기 구조물 표면에 세라믹 보강층이 코팅된 실시예에 대해 200 bar 압력의 살수를 1분씩 수행했고, 살수 수행 전/후 사진은 도 2에 나타난 바와 같다.For the comparative example in which a structure was manufactured with a thickness of 25 mm using powdered vermiculite-based lightweight refractory cement and the example in which the surface of the structure was coated with a ceramic reinforcing layer, watering at a pressure of 200 bar was performed for 1 minute each, and watering was performed. Before/after photos are as shown in Figure 2.

도 2에 나타난 바와 같이, 세라믹 보강층이 형성되지 않은 비교예의 경량내화 시멘트 구조물은 고압 살수시 표면이 손상된 반면, 세라믹 보강층이 형성된 실시예의 경량내화 시멘트 구조물은 고압 살수에도 표면이 손상되지 않은 것으로 확인되었다.As shown in Figure 2, it was confirmed that the surface of the lightweight refractory cement structure of the comparative example in which the ceramic reinforcement layer was not formed was damaged during high-pressure water spraying, while the surface of the lightweight refractory cement structure of the example in which the ceramic reinforcement layer was formed was not damaged even by high-pressure water spraying. .

2. 내화 시험2. Fire resistance test

실시예의 세라믹 보강층이 코팅된 경량내화 시멘트 구조물에 대해 Jet Firing(20초 이내 1,000℃ 도달)을 수행했고, 수행결과는 도 3에 나타난 바와 같다.Jet firing (reaching 1,000°C within 20 seconds) was performed on the lightweight refractory cement structure coated with the ceramic reinforcement layer of the example, and the results are shown in FIG. 3.

도 3에 나타난 바와 같이, 실시예의 시멘트 구조물은 화염 인가시에도 손상되지 않은 것으로 확인되었다.As shown in Figure 3, it was confirmed that the cement structure of the example was not damaged even when flame was applied.

본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.Although this specification has been described with reference to preferred embodiments of the present invention, those skilled in the art may make various modifications and changes to the present invention without departing from the spirit and scope of the present invention as set forth in the claims described below. It will be possible to implement it. Therefore, if the modified implementation basically includes the elements of the claims of the present invention, it should be considered to be included in the technical scope of the present invention.

Claims (9)

