KR20230171783A - 기판 처리 장치 및 열전달 매체 공급 장치 - Google Patents

기판 처리 장치 및 열전달 매체 공급 장치 Download PDF

Info

Publication number
KR20230171783A
KR20230171783A KR1020220072346A KR20220072346A KR20230171783A KR 20230171783 A KR20230171783 A KR 20230171783A KR 1020220072346 A KR1020220072346 A KR 1020220072346A KR 20220072346 A KR20220072346 A KR 20220072346A KR 20230171783 A KR20230171783 A KR 20230171783A
Authority
KR
South Korea
Prior art keywords
heat transfer
transfer medium
medium supply
substrate
flow path
Prior art date
Application number
KR1020220072346A
Other languages
English (en)
Inventor
이수형
장주용
김교봉
Original Assignee
세메스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세메스 주식회사 filed Critical 세메스 주식회사
Priority to KR1020220072346A priority Critical patent/KR20230171783A/ko
Publication of KR20230171783A publication Critical patent/KR20230171783A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

본 발명의 일 관점에 따른 기판 처리 장치는, 내부에 처리 공간을 가지는 공정 챔버; 상기 처리 공간 내에서 기판을 지지하는 지지 유닛; 상기 처리 공간 내로 처리가스를 공급하는 가스 공급 유닛; 상기 처리 공간 내로 공급된 처리가스로부터 플라즈마를 발생시키는 플라즈마 소스;를 포함하고, 상기 지지 유닛은 상기 기판의 저면에 열전달 매체를 공급하는 열전달 매체 공급부를 포함하며, 상기 열전달 매체 공급부에는 상기 열전달 매체가 이동하는 열전달 매체 공급 유로가 형성되되, 상기 열전달 매체 공급 유로의 길이는 상기 열전달 매체 공급부의 수직 방향으로 연장된 길이보다 길게 형성되는 것을 특징으로 한다.

