KR20230165039A - Snp markers for discriminating italian ryegrass hs104 varieties and method for discriminating italian ryegrass hs104 varieties using the same - Google Patents

Snp markers for discriminating italian ryegrass hs104 varieties and method for discriminating italian ryegrass hs104 varieties using the same Download PDF

Info

Publication number
KR20230165039A
KR20230165039A KR1020220064926A KR20220064926A KR20230165039A KR 20230165039 A KR20230165039 A KR 20230165039A KR 1020220064926 A KR1020220064926 A KR 1020220064926A KR 20220064926 A KR20220064926 A KR 20220064926A KR 20230165039 A KR20230165039 A KR 20230165039A
Authority
KR
South Korea
Prior art keywords
base
seq
variety
italian ryegrass
polynucleotide
Prior art date
Application number
KR1020220064926A
Other languages
Korean (ko)
Inventor
이기원
이상훈
우제훈
천동원
정기화
Original Assignee
대한민국(농촌진흥청장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(농촌진흥청장) filed Critical 대한민국(농촌진흥청장)
Priority to KR1020220064926A priority Critical patent/KR20230165039A/en
Publication of KR20230165039A publication Critical patent/KR20230165039A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 이탈리안 라이그라스 HS104 품종 식별용 조성물에 관한 것으로, 서열번호 1 또는 서열번호 2, 및 서열번호 3 내지 7의 염기서열로 이루어진 폴리뉴클레오티드에 있어서, 각각의 염기서열 중 서열번호의 301번째 염기의 단일염기다형성(single nucleotide polymorphism, SNP) 마커를 검출할 수 있는 제제를 포함한다.The present invention relates to a composition for identification of Italian ryegrass HS104 variety, in which a polynucleotide consisting of the base sequences of SEQ ID NO: 1 or SEQ ID NO: 2, and SEQ ID NOs: 3 to 7, wherein the 301st base of SEQ ID NO among each base sequence It includes an agent that can detect single nucleotide polymorphism (SNP) markers.

Description

이탈리안 라이그라스 HS104 품종 식별용 SNP 마커 및 이를 이용한 이탈리안 라이그라스 HS104 품종 식별 방법{SNP MARKERS FOR DISCRIMINATING ITALIAN RYEGRASS HS104 VARIETIES AND METHOD FOR DISCRIMINATING ITALIAN RYEGRASS HS104 VARIETIES USING THE SAME}SNP marker for identification of Italian ryegrass HS104 variety and method for identifying Italian ryegrass HS104 variety using the same

본 발명은 이탈리안 라이그라스 화산 104호(HS104) 품종 식별용 SNP 마커 및 이를 이용한 이탈리안 라이그라스 화산 104호(HS104) 품종 식별 방법에 관한 것이다.The present invention relates to a SNP marker for identification of Italian Ryegrass Volcano No. 104 (HS104) variety and a method for identifying Italian Ryegrass Volcanic No. 104 (HS104) variety using the same.

최근 국제 곡물가격의 변동 심화, 기상이변 등 불안정한 곡물사료 수급의 안정과 축우농가의 사료비 부담을 완화하기 위하여, 정부는 조사료 생산기반을 확충하기 위하여 양질 조사료 증산대책과 더불어 다양한 지원 정책을 실시하고 있다. 국내에서 조사료 생산기반이 확대되고 재배 면적이 급격히 증가하면서 해외로부터 사료 작물의 종자 수입량도 매년 증가하고 있는 추세이다.In order to stabilize the unstable supply and demand of grain feed due to recent intensifying fluctuations in international grain prices and extreme weather events and to alleviate the burden of feed costs on cattle farms, the government is implementing various support policies along with measures to increase the production of high-quality forage to expand the forage production base. . As the domestic forage production base is expanding and the cultivation area is rapidly increasing, the amount of seed imports of feed crops from overseas is also increasing every year.

각 품종에 다른 최적의 재배 방법이 다소 상이하기 때문에, 양질의 조사료 생산을 위하여 품종을 식별하는 것은 조사료의 생산성을 높이고 결국 농가의 이익을 증대시킬 수 있다. 하지만, 이탈리안 라이그라스의 종자는 형태적 특성이 비슷하여 육안으로 품종 구별이 힘들어 출현 후 생육 및 형태적 특성을 이용하여 품종을 구별하고 있는 실정이다. 심지어, 출현 후 생육 및 형태적 특성을 이용하여 품종을 구별한다고 하더라도 이탈리안 라이그라스 중에서 극조생종, 조생종, 중생종, 만생종, 및/또는 수입종을 명확하게 구별하기 어렵다.Since the optimal cultivation method for each variety is somewhat different, identifying the variety to produce high-quality forage can increase the productivity of the forage and ultimately increase the profits of farmers. However, Italian ryegrass seeds have similar morphological characteristics, so it is difficult to distinguish varieties with the naked eye, and varieties are distinguished using growth and morphological characteristics after emergence. Even if varieties are distinguished using post-emergence growth and morphological characteristics, it is difficult to clearly distinguish between extremely early-maturing, early-maturing, mid-maturing, late-maturing, and/or imported varieties of Italian ryegrass.

이러한 품종 식별의 문제점을 해결하기 위하여 최근 많은 연구자들에 의해 생화학분석법을 이용한 품종 식별에 대한 접근이 시도되고 있다.To solve these problems in breed identification, many researchers have recently attempted to approach breed identification using biochemical analysis methods.

본 발명의 목적은 이탈리안 라이그라스 화산 104호(HS104) 품종을 식별할 수 있는 이탈리안 라이그라스 화산 104호(HS104) 품종 식별용 SNP 마커 및 이를 이용한 이탈리안 라이그라스 화산 104호(HS104) 품종 식별 방법을 제공하는 것이다.The purpose of the present invention is to provide a SNP marker for identifying the Italian Ryegrass Volcano No. 104 (HS104) variety and a method for identifying the Italian Ryegrass Volcano No. 104 (HS104) variety using the same. It is provided.

본 발명은 이탈리안 라이그라스 HS104 품종 식별용 조성물에 관한 것으로, 서열번호 1 또는 서열번호 2, 및 서열번호 3 내지 7의 염기서열로 이루어진 폴리뉴클레오티드에 있어서, 각각의 염기서열 중 서열번호의 301번째 염기의 단일염기다형성(single nucleotide polymorphism, SNP) 마커를 검출할 수 있는 제제를 포함한다.The present invention relates to a composition for identification of Italian ryegrass HS104 variety, in which a polynucleotide consisting of the base sequences of SEQ ID NO: 1 or SEQ ID NO: 2, and SEQ ID NOs: 3 to 7, wherein the 301st base of SEQ ID NO among each base sequence It includes an agent that can detect single nucleotide polymorphism (SNP) markers.

본 발명의 일 실시예에 있어서, 상기 단일염기다형성 마커는, 서열번호 1의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 G 또는 A이고, 서열번호 2의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 C 또는 G이고, 서열번호 3의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 T 또는 C이고, 서열번호 4의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 A 또는 G이고, 서열번호 5의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 T 또는 C이고, 서열번호 6의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 A 또는 G이고, 서열번호 7의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 T 또는 A인 단일염기다형성 마커일 수 있다.In one embodiment of the present invention, the single nucleotide polymorphism marker is G or A at the 301st base in the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1, and 301 in the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 2. The 301st base is C or G, the 301st base in the polynucleotide represented by the base sequence of SEQ ID NO: 3 is T or C, and the 301st base in the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 4 is A or G, In the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 5, the 301st base is T or C, and in the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 6, the 301st base is A or G, represented by the nucleotide sequence of SEQ ID NO: 7 It may be a single nucleotide polymorphism marker where the 301st base in the polynucleotide is T or A.

본 발명의 일 실시예에 있어서, 상기 단일염기다형성 마커를 검출할 수 있는 제제는 단일염기다형성 마커 부위를 포함하는, 10개 내지 400개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 또는 이의 상보적인 폴리뉴클레오티드;와 특이적으로 혼성화(hybridization)하는 폴리뉴클레오티드일 수 있다.In one embodiment of the present invention, the agent capable of detecting the single nucleotide polymorphism marker is a polynucleotide consisting of 10 to 400 consecutive DNA sequences, including a single nucleotide polymorphism marker site; Or it may be a polynucleotide that specifically hybridizes with its complementary polynucleotide.

본 발명의 일 실시예에 있어서, 상기 폴리뉴클레오티드는 단일염기다형성 마커를 검출할 수 있는 프라이머, 프로브, 및 이들의 조합으로 구성된 군으로부터 선택된 하나 이상일 수 있다.In one embodiment of the present invention, the polynucleotide may be one or more selected from the group consisting of primers, probes, and combinations thereof capable of detecting a single nucleotide polymorphism marker.

본 발명은 이탈리안 라이그라스 HS104 품종 식별 키트에 관한 것으로, 서열번호 1 또는 서열번호 2, 및 서열번호 3 내지 7의 염기서열로 이루어진 폴리뉴클레오티드에 있어서, 각각의 염기서열 중 서열번호의 301번째 염기의 단일염기다형성(single nucleotide polymorphism, SNP) 마커를 검출할 수 있는 제제를 포함하는 이탈리안 라이그라스 HS104 품종 식별용 조성물을 포함한다.The present invention relates to an Italian ryegrass HS104 variety identification kit, in which a polynucleotide consisting of the base sequences of SEQ ID NO: 1 or SEQ ID NO: 2, and SEQ ID NOs: 3 to 7, the 301st base of SEQ ID NO among each base sequence. It includes a composition for identification of Italian ryegrass HS104 variety, including an agent capable of detecting a single nucleotide polymorphism (SNP) marker.

본 발명은 이탈리안 라이그라스 HS104 품종 식별 방법에 관한 것으로, 이탈리안 라이그라스의 DNA를 추출하는 단계; 상기 추출된 DNA를 주형으로 하고, 이탈리안 라이그라스 HS104 품종 식별용 조성물을 이용하여 중합효소연쇄반응(PCR)을 수행하는 단계; 및 상기 중합효소연쇄반응에 의해 생성된 산물을 분석하여 상기 이탈리안 라이그라스의 품종을 식별하는 단계;를 포함한다.The present invention relates to a method for identifying Italian ryegrass HS104 variety, comprising the steps of extracting DNA from Italian ryegrass; Using the extracted DNA as a template and performing polymerase chain reaction (PCR) using a composition for identifying Italian ryegrass HS104 varieties; And analyzing the product produced by the polymerase chain reaction to identify the variety of Italian ryegrass.

본 발명의 일 실시예에 있어서, 상기 품종을 식별하는 단계는, 상기 이탈리안 라이그라스의 DNA 중, 서열번호 1로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 G이거나 서열번호 2로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 C이고, 서열번호 3으로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 T이고, 서열번호 4로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 A이고, 서열번호 5로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 T이고, 서열번호 6으로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 A이고, 서열번호 7로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 T인 경우, 상기 이탈리안 라이그라스가 HS104 품종인 것으로 식별할 수 있다.In one embodiment of the present invention, in the step of identifying the variety, the base of the DNA corresponding to the 301st base in the polynucleotide represented by SEQ ID NO: 1 among the DNA of the Italian ryegrass is G or sequence The base of the DNA corresponding to the position of the 301st base in the polynucleotide represented by number 2 is C, the base of the DNA corresponding to the position of the 301st base in the polynucleotide represented by SEQ ID No. 3 is T, and the sequence The base of the DNA corresponding to the position of the 301st base in the polynucleotide represented by number 4 is A, the base of the DNA corresponding to the position of the 301st base in the polynucleotide represented by SEQ ID No. 5 is T, and the sequence If the base of the DNA corresponding to the position of the 301st base in the polynucleotide represented by number 6 is A, and the base of the DNA corresponding to the position of the 301st base in the polynucleotide represented by SEQ ID NO: 7 is T, The Italian ryegrass can be identified as the HS104 variety.

본 발명의 일 실시예에 있어서, 상기 이탈리안 라이그라스의 품종은 코위너(Kowinner), 코스피드(Kospeed), 그린콜(Green Call), 그린콜(Green Call) 2호, IR601, IR602, IR603, IR605, IR901, 그린팜(Green Farm), 그린팜(Green Farm) 2호, 그린팜(Green Farm) 3호, 코윈어리(Kowinearly), 애스(AE), 화산 101호, 화산 102호, 화산 104호, 헤르쿨레스(HC), 코윈마스터(Kowinmaster), 코그린(Kogreen), 플로리다(Florida), 빌켄(Billiken), 및 리오(Rio) 중 어느 하나일 수 있다.In one embodiment of the present invention, the Italian ryegrass varieties are Kowinner, Kospeed, Green Call, Green Call No. 2, IR601, IR602, IR603, IR605, IR901, Green Farm, Green Farm No. 2, Green Farm No. 3, Kowinearly, AE, Hwasan No. 101, Hwasan No. 102, Hwasan 104 It may be any one of Ho, Hercules (HC), Kowinmaster, Kogreen, Florida, Billiken, and Rio.

본 발명은 이탈리안 라이그라스 HS104 품종 식별용 조성물에 관한 것으로, 서열번호 1 및 서열번호 3 내지 7의 염기서열로 이루어진 폴리뉴클레오티드에 있어서, 각각의 염기서열 중 서열번호의 301번째 염기의 단일염기다형성(single nucleotide polymorphism, SNP) 마커를 검출할 수 있는 제제를 포함한다.The present invention relates to a composition for identification of the Italian ryegrass HS104 variety, and in the polynucleotide consisting of the base sequences of SEQ ID NO: 1 and SEQ ID NO: 3 to 7, a single nucleotide polymorphism at the 301st base of SEQ ID NO among each base sequence ( It contains an agent that can detect single nucleotide polymorphism (SNP) markers.