터널 내벽을 형성하기 위한 콘크리트 부재를 제조하기 위한 콘크리트의 타설 및 양생 공정;
상기 콘크리트 부재의 일면에 내화층을 형성하는 내화층 형성 공정; 및
상기 내화층 위에 세라믹 보강층을 형성하는 세라믹 보강층 형성 공정을 포함하는, 터널 내화 시공방법.
Concrete pouring and curing processes for manufacturing concrete members to form the inner wall of a tunnel;
A fire-resistant layer forming process of forming a fire-resistant layer on one surface of the concrete member; and
A tunnel fireproof construction method comprising a ceramic reinforcement layer forming process of forming a ceramic reinforcement layer on the fireproof layer.
제1항에 있어서,
상기 세라믹 보강층은 경도가 6H 이상인 것을 특징으로 하는, 터널 내화 시공방법.
According to paragraph 1,
A tunnel fireproofing construction method, characterized in that the ceramic reinforcement layer has a hardness of 6H or more.
제2항에 있어서,
상기 세라믹 보강층은 두께가 200 내지 300 ㎛인 것을 특징으로 하는, 터널 내화 시공방법.
According to paragraph 2,
A tunnel fireproofing construction method, characterized in that the ceramic reinforcement layer has a thickness of 200 to 300 ㎛.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 세라믹 보강층은 일액형 세라믹 코팅제로부터 형성되고,
상기 세라믹 코팅제는 이의 총 중량을 기준으로 콜로이달 실리카 35~55중량%, 에틸알콜 5~12중량%, 황산바륨 0.1~0.23중량%, 옥타티탄산 칼륨 1~2중량%, 및 안료 10~17중량%를 포함하는 A제, 3-글리시딜-옥시프로필-트리메톡시실레인 30~35중량%, 습윤제 0.01~0.2중량%, 제1페인트용 첨가제 0.01~0.2중량%, 제2페인트용 첨가제 0.01~0.2중량%, 1,2-Bis(triethoxysily)ethane 0.5~1.5중량%, 실란올 기능성 실리콘액 0.1~0.8중량%, 포름산 0.01~0.2중량%, 빙초산 0.1~0.2중량% 및 보관안정제 0.1~0.29중량%를 포함하는 B제를 포함하는 것을 특징으로 하는, 터널 내화 시공방법.
According to any one of claims 1 to 3,
The ceramic reinforcement layer is formed from a one-component ceramic coating agent,
The ceramic coating agent contains 35 to 55% by weight of colloidal silica, 5 to 12% by weight of ethyl alcohol, 0.1 to 0.23% by weight of barium sulfate, 1 to 2% by weight of potassium octatitanate, and 10 to 17% by weight of pigment, based on the total weight. Agent A containing %, 30-35% by weight of 3-glycidyl-oxypropyl-trimethoxysilane, 0.01-0.2% by weight of wetting agent, 0.01-0.2% by weight of additive for first paint, additive for second paint 0.01~0.2% by weight, 1,2-Bis(triethoxysily)ethane 0.5~1.5% by weight, silanol functional silicone liquid 0.1~0.8% by weight, formic acid 0.01~0.2% by weight, glacial acetic acid 0.1~0.2% by weight, and storage stabilizer 0.1~ A tunnel fireproofing construction method, characterized in that it contains agent B containing 0.29% by weight.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 콘크리트의 타설시 거푸집 내부에 철근을 배치한 상태로 콘크리트 배합제를 타설하여 상기 콘크리트 부재를 철근 콘크리트 부재로 제조하는 것을 특징으로 하는, 터널 내화 시공방법.
According to any one of claims 1 to 3,
A tunnel fireproof construction method, characterized in that when pouring the concrete, the concrete member is manufactured into a reinforced concrete member by pouring a concrete mix with reinforcing bars placed inside the formwork.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 내화층 형성 공정을 수행하기 전에 상기 콘크리트 부재에서 상기 내화층이 형성되는 표면을 치핑(chipping)이나 라텍스 도포와 와이어 메쉬 또는 메탈라스 부착을 추가로 수행하는 것을 특징으로 하는, 터널 내화 시공방법.
According to any one of claims 1 to 3,
A tunnel fireproof construction method, characterized in that chipping or applying latex and attaching wire mesh or metal lath to the surface of the concrete member where the fireproof layer is formed is additionally performed before performing the fireproof layer forming process.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 내화층은 내화 피복제를 뿜칠공법에 의해 도포함으로써 형성되는 것을 특징으로 하는, 터널 내화 시공방법.
According to any one of claims 1 to 3,
A tunnel fire-resistant construction method, characterized in that the fire-resistant layer is formed by applying a fire-resistant coating material by a spray coating method.
제7항에 있어서,
상기 내화 피복제는 질석(vermiculite cemetitious)을 포함하는 것을 특징으로 하는, 터널 내화 시공방법.
In clause 7,
A tunnel fireproof construction method, characterized in that the fireproof coating includes vermiculite cemetitious.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 내화층의 두께는 25 내지 45 mm인 것을 특징으로 하는, 터널 내화 시공방법.
According to any one of claims 1 to 3,
A tunnel fireproof construction method, characterized in that the thickness of the fireproof layer is 25 to 45 mm.
KR1020220075264A 2022-06-21 2022-06-21 Fireproof construction method for tunnel KR20230174389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220075264A KR20230174389A (en) 2022-06-21 2022-06-21 Fireproof construction method for tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220075264A KR20230174389A (en) 2022-06-21 2022-06-21 Fireproof construction method for tunnel

Publications (1)

Publication Number Publication Date
KR20230174389A true KR20230174389A (en) 2023-12-28

Family

ID=89384964

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220075264A KR20230174389A (en) 2022-06-21 2022-06-21 Fireproof construction method for tunnel

Country Status (1)

Country Link
KR (1) KR20230174389A (en)

Similar Documents

Publication Publication Date Title
Shen et al. Performance of silane-based surface treatments for protecting degraded historic concrete
KR101963828B1 (en) Composite coating putty composition for repairing crack in concrete structure
KR20110046214A (en) Functional paint composition and manufacturing method for the same
CN103089126A (en) Green fire door core and manufacturing method of same and fire door
EP3135652B1 (en) Inorganic expandable refractory composition
KR101923975B1 (en) Manufacturing method of fire retardant paint and fireproof repair material and repair method of concrete structure using the same
Won et al. Eco-friendly fireproof high-strength polymer cementitious composites
KR100787477B1 (en) Self-cleaning hydrophilic impregnant for concrete surface protection and construction method using it
JP2003517084A (en) Flame retardant composition
KR101751186B1 (en) Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same
KR101669093B1 (en) Ceramic coating material for preventing neutralization of concrete structure and method of manufacturing and constructing thereof
KR101952900B1 (en) Manufacturing method of coationg composition for flux panel
JPWO2020004434A1 (en) Concrete reforming method and modifier
KR20230174389A (en) Fireproof construction method for tunnel
KR20130094093A (en) Coating composition of water supply and drain pipe for waterproof and contamination preventation and manufacturing method thereof
KR100769923B1 (en) Coating for waterproofing and construction method using thereof
KR101153784B1 (en) Functional paint composition and manufacturing method for the same
KR102408784B1 (en) Structural crack repair materials including concrete wall columns
KR101755637B1 (en) Heat shield for the finishing of construction and civil engineering coating compositions and coating methods
KR102177102B1 (en) Coating composition
JP6828875B2 (en) Concrete protection method
JPH0710633A (en) Production of hardened inorganic body
JP2001072480A (en) Heat-insulative coating composition
KR101118136B1 (en) Fire-retardant composition comprising inorganic hollow-shell particles
RU2435810C2 (en) Fire-resistant coating composition