Description

기판 처리 장치 및 열전달 매체 공급 장치 {Substrate processing apparatus and heat transfer medium supply apparatus}
본 발명은 반도체 장치에 관한 것으로서, 더 상세하게는 플라즈마 식각에 사용되는 기판 처리 장치 및 열전달 매체 공급 장치에 관한 것이다.
플라즈마는 이온이나 전자, 라디칼(Radical) 등으로 이루어진 이온화된 가스 상태이며, 플라즈마는 매우 높은 온도, 강한 전계 또는 고주파 전자기장(RF electromagnetic fields)에 의해 생성될 수 있다. 플라즈마 처리 장치에 적용되는 플라즈마는 축전 용량성 플라즈마(Capacitively Coupled Plasma), 유도 결합형 플라즈마(Inductively Coupled Plasma, ICP), 마이크로웨이브 플라즈마(Microwave Plasma) 등이 있다.
예를 들어, 반도체 공정에서 플라즈마는 식각 공정에 활용될 수 있다. 식각 공정은 기판 위에 플라즈마를 발생시킨 뒤 플라즈마 내 이온을 기판으로 가속시킴으로써 기판 상의 박막을 제거함으로서 수행될 수 있다.
플라즈마 처리 장치에서 공정 챔버 내에 공급된 반응 가스는 유도 전기장으로부터 이온화에 필요한 에너지를 얻어 플라즈마를 생성한다. 공정 챔버 내의 공정 부산물은 공정 후 외부로 배기시키거나, 공정 챔버 내의 필터에 필터링시키게 된다. 다만, 필터 내 쌓인 파티클들이 플라즈마에 의해 아킹(arcing)이 발생되는 문제점이 있었다. 아킹의 발생으로 인해 플라즈마 처리 장치 내부의 구성 요소들이 파손되거나 오작동할 수 있으므로, 아킹 발생을 방지하는 기술이 요구되는 실정이다.
본 발명은 전술한 문제점을 해결하기 위한 것으로서, 공정 챔버 내부에서 아킹(arcing)이 발생하는 것을 방지할 수 있는 기판 처리 장치 및 열전달 매체 공급 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은 기판의 전면적을 균일하게 가열할 수 있는 기판 처리 장치 및 열전달 매체 공급 장치를 제공하는 것을 목적으로 한다.
그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
본 발명의 일 관점에 따른 기판 처리 장치는, 기판을 처리하는 장치에 있어서, 내부에 처리 공간을 가지는 공정 챔버; 상기 처리 공간 내에서 기판을 지지하는 지지 유닛; 상기 처리 공간 내로 처리가스를 공급하는 가스 공급 유닛; 상기 처리 공간 내로 공급된 처리가스로부터 플라즈마를 발생시키는 플라즈마 소스;를 포함하고, 상기 지지 유닛은 상기 기판의 저면에 열전달 매체를 공급하는 열전달 매체 공급부를 포함하며, 상기 열전달 매체 공급부에는 상기 열전달 매체가 이동하는 열전달 매체 공급 유로가 형성되되, 상기 열전달 매체 공급 유로의 길이는 상기 열전달 매체 공급부의 수직 방향으로 연장된 길이보다 길게 형성될 수 있다.
상기 기판 처리 장치에 따르면, 상기 열전달 매체 공급부는, 본체부; 및 상기 열전달 매체 공급 유로가 형성된 유로부;를 포함할 수 있다.
상기 기판 처리 장치에 따르면, 상기 유로부의 하부에 다공성(porous)의 필터부가 배치될 수 있다.
상기 기판 처리 장치에 따르면, 상기 필터부는 절연성 재질일 수 있다.
상기 기판 처리 장치에 따르면, 상기 열전달 매체 공급 유로는 적어도 곡선 형태로 형성된 부분을 포함할 수 있다.
상기 기판 처리 장치에 따르면, 상기 열전달 매체 공급 유로의 길이가 길어질수록 아킹(arcing) 발생 전압이 커질 수 있다.
본 발명의 다른 관점에 따른 열전달 매체 공급 장치는, 공정 챔버에 유입된 처리가스를 이온화하여 플라즈마를 생성하는 기판 처리 장치의 기판을 지지하는 지지 유닛 내에 설치되어 상기 기판의 저면에 열전달 매체를 공급하는 열전달 매체 공급 장치로서, 상기 열전달 매체 공급 장치에는 상기 열전달 매체가 이동하는 열전달 매체 공급 유로가 형성되되, 상기 열전달 매체 공급 유로의 길이는 상기 열전달 매체 공급부의 수직 방향으로 연장된 길이보다 길게 형성될 수 있다.
상기 열전달 매체 공급 장치에 따르면, 상기 열전달 매체 공급 장치는, 본체부; 및 상기 열전달 매체 공급 유로가 형성된 유로부;를 포함할 수 있다.
상기 열전달 매체 공급 장치에 따르면, 상기 유로부의 하부에 배치되는 다공성(porous)의 필터부를 더 포함할 수 있다.
상기 열전달 매체 공급 장치에 따르면, 상기 열전달 매체 공급 유로는 적어도 곡선 형태로 형성된 부분을 포함할 수 있다.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 공정 챔버 내부에서 아킹(arcing)이 발생하는 것을 방지할 수 있는 효과가 있다.
또한, 본 발명의 일 실시예에 따르면, 기판의 전면적을 균일하게 가열할 수 있는 효과가 있다.
물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 기판 처리 장치를 보여주는 개략적인 단면도이다.
도 2는 본 발명의 제1 실시예에 따른 열전달 매체 공급 장치를 보여주는 개략적인 단면도이다.
도 3은 본 발명의 제2 실시예에 따른 열전달 매체 공급 장치를 보여주는 개략적인 단면도이다.
도 4는 본 발명의 열전달 매체 공급 장치를 제조하는 과정을 나타내는 개략적인 도면이다.
도 5는 본 발명의 여러 실시예에 따른 열전달 매체 공급 유로를 보여주는 개략적인 도면이다.
도 6은 본 발명의 일 실시예에 따른 열전달 매체 공급 유로의 길이에 따른 절연 파괴 전압을 나타내는 개략적인 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 여러 실시예들을 상세히 설명하기로 한다.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려 이들 실시예들은 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다. 또한, 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이다.