본 발명은 이탈리안 라이그라스 HS104 품종 식별용 조성물에 관한 것으로, 서열번호 2 내지 7의 염기서열로 이루어진 폴리뉴클레오티드에 있어서, 각각의 염기서열 중 서열번호의 301번째 염기의 단일염기다형성(single nucleotide polymorphism, SNP) 마커를 검출할 수 있는 제제를 포함한다.The present invention relates to a composition for identification of Italian ryegrass HS104 variety, and in the polynucleotide consisting of the base sequences of SEQ ID NOs: 2 to 7, a single nucleotide polymorphism (single nucleotide polymorphism) at the 301st base of the sequence number among each base sequence. Includes an agent capable of detecting SNP) markers.

본 발명의 일 실시예에 따른 이탈리안 라이그라스 HS104 품종 식별용 SNP 마커 및 이를 이용한 이탈리안 라이그라스 HS104 품종 식별 방법을 활용하면, 이탈리안 라이그라스 HS104 품종을 식별할 수 있다.By using the SNP marker for identification of the Italian ryegrass HS104 variety and the Italian ryegrass HS104 variety identification method using the same according to an embodiment of the present invention, the Italian ryegrass HS104 variety can be identified.

도 1은 본 발명의 일 실시예에 따른 이탈리안 라이그라스 샘플의 gDNA 전기영동 결과를 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 GBS 라이브러리를 대상으로 전기영동을 실시한 결과를 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따른 분석 모식도를 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른 개체간 유연관계 분석 결과인 계통수를 나타낸 것이다.
도 5a 및 도 5b는 본 발명의 일 실시예에 따른 두 가지 요소에 의한 주성분 분석 결과를 나타낸 것이다.
도 6은 본 발명의 일 실시예에 따른 세 가지 요소에 의한 주성분 분석 결과를 나타낸 것이다.
도 7은 본 발명의 일 실시예에 따른 델타-K 메소드 결과를 나타낸 그래프이다.
도 8은 본 발명의 일 실시예에 따라 K 값이 2인 피크에서의 포퓰레이션 스트럭쳐 분석 결과를 나타낸 그래프이다.
Figure 1 shows the results of gDNA electrophoresis of an Italian ryegrass sample according to an embodiment of the present invention.
Figure 2 shows the results of electrophoresis on the GBS library according to an embodiment of the present invention.
Figure 3 shows an analysis schematic diagram according to an embodiment of the present invention.
Figure 4 shows a phylogenetic tree that is the result of analysis of inter-individual kinship relationships according to an embodiment of the present invention.
Figures 5a and 5b show the results of principal component analysis based on two factors according to an embodiment of the present invention.
Figure 6 shows the results of principal component analysis based on three factors according to an embodiment of the present invention.
Figure 7 is a graph showing the results of the delta-K method according to an embodiment of the present invention.
Figure 8 is a graph showing the results of population structure analysis at a peak with a K value of 2 according to an embodiment of the present invention.

이하, 첨부된 도면을 참조하여 본 발명에 따른 이탈리안 라이그라스 HS104 품종 식별용 SNP 마커 및 이를 이용한 이탈리안 라이그라스 HS104 품종 식별 방법을 상세히 설명하기로 한다.Hereinafter, with reference to the attached drawings, a SNP marker for identifying Italian ryegrass HS104 variety according to the present invention and a method for identifying Italian ryegrass HS104 variety using the same will be described in detail.

이에 앞서, 본 명세서 및 청구범위에 사용된 용어는 사전적인 의미로 한정 해석되어서는 아니되며, 발명자는 자신의 발명을 최선의 방법으로 설명하기 위해 용어의 개념을 적절히 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야 한다.Prior to this, the terms used in this specification and claims should not be construed limited to their dictionary meaning, and based on the principle that the inventor can appropriately define the concept of the term in order to explain his or her invention in the best way, , should be interpreted with meaning and concept consistent with the technical idea of the present invention.

상세한 설명, 도면들, 및 청구항들에서 상술하는 예시적인 실시 예들은 한정을 위한 것이 아니며, 다른 실시 예들이 이용될 수 있으며, 여기서 개시되는 기술의 사상이나 범주를 벗어나지 않는 한 다른 변경들도 가능하다.The exemplary embodiments described above in the detailed description, drawings, and claims are not intended to be limiting, and other embodiments may be used, and other changes may be made without departing from the spirit or scope of the technology disclosed herein. .

따라서, 본 명세서에 기재된 실시 예 및 도면에 도시된 구성은 본 발명의 바람직한 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 표현하는 것은 아니므로, 본 출원 시점에 있어 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 존재할 수 있음을 이해하여야 한다.Accordingly, the embodiments described in this specification and the configurations shown in the drawings are only preferred embodiments of the present invention and do not express the entire technical idea of the present invention, so various equivalents that can replace them at the time of filing the present application It should be understood that variations and variations may exist.

당업자는 본 개시의 구성요소들, 즉 여기서 일반적으로 기술되고, 도면에 기재되는 구성요소들을 다양하게 다른 구성으로 배열, 구성, 결합, 및 도안할 수 있으며, 이것들의 모두는 명백하게 고안되며, 본 개시의 일부를 형성하고 있음을 용이하게 이해할 수 있을 것이다.Those skilled in the art will be able to arrange, configure, combine, and design the components of the present disclosure, i.e., the components generally described herein and shown in the drawings, into a variety of different configurations, all of which are expressly contrived, and which are consistent with the present disclosure. It will be easy to understand that it forms part of .

본 발명은 이탈리안 라이그라스 화산 104호(HS104) 품종 식별용 SNP 마커 및 이를 이용한 이탈리안 라이그라스 화산 104호(HS104) 품종 식별 방법을 활용하여 이탈리안 라이그라스 화산 104호(HS104) 품종을 식별하기 위한 것이다.The present invention is to identify the Italian Ryegrass Volcano No. 104 (HS104) variety using a SNP marker for identification of the Italian Ryegrass Volcano No. 104 (HS104) variety and a method for identifying the Italian Ryegrass Volcano No. 104 (HS104) variety using the same. .

생물 종은 일반적으로 형태학적 및 분자생물학적인 방법을 통해 식별할 수 있으며, 특히 분자생물학적 식별 방법은 형태학적 분류의 한계를 보완하여 생물 종의 식별 정확도를 향상시키는데 도움이 되고 있다.Biological species can generally be identified through morphological and molecular biological methods, and in particular, molecular biological identification methods are helping to improve the identification accuracy of biological species by complementing the limitations of morphological classification.

최근 차세대 시퀀싱 기술이 급속도로 발전하고 고도화됨에 따라 생물로부터 유전체 정보를 보다 효율적으로 생산할 수 있게 되었다. 특히 GBS(Genotyping-By-Sequencing)는 차세대 시퀀싱 기술을 바탕으로 새롭게 발전하고 있는 분석법 중 하나이다. 상기 GBS(Genotyping-By-Sequencing) 분석은 제한효소(RE, Restriction Enzyme)를 사용하여 유전체 서열에서 잘리는 영역 주변의 서열만을 시퀀싱하게 되므로, 전장 유전체 분석을 수행하지 않고도 넓은 범위의 유전체 정보를 고루 확보할 수 있다. 또한, 적절한 제한효소를 선택함으로써 유전체 서열 내 반복적인 영역을 피할 수 있으며, 동시에 원하는 영역의 염기 서열을 확보하는 것이 가능하다.Recently, as next-generation sequencing technology has developed rapidly and become more sophisticated, it has become possible to produce genomic information from living organisms more efficiently. In particular, GBS (Genotyping-By-Sequencing) is one of the newly developing analysis methods based on next-generation sequencing technology. The GBS (Genotyping-By-Sequencing) analysis uses restriction enzymes (RE) to sequence only the sequences surrounding the region cut out of the genome sequence, thus securing a wide range of genome information without performing full-length genome analysis. can do. Additionally, by selecting an appropriate restriction enzyme, repetitive regions in the genome sequence can be avoided and at the same time, it is possible to secure the base sequence of the desired region.

본 명세서에서 '단일염기다형성(SNP, Single Nucleotide Polymorphism)'은 유전체 상에서 A(Adenine), T(Thymine), G(Guanine), C(Cytosine)로 구성되는 염기서열의 한 개가 다른 염기서열로 변한 것을 의미한다. 다형성(polymorphism)이란 하나의 유전자 좌위(locus)에 두 가지 이상의 대립 유전자(allele)가 존재하는 경우를 말하며, 다형성 부위 중 개체에 따라 단일 염기만이 다른 것을 단일염기다형성(SNP)이라 한다. 바람직한 다형성 마커는 선택된 집단에서 1% 이상의 발생빈도를 나타내는 두 가지 이상의 대립 유전자를 갖는다.In this specification, 'Single Nucleotide Polymorphism (SNP)' refers to a change in one nucleotide sequence consisting of A (Adenine), T (Thymine), G (Guanine), and C (Cytosine) in the genome to a different nucleotide sequence. means that Polymorphism refers to the presence of two or more alleles at one genetic locus, and a polymorphic site in which only a single base differs depending on the individual is called a single nucleotide polymorphism (SNP). Preferred polymorphic markers have two or more alleles with an occurrence frequency of 1% or more in the selected population.

본 명세서에서 '대립 유전자(allele)'는 상동 염색체의 동일한 유전자 좌 위에 존재하는 한 유전자의 여러 타입을 의미한다. 상기 대립 유전자는 다형성을 나타내는데 사용될 수 있다.In this specification, 'allele' refers to several types of one gene that exist on the same locus of a homologous chromosome. The allele can be used to indicate polymorphism.

본 명세서에서 '마커(marker)는 유전적으로 불특정 연관된 유전자 좌(genetic locus)를 동정할 때 참고 점으로 사용되는 염기서열을 의미하며, 상기 마커의 유전자 지도 상의 위치는 유전자 좌로 표시할 수 있다.In this specification, 'marker' refers to a base sequence used as a reference point when identifying a genetically unspecified genetic locus, and the location of the marker on the genetic map can be indicated by a genetic locus.

본 발명은 이탈리안 라이그라스 화산 104호(HS104) 품종 식별용 조성물로, 서열번호 1 또는 서열번호 2, 및 서열번호 3 내지 7의 염기서열로 이루어진 폴리뉴클레오티드에 있어서, 각각의 염기서열 중 서열번호의 301번째 염기의 단일염기다형성(SNP) 마커를 검출할 수 있는 제제를 포함할 수 있다.The present invention is a composition for identifying Italian ryegrass Volcano No. 104 (HS104), a polynucleotide consisting of the base sequences of SEQ ID NO: 1 or SEQ ID NO: 2, and SEQ ID NOs: 3 to 7, wherein the sequence number of each base sequence is It may include an agent capable of detecting a single nucleotide polymorphism (SNP) marker at base 301.

예를 들어, 상기 이탈리안 라이그라스 화산 104호(HS104) 품종 식별용 조성물은 서열번호 1 및 서열번호 3 내지 7의 염기서열로 이루어진 폴리뉴클레오티드에 있어서, 각각의 염기서열 중 서열번호의 301번째 염기의 단일염기다형성(SNP) 마커를 검출할 수 있는 제제를 포함할 수 있다.For example, the composition for identifying the variety of Italian ryegrass Volcano No. 104 (HS104) is a polynucleotide consisting of the base sequences of SEQ ID NO: 1 and SEQ ID NO: 3 to 7, and the 301st base of SEQ ID NO among each base sequence. It may include an agent capable of detecting a single nucleotide polymorphism (SNP) marker.

또한, 예를 들어, 상기 이탈리안 라이그라스 화산 104호(HS104) 품종 식별용 조성물은 서열번호 2 내지 7의 염기서열로 이루어진 폴리뉴클레오티드에 있어서, 각각의 염기서열 중 서열번호의 301번째 염기의 단일염기다형성(SNP) 마커를 검출할 수 있는 제제를 포함할 수 있다.In addition, for example, the composition for identifying the Italian ryegrass Volcanic No. 104 (HS104) variety is a polynucleotide consisting of the base sequences of SEQ ID NOs. 2 to 7, and a single base at the 301st base of SEQ ID NO. It may include an agent capable of detecting polymorphic (SNP) markers.

본 발명의 일 실시예에 따른 단일염기다형성(SNP) 마커는, 서열번호 1의 염기서열로 표시되는 폴리뉴클레오티드(polynucleotide)에서 301번째 염기가 G 또는 A이고, 서열번호 2의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 C 또는 G이고, 서열번호 3의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 T 또는 C이고, 서열번호 4의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 A 또는 G이고, 서열번호 5의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 T 또는 C이고, 서열번호 6의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 A 또는 G이고, 서열번호 7의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 T 또는 A일 수 있다.The single nucleotide polymorphism (SNP) marker according to an embodiment of the present invention is a polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1, where the 301st base is G or A, and the 301st base is G or A, and the nucleotide sequence represented by SEQ ID NO: 2 is The 301st base in the polynucleotide is C or G, the 301st base in the polynucleotide represented by the base sequence of SEQ ID NO: 3 is T or C, and the 301st base in the polynucleotide represented by the base sequence of SEQ ID NO: 4 is A. or G, the 301st base in the polynucleotide represented by the base sequence of SEQ ID NO: 5 is T or C, the 301st base in the polynucleotide represented by the base sequence of SEQ ID NO: 6 is A or G, and the 301st base is A or G in the polynucleotide represented by the base sequence of SEQ ID NO: 7 In a polynucleotide expressed as a base sequence, the 301st base may be T or A.

본 발명의 일 실시예에 따른 상기 서열번호 1 내지 7의 염기서열 내 특정 지점에 A, C, G, 및 T 중 어느 염기나 포함될 수 있다면 다중염기기재 방식에 따라 “n”으로 기재될 수 있다.If any of A, C, G, and T can be included at a specific point in the base sequence of SEQ ID NOs. 1 to 7 according to an embodiment of the present invention, it can be written as “n” according to the multiple base description method. .

본 발명의 일 실시예에 따른 상기 서열번호 1 내지 7의 염기서열 중 서열번호의 301번째 염기는 다중염기기재 방식에 따라 작성될 수 있다.Among the base sequences of SEQ ID NOs: 1 to 7 according to an embodiment of the present invention, the 301st base of SEQ ID NOs may be prepared according to the multiple base description method.

예를 들어, 대립유전자형이 C/G인 경우 C 또는 G일 수 있으므로 “s”로 기재될 수 있다. 또한, 예를 들어, 대립유전자형이 T/C인 경우 T 또는 C일 수 있으므로, “y”로 기재될 수 있다. 또한, 예를 들어, 대립유전자형이 A/T인 경우 A 또는 T일 수 있으므로, “w”로 기재될 수 있다. 또한, 예를 들어, 대립유전자형이 G/A인 경우 G 또는 A일 수 있으므로 “r”로 기재될 수 있다. 또한, 예를 들어, 대립유전자형이 A/C인 경우 A 또는 C일 수 있으므로 “m”으로 기재될 수 있다. 또한, 예를 들어, 대립유전자형이 G/T인 경우 G 또는 T일 수 있으므로 “k”로 기재될 수 있다.For example, if the allele is C/G, it can be either C or G, so it can be written as “s”. Also, for example, if the allele is T/C, it may be T or C, so it may be written as “y”. Also, for example, if the allele type is A/T, it may be A or T, so it may be written as “w”. Also, for example, if the allele is G/A, it may be G or A, so it may be written as “r”. Also, for example, if the allele type is A/C, it can be either A or C, so it can be written as “m”. Also, for example, if the allele is G/T, it may be G or T, so it may be written as “k”.

본 발명의 일 실시예에 따른 단일염기다형성(SNP) 마커를 검출할 수 있는 제제는 단일염기다형성 마커 부위를 포함하는, 10개 내지 400개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 또는 이의 상보적인 폴리뉴클레오티드;와 특이적으로 혼성화(hybridization)하는 폴리뉴클레오티드인 것이 바람직하나, 이에 제한되지 않는다. 바람직하게, 상기 단일염기다형성(SNP) 마커를 검출할 수 있는 제제는 폴리뉴클레오티드일 수 있으며, 이는 단일염기다형성 마커를 검출할 수 있는 프라이머, 프로브, 및 이들의 조합으로 구성된 군으로부터 선택된 하나 이상일 수 있다.An agent capable of detecting a single nucleotide polymorphism (SNP) marker according to an embodiment of the present invention includes a polynucleotide consisting of 10 to 400 consecutive DNA sequences, including a single nucleotide polymorphism marker site; Or it is preferably a polynucleotide that specifically hybridizes with its complementary polynucleotide, but is not limited thereto. Preferably, the agent capable of detecting the single nucleotide polymorphism (SNP) marker may be a polynucleotide, which may be one or more selected from the group consisting of primers, probes, and combinations thereof capable of detecting the single nucleotide polymorphism marker. there is.

본 명세서에서 '프라이머(primer)'는 짧은 자유 3' 말단 수산화기(free 3' hydroxyl group)를 가지는 염기 서열로 상보적인 템플레이트(template)와 염기쌍(base pair)을 형성할 수 있고 주형 가닥 복사를 위한 시작 지점으로 기능을 하는 짧은 서열을 의미한다. 상기 프라이머는 적절한 완충 용액 및 온도에서 중합반응을 위한 시약 및 상이한 4가지 뉴클레오사이드 트리포스페이트(nucleoside triphosphate)의 존재 하에서 DNA 합성을 개시할 수 있다. 상기 프라이머 설계 시, 프라이머의 A, G, C, T 함량비, 프라이머 결합체(dimer) 형성 방지, 같은 염기서열의 3회 이상 반복 금지 등 여러 가지 제약이 따르며, 그 외에 단독 PCR 반응조건에 있어서 주형(template) DNA의 양, 프라이머의 농도, dNTP의 농도, Mg2+의 농도, 반응 온도, 반응 시간 등의 조건이 적정해야 한다.In this specification, 'primer' is a base sequence with a short free 3' terminal hydroxyl group, which can form a base pair with a complementary template and is used for copying the template strand. A short sequence that serves as a starting point. The primer can initiate DNA synthesis in the presence of four different nucleoside triphosphates and reagents for polymerization at an appropriate buffer solution and temperature. When designing the primers, there are various restrictions, such as the A, G, C, and T content ratio of the primers, prevention of primer complex (dimer) formation, and prohibition of repeating the same base sequence more than three times. In addition, in the single PCR reaction conditions, the template (template) Conditions such as the amount of DNA, concentration of primers, concentration of dNTP, concentration of Mg 2+ , reaction temperature, and reaction time must be appropriate.

상기의 프라이머는 기본 성질을 변화시키지 않은 추가의 특징을 혼입할 수 있다. 즉, 핵산 서열이 당해 분야에 공지된 많은 수단을 이용하여 변형될 수 있다. 이러한 변형의 예로는 메틸화(methylation), 캡화, 뉴클레오타이드(nucleotide)의 하나 이상의 동족체로의 치환 및 포스포네이트(phosphonate), 포스포트리에스테르(phosphotriester), 포스포아미데이트(phosphoroamidate), 또는 카바메이트(carbamate) 등의 하전되지 않은 연결체나 포스포로티오에이트(phosphorothioate) 또는 포르포로디티오에이트(phosphorodithioate) 등의 하전된 연결체로의 뉴클레오타이드의 변형이 가능하다. 또한, 핵산은 뉴클레아제(nuclease), 독소, 항체, 시그널 펩타이드(signal peptide), 폴리 L 리신 등의 단백질, 아크리딘(acridine) 또는 프소랄렌(Psoralen) 등의 삽입체, 금속, 방사성 급속, 철 산화성 금속 등의 킬레이트화제(chelant) 및 알킬화제(alkylating agent) 등의 하나 이상의 부가적인 공유 결합된 잔기를 가질 수 있다.The above primers may incorporate additional features without changing the basic properties. That is, nucleic acid sequences can be modified using many means known in the art. Examples of such modifications include methylation, capping, substitution of a nucleotide with one or more homologs, and phosphonate, phosphotriester, phosphoroamidate, or carbamate ( It is possible to modify nucleotides into uncharged linkages such as carbamate or charged linkages such as phosphorothioate or phosphorodithioate. In addition, nucleic acids include nucleases, toxins, antibodies, signal peptides, proteins such as poly L-lysine, inserts such as acridine or psoralen, metals, and radioactive substances. , may have one or more additional covalently bonded moieties such as chelants and alkylating agents such as iron oxidizing metals.

또한, 본 발명의 프라이머 서열은 검출 가능한 시그널을 직접적으로 또는 간접적으로 제공할 수 있는 표지를 이용하여 변형시킬 수 있다. 상기 프라이머는 분광학, 광화학, 생화학, 면역화학, 또는 화학적 수단을 이용하여 검출될 수 있는 표지를 포함할 수 있다.Additionally, the primer sequence of the present invention can be modified using a label that can directly or indirectly provide a detectable signal. The primer may contain a label that can be detected using spectroscopy, photochemistry, biochemistry, immunochemistry, or chemical means.

본 발명은 서열번호 1 또는 서열번호 2, 및 서열번호 3 내지 7의 염기서열로 이루어진 폴리뉴클레오티드에 있어서, 각각의 염기서열 중 서열번호의 301번째 염기의 단일염기다형성(SNP) 마커를 검출할 수 있는 제제를 포함하는 이탈리안 라이그라스 화산 104호(HS104) 품종 식별용 조성물을 포함하는 이탈리안 라이그라스 화산 104호(HS104) 품종 식별 키트를 제공한다.The present invention is capable of detecting a single nucleotide polymorphism (SNP) marker at the 301st base of SEQ ID NO: 1 or SEQ ID NO: 2, and SEQ ID NO: 3 to 7 in the polynucleotide. Provided is an Italian Ryegrass Volcano No. 104 (HS104) variety identification kit containing a composition for identifying the Italian Ryegrass Volcano No. 104 (HS104) variety containing an agent.

본 발명의 일 실시예에 따른 이탈리안 라이그라스 화산 104호(HS104) 품종 식별 키트는 단일염기다형성(SNP) 마커를 검출하여 이탈리안 라이그라스가 화산 104호(HS104) 품종인지 식별할 수 있다. 상기 이탈리안 라이그라스 HS104 품종 식별 키트는 단일염기다형성 마커를 검출하기 위한 폴리뉴클레오티드, 프라이머, 및 프로브 등을 포함할 수 있으며, 식별 방법에 적합한 한 종류 또는 그 이상의 다른 구성 성분, 용액, 또는 장치가 포함될 수 있다.The Italian ryegrass Volcano No. 104 (HS104) variety identification kit according to an embodiment of the present invention can identify whether Italian ryegrass is the Volcano No. 104 (HS104) variety by detecting a single nucleotide polymorphism (SNP) marker. The Italian ryegrass HS104 variety identification kit may include polynucleotides, primers, and probes for detecting single nucleotide polymorphism markers, and may include one or more other components, solutions, or devices suitable for the identification method. You can.

예를 들어, 본 발명의 이탈리안 라이그라스 HS104 품종 식별 키트는 대립 유전자 특이 중합효소연쇄반응(PCR)을 수행하기 위한 필수 요소를 포함하는 키트일 수 있다. 상기 대립 유전자 특이 중합효소연쇄반응(PCR) 키트는 본 발명의 단일염기다형성(SNP) 마커에 대한 특이적인 폴리뉴클레오티드, 프라이머, 또는 프로브 외에도 테스트 튜브 또는 다른 적절한 컨테이너, 반응 완충액, dNTP(deoxyribonucleotide triphophate), Taq-폴리머레이즈(polymerase), 및 역전사 효소, DNase, RNAse 억제제, DEPC(DiEthyl PyroCarbonate) 수, 및 멸균수 등을 포함할 수 있다.For example, the Italian ryegrass HS104 variety identification kit of the present invention may be a kit containing essential elements for performing allele-specific polymerase chain reaction (PCR). The allele-specific polymerase chain reaction (PCR) kit includes a test tube or other appropriate container, reaction buffer, and deoxyribonucleotide triphophate (dNTP) in addition to a specific polynucleotide, primer, or probe for the single nucleotide polymorphism (SNP) marker of the present invention. , Taq-polymerase, and reverse transcriptase, DNase, RNAse inhibitor, DEPC (DiEthyl PyroCarbonate) water, and sterile water.

본 발명은 이탈리안 라이그라스의 DNA를 추출하고, 상기 추출된 DNA를 주형으로 하고 이탈리안 라이그라스 HS104 품종 식별용 조성물을 이용하여 중합효소연쇄반응(PCR)을 수행하고, 상기 중합효소연쇄반응(PCR)에 의해 생성된 산물을 분석하여 상기 이탈리안 라이그라스의 품종을 식별하는 이탈리안 라이그라스 HS104 품종 식별 방법을 제공한다.The present invention extracts the DNA of Italian ryegrass, performs polymerase chain reaction (PCR) using the extracted DNA as a template and a composition for identifying the Italian ryegrass HS104 variety, and performs the polymerase chain reaction (PCR) Provides an Italian ryegrass HS104 variety identification method for identifying the Italian ryegrass variety by analyzing the product produced by.

상기 이탈리안 라이그라스의 품종은 코위너(Kowinner), 코스피드(Kospeed), 그린콜(Green Call), 그린콜(Green Call) 2호, IR601, IR602, IR603, IR605, IR901, 그린팜(Green Farm), 그린팜(Green Farm) 2호, 그린팜(Green Farm) 3호, 코윈어리(Kowinearly), 애스(AE), 화산 101호(HS101), 화산 102호(HS102), 화산 104호(HS104), 헤르쿨레스(HC), 코윈마스터(Kowinmaster), 코그린(Kogreen), 플로리다(Florida), 빌켄(Billiken), 및 리오(Rio) 품종 중 어느 하나일 수 있으나 이 외 다른 품종을 대상으로도 이탈리안 라이그라스 HS104 품종 식별 방법을 적용할 수 있어, 이에 제한되지 않는다.The Italian ryegrass varieties include Kowinner, Kospeed, Green Call, Green Call No. 2, IR601, IR602, IR603, IR605, IR901, and Green Farm. ), Green Farm No. 2, Green Farm No. 3, Kowinearly, AE, Hwasan No. 101 (HS101), Hwasan No. 102 (HS102), Hwasan No. 104 (HS104) ), Hercules (HC), Kowinmaster, Kogreen, Florida, Billiken, and Rio, but other varieties can also be called Italian. The ryegrass HS104 variety identification method can be applied, but is not limited thereto.

상기 코위너(Kowinner)는 이탈리안 라이그라스 내한성 품종을 육성하기 위한 농촌진흥청의 연구에 의해 총 5개의 우량 영양계통 X8907, X9517, X9518, X9519, X8709로 교배조합을 작성하여 육성된 종으로, 4배체 품종으로서 엽의 색은 농녹, 월동 전 초형은 반포복형, 봄의 초형은 중간형인 개체이다. 상기 코위너는 5월 19일경에 출수하는 중만생 품종으로, 화산 101호에 비해 초장 및 최장간장의 길이가 길고, 지엽의 길이가 유사하며, 줄기 두께가 두텁다는 특성을 갖는다.The Kowinner is a tetraploid species that was bred by creating a crossbreeding combination with a total of 5 superior nutritional lines, X8907, X9517, X9518, X9519, and As a variety, the color of the leaves is dark green, the first form before winter is a semi-prostrate type, and the first form in spring is an intermediate type. The Cowwinner is a mid-late ripening variety that is planted around May 19, and has the characteristics of longer plant height and longest stem compared to Hwasan No. 101, similar leaf lengths, and thick stems.