이하, 본 발명의 실시예들은 본 발명의 이상적인 실시예들을 개략적으로 도시하는 도면들을 참조하여 설명한다. 도면들에 있어서, 예를 들면, 제조 기술 및/또는 공차(tolerance)에 따라, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명 사상의 실시예는 본 명세서에 도시된 영역의 특정 형상에 제한된 것으로 해석되어서는 아니 되며, 예를 들면 제조상 초래되는 형상의 변화를 포함하여야 한다.
도 1은 본 발명의 일 실시예에 따른 기판 처리 장치를 보여주는 개략적인 단면도이다.
도 1을 참조하면, 기판 처리 장치(10)는 플라즈마를 이용하여 기판(W)을 처리한다. 예를 들어, 기판 처리 장치(10)는 기판(W)에 대하여 식각 공정을 수행할 수 있다. 기판 처리 장치(10)는 공정 챔버(100), 지지 유닛(200), 가스 공급 유닛(300), 플라즈마 소스(400), 그리고 배플 유닛(500)을 포함한다.
공정 챔버(100)는 내부에 기판 처리 공정이 수행되는 처리 공간을 제공한다. 공정 챔버(100)는 내부에 처리 공간을 가지고, 밀폐된 형상으로 제공된다. 공정 챔버(100)는 금속 재질로 제공된다. 공정 챔버(100)는 알루미늄 재질로 제공될 수 있다. 공정 챔버(100)는 접지될 수 있다. 공정 챔버(100)의 바닥면에는 배기홀(102)이 형성된다. 배기홀(102)은 배기 라인(151)과 연결된다. 공정 과정에서 발생한 반응 부산물 및 공정 챔버의 내부 공간에 머무르는 가스는 배기 라인(151)을 통해 외부로 배출될 수 있다. 배기 과정에 의해 공정 챔버(100)의 내부는 소정 압력으로 감압된다.
일 예에 의하면, 공정 챔버(100) 내부에는 라이너(130)가 제공될 수 있다. 라이너(130)는 상면 및 하면이 개방된 원통 형상을 가진다. 라이너(130)는 공정 챔버(100)의 내측면과 접촉하도록 제공될 수 있다. 라이너(130)는 공정 챔버(100)의 내측벽을 보호하여 공정 챔버(100)의 내측벽이 아크 방전으로 손상되는 것을 방지한다. 또한, 기판 처리 공정 중에 발생한 불순물이 공정 챔버(100)의 내측벽에 증착되는 것을 방지한다. 선택적으로, 라이너(130)는 제공되지 않을 수도 있다.
지지 유닛(200)은 공정 챔버(100) 내부에 제공된다. 지지 유닛(200)은 처리 공간 내에서 기판(W)을 지지한다. 지지 유닛(200)은 정전기력을 이용하여 기판(W)을 흡착하는 정전 척(210)을 포함할 수 있다.
지지 유닛(200)은 정전 척(210), 하부 커버(250) 그리고 플레이트(270)를 포함한다. 지지 유닛(200)은 공정 챔버(100) 내부에서 공정 챔버(100)의 바닥면에서 상부로 이격되어 위치한다.
정전 척(210)은 유전판(220), 몸체(230) 그리고 포커스 링(240)을 포함한다. 정전 척(210)은 기판(W)을 지지한다.
유전판(220)은 정전 척(210)의 상단에 위치한다. 유전판(220)은 원판 형상의 유전체(dielectric substance)로 제공된다. 유전판(220)의 상면에는 기판(W)이 놓인다. 유전판(220)의 상면은 기판(W)보다 작은 반경을 갖는다. 때문에, 기판(W) 가장자리 영역은 유전판(220)의 외측에 위치한다.
유전판(220)은 내부에 제1 전극(223), 히터(225) 그리고 제1 공급 유로(221)를 포함한다. 제1 공급 유로(221)는 유전판(210)의 상면으로부터 저면으로 제공된다. 제1 공급 유로(221)는 서로 이격하여 복수개 형성되며, 기판(W)의 저면으로 열전달 매체가 공급되는 통로로 제공된다.
제1 전극(223)은 제1 전원(223a)과 전기적으로 연결된다. 제1 전원(223a)은 직류 전원을 포함한다. 제1 전극(223)과 제1 전원(223a) 사이에는 스위치(223b)가 설치된다. 제1 전극(223)은 스위치(223b)의 온/오프(ON/OFF)에 의해 제1 전원(223a)과 전기적으로 연결될 수 있다. 스위치(223b)가 온(ON) 되면, 제1 전극(223)에는 직류 전류가 인가된다. 제1 전극(223)에 인가된 전류에 의해 제1 전극(223)과 기판(W) 사이에는 정전기력이 작용하며, 정전기력에 의해 기판(W)은 유전판(220)에 흡착된다.
히터(225)는 제1 전극(223)의 하부에 위치한다. 히터(225)는 제2 전원(225a)과 전기적으로 연결된다. 히터(225)는 제2 전원(225a)에서 인가된 전류에 저항함으로써 열을 발생시킨다. 발생된 열은 유전판(220)을 통해 기판(W)으로 전달된다. 히터(225)에서 발생된 열에 의해 기판(W)은 소정 온도로 유지된다. 히터(225)는 나선 형상의 코일을 포함한다.
유전판(220)의 하부에는 몸체(230)가 위치한다. 유전판(220)의 저면과 몸체(230)의 상면은 접착제(236)에 의해 접착될 수 있다. 몸체(230)는 알루미늄 재질로 제공될 수 있다. 몸체(230)의 상면은 중심 영역이 가장자리 영역보다 높게 위치되도록 단차질 수 있다. 몸체(230)의 상면 중심 영역은 유전판(220)의 저면에 상응하는 면적을 가지며, 유전판(220)의 저면과 접착된다. 몸체(230)는 내부에 제1 순환 유로(231), 제2 순환 유로(232) 그리고 제2 공급 유로(233)가 형성된다.
제1 순환 유로(231)는 열전달 매체가 순환하는 통로로 제공된다. 제1 순환 유로(231)는 몸체(230) 내부에 나선 형상으로 형성될 수 있다. 또는, 제1 순환 유로(231)는 서로 상이한 반경을 갖는 링 형상의 유로들이 동일한 중심을 갖도록 배치될 수 있다. 각각의 제1 순환 유로(231)들은 서로 연통될 수 있다. 제1 순환 유로(231)들은 동일한 높이에 형성된다.
제2 순환 유로(232)는 냉각 유체가 순환하는 통로로 제공된다. 제2 순환 유로(232)는 몸체(230) 내부에 나선 형상으로 형성될 수 있다. 또는, 제2 순환 유로(232)는 서로 상이한 반경을 갖는 링 형상의 유로들이 동일한 중심을 갖도록 배치될 수 있다. 각각의 제2 순환 유로(232)들은 서로 연통될 수 있다. 제2 순환 유로(232)는 제1 순환 유로(231)보다 큰 단면적을 가질 수 있다. 제2 순환 유로(232)들은 동일한 높이에 형성된다. 제2 순환 유로(232)는 제1 순환 유로(231)의 하부에 위치될 수 있다.
제2 공급 유로(233)는 제1 순환 유로(231)부터 상부로 연장되며, 몸체(230)의 상면으로 제공된다. 제2 공급 유로(233)는 제1 공급 유로(221)에 대응하는 개수로 제공되며, 제1 순환 유로(231)와 제1 공급 유로(221)를 연결한다.
제1 순환 유로(231)는 열전달 매체 공급라인(231b)을 통해 열전달 매체 저장부(231a)와 연결된다. 열전달 매체 저장부(231a)에는 열전달 매체가 저장된다. 열전달 매체는 불활성 가스를 포함한다. 일 실시예에 의하면, 열전달 매체는 헬륨(He) 가스를 포함한다. 헬륨 가스는 공급 라인(231b)을 통해 제1 순환 유로(231)에 공급되며, 제2 공급 유로(233)와 제1 공급 유로(221)를 순차적으로 거쳐 기판(W) 저면으로 공급된다. 기판(W)의 저면은 유전판(220)을 통해 열은 전달받을 수 있으나, 기판(W)의 저면이 유전판(220)에 완벽하게 접촉되지 않은 부분이 존재할 수 있다. 헬륨 가스와 같은 열전달 매체는 기판(W)의 저면과 유전판(220) 사이의 미세 틈에 공급되어 기판(W)의 저면 전체에 균일하게 열이 전달되도록 한다.
제2 순환 유로(232)는 냉각 유체 공급 라인(232c)을 통해 냉각 유체 저장부(232a)와 연결된다. 냉각 유체 저장부(232a)에는 냉각 유체가 저장된다. 냉각 유체 저장부(232a) 내에는 냉각기(232b)가 제공될 수 있다. 냉각기(232b)는 냉각 유체를 소정 온도로 냉각시킨다. 이와 달리, 냉각기(232b)는 냉각 유체 공급 라인(232c) 상에 설치될 수 있다. 냉각 유체 공급 라인(232c)을 통해 제2 순환 유로(232)에 공급된 냉각 유체는 제2 순환 유로(232)를 따라 순환하며 몸체(230)를 냉각한다. 몸체(230)는 냉각되면서 유전판(220)과 기판(W)을 함께 냉각시켜 기판(W)을 소정 온도로 유지시킨다.
몸체(230)는 금속판을 포함할 수 있다. 일 예에 의하면, 몸체(230) 전체가 금속판으로 제공될 수 있다. 몸체(230)는 하부 전원(420)과 전기적으로 연결될 수 있다. 하부 전원(420)은 고주파 전력을 발생시키는 고주파 전원으로 제공될 수 있다. 고주파 전원은 RF 전원으로 제공될 수 있다. 몸체(230)는 하부 전원(420)으로부터 고주파 전력을 인가받는다. 이로 인하여 몸체(230)는 전극으로서 기능할 수 있다.
포커스 링(240)은 정전 척(210)의 가장자리 영역에 배치된다. 포커스 링(240)은 링 형상을 가지며, 유전판(220)의 둘레를 따라 배치된다. 포커스 링(240)의 상면은 외측부(240a)가 내측부(240b)보다 높도록 단차질 수 있다. 포커스 링(240)의 상면 내측부(240b)는 유전판(220)의 상면과 동일 높이에 위치된다. 포커스 링(240)의 상면 내측부(240b)는 유전판(220)의 외측에 위치된 기판(W)의 가장자리 영역을 지지한다. 포커스 링(240)의 외측부(240a)는 기판(W) 가장자리 영역을 둘러싸도록 제공된다.
하부 커버(250)는 지지 유닛(200)의 하단부에 위치한다. 하부 커버(250)는 공정 챔버(100)의 바닥면에서 상부로 이격되어 위치한다. 하부 커버(250)는 상면이 개방된 공간(255)이 내부에 형성된다. 하부 커버(250)의 외부 반경은 몸체(230)의 외부 반경과 동일한 길이로 제공될 수 있다. 하부 커버(250)의 내부 공간(255)에는 반송되는 기판(W)을 외부의 반송 부재로부터 정전 척(210)으로 이동시키는 리프트 핀 모듈(미도시) 등이 위치할 수 있다. 리프트 핀 모듈(미도시)은 하부 커버(250)로부터 일정간격 이격되어 위치한다. 하부 커버(250)의 저면은 금속 재질로 제공될 수 있다.
하부 커버(250)는 연결 부재(253)를 갖는다. 연결 부재(253)는 하부 커버(250)의 외측면과 공정 챔버(100)의 내측벽을 연결한다. 연결 부재(253)는 하부 커버(250)의 외측면에 일정한 간격으로 복수개 제공될 수 있다. 연결 부재(253)는 지지 유닛(200)을 공정 챔버(100) 내부에서 지지한다. 또한, 연결 부재(253)는 공정 챔버(100)의 내측벽과 연결됨으로써 하부 커버(250)가 전기적으로 접지(grounding)되도록 한다. 제1 전원(223a)과 연결되는 제1 전원라인(223c), 제2 전원(225a)과 연결되는 제2 전원라인(225c), 하부 전원(420)과 연결되는 제3 전원라인(420c), 열전달 매체 저장부(231a)와 연결된 열전달 매체 공급라인(231b) 그리고 냉각 유체 저장부(232a)와 연결된 냉각 유체 공급 라인(232c)등은 연결 부재(253)의 내부 공간(255)을 통해 하부 커버(250) 내부로 연장된다.
정전 척(210)과 하부 커버(250)의 사이에는 플레이트(270)가 위치한다. 플레이트(270)는 하부 커버(250)의 상면을 덮는다. 플레이트(270)는 몸체(230)에 상응하는 단면적으로 제공된다. 플레이트(270)는 절연체를 포함할 수 있다.
가스 공급 유닛(300)은 공정 챔버(100) 내부에 공정 가스를 공급한다. 가스 공급 유닛(300)은 가스 공급 노즐(310), 가스 공급 라인(320), 가스 저장부(330), 샤워 헤드(340), 전극 플레이트(350), 그리고 지지부(360)를 포함한다.
가스 공급 노즐(310)은 공정 챔버(100)의 상면 중앙부에 설치된다. 가스 공급 노즐(310)의 저면에는 분사구가 형성된다. 분사구는 공정 챔버(100) 내부로 공정 가스를 공급한다. 가스 공급 라인(320)은 가스 공급 노즐(310)과 가스 저장부(330)를 연결한다. 가스 공급 라인(320)은 가스 저장부(330)에 저장된 공정 가스를 가스 공급 노즐(310)에 공급한다. 가스 공급 라인(320)에는 밸브(321)가 설치된다. 밸브(321)는 가스 공급 라인(320)을 개폐하며, 가스 공급 라인(320)을 통해 공급되는 공정 가스의 유량을 조절한다.