상기 코스피드(Kospeed)는 이탈리안 라이그라스 내한 조숙성 품종을 육성하기 위한 농촌진흥청의 연구에 의해 총 5개의 우량 영양계통 00CR10, 00CR15, 00CR18, 00CR19, 00CR41로 교배조합을 작성하여 육성된 종으로, 2배체 품종으로서 엽의 색은 녹색이며, 월동 전 초형은 반직립형, 봄의 초형은 직립형인 개체이다. 상기 코스피드는 5월 01일경에 출수하는 조숙성 품종으로, 플로리다(Florida) 80에 비해 지엽의 폭이 넓고, 지엽의 길이가 길며, 초장의 길이가 작았다. 또한, 상기 코스피드의 줄기 두께가 중간 정도에 해당하고, 내한성이 플로리다 80보다 강한 품종이다.The above-mentioned Kospeed is a species bred by creating a crossbreeding combination with a total of 5 superior nutritional lines 00CR10, 00CR15, 00CR18, 00CR19, and 00CR41 through research by the Rural Development Administration to cultivate Italian ryegrass early-maturing varieties that are hardy and hardy. As a diploid variety, the color of the leaves is green, and the plant form before winter is semi-erect, and the plant form in spring is erect. The Kospid is an early-maturing variety that is harvested around May 1, and has wider leaf width, longer leaf length, and shorter plant height than Florida 80. In addition, the above-mentioned Cospid has a medium stem thickness and is a variety with stronger cold resistance than Florida 80.

상기 그린콜(Green Call)은 숙기가 빠르고 생산량이 많은 이탈리안 라이그라스 품종을 육성하기 위한 농촌진흥청의 연구에 의해 조생 계통인 총 5개의 09CR02, 09CR04, 09CR06, 09CR09, 09CRR11로 교배조합을 작성하여 육성된 종으로, 2배체 품종으로서 엽의 색은 녹색, 월동 전 초형은 반직립형, 봄의 초형은 직립형인 개체이다. 상기 그린콜은 4월 25일경에 출수하는 극조생종 품종으로, 플로리다(Florida) 80에 비해 지엽 폭, 지엽 길이, 및 초장이 짧고, 줄기 두께가 두꺼우며, 이삭 길이가 대등하다.The Green Call was developed by creating a crossbreeding combination with a total of 5 early-maturing lines, 09CR02, 09CR04, 09CR06, 09CR09, and 09CRR11, through research by the Rural Development Administration to cultivate Italian ryegrass varieties that ripen quickly and produce high production. It is a diploid variety with green leaf color, semi-erect form before winter, and erect form in spring. The Green Call is an extremely early maturing variety that goes out around April 25th, and has shorter leaf width, leaf length, and plant height, thicker stems, and comparable ear lengths compared to Florida 80.

상기 그린콜(Green Call) 2호는 숙기가 빠르고 생산량이 많은 이탈리안 라이그라스 품종을 육성하기 위한 농촌진흥청의 연구에 의해 조생 계통인 총 5개의 09CR01, 09CR05, 09CR07, 09CR10, 09CRR12(K191022)로 교배조합을 작성하여 육성된 종으로, 2배체 품종으로서 엽의 색은 녹색, 월동 전 초형은 반직립형, 봄의 초형은 직립형인 개체이다. 상기 그린콜 2호는 4월 24일경에 출수하는 극조생종 품종으로, 플로리다(Florida) 80에 비해 지엽 길이가 길고, 지엽 폭 및 초장이 짧으며, 줄기 두께가 두껍고, 이삭 길이가 대등하다.The Green Call No. 2 was crossed with a total of five early-maturing lines, 09CR01, 09CR05, 09CR07, 09CR10, and 09CRR12 (K191022), through research by the Rural Development Administration to cultivate Italian ryegrass varieties with rapid ripening and high production. It is a species bred by creating a combination. It is a diploid variety with green leaf color, semi-erect form before winter, and erect form in spring. The Green Call No. 2 is an extremely early maturing variety that is harvested around April 24, and has longer leaf length, shorter leaf width and plant height, thicker stems, and equal ear length compared to Florida 80.

상기 아이알(IR)601은 농촌진흥청의 연구에 의해 총 5개의 09CR17, 09CR19, 09CR20, 09CR22, 09CR18로 교배조합을 작성하여 육성된 종으로, 4배체 품종으로서 엽의 색은 녹색, 월동 전 초형은 반직립형, 봄의 초형은 직립형인 개체이다. 상기 아이알(IR)601은 5월 18일에 출수하는 만생종 품종으로, 코윈어리에 비해 지엽 길이 및 이삭 길이가 길고, 수당소수수가 많으며, 지엽 폭이 유사하고, 줄기 굵기가 두꺼우며, 최장 간장이 짧다는 특성을 갖는다.The IR601 is a species bred by creating a crossbreeding combination of a total of 5 09CR17, 09CR19, 09CR20, 09CR22, and 09CR18 through research by the Rural Development Administration. It is a tetraploid variety with green leaf color and pre-wintering plant type. Semi-erect type, spring's first type is an erect type. The IR 601 is a late-ripening variety that is harvested on May 18, and has longer leaf and ear lengths than Corwinery, a large number of spikelets, similar leaf widths, thick stems, and the longest liver life. It has the characteristic of being short.

상기 아이알(IR)602는 농촌진흥청의 연구에 의해 총 5개의 09CR15, 09CR16, 09CR21, 09CR13, 09CR14로 교배조합을 작성하여 육성된 종으로, 2배체 품종으로서 엽의 색은 녹색, 월동 전 초형은 직립형, 봄의 초형은 직립형인 개체이다. 상기 아이알(IR)602는 5월 10일에 출수하는 중생종 품종으로, 코윈어리에 비해 지엽 길이가 약간 길고, 지엽 폭, 이삭 길이, 수당소수수, 및 줄기 굵기가 유사하며, 최장 간장이 짧다는 특성을 갖는다.The IR602 is a species bred by creating a crossbreeding combination of a total of 5 09CR15, 09CR16, 09CR21, 09CR13, and 09CR14 through research by the Rural Development Administration. It is a diploid variety with green leaf color and pre-wintering plant type. Upright, spring's first type is an upright individual. IR602 is a medium-growing variety that is harvested on May 10, and has slightly longer leaf lengths than Corwinery, similar leaf width, ear length, number of spikes, and stem thickness, and the longest stem is short. It has characteristics.

상기 아이알(IR)603은 농촌진흥청의 연구에 의해 총 5개의 15CR19, 15CR18, 15CR17, 15CR13, 15CR21로 교배조합을 작성하여 육성된 종으로, 4배체 품종으로서 엽의 색은 녹색, 월동 전 초형은 반직립형, 봄의 초형은 직립형인 개체이다. 상기 아이알(IR)603은 5월 16일에 출수하는 만생종 품종으로, 코윈어리에 비해 지엽 길이 및 이삭 길이가 현저히 길고, 수당소수수가 현저히 많으며, 지엽 폭이 유사하고, 줄기 굵기가 현저히 두꺼우며, 최장 간장이 약간 짧다는 특성을 갖는다.The IR603 is a species bred by creating a crossbreeding combination of a total of 5 15CR19, 15CR18, 15CR17, 15CR13, and 15CR21 through research by the Rural Development Administration. It is a tetraploid variety with green leaf color and pre-wintering plant type. Semi-erect type, spring's first type is an erect type. The IR 603 is a late-ripening variety that is harvested on May 16, and has significantly longer leaf and ear lengths than Corwinery, a significantly higher number of sugar spikes, similar leaf widths, and a significantly thicker stem. It has the characteristic of having a slightly shorter longest soy sauce.

상기 아이알(IR)605는 농촌진흥청의 연구에 의해 총 5개의 12EtYG2N18, 12EtYG2N18, 12EtYG2N27, ARIKG07, ARIXRO18로 교배조합을 작성하여 육성된 종으로, 2배체 품종으로서 엽의 색은 녹색, 월동 전 초형은 반직립형, 봄의 초형은 직립형인 개체이다. 상기 아이알(IR)605는 5월 15일에 출수하는 중생종 품종으로, 코윈어리에 비해 지엽 길이, 초장, 및 이삭 길이가 약간 길고, 수당소수수가 약간 많으며, 지엽 폭 및 줄기 굵기가 유사하다는 특성을 갖는다.The IR605 is a species bred through research by the Rural Development Administration by creating a crossbreeding combination with a total of 5 12EtYG2N18, 12EtYG2N18, 12EtYG2N27, ARIKG07, and ARIXRO18. It is a diploid variety with green leaf color and pre-wintering plant type. Semi-erect type, spring's first type is an erect type. The IR 605 is a medium-growing variety that is harvested on May 15, and has the characteristics of slightly longer leaf length, plant height, and ear length, slightly more number of spikelets, and similar leaf width and stem thickness compared to Corwinery. have

상기 아이알(IR)901은 농촌진흥청의 연구에 의해 총 5개의 12EtHN4NN14, 12EtHN4NN23, ARIXJN09, ARIXJN14, ARIXJN18로 교배조합을 작성하여 육성된 종으로, 2배체 품종으로서 엽의 색은 녹색, 월동 전 초형은 반직립형, 봄의 초형은 직립형인 개체이다. 상기 아이알(IR)901은 5월 22일에 출수하는 만생종 품종으로, 코윈어리에 비해 이삭 길이가 약간 길고, 수당소수수가 약간 많으며, 지엽 길이, 지엽 폭, 줄기 굵기가 유사하다는 특성을 갖는다.The IR901 is a species bred through research by the Rural Development Administration by creating a crossbreeding combination of a total of 5 12EtHN4NN14, 12EtHN4NN23, ARIXJN09, ARIXJN14, and ARIXJN18. It is a diploid variety with green leaf color and pre-wintering plant type. Semi-erect type, spring's first type is an erect type. The IR 901 is a late-ripening variety that is harvested on May 22, and has the characteristics of having a slightly longer ear length, a slightly larger number of spikelets, and similar leaf length, leaf width, and stem thickness compared to Corwinery.

상기 그린팜(Green Farm)은 농촌진흥청의 연구에 의해 총 5개의 06CR47, 06CR16, 06CR80, 06CR11, 06CR26으로 교배조합을 작성하여 육성된 종으로, 2배체 품종으로서 엽의 색은 녹색, 월동 전 초형은 직립형, 봄의 초형은 반직립형인 개체이다. 상기 그린팜(Green Farm)은 4월 28일에 출수하는 극조생종 품종으로, 플로리다(Florida) 80에 비해 줄기 굵기가 두껍고, 최장 간장이 유사하며, 지엽 길이, 지엽 폭, 및 이삭 길이가 짧고, 수당소수수가 적다는 특성을 갖는다.The Green Farm is a species bred through research by the Rural Development Administration by creating a crossbreeding combination of a total of 5 06CR47, 06CR16, 06CR80, 06CR11, and 06CR26. It is a diploid variety with green leaf color and pre-wintering plant type. is an erect type, and Bom's initial type is a semi-erect type. The Green Farm is an extremely early maturing variety that is harvested on April 28. Compared to Florida 80, the stem thickness is thicker, the longest stem is similar, and the leaf length, leaf width, and ear length are shorter, It has the characteristic of having a small number of allowances.

상기 그린팜(Green Farm) 2호는 농촌진흥청의 연구에 의해 총 5개의 06CR33, 06CR52, 06CR05, 06CR38, 06CR79로 교배조합을 작성하여 육성된 종으로, 2배체 품종으로서 엽의 색은 녹색, 월동 전 초형은 반직립형, 봄의 초형은 직립형인 개체이다. 상기 그린팜(Green Farm) 2호는 5월 04일에 출수하는 극조생종 품종으로, 플로리다(Florida) 80에 비해 줄기 굵기가 두껍고, 최장 간장 및 지엽 폭이 유사하며, 지엽 길이 및 이삭 길이가 짧고, 수당소수수가 현저히 적다는 특성을 갖는다.The Green Farm No. 2 is a species bred by creating a crossbreeding combination of a total of 5 06CR33, 06CR52, 06CR05, 06CR38, and 06CR79 through research by the Rural Development Administration. It is a diploid variety with green leaf color and winter. The former first type is a semi-erect type, and the spring type is an erect type. The Green Farm No. 2 is an extremely early maturing variety that is harvested on May 4th. Compared to Florida 80, the stem thickness is thicker, the longest stem and leaf width are similar, and the leaf length and ear length are shorter. , it has the characteristic that the number of permissible persons is significantly small.

상기 그린팜(Green Farm) 3호는 농촌진흥청의 연구에 의해 총 5개의 08CR01, 08CR06, 08CR07, 08CR11, 08CR16으로 교배조합을 작성하여 육성된 종으로, 2배체 품종으로서 엽의 색은 녹색, 월동 전 초형은 반직립형, 봄의 초형은 직립형인 개체이다. 상기 그린팜(Green Farm) 3호는 4월 27일에 출수하는 극조생종 품종으로, 그린팜(Green Farm)에 비해 지엽 길이, 이삭 길이, 및 최장 간장이 길고, 줄기 굵기 및 수당소수수가 유사하며, 지엽 폭이 좁다는 특성을 갖는다.The above-mentioned Green Farm No. 3 is a species bred by creating a crossbreeding combination of a total of 5 08CR01, 08CR06, 08CR07, 08CR11, and 08CR16 through research by the Rural Development Administration. It is a diploid variety with green leaf color and winter. The former first type is a semi-erect type, and the spring type is an erect type. The Green Farm No. 3 is an extremely early maturing variety that is harvested on April 27th. Compared to Green Farm, the leaf length, ear length, and maximum liver length are longer, and the stem thickness and number of sorghum plants are similar. , it has the characteristic of narrow leaf width.

상기 코윈어리(Kowinearly)는 농촌진흥청의 연구에 의해 총 5개의 00CR04, 00CR32, 00CR40, 00CR48, 00CR58로 교배조합을 작성하여 육성된 종으로, 2배체 품종으로서 엽의 색은 녹색, 월동 전 초형은 반부복형, 봄의 초형은 반직립형인 개체이다. 상기 코윈어리(Kowinearly)는 5월 03일에 출수하는 조생종 품종으로, 플로리다(Florida) 80에 비해 지엽 길이 및 이삭 길이가 길고, 지엽 폭이 넓으며, 줄기 굵기 및 수당소수수가 유사하고, 최장 간장이 짧다는 특성을 갖는다.The Kowinearly is a species bred through research by the Rural Development Administration by creating a crossbreeding combination of a total of 5 00CR04, 00CR32, 00CR40, 00CR48, and 00CR58. It is a diploid variety with green leaf color and pre-wintering plant type. It is a semi-prone type, and the first type in spring is a semi-erect type. The above-mentioned Kowinearly is an early-maturing variety that is harvested on May 3, and has longer leaf and ear lengths, wider leaf width, and similar stem thickness and number of spikelets than Florida 80, and has the longest soy sauce. It has the characteristic of being short.

상기 화산 101호(HS101)는 농촌진흥청의 연구에 의해 총 5개의 94CR01, 94CR02, 94CR03, 94CR10, 93CR06으로 종자합성하여 육성된 종으로, 4배체 품종으로서 엽의 색은 농녹, 월동전 초형은 반포복형, 봄의 초형은 중간형인 개체이다. 상기 화산 101호는 5월 20일에 출수하는 중만생종 품종으로, 마셜(Marshall)에 비해 지엽 폭이 넓고, 이삭 길이 및 수당 소수수가 유사하며, 출수기 초고는 낮다는 특성을 갖는다.The above-mentioned Hwasan No. 101 (HS101) is a species bred through seed synthesis with a total of 5 94CR01, 94CR02, 94CR03, 94CR10, and 93CR06 through research by the Rural Development Administration. It is a tetraploid variety with dark green leaf color and a reddish-green pre-wintering initial type. The double type, Bom's first type, is an intermediate type individual. The volcano No. 101 is a mid-late ripening variety that is planted on May 20, and has the characteristics of having wider leaf widths than Marshall, similar ear length and number of spikes per seed, and low plant height at the time of planting.

상기 화산 102호(HS102)는 농촌진흥청의 연구에 의해 총 5개의 93CR04, 93CR05, 93CR07, 93CR08, 93CR09으로 종자합성하여 육성된 종으로, 4배체 품종으로서 엽의 색은 농녹, 월동전 초형은 반포복형, 봄의 초형은 중간형인 개체이다. 상기 화산 102호는 5월 19일에 출수하는 중만생종 품종으로, 마셜(Marshall)에 비해 지엽 폭이 넓고, 이삭 길이 및 수당 소수수가 유사하며, 출수기 초고는 낮다는 특성을 갖는다.The above-mentioned Hwasan No. 102 (HS102) is a species bred through seed synthesis with a total of 5 93CR04, 93CR05, 93CR07, 93CR08, and 93CR09 through research by the Rural Development Administration. It is a tetraploid variety with dark green leaf color and a reddish-green pre-wintering initial type. The double type, Bom's first type, is an intermediate type individual. The volcano No. 102 is a mid-late ripening variety that is planted on May 19, and has the characteristics of having a wider leaf width than Marshall, similar ear length and number of spikes per seed, and low plant height at the time of planting.

상기 화산 104호(HS104)는 농촌진흥청의 연구에 의해 총 5개의 P8702, P8705, X8818, BC19107, ELm9107로 교배조합을 작성하여 육성된 종으로, 4배체 품종으로서 엽의 색은 농녹, 월동전 초형은 반부복형, 봄의 초형은 중간형인 개체이다. 상기 화산 104호는 5월 19일에 출수하는 만생종 품종으로, 화산 101호에 비해 지엽 폭이 넓고, 지엽 길이 및 초장이 길고, 줄기의 두께는 두꺼운 특성을 갖는다.The above-mentioned Hwasan No. 104 (HS104) is a species bred by creating a cross combination with a total of 5 P8702, P8705, is a semi-prone type, and Bom's supertype is an intermediate type. The Hwasan No. 104 is a late-ripe variety that is planted on May 19, and has wider leaf width, longer leaf length and plant height, and thicker stems than Hwasan No. 101.

상기 코윈마스터(Kowinmaster)는 이탈리안 라이그라스 내한성 품종을 육성하기 위한 농촌진흥청의 연구에 의해 총 5개의 00CR22, 00CR35, 00CR31, 00CR46, 00CR55로 종자합성하여 육성된 종으로, 2배체 품종으로서 엽의 색은 담녹, 월동 전 초형은 중간형, 봄의 초형은 반직립형인 개체이다. 상기 코윈마스터(Kowinmaster)는 5월 10일에 출수하는 중생종 품종으로, 플로리다(Florida) 80에 비해 지엽 길이 및 이삭 길이가 길고, 지엽 폭, 수당소수수, 최장 간장, 및 줄기 굵기가 유사하다는 특성을 갖는다.The Kowinmaster is a species bred by seed synthesis with a total of 5 00CR22, 00CR35, 00CR31, 00CR46, and 00CR55 through research by the Rural Development Administration to cultivate cold-resistant Italian ryegrass varieties. It is a diploid variety and has different leaf colors. The species is light green, the first form before winter is a medium type, and the first form in spring is a semi-erect type. The above-mentioned Kowinmaster is a medium-growing variety that is harvested on May 10, and has the characteristics of longer leaf length and ear length compared to Florida 80, and similar leaf width, number of sorghum sorghums, longest stem, and stem thickness. has

상기 코그린(Kogreen)은 이탈리안 라이그라스 내한성 품종을 육성하기 위한 농촌진흥청의 연구에 의해 총 5개의 00CR02, 00CR05, 00CR24, 00CR28, 00CR43으로 종자합성하여 육성된 종으로, 2배체 품종으로서 엽의 색은 녹색, 월동 전 초형은 반직립형, 봄의 초형은 직립형인 개체이다. 상기 코그린(Kogreen)은 5월 04일에 출수하는 조생종 품종으로, 플로리다(Florida) 80에 비해 지엽 폭이 넓고, 줄기 두께가 두꺼우며, 지엽 길이, 이삭 길이, 및 수당소수수가 유사하다는 특성을 갖는다.The Kogreen is a species bred by seed synthesis with a total of 5 00CR02, 00CR05, 00CR24, 00CR28, and 00CR43 through research by the Rural Development Administration to cultivate cold-resistant Italian ryegrass varieties. It is a diploid variety and has different leaf colors. is green, the first form before wintering is semi-erect, and the first form in spring is an erect form. The above-mentioned Kogreen is an early-maturing variety that is harvested on May 4, and has the characteristics of wider leaf width, thicker stem, and similar leaf length, ear length, and number of spikelets compared to Florida 80. have

상기 품종을 식별하는 단계는, 상기 중합효소연쇄반응(PCR)에 의해 생성된 산물을 분석하여 상기 이탈리안 라이그라스의 DNA를 파악할 수 있고, 파악된 DNA의 염기 서열을 확인하여 상기 이탈리안 라이그라스의 품종을 식별할 수 있다.In the step of identifying the variety, the DNA of the Italian ryegrass can be identified by analyzing the product produced by the polymerase chain reaction (PCR), and the nucleotide sequence of the identified DNA can be confirmed to determine the variety of the Italian ryegrass. can be identified.

또한, 상기 품종을 식별하는 단계는 상기 이탈리안 라이그라스의 DNA 중, 서열번호 1로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 G이거나 서열번호 2로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 C이고, 서열번호 3으로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 T이고, 서열번호 4로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 A이고, 서열번호 5로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 T이고, 서열번호 6으로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 A이고, 서열번호 7로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 T인 경우, 상기 이탈리안 라이그라스의 품종을 HS104 품종으로 식별할 수 있다.In addition, the step of identifying the variety is when the base of the DNA corresponding to the position of the 301st base in the polynucleotide represented by SEQ ID NO: 1 among the DNA of the Italian ryegrass is G or in the polynucleotide represented by SEQ ID NO: 2 The base of the DNA corresponding to the position of the 301st base is C, and in the polynucleotide represented by SEQ ID NO: 3, the base of the DNA corresponding to the position of the 301st base is T, and in the polynucleotide represented by SEQ ID NO: 4 The base of the DNA corresponding to the position of the 301st base is A, and the base of the DNA corresponding to the position of the 301st base in the polynucleotide represented by SEQ ID NO: 5 is T, and in the polynucleotide represented by SEQ ID NO: 6 If the base of the DNA corresponding to the position of the 301st base is A and the base of the DNA corresponding to the position of the 301st base in the polynucleotide represented by SEQ ID NO: 7 is T, the Italian ryegrass variety is HS104 It can be identified by breed.

실시예 1: 이탈리안 라이그라스 샘플을 이용한 GBS 라이브러리 서열 분석Example 1: GBS library sequence analysis using Italian ryegrass samples

실시예 1-1: 이탈리안 라이그라스 샘플 준비Example 1-1: Italian ryegrass sample preparation

하기 표 1은 GBS(Genotyping-By-Sequencing) 라이브러리(library) 제작에 사용된 96개의 이탈리안 라이그라스 샘플 리스트를 나타낸 표이다.Table 1 below shows a list of 96 Italian ryegrass samples used to create a GBS (Genotyping-By-Sequencing) library.

상기 표 1을 참조하면, GBS 라이브러리 제작에 사용된 96개의 이탈리안 라이그라스 샘플 리스트를 확인할 수 있다. KW는 코윈어리(Kowinearly) 품종을 의미하고, KS는 코스피드(Kospeed) 품종을 의미하고, GC는 그린콜(Green Call) 품종을 의미하고, GC2는 그린콜(Green Call) 2호 품종을 의미하고, 601, 602, 603, 605, 및 901은 아이알601(IR601), 아이알602(IR602), 아이알603(IR603), 아이알605(IR605), 및 아이알901(IR901) 품종을 의미하고, GF는 그린팜(Green farm) 품종을 의미하고, GF2는 그린팜(Green Farm) 2호 품종을 의미하고, GF3은 그린팜(Green Farm) 3호 품종을 의미하고, KWR은 코위너(Kowinner) 품종을 의미하고, AE는 애스(ACE) 품종에서 출수기가 빠른 선발된 계통을 의미하고, HS101, HS102, HS104는 화산 101호, 화산 102호, 및 화산 104호 품종을 의미하고, HC는 헤르쿨레스(Hercules) 품종에서 출수기가 빠른 선발된 계통을 의미하고, KM은 코윈마스터(Kowinmaster) 품종을 의미하고, KG는 코그린(Kogreen) 품종을 의미하고, FLO는 플로리다(Florida)80 품종을 의미하고, BK는 빌켄(Billiken) 품종을 의미하고, Rio는 리오(Rio) 품종을 의미한다. 총 24종의 품종을 대상으로 각각 4개의 샘플을 준비하였으므로, 총 96개의 이탈리안 라이그라스 샘플을 준비하였다.Referring to Table 1 above, you can see a list of 96 Italian ryegrass samples used to produce the GBS library. KW refers to the Kowinearly variety, KS refers to the Kospeed variety, GC refers to the Green Call variety, and GC2 refers to the Green Call No. 2 variety. And 601, 602, 603, 605, and 901 refer to the varieties IR601 (IR601), IR602 (IR602), IR603 (IR603), IR605 (IR605), and IR901 (IR901), and GF is It refers to the Green farm variety, GF2 refers to the Green Farm variety No. 2, GF3 refers to the Green Farm variety No. 3, and KWR refers to the Kowinner variety. AE refers to a line selected from the ACE variety with an early seeding period, HS101, HS102, and HS104 refer to Hwasan 101, Hwasan 102, and Hwasan 104 varieties, and HC refers to Hercules. In the variety, it refers to a line selected with a fast heading period, KM refers to the Kowinmaster variety, KG refers to the Kogreen variety, FLO refers to the Florida80 variety, and BK refers to the variety. It refers to the Billiken variety, and Rio refers to the Rio variety. Since 4 samples each were prepared for a total of 24 varieties, a total of 96 Italian ryegrass samples were prepared.

실시예 1-2: 이탈리안 라이그라스 샘플의 gDNA QC(Quality Check)Example 1-2: gDNA QC (Quality Check) of Italian ryegrass samples

도 1은 본 발명의 일 실시예에 따른 이탈리안 라이그라스 샘플의 gDNA 전기영동 결과를 나타낸 것이다.Figure 1 shows the results of gDNA electrophoresis of an Italian ryegrass sample according to an embodiment of the present invention.

도 1을 참조하면, 앞서 실시예 1-1에서 준비된 총 96개의 샘플의 gDNA를 대상으로 전기영동을 실시한 것을 확인할 수 있다. 상기 과정을 통해, GBS(Genotyping-By-Sequencing) 라이브러리 제작에 적합한 96개의 샘플의 gDNA를 확인하였다.Referring to Figure 1, it can be seen that electrophoresis was performed on gDNA of a total of 96 samples previously prepared in Example 1-1. Through the above process, gDNA of 96 samples suitable for GBS (Genotyping-By-Sequencing) library production was confirmed.