샤워 헤드(340)는 공정 챔버(100) 내부에서 지지 유닛(200)의 상부에 위치한다. 샤워 헤드(340)는 지지 유닛(200)과 대향하도록 위치한다. 샤워 헤드(340)에는 분사홀(341)이 형성된다. 분사홀(341)은 샤워 헤드(340)의 상면과 하면을 수직 방향으로 관통한다. 분사홀(341)을 통해 공정 가스가 통과할 수 있다. 샤워 헤드(340)는 실리콘(Si) 재질로 구비될 수 있다. 또는 샤워 헤드(340)는 절연체로 구비될 수 있다.
전극 플레이트(350)는 샤워 헤드(340)의 상부에 제공된다. 샤워 헤드(340)는 공정 챔버(100)의 상면에서 하부로 일정거리 이격되어 위치한다. 전극 플레이트(350)과 공정 챔버(100)의 상면은 그 사이에 일정한 공간이 형성된다.
전극 플레이트(350)는 공정 챔버(100) 내부의 전기장의 밀도를 제어한다. 전극 플레이트(350)의 저면은 플라즈마에 의한 아크 발생을 방지하기 위하여 그 표면이 양극화 처리될 수 있다. 전극 플레이트(350)의 단면은 지지 유닛(200)와 동일한 형상과 단면적을 가지도록 제공될 수 있다. 전극 플레이트(350)는 복수개의 분사홀(355)을 포함한다. 분사홀(355)을 통해 공정 가스가 통과할 수 있다. 전극 플레이트(350)의 분사홀(355)은 샤워 헤드(340)의 분사홀(341)과 연통되도록 형성될 수 있다. 전극 플레이트(350)는 금속 재질을 포함한다. 전극 플레이트(350)는 상부 전원(410)과 전기적으로 연결될 수 있다. 상부 전원(410)은 고주파 전원으로 제공될 수 있다. 이와 달리, 전극 플레이트(350)는 전기적으로 접지될 수도 있다. 전극 플레이트(350)는 상부 전원(410)과 전기적으로 연결되거나, 접지되어 전극으로서 기능할 수 있다.
지지부(360)는 샤워 헤드(340) 및 전극 플레이트(350)의 측부를 지지한다. 지지부(360)는 상단은 공정 챔버(100)의 상면과 연결되고, 하단은 샤워 헤드(340) 및 전극 플레이트(350)의 측부와 연결된다. 지지부(360)는 비금속 재질을 포함할 수 있다.
플라즈마 소스(400)는 공정 챔버(100) 내에 공정 가스를 플라즈마 상태로 여기시킨다. 플라즈마 소스(400)는 상부 전원(410), 하부 전원(420)을 포함한다. 상부 전원(410)은 상부 전극에 고주파 전력을 인가하고, 하부 전원(420)은 하부 전극에 고주파 전력을 인가할 수 있다. 일 예에 의하면, 상부 전극은 전극 플레이트(350)로 제공되고, 하부 전극은 몸체(230)로 제공될 수 있다. 발생된 전자기장은 공정 챔버(100) 내부로 제공된 공정 가스를 플라즈마 상태로 여기 시킨다.
배플 유닛(500)은 공정 챔버(100)의 내측벽과 지지 유닛(200)의 사이에 위치된다. 배플(510)은 환형의 링 형상으로 제공된다. 배플(510)에는 복수의 관통홀(511)들이 형성된다. 공정 챔버(100) 내에 제공된 공정 가스는 배플(510)의 관통홀(511)들을 통과하여 배기홀(102)로 배기된다. 배플(510)의 형상 및 관통홀(511)들의 형상에 따라 공정 가스의 흐름이 제어될 수 있다.
상술한 기판 처리 장치를 이용하여 기판을 처리하는 과정은 아래와 같다.
지지 유닛(200)에 기판(W)이 놓이면, 제1 전원(223a)으로부터 제1 전극(223)에 직류 전류가 인가된다. 제1 전극(223)에 인가된 직류 전류에 의해 제1 전극(223)과 기판(W) 사이에는 정전기력이 작용하며, 정전기력에 의해 기판(W)은 정전 척(210)에 흡착된다.
기판(W)이 정전 척(210)에 흡착되면, 가스 공급 노즐(310)을 통하여 공정 챔버(100) 내부에 공정 가스가 공급된다. 공정 가스는 전극 플레이트(350)의 분사홀(355)과 샤워 헤드(340)의 분사홀(341)을 통하여 공정 챔버(100)의 내부 영역으로 균일하게 분사된다. 하부 전원(420)에서 생성된 고주파 전력은 하부 전극으로 제공되는 몸체(230)에 인가된다. 상부 전극으로 제공되는 전극 플레이트(350)에는 상부 전원(410)에 의해 고주파 전력이 인가된다. 몸체(230)와 전극 플레이트(350) 사이에 전기장이 발생하고 가스로부터 플라즈마가 형성된다. 플라즈마는 기판(W)에 제공되어 기판(W)을 처리한다. 플라즈마는 식각 공정을 수행할 수 있다.
도 2는 본 발명의 제1 실시예에 따른 열전달 매체 공급 장치(600)를 보여주는 개략적인 단면도이다. 도 2 이하에서, 도 1의 제1 공급 유로(221) 및 제2 공급 유로(233)는 열전달 매체 공급 장치(600)와 혼용될 수 있다.
도 2를 참조하면, 열전달 매체 공급 장치(600)는 제1 순환 유로(231)로부터 헬륨 가스와 같은 열전달 매체를 공급받아 기판(W)의 저면과 유전판(220) 사이로 공급하는 장치이다. 열전달 매체 공급 장치(600)는 하우징으로 기능하는 본체부(610) 및 열전달 매체가 흐르는 통로인 열전달 매체 공급 유로가 형성된 유로부(611)를 포함할 수 있다. 도 2의 실시예에서는 본체부(610)와 유로부(611)가 일체이나, 두 구성은 별개로 제공될 수도 있다.
유로부(611)는 열전달 매체 공급 장치(600)가 연장된 방향과 평행한 수직 방향을 따라 직선 형태로 형성될 수 있다. 유로부(611)의 하단은 제1 순환 유로(231)에 연결되어 열전달 매체를 공급받는다.
유로부(611)의 상단에는 다공성(porous)의 필터부(620)가 배치될 수 있다. 필터부(620)는 공정 부산물을 필터링 할 수 있다. 필터부(620)는 세라믹 재질로 형성될 수 있다. 유전판(220), 몸체(230)가 알루미늄과 같은 금속 재질로 형성되므로 세라믹 재질의 필터부(620)는 아킹 발생을 방지하는데 기여할 수 있다.
커버부(630)는 내부에 필터부(620)가 배치되는 공간을 제공하고, 본체부(610)에 그 하단이 연결될 수 있다. 커버부(630)의 상부(640)는 개방되어 열전달 매체가 통과하여 기판(W)의 저면으로 공급되도록 제공된다. 따라서, 본체부(610), 유로부(611), 필터부(620) 및 커버부(630)는 제2 공급 유로(233)[도 1 참조]로 제공되고, 커버부(630)의 개방된 상부(640)는 제1 공급 유로(221)로 제공될 수 있다.