실시예 1-3: 이탈리안 라이그라스 샘플의 GBS(Genotyping-By-Sequencing) 라이브러리 제작Example 1-3: Production of GBS (Genotyping-By-Sequencing) library of Italian ryegrass samples

본 발명의 일 실시예에 따른 GBS(Genotyping-By-Sequencing) 라이브러리는, 각 바코드 어댑터의 상단 및 하단 가닥과 공통 어댑터를 포함하는 올리고뉴클레오타이드(oligonucleotide)를 대상으로 어닐링(annealing)하는 단계, 준비된 이탈리안 라이그라스 샘플의 DNA를 제한효소(RE, Restriction Enzyme)인 ApekⅠ으로 분해하는 단계, 어댑터를 gDNA 단편의 끝에 연결하는 단계, 가열하여 리가아제를 불활성화하고 각 샘플을 합친(풀링, pooling) 후 미반응 어댑터를 제거하는 정제를 실시하는 단계, 결찰된 어댑터에 결합 부위를 갖는 적절한 프라이머를 추가하고 멀티플렉스(multiplex) PCR을 수행하는 단계, 및 PCR 산물을 정리하고 아가로스 겔 러닝(agarose gel running)을 실시하여 확인하는 단계를 거쳐 제작되었다.GBS (Genotyping-By-Sequencing) library according to an embodiment of the present invention includes the steps of annealing oligonucleotides containing the top and bottom strands of each barcode adapter and a common adapter, and preparing Italian Digesting the DNA of the ryegrass sample with Apek I, a restriction enzyme (RE), connecting an adapter to the end of the gDNA fragment, heating to inactivate the ligase, and pooling each sample. Purifying to remove unreacted adapters, adding an appropriate primer having a binding site to the ligated adapter and performing multiplex PCR, and cleaning up the PCR products and performing agarose gel running. ) was produced through a verification process.

보다 상세하게, GBS 라이브러리는 제한 효소 ApekⅠ을 사용하여 제작하였다. 각 바코드 어댑터와 공통 어댑터를 포함하는 올리고뉴클레오타이드(oligonucleotide)를 50 uM의 TE 버퍼(10 mM Tris, 0.1 mM EDTA)에 희석하고, 열 순환기(thermocycler)에서 어닐링(annealing)을 진행하였다. 이후, 10x 어댑터 버퍼(500 mM NaCl, 100 mM Tris-Cl)를 이용하여 바코드 및 일반 어댑터를 10 uM로 희석하고 1:1 비율로 함께 혼합한 다음 2.4 ㎕의 믹스를 96웰 PCR 플레이트에 추가하였다. 샘플 DNA(100 ng/㎕)를 개별 어댑터가 함유된 웰에 첨가하였고, 샘플(DNA + 어댑터)은 1x NEB 버퍼 3 및 3.6 U ApekⅠ을 포함하는 20 ㎕ 부피로 75℃에서 반응시켰다. 샘플을 22℃에서 배양하고 65℃에서 20분 동안 가열하여 T4 DNA 리가아제를 불활성화시켰다. 이후, 각각 다른 바코드 어댑터를 갖는 96개 DNA 샘플(각각 5 ㎕) 세트를 조합하였고, 키트(QIAquick PCR Purification Kit, Qiagen, CA)를 사용하여 정제하였다. 풀링된 DNA 단편 2 ㎕, DNA 폴리머라아제(Agilent) 및 25 pmol의 프라이머를 이용하여, Life ECO Thermal Cycler(Bioer Technology Co.)를 통해 PCR을 수행하여 각 라이브러리의 제한 단편을 증폭하여 라이브러리를 구축하였다.In more detail, the GBS library was constructed using the restriction enzyme Apek I. Oligonucleotides containing each barcode adapter and the common adapter were diluted in 50 uM of TE buffer (10 mM Tris, 0.1 mM EDTA), and annealed in a thermocycler. Afterwards, the barcode and general adapter were diluted to 10 uM using 10x adapter buffer (500 mM NaCl, 100 mM Tris-Cl) and mixed together at a 1:1 ratio, and then 2.4 ㎕ of the mix was added to a 96-well PCR plate. . Sample DNA (100 ng/μl) was added to the wells containing individual adapters, and samples (DNA + adapter) were reacted at 75°C in a 20 μl volume containing 1x NEB Buffer 3 and 3.6 U Apek I. Samples were incubated at 22°C and heated at 65°C for 20 min to inactivate T4 DNA ligase. Then, a set of 96 DNA samples (5 μl each) with different barcode adapters were combined and purified using a kit (QIAquick PCR Purification Kit, Qiagen, CA). Using 2 ㎕ of pooled DNA fragments, DNA polymerase (Agilent), and 25 pmol of primers, PCR was performed using a Life ECO Thermal Cycler (Bioer Technology Co.) to amplify the restriction fragments of each library to construct the library. did.

실시예 1-4: 제작된 GBS 라이브러리 정제Example 1-4: Purification of the produced GBS library

앞서 실시예 1-3에서 제작된 GBS(Genotyping-By-Sequencing) 라이브러리를 대상으로 2차례에 걸친 정제(purification) 과정을 실시하였고, 그 결과는 하기 표 2와 같다.Two purification processes were performed on the GBS (Genotyping-By-Sequencing) library produced in Examples 1-3, and the results are shown in Table 2 below.

NoNo SampleSample 1st Purification1 st Purification 2nd Purification 2nd Purification 1One 이탈리안라이그라스 GBS library set-1(IRG-1)Italian ryegrass GBS library set-1(IRG-1) OO OO 22 이탈리안라이그라스 GBS library set-2(IRG-2)Italian ryegrass GBS library set-2(IRG-2) OO OO 33 이탈리안라이그라스 GBS library poolingItalian ryegrass GBS library pooling XX OO 44 Positive controlPositive control OO OO 55 Negative controlNegative control XX OO

도 2는 본 발명의 일 실시예에 따른 GBS 라이브러리를 대상으로 전기영동을 실시한 결과를 나타낸 것이다. 상기 전기영동은 1.5% 아가로스 겔을 사용하여 200v로 30분동안 실시되었으며, 100bp 마커(M, Marker) 및 라이브러리는 각각 5㎕씩 사용되었다.Figure 2 shows the results of electrophoresis on the GBS library according to an embodiment of the present invention. The electrophoresis was performed for 30 minutes at 200v using a 1.5% agarose gel, and 5 ㎕ of each 100bp marker (M, Marker) and library were used.

도 2를 참조하면, 본 발명의 일 실시예에 따른 GBS(Genotyping-By-Sequencing) 라이브러리(library)는 스메어(smear)하게 끌리듯 형성된 것을 확인할 수 있다. 특히, 250bp 내지 350bp에서 농도가 높게 나타났다.Referring to Figure 2, it can be seen that the GBS (Genotyping-By-Sequencing) library according to an embodiment of the present invention is formed in a smear-like manner. In particular, the concentration was high at 250bp to 350bp.

실시예 1-5: GBS 라이브러리 QC(Quality Check)Example 1-5: GBS library QC (Quality Check)

앞서 실시예 1-4에서 정제된 GBS(Genotyping-By-Sequencing) 라이브러리를 대상으로 퀄리티 체크(QC, Quality Check)를 실시하였다.Previously, a quality check (QC) was performed on the GBS (Genotyping-By-Sequencing) library purified in Examples 1-4.

하기 표 3은 상기 GBS(Genotyping-By-Sequencing) 라이브러리를 대상으로 실시된 퀄리티 체크(QC)의 결과를 나타낸 것이다.Table 3 below shows the results of quality check (QC) conducted on the GBS (Genotyping-By-Sequencing) library.

Library NameLibrary Name Library TypeLibrary Type Conc.
(ng/㎕)
Conc.
(ng/㎕)
Conc.
(nM)
Conc.
(nM)
Size
(bp)
Size
(bp)
ResultResult
1One IRG-1IRG-1 GBS library (single enzyme)GBS library (single enzyme) 11.6211.62 39.6239.62 451451 PassPass 22 IRG-2IRG-2 GBS library (single enzyme)GBS library (single enzyme) 11.6811.68 35.6435.64 504504 passpass

상기 표 3을 참조하면, IRG-1의 nM 단위의 농도 값이 더 높은 것을 확인할 수 있다. 이에 따라, 이후 실시예에서는 IRG-1 라이브러리를 사용하기로 결정하였다.Referring to Table 3 above, it can be seen that the concentration value in nM units of IRG-1 is higher. Accordingly, it was decided to use the IRG-1 library in the following examples.

도 3은 본 발명의 일 실시예에 따른 분석 모식도를 나타낸 것이다.Figure 3 shows an analysis schematic diagram according to an embodiment of the present invention.

도 3을 참조하면, 이후 실시예에서 진행될 분석의 순서를 확인할 수 있다. 이후 실시예에서는 GBS(Genotyping-By-Sequencing) 데이터를 추출하고, 시퀀스 디멀티플렉싱(Sequence demultiplexing) 및 프리-프로세싱(Pre-processing)을 실시하고, 레퍼런스 게놈(reference genome)에 매핑(mapping)하고, 로우(raw) SNP (In/Del)을 디텍션(detection)하며 컨센서스 시퀀스(consensus sequence, 공통염기서열)를 추출하고, SNP 매트릭스를 생성하고, SNP 필터링 및 셀렉션(selection)을 실시하고, 선택된 SNP를 적용하거나 그룹 중에서 다형성 SNP를 선발할 수 있다. 보다 상세한 내용은 하기 실시예를 통해 개시될 것이다.Referring to FIG. 3, the order of analysis to be performed in subsequent examples can be confirmed. In subsequent examples, GBS (Genotyping-By-Sequencing) data is extracted, sequence demultiplexing and pre-processing are performed, and mapping is performed to a reference genome. Detect raw SNPs (In/Del), extract consensus sequences, create SNP matrices, perform SNP filtering and selection, and select SNPs. You can apply or select polymorphic SNPs from a group. More details will be disclosed through the examples below.

실시예 2: GBS dataExample 2: GBS data

실시예 2-1: Sequencing raw dataExample 2-1: Sequencing raw data

앞서 실시예 1에서 제작된 IRG-1 라이브러리를 사용하고, 일루미나(illumine) 하이식(HiSeq) X 10 장비를 사용하여 1 레인(약 100Gbp) 시퀀싱을 진행하였다.Using the IRG-1 library prepared in Example 1, 1 lane (approximately 100 Gbp) sequencing was performed using an Illumine HiSeq

하기 표 4는 IRG-1 라이브러리를 사용하여 진행된 시퀀싱 결과를 나타낸 것이다.Table 4 below shows the results of sequencing conducted using the IRG-1 library.

PlatePlate No. of barcodeNo. of barcode No. of sampleNo. of sample No. of readsNo. of reads Avg. length (bp)Avg. length (bp) Total length (bp)Total length (bp) GC
(%)
GC
(%)
Q30
(%)
Q30
(%)
No. of
demultiplexed reads (%)
No. of
demultiplexed reads (%)
1차 생산11st production 1 9696 9696 391,722,338391,722,338 151151 59,150,073,03859,150,073,038 48.3648.36 93.4693.46 675,379,548 (86.21%)675,379,548 (86.21%) 1차 생산21st production 2 391,722,338391,722,338 151151 59,150,073,03859,150,073,038 추가 생산1Additional production 1 9696 9696 375,155,903375,155,903 151151 56,648,541,35356,648,541,353 48.3948.39 92.6992.69 646,988,004 (86.23%)646,988,004 (86.23%) 추가 생산2Additional production 2 375,155,903375,155,903 151151 56,648,541,35356,648,541,353 TotalTotal 192192 9696 1,533,756,4821,533,756,482 231,597,228,782231,597,228,782

상기 표 4를 참조하면, 앞서 제작된 IRG-1 라이브러리를 사용하여 이탈리안 라이그라스 96개의 샘플에 대한 시퀀싱 로우 데이터(sequencing law data)를 확보한 것을 확인할 수 있다.Referring to Table 4 above, it can be seen that sequencing law data for 96 samples of Italian ryegrass was secured using the previously produced IRG-1 library.

실시예 2-2: GBS sequencing pre-processingExample 2-2: GBS sequencing pre-processing

앞서 실시예 1에서 제작된 IRG-1 라이브러리의 바코드 시퀀스(barcode sequence)를 이용하여 샘플 별로 서열을 분리하는 디멀티플렉싱(역다중화, demultiplexing)를 수행하였다.Demultiplexing (demultiplexing) was performed to separate sequences for each sample using the barcode sequence of the IRG-1 library previously produced in Example 1.

하기 표 5는 본 발명의 일 실시예에 따른 디멀티플렉싱(demultiplexing)을 통한 샘플 별 로우(raw) 데이터 통계치를 나타낸 것이다.Table 5 below shows raw data statistics for each sample through demultiplexing according to an embodiment of the present invention.