열전달 매체 공급 장치(600)에서 기판(W)의 저면으로 헬륨 가스와 같은 열전달 매체를 공급하여, 유전판(220)과 완전히 접촉되지 않은 기판(W) 저면의 미세 틈에 대해서도 열이 균일하게 전달되도록 할 수 있다.
도 3은 본 발명의 제2 실시예에 따른 열전달 매체 공급 장치(700)를 보여주는 개략적인 단면도이다. 도 4는 본 발명의 열전달 매체 공급 장치(700)를 제조하는 과정을 나타내는 개략적인 도면이다. 도 5는 본 발명의 여러 실시예에 따른 열전달 매체 공급 유로(711a, 711b, 711c)를 보여주는 개략적인 도면이다. 도 3 이하에서, 도 1의 제1 공급 유로(221) 및 제2 공급 유로(233)는 열전달 매체 공급 장치(700)와 혼용될 수 있다.
도 3을 참조하면, 열전달 매체 공급 장치(700)는 제1 순환 유로(231)로부터 헬륨 가스와 같은 열전달 매체를 공급받아 기판(W)의 저면과 유전판(220) 사이로 공급하는 장치이다. 열전달 매체 공급 장치(700)는 하우징으로 기능하는 본체부(710) 및 열전달 매체가 흐르는 통로인 열전달 매체 공급 유로가 형성된 유로부(711)를 포함할 수 있다. 도 3의 실시예는 본체부(710)와 유로부(711)가 일체이나, 두 구성은 별개로 제공될 수 있다. 열전달 매체는 유로부(711)의 하부홀(712)을 통해 전달받아 상부홀(713)을 통해 기판(W)의 저면에 공급될 수 있다.
도 2의 제1 실시예에 따른 열전달 매체 공급 장치(600)는 유로부(611)의 상부에 필터부(620)가 배치된다. 필터부(620)에는 공정 부산물들이 필터링되어 트랩된 상태일 수 있다. 이러한 파티클들은 개방된 상부(640)를 통해 플라즈마에 노출될 수 있다. 플라즈마에 노출된 파티클에 의해 아킹(arcing)이 발생할 위험이 높아진다.
따라서, 제2 실시예에 따른 열전달 매체 공급 장치(700)는 유로부(711)의 하부에 필터부(720)가 배치되는 것을 특징으로 한다. 즉, 필터부(720)는 정전 척(210)의 하부에 위치하게 되므로 플라즈마에 직접 노출되지 않는 이점이 있다. 제2 실시예의 필터부(720)는 제1 실시예의 필터부(620)와 배치 위치 외에는 동일한 구성을 가질 수 있다.
또한, 유로부(711)는 제1 실시예의 유로부(611)처럼 수직 방향의 직선 형태를 가지지 않는 것을 특징으로 한다. 즉, 유로부(711)는 플라즈마에 대해 하부에 배치된 필터부(720)가 직접 노출되지 않도록 열전달 매체 공급 유로의 형태를 직선 외의 형태로 변경한 것을 특징으로 한다.
도 5를 참조하면, 열전달 매체 공급 장치(700)의 전체 수직 방향 길이(또는, 높이)를 h라고 할 때, 열전달 매체 공급 유로의 길이는 h보다 길게 형성될 수 있다. 열전달 매체 공급 유로(711a)는 나선 형태를 가져 유로의 길이를 h보다 수배 길게 형성할 수 있다. 또는, 열전달 매체 공급 유로(711b)는 곡선 형태를 가져 유로의 길이를 h보다 길게 형성할 수 있다. 또는, 열전달 매체 공급 유로(711c)는 수직 방향에서 소정 각도 기울어진 부분을 포함하여 유로의 길이를 h보다 길게 형성할 수 있다.
도 4는 일 실시예에 따라 나선 형태의 열전달 매체 공급 유로(711a)를 가지도록 열전달 매체 공급 장치(700)를 구성하는 과정을 나타낸다. 먼저, 본체부(710)를 구성하는 제1 부품(715)을 준비할 수 있다. 제1 부품(715)은 내부에 관통홀(715a)이 형성될 수 있다. 이어서, 제1 부품(715)의 관통홀(715a)에 삽입되는 제2 부품(716)을 준비할 수 있다. 제2 부품(716)은 내부에 관통홀(716a)이 형성될 수 있다. 또한, 제2 부품(716)의 외주면 상에는 열전달 매체 공급 유로(711a)를 구성하도록 나선 방향으로 홈이 형성될 수 있다. 이어서, 제2 부품(716)의 관통홀(716a)에 삽입되는 제3 부품(717)을 준비할 수 있다. 제1 부품(715)에 제2 부품(716)을, 제2 부품(716)에 제3 부품(717)을 삽입하면, 나선 형태의 열전달 매체 공급 유로(711a)를 가지는 열전달 매체 공급 장치(700)를 제조할 수 있다.
도 6은 본 발명의 일 실시예에 따른 열전달 매체 공급 유로의 길이에 따른 절연 파괴 전압을 나타내는 개략적인 그래프이다. X축의 Gap은 열전달 매체 공급 유로의 길이에 대응하고, Y축의 절연 파괴 전압 VBD,MEAN은 아킹 발생 전압에 대응한다.
도 6을 참조하면, 열전달 매체 공급 유로의 길이가 길어질수록 아킹이 발생될 수 있는 전압이 커지는 것을 확인할 수 있다. 따라서, 열전달 매체 공급 유로의 형태를 직선이 아닌 곡선 형태, 나선 형태, 기울어진 형태 등으로 변경하여 유로의 길이를 길어지게 함에 따라 아킹이 발생되는데 필요한 전압을 증가시킬 수 있다. 즉, 아킹이 발생될 수 있는 가능성을 낮출 수 있다.
한편, 열전달 매체 공급 장치(700)의 본체부(710)는 AlN과 같은 고열전달 소재를 사용할 수 있다. 몸체(230)는 알루미늄과 같은 금속 재질로 형성되고, 기판(W)에 열을 전달하는 과정에서 약 100~150℃를 유지할 수 있다. 반면, 유로부(711)에는 약 10℃ ~ 상온 정도인 헬륨 가스가 통과하므로, 헬륨 가스가 공급되는 기판(W)의 저면부에 온도 불균일이 발생할 수 있다. 이에 따라, 본체부(710)가 고열전달 소재로 구성되어 몸체(230)로부터 열을 빠른 속도로 전달 받음으로써 유로부(711) 상부홀(713)에서 헬륨 가스가 공급될 때 온도가 산포의 불균일 현상을 방지할 수 있다.
이처럼, 본 발명의 열전달 매체 공급장치는 기판(W)의 전면적을 균일하게 가열할 수 있도록 열전달 매체를 공급할 수 있고, 유로부의 형상을 변경하고 필터부의 배치 위치를 변경함에 따라 공정 챔버 내부에서 아킹(arcing)이 발생하는 것을 방지할 수 있는 효과가 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
10: 기판 처리 장치
100: 공정 챔버
200: 지지 유닛
300: 가스 공급 유닛
400: 플라즈마 소스
500: 배플 유닛
600, 700: 열전달 매체 공급 장치, 열전달 매체 공급부
610, 710: 본체부
611, 711: 유로부