BarCodeBarCode Sample nameSample name Sum of raw reads Sum of raw reads Total length of raw reads Total length of raw reads CTCCCTCC KW_01KW_01 27,984,674 27,984,674 4,225,685,7744,225,685,774 TGCATGCA KW_02KW_02 20,508,824 20,508,824 3,096,832,424 3,096,832,424 ACTAACTA KW_03KW_03 10,094,474 10,094,474 1,524,265,574 1,524,265,574 CAGACAGA KW_04KW_04 11,023,322 11,023,322 1,664,521,622 1,664,521,622 AACTAACT KS_01KS_01 24,973,212 24,973,212 3,770,955,012 3,770,955,012 GCGTGCGT KS_02KS_02 20,586,020 20,586,020 3,108,489,020 3,108,489,020 CGATCGAT KS_03KS_03 16,037,266 16,037,266 2,421,627,166 2,421,627,166 GTAAGTAA KS_04KS_04 5,343,352 5,343,352 806,846,152 806,846,152 AGGCAGGC GC2_01GC2_01 43,252,098 43,252,098 6,531,066,798 6,531,066,798 GATCGATC GC2_02GC2_02 28,706,912 28,706,912 4,334,743,712 4,334,743,712 TCACTCAC GC2_03GC2_03 18,224,244 18,224,244 2,751,860,844 2,751,860,844 TGCGATGCGA GC2_04GC2_04 10,023,360 10,023,360 1,513,527,360 1,513,527,360 CGCTTCGCTT GC_01GC_01 23,261,356 23,261,356 3,512,464,756 3,512,464,756 TCACCTCACC GC_02GC_02 26,581,886 26,581,886 4,013,864,786 4,013,864,786 CTAGCCTAGC GC_03GC_03 19,102,102 19,102,102 2,884,417,402 2,884,417,402 ACAAAACAAA GC_04GC_04 13,195,778 13,195,778 1,992,562,478 1,992,562,478 TTCTCTTCTC 901_01901_01 56,763,672 56,763,672 8,571,314,472 8,571,314,472 AGCCCAGCCC 901_02901_02 24,411,272 24,411,272 3,686,102,072 3,686,102,072 GTATTGTATT 901_03901_03 24,158,770 24,158,770 3,647,974,270 3,647,974,270 CTGTACTGTA 901_04901_04 7,742,580 7,742,580 1,169,129,580 1,169,129,580 ACCGTACCGT 605_01605_01 29,695,634 29,695,634 4,484,040,734 4,484,040,734 GCTTAGCTTA 605_02605_02 10,394,096 10,394,096 1,569,508,496 1,569,508,496 GGTGTGGTGT 605_03605_03 7,667,484 7,667,484 1,157,790,084 1,157,790,084 AGGATAGGAT 605_04605_04 13,233,298 13,233,298 1,998,227,998 1,998,227,998 ATTGAATTGA 604_01604_01 4,852,450 4,852,450 732,719,950 732,719,950 CATCTCATCT 604_02604_02 25,011,476 25,011,476 3,776,732,876 3,776,732,876 CCTACCCTAC 604_03604_03 34,245,834 34,245,834 5,171,120,934 5,171,120,934 GAGGAGAGGA 604_04604_04 12,545,584 12,545,584 1,894,383,184 1,894,383,184 GGAACGGAAC 603_01603_01 22,336,060 22,336,060 3,372,745,060 3,372,745,060 GTCAAGTCAA 603_02603_02 16,499,444 16,499,444 2,491,416,044 2,491,416,044 TAATATAATA 603_03603_03 11,454,554 11,454,554 1,729,637,654 1,729,637,654 TACATTACAT 603_04603_04 15,046,218 15,046,218 2,271,978,918 2,271,978,918 TCGTTTCGTT 602_01602_01 10,197,584 10,197,584 1,539,835,184 1,539,835,184 GGTTGTGGTTGT 602_02602_02 11,741,306 11,741,306 1,772,937,206 1,772,937,206 CCAGCTCCAGCT 602_03602_03 10,880,226 10,880,226 1,642,914,126 1,642,914,126 TTCAGATTCAGA 602_04602_04 3,457,092 3,457,092 522,020,892 522,020,892 TAGGAATAGGAA 601_01601_01 5,693,774 5,693,774 859,759,874 859,759,874 GCTCTAGCTCTA 601_02601_02 3,661,468 3,661,468 552,881,668 552,881,668 CCACAACCACAA 601_03601_03 6,965,674 6,965,674 1,051,816,774 1,051,816,774 CTTCCACTTCCA 601_04601_04 7,619,840 7,619,840 1,150,595,840 1,150,595,840 GAGATAGAGATA GF3_01GF3_01 16,284,028 16,284,028 2,458,888,228 2,458,888,228 ATGCCTATGCCT GF3_02GF3_02 36,885,684 36,885,684 5,569,738,284 5,569,738,284 AGTGGAAGTGGA GF3_03GF3_03 2,874,510 2,874,510 434,051,010 434,051,010 ACCTAAACCTAA GF3_04GF3_04 7,997,846 7,997,846 1,207,674,746 1,207,674,746 ATATGTATATGT GF2_01GF2_01 11,568,158 11,568,158 1,746,791,858 1,746,791,858 ATCGTAATCGTA GF2_02GF2_02 6,219,668 6,219,668 939,169,868 939,169,868 CATCGTCATCGT GF2_03GF2_03 17,454,040 17,454,040 2,635,560,040 2,635,560,040 CGCGGTCGCGGT GF2_04GF2_04 18,283,940 18,283,940 2,760,874,940 2,760,874,940 CTATTACTATTA GF_01GF_01 11,180,026 11,180,026 1,688,183,926 1,688,183,926 GCCAGTGCCAGT GF_02GF_02 16,376,054 16,376,054 2,472,784,154 2,472,784,154 GGAAGAGGAAGA GF_03GF_03 4,017,876 4,017,876 606,699,276 606,699,276 GTACTTGTACTT GF_04GF_04 26,145,584 26,145,584 3,947,983,184 3,947,983,184 GTTGAAGTTGAA KWR_01KWR_01 8,605,762 8,605,762 1,299,470,062 1,299,470,062 TAACGATAACGA KWR_02KWR_02 5,258,768 5,258,768 794,073,968 794,073,968 TGGCTATGGCTA KWR_03KWR_03 7,583,138 7,583,138 1,145,053,838 1,145,053,838 TATTTTTTATTTTTT KWR_04KWR_04 30,645,534 30,645,534 4,627,475,634 4,627,475,634 CTTGCTTCTTGCTT AE_01AE_01 12,043,426 12,043,426 1,818,557,326 1,818,557,326 ATGAAACATGAAC AE_02AE_02 17,350,990 17,350,990 2,619,999,490 2,619,999,490 AAAAGTTAAAAGTT AE_03AE_03 15,840,586 15,840,586 2,391,928,486 2,391,928,486 GAATTCAGAATTCA AE_04AE_04 14,806,830 14,806,830 2,235,831,330 2,235,831,330 GAACTTCGAACTTC HS104_01HS104_01 21,381,014 21,381,014 3,228,533,114 3,228,533,114 GGACCTAGGACCTA HS104_02HS104_02 4,089,342 4,089,342 617,490,642 617,490,642 GTCGATTGTCGATT HS104_03HS104_03 12,723,770 12,723,770 1,921,289,270 1,921,289,270 AACGCCTAACGCCT HS104_04HS104_04 14,317,194 14,317,194 2,161,896,294 2,161,896,294 AATATGCAATATGC HC_01HC_01 20,170,526 20,170,526 3,045,749,426 3,045,749,426 ACGTGTTACGTGTT HC_02HC_02 14,699,634 14,699,634 2,219,644,734 2,219,644,734 ATTAATTATTAATT HC_03HC_03 8,487,060 8,487,060 1,281,546,060 1,281,546,060 ATTGGATATTGGAT HC_04HC_04 11,535,506 11,535,506 1,741,861,406 1,741,861,406 CATAAGTCATAAGT HS102_01HS102_01 7,520,160 7,520,160 1,135,544,160 1,135,544,160 CGCTGATCGCTGAT HS102_02HS102_02 7,965,080 7,965,080 1,202,727,080 1,202,727,080 CGGTAGACGGTAGA HS102_03HS102_03 2,530,602 2,530,602 382,120,902 382,120,902 CTACGGACTACGGA HS102_04HS102_04 8,076,456 8,076,456 1,219,544,856 1,219,544,856 GCGGAATGCGGAAT HS101_01HS101_01 21,054,910 21,054,910 3,179,291,410 3,179,291,410 TAGCGGATAGCGGA HS101_02HS101_02 13,352,672 13,352,672 2,016,253,472 2,016,253,472 TCGAAGATCGAAGA HS101_03HS101_03 4,452,216 4,452,216 672,284,616 672,284,616 TCTGTGATCTGTGA HS101_04HS101_04 8,781,464 8,781,464 1,326,001,064 1,326,001,064 TGCTGGATGCTGGA KM_01KM_01 8,381,220 8,381,220 1,265,564,220 1,265,564,220 ACGACTACACGACTAC KM_02KM_02 15,430,376 15,430,376 2,329,986,776 2,329,986,776 TAGCATGCTAGCATGC KM_03KM_03 10,553,204 10,553,204 1,593,533,804 1,593,533,804 TAGGCCATTAGGCCAT KM_04KM_04 11,838,336 11,838,336 1,787,588,736 1,787,588,736 TGCAAGGATGCAAGGA KG_01KG_01 6,387,922 6,387,922 964,576,222 964,576,222 TGGTACGTTGGTACGT KG_02KG_02 13,455,236 13,455,236 2,031,740,636 2,031,740,636 TCTCAGTCTCTCAGTC KG_03KG_03 20,725,562 20,725,562 3,129,559,862 3,129,559,862 CCGGATATCCGGATAT KG_04KG_04 9,328,880 9,328,880 1,408,660,880 1,408,660,880 CGCCTTATCGCCTTAT FLO_01FLO_01 8,434,712 8,434,712 1,273,641,512 1,273,641,512 AACCGAGAAACCGAGA FLO_02FLO_02 3,945,090 3,945,090 595,708,590 595,708,590 ACAGGGAAACAGGGAA FLO_03FLO_03 3,202,022 3,202,022 483,505,322 483,505,322 ACGTGGTAACGTGGTA FLO_04FLO_04 5,163,006 5,163,006 779,613,906 779,613,906 CCATGGGTCCATGGGT BK_01BK_01 7,995,282 7,995,282 1,207,287,582 1,207,287,582 CGCGGAGACGCGGAGA BK_02BK_02 3,333,304 3,333,304 503,328,904 503,328,904 CGTGTGGTCGTGTGGT BK_03BK_03 4,666,524 4,666,524 704,645,124 704,645,124 GCTGTGGAGCTGTGGA BK_04BK_04 2,680,124 2,680,124 404,698,724 404,698,724 GGATTGGTGGATTGGT Rio_01Rio_01 8,503,012 8,503,012 1,283,954,812 1,283,954,812 GTGAGGGTGTGAGGGT Rio_02Rio_02 5,582,316 5,582,316 842,929,716 842,929,716 TATCGGGATATCGGGA Rio_03Rio_03 7,055,828 7,055,828 1,065,430,028 1,065,430,028 TTCCTGGATTCCTGGA Rio_04Rio_04 1,971,272 1,971,272 297,662,072 297,662,072 평균(AVG)Average (AVG) 13,774,66213,774,662 13,429,18513,429,185 합계(SUM)SUM 1,322,367,5521,322,367,552 1,289,201,7981,289,201,798

또한, 디멀티플렉싱(demultiplexing)을 통한 샘플 별 로우(raw) 데이터를 대상으로 바코드(barcode) 및 어댑터 시퀀스(adapter sequence)를 제거하고, 시퀀스 퀄리티 트리밍(sequence quality trimming)을 수행하였다.In addition, barcodes and adapter sequences were removed from raw data for each sample through demultiplexing, and sequence quality trimming was performed.

어댑터 트리밍(adapter trimming)은 컷어댑트(cutadapt, version 1.8.3) 프로그램을 사용하고, 시퀀스 퀄리티 트리밍(sequence quality trimming)은 솔렉사큐에이 패키지(SolexaQA package)의 다이나믹트림(DynamicTrim)과 렝스솔트(LengthSort) 프로그램을 사용하였다.For adapter trimming, use the cutadapt (version 1.8.3) program, and for sequence quality trimming, use DynamicTrim and Length Salt (in the SolexaQA package). The LengthSort) program was used.

상기 다이나믹트림(DynamicTrim)은 프레드 스코어(phred score)에 따라 숏 리드(short read)의 양쪽 끝의 배드 퀄리티 베이스(bad quality base)를 잘라내고 양질의 클린 리드(cleaned read)로 정제하는 과정을 수행하며, 렝스솔트(LengthSort)는 다이나믹트림(DynamicTrim)에서 너무 많은 베이스(base)가 잘린 리드(read)를 제거하는 과정을 수행하였다. 다이나믹트림(DynamicTrim)에서 프레드 스코어(phred score)는 20 이상을, 렝스솔트(LengthSort)에서 숏 리드 렝스(short read length)는 25bp(base pair) 이상을 사용하였다.The DynamicTrim performs a process of cutting out bad quality bases at both ends of short reads according to the phred score and refining them into good quality clean reads. In addition, LengthSort performed the process of removing reads with too many bases cut off in DynamicTrim. In DynamicTrim, a phred score of 20 or more was used, and in LengthSort, a short read length of 25 bp (base pair) or more was used.

하기 표 6은 프레드 퀄리티 스코어의 점수에 따른 정확도를 나타낸 것이다.Table 6 below shows the accuracy according to the score of the Fred quality score.

Phred Quality ScorePhred Quality Score Probability of Incorrect Base CallProbability of Incorrect Base Call Base call AccuracyBase call Accuracy 1010 1 in 101 in 10 90%90% 2020 1 in 1001 in 100 99%99% 3030 1 in 1,0001 in 1,000 99.9%99.9% 4040 1 in 10,0001 in 10,000 99.99%99.99%

상기 표 6을 참조하면, 본 발명의 일 실시예에 따른 상기 다이나믹트림(Dynamic Trim)에서는 베이스 콜 애큐러시(염기 해독 정확도, base call accuracy)가 99% 이상인 것을 사용했음을 확인할 수 있다.Referring to Table 6, it can be seen that the Dynamic Trim according to an embodiment of the present invention used a base call accuracy of 99% or more.

하기 표 7은 본 발명의 일 실시예에 따른 디멀티플렉싱(demultiplexing)을 통한 샘플 별 트리밍(trimming)된 데이터 통계치를 나타낸 것이다.Table 7 below shows data statistics trimmed for each sample through demultiplexing according to an embodiment of the present invention.