Claims (10)

  1. 기판을 처리하는 장치에 있어서,
    내부에 처리 공간을 가지는 공정 챔버;
    상기 처리 공간 내에서 기판을 지지하는 지지 유닛;
    상기 처리 공간 내로 처리가스를 공급하는 가스 공급 유닛;
    상기 처리 공간 내로 공급된 처리가스로부터 플라즈마를 발생시키는 플라즈마 소스;
    를 포함하고,
    상기 지지 유닛은 상기 기판의 저면에 열전달 매체를 공급하는 열전달 매체 공급부를 포함하며,
    상기 열전달 매체 공급부에는 상기 열전달 매체가 이동하는 열전달 매체 공급 유로가 형성되되, 상기 열전달 매체 공급 유로의 길이는 상기 열전달 매체 공급부의 수직 방향으로 연장된 길이보다 길게 형성되는, 기판 처리 장치.
  2. 제1항에 있어서,
    상기 열전달 매체 공급부는,
    본체부; 및 상기 열전달 매체 공급 유로가 형성된 유로부;
    를 포함하는, 기판 처리 장치.
  3. 제2항에 있어서,
    상기 유로부의 하부에 다공성(porous)의 필터부가 배치되는, 기판 처리 장치.
  4. 제3항에 있어서,
    상기 필터부는 절연성 재질인, 기판 처리 장치.
  5. 제1항에 있어서,
    상기 열전달 매체 공급 유로는 적어도 곡선 형태로 형성된 부분을 포함하는, 기판 처리 장치.
  6. 제1항에 있어서,
    상기 열전달 매체 공급 유로의 길이가 길어질수록 아킹(arcing) 발생 전압이 커지는, 기판 처리 장치.
  7. 공정 챔버에 유입된 처리가스를 이온화하여 플라즈마를 생성하는 기판 처리 장치의 기판을 지지하는 지지 유닛 내에 설치되어 상기 기판의 저면에 열전달 매체를 공급하는 열전달 매체 공급 장치로서,
    상기 열전달 매체 공급 장치에는 상기 열전달 매체가 이동하는 열전달 매체 공급 유로가 형성되되, 상기 열전달 매체 공급 유로의 길이는 상기 열전달 매체 공급부의 수직 방향으로 연장된 길이보다 길게 형성되는, 열전달 매체 공급 장치.
  8. 제7항에 있어서,
    상기 열전달 매체 공급 장치는,
    본체부; 및 상기 열전달 매체 공급 유로가 형성된 유로부;
    를 포함하는, 열전달 매체 공급 장치.
  9. 제8항에 있어서,
    상기 유로부의 하부에 배치되는 다공성(porous)의 필터부를 더 포함하는, 열전달 매체 공급 장치.
  10. 제7항에 있어서,
    상기 열전달 매체 공급 유로는 적어도 곡선 형태로 형성된 부분을 포함하는, 열전달 매체 공급 장치.
KR1020220072346A 2022-06-14 2022-06-14 기판 처리 장치 및 열전달 매체 공급 장치 KR20230171783A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220072346A KR20230171783A (ko) 2022-06-14 2022-06-14 기판 처리 장치 및 열전달 매체 공급 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220072346A KR20230171783A (ko) 2022-06-14 2022-06-14 기판 처리 장치 및 열전달 매체 공급 장치

Publications (1)

Publication Number Publication Date
KR20230171783A true KR20230171783A (ko) 2023-12-21

Family

ID=89320869

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220072346A KR20230171783A (ko) 2022-06-14 2022-06-14 기판 처리 장치 및 열전달 매체 공급 장치

Country Status (1)

Country Link
KR (1) KR20230171783A (ko)

Similar Documents

Publication Publication Date Title
CN107919263B (zh) 基板支撑单元、包括其的基板处理装置及其控制方法
KR101980203B1 (ko) 지지 유닛 및 그를 포함하는 기판 처리 장치
KR101842127B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101817210B1 (ko) 플라즈마 발생 장치, 그를 포함하는 기판 처리 장치, 및 그 제어 방법
KR20200072933A (ko) 기판처리장치
KR101395229B1 (ko) 기판 처리 장치
KR101664840B1 (ko) 기판 처리 장치
KR101430745B1 (ko) 정전 척 및 기판 처리 장치
KR20230171783A (ko) 기판 처리 장치 및 열전달 매체 공급 장치
KR101569886B1 (ko) 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
KR102214333B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101927937B1 (ko) 지지 유닛 및 이를 포함하는 기판 처리 장치
CN108695132B (zh) 等离子体生成单元以及包括其的基板处理装置
KR20220096735A (ko) 기판 처리 장치 및 가스 분배 어셈블리
KR101949406B1 (ko) 기판 처리 장치
KR20170046476A (ko) 지지 유닛, 기판 처리 장치 및 기판 처리 방법
KR102335472B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR102262107B1 (ko) 기판 처리 장치
KR102039968B1 (ko) 기판 처리 장치, 기판 지지 유닛 및 기판 지지 유닛의 유전판 제조 방법
KR102281888B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101502853B1 (ko) 지지 유닛 및 기판 처리 장치
KR102290910B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101408790B1 (ko) 기판 처리 장치
KR101464205B1 (ko) 기판 지지 어셈블리 및 기판 처리 장치
KR102189873B1 (ko) 기판 처리 장치 및 기판 처리 방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application