BarCodeBarCode Sample nameSample name Sum of trimmed reads Sum of trimmed reads Total length of trimmed reads (bp) Total length of trimmed reads (bp) Avg. length of trimmed reads (bp) Avg. length of trimmed reads (bp) Trimmed/Raw (%) Trimmed/Raw (%) CTCCCTCC KW_01KW_01 27,275,748 27,275,748 3,451,335,884 3,451,335,884 126.53126.53 97.47%97.47% TGCATGCA KW_02KW_02 19,994,044 19,994,044 2,535,790,267 2,535,790,267 126.83126.83 97.49%97.49% ACTAACTA KW_03KW_03 9,839,642 9,839,642 1,252,579,236 1,252,579,236 127.30127.30 97.48%97.48% CAGACAGA KW_04KW_04 10,751,044 10,751,044 1,363,582,041 1,363,582,041 126.83126.83 97.53%97.53% AACTAACT KS_01KS_01 24,367,894 24,367,894 3,098,411,409 3,098,411,409 127.15127.15 97.58%97.58% GCGTGCGT KS_02KS_02 20,110,828 20,110,828 2,560,487,624 2,560,487,624 127.32127.32 97.69%97.69% CGATCGAT KS_03KS_03 15,657,066 15,657,066 1,989,405,726 1,989,405,726 127.06127.06 97.63%97.63% GTAAGTAA KS_04KS_04 5,212,994 5,212,994 661,714,594 661,714,594 126.94126.94 97.56%97.56% AGGCAGGC GC2_01GC2_01 42,251,322 42,251,322 5,383,515,857 5,383,515,857 127.42127.42 97.69%97.69% GATCGATC GC2_02GC2_02 28,055,162 28,055,162 3,561,867,436 3,561,867,436 126.96126.96 97.73%97.73% TCACTCAC GC2_03GC2_03 17,775,900 17,775,900 2,256,018,257 2,256,018,257 126.91126.91 97.54%97.54% TGCGATGCGA GC2_04GC2_04 9,775,488 9,775,488 1,239,906,948 1,239,906,948 126.84126.84 97.53%97.53% CGCTTCGCTT GC_01GC_01 22,661,814 22,661,814 2,868,957,974 2,868,957,974 126.60126.60 97.42%97.42% TCACCTCACC GC_02GC_02 25,919,568 25,919,568 3,292,060,831 3,292,060,831 127.01127.01 97.51%97.51% CTAGCCTAGC GC_03GC_03 18,598,778 18,598,778 2,342,989,872 2,342,989,872 125.98125.98 97.37%97.37% ACAAAACAAA GC_04GC_04 12,855,874 12,855,874 1,630,601,653 1,630,601,653 126.84126.84 97.42%97.42% TTCTCTTCTC 901_01901_01 55,333,290 55,333,290 7,009,107,424 7,009,107,424 126.67126.67 97.48%97.48% AGCCCAGCCC 901_02901_02 23,805,438 23,805,438 3,011,204,578 3,011,204,578 126.49126.49 97.52%97.52% GTATTGTATT 901_03901_03 23,583,014 23,583,014 2,994,447,575 2,994,447,575 126.97126.97 97.62%97.62% CTGTACTGTA 901_04901_04 7,546,312 7,546,312 955,762,430 955,762,430 126.65126.65 97.47%97.47% ACCGTACCGT 605_01605_01 28,963,328 28,963,328 3,677,531,171 3,677,531,171 126.97126.97 97.53%97.53% GCTTAGCTTA 605_02605_02 10,131,974 10,131,974 1,287,061,981 1,287,061,981 127.03127.03 97.48%97.48% GGTGTGGTGT 605_03605_03 7,498,770 7,498,770 951,053,597 951,053,597 126.83126.83 97.80%97.80% AGGATAGGAT 605_04605_04 12,928,504 12,928,504 1,637,232,763 1,637,232,763 126.64126.64 97.70%97.70% ATTGAATTGA 604_01604_01 4,735,144 4,735,144 601,324,788 601,324,788 126.99126.99 97.58%97.58% CATCTCATCT 604_02604_02 24,394,414 24,394,414 3,088,358,722 3,088,358,722 126.60126.60 97.53%97.53% CCTACCCTAC 604_03604_03 33,350,966 33,350,966 4,230,887,688 4,230,887,688 126.86126.86 97.39%97.39% GAGGAGAGGA 604_04604_04 12,262,020 12,262,020 1,559,723,150 1,559,723,150 127.20127.20 97.74%97.74% GGAACGGAAC 603_01603_01 21,797,130 21,797,130 2,766,281,029 2,766,281,029 126.91126.91 97.59%97.59% GTCAAGTCAA 603_02603_02 16,119,982 16,119,982 2,052,084,130 2,052,084,130 127.30127.30 97.70%97.70% TAATATAATA 603_03603_03 11,158,524 11,158,524 1,415,077,014 1,415,077,014 126.82126.82 97.42%97.42% TACATTACAT 603_04603_04 14,663,850 14,663,850 1,859,221,925 1,859,221,925 126.79126.79 97.46%97.46% TCGTTTCGTT 602_01602_01 9,957,556 9,957,556 1,264,468,759 1,264,468,759 126.99126.99 97.65%97.65% GGTTGTGGTTGT 602_02602_02 11,476,614 11,476,614 1,455,393,357 1,455,393,357 126.81126.81 97.75%97.75% CCAGCTCCAGCT 602_03602_03 10,596,762 10,596,762 1,336,288,603 1,336,288,603 126.10126.10 97.39%97.39% TTCAGATTCAGA 602_04602_04 3,369,536 3,369,536 426,129,681 426,129,681 126.47126.47 97.47%97.47% TAGGAATAGGAA 601_01601_01 5,553,860 5,553,860 703,419,411 703,419,411 126.65126.65 97.54%97.54% GCTCTAGCTCTA 601_02601_02 3,566,280 3,566,280 451,100,513 451,100,513 126.49126.49 97.40%97.40% CCACAACCACAA 601_03601_03 6,771,856 6,771,856 855,511,063 855,511,063 126.33126.33 97.22%97.22% CTTCCACTTCCA 601_04601_04 7,412,280 7,412,280 934,676,535 934,676,535 126.10126.10 97.28%97.28% GAGATAGAGATA GF3_01GF3_01 15,870,268 15,870,268 1,998,349,954 1,998,349,954 125.92125.92 97.46%97.46% ATGCCTATGCCT GF3_02GF3_02 35,908,458 35,908,458 4,494,133,934 4,494,133,934 125.16125.16 97.35%97.35% AGTGGAAGTGGA GF3_03GF3_03 2,807,100 2,807,100 355,144,515 355,144,515 126.52126.52 97.65%97.65% ACCTAAACCTAA GF3_04GF3_04 7,782,006 7,782,006 984,545,413 984,545,413 126.52126.52 97.30%97.30% ATATGTATATGT GF2_01GF2_01 11,281,864 11,281,864 1,426,204,139 1,426,204,139 126.42126.42 97.53%97.53% ATCGTAATCGTA GF2_02GF2_02 6,056,750 6,056,750 765,613,900 765,613,900 126.41126.41 97.38%97.38% CATCGTCATCGT GF2_03GF2_03 17,007,396 17,007,396 2,149,951,332 2,149,951,332 126.41126.41 97.44%97.44% CGCGGTCGCGGT GF2_04GF2_04 17,821,792 17,821,792 2,249,742,665 2,249,742,665 126.24126.24 97.47%97.47% CTATTACTATTA GF_01GF_01 10,876,724 10,876,724 1,369,550,932 1,369,550,932 125.92125.92 97.29%97.29% GCCAGTGCCAGT GF_02GF_02 15,966,054 15,966,054 2,020,329,611 2,020,329,611 126.54126.54 97.50%97.50% GGAAGAGGAAGA GF_03GF_03 3,921,630 3,921,630 496,165,910 496,165,910 126.52126.52 97.60%97.60% GTACTTGTACTT GF_04GF_04 25,478,418 25,478,418 3,222,074,462 3,222,074,462 126.46126.46 97.45%97.45% GTTGAAGTTGAA KWR_01KWR_01 8,398,816 8,398,816 1,062,557,308 1,062,557,308 126.51126.51 97.60%97.60% TAACGATAACGA KWR_02KWR_02 5,116,732 5,116,732 645,289,422 645,289,422 126.11126.11 97.30%97.30% TGGCTATGGCTA KWR_03KWR_03 7,387,354 7,387,354 934,175,295 934,175,295 126.46126.46 97.42%97.42% TATTTTTTATTTTTT KWR_04KWR_04 29,789,550 29,789,550 3,735,900,055 3,735,900,055 125.41125.41 97.21%97.21% CTTGCTTCTTGCTT AE_01AE_01 11,719,510 11,719,510 1,474,675,787 1,474,675,787 125.83125.83 97.31%97.31% ATGAAACATGAAC AE_02AE_02 16,896,068 16,896,068 2,132,239,778 2,132,239,778 126.20126.20 97.38%97.38% AAAAGTTAAAAGTT AE_03AE_03 15,459,336 15,459,336 1,950,733,471 1,950,733,471 126.18126.18 97.59%97.59% GAATTCAGAATTCA AE_04AE_04 14,427,082 14,427,082 1,820,502,390 1,820,502,390 126.19126.19 97.44%97.44% GAACTTCGAACTTC HS104_01HS104_01 20,803,738 20,803,738 2,616,639,232 2,616,639,232 125.78125.78 97.30%97.30% GGACCTAGGACCTA HS104_02HS104_02 3,984,684 3,984,684 501,708,101 501,708,101 125.91125.91 97.44%97.44% GTCGATTGTCGATT HS104_03HS104_03 12,428,134 12,428,134 1,568,292,657 1,568,292,657 126.19126.19 97.68%97.68% AACGCCTAACGCCT HS104_04HS104_04 13,928,584 13,928,584 1,751,567,681 1,751,567,681 125.75125.75 97.29%97.29% AATATGCAATATGC HC_01HC_01 19,623,186 19,623,186 2,464,758,296 2,464,758,296 125.60125.60 97.29%97.29% ACGTGTTACGTGTT HC_02HC_02 14,341,476 14,341,476 1,811,119,778 1,811,119,778 126.29126.29 97.56%97.56% ATTAATTATTAATT HC_03HC_03 8,275,758 8,275,758 1,044,415,849 1,044,415,849 126.20126.20 97.51%97.51% ATTGGATATTGGAT HC_04HC_04 11,271,380 11,271,380 1,424,145,107 1,424,145,107 126.35126.35 97.71%97.71% CATAAGTCATAAGT HS102_01HS102_01 7,325,992 7,325,992 923,497,075 923,497,075 126.06126.06 97.42%97.42% CGCTGATCGCTGAT HS102_02HS102_02 7,764,184 7,764,184 979,000,772 979,000,772 126.09126.09 97.48%97.48% CGGTAGACGGTAGA HS102_03HS102_03 2,465,222 2,465,222 310,685,306 310,685,306 126.03126.03 97.42%97.42% CTACGGACTACGGA HS102_04HS102_04 7,856,212 7,856,212 986,175,040 986,175,040 125.53125.53 97.27%97.27% GCGGAATGCGGAAT HS101_01HS101_01 20,510,334 20,510,334 2,586,720,662 2,586,720,662 126.12126.12 97.41%97.41% TAGCGGATAGCGGA HS101_02HS101_02 13,010,938 13,010,938 1,638,915,759 1,638,915,759 125.96125.96 97.44%97.44% TCGAAGATCGAAGA HS101_03HS101_03 4,340,348 4,340,348 548,188,024 548,188,024 126.30126.30 97.49%97.49% TCTGTGATCTGTGA HS101_04HS101_04 8,559,258 8,559,258 1,079,498,526 1,079,498,526 126.12126.12 97.47%97.47% TGCTGGATGCTGGA KM_01KM_01 8,166,996 8,166,996 1,029,238,008 1,029,238,008 126.02126.02 97.44%97.44% ACGACTACACGACTAC KM_02KM_02 15,009,954 15,009,954 1,887,498,346 1,887,498,346 125.75125.75 97.28%97.28% TAGCATGCTAGCATGC KM_03KM_03 10,264,012 10,264,012 1,286,776,171 1,286,776,171 125.37125.37 97.26%97.26% TAGGCCATTAGGCCAT KM_04KM_04 11,542,352 11,542,352 1,453,301,548 1,453,301,548 125.91125.91 97.50%97.50% TGCAAGGATGCAAGGA KG_01KG_01 6,224,482 6,224,482 783,442,672 783,442,672 125.86125.86 97.44%97.44% TGGTACGTTGGTACGT KG_02KG_02 13,112,664 13,112,664 1,650,397,076 1,650,397,076 125.86125.86 97.45%97.45% TCTCAGTCTCTCAGTC KG_03KG_03 20,232,582 20,232,582 2,549,553,994 2,549,553,994 126.01126.01 97.62%97.62% CCGGATATCCGGATAT KG_04KG_04 9,085,132 9,085,132 1,143,313,688 1,143,313,688 125.84125.84 97.39%97.39% CGCCTTATCGCCTTAT FLO_01FLO_01 8,200,218 8,200,218 1,027,827,512 1,027,827,512 125.34125.34 97.22%97.22% AACCGAGAAACCGAGA FLO_02FLO_02 3,844,176 3,844,176 484,104,712 484,104,712 125.93125.93 97.44%97.44% ACAGGGAAACAGGGAA FLO_03FLO_03 3,123,198 3,123,198 393,699,697 393,699,697 126.06126.06 97.54%97.54% ACGTGGTAACGTGGTA FLO_04FLO_04 5,028,826 5,028,826 629,143,384 629,143,384 125.11125.11 97.40%97.40% CCATGGGTCCATGGGT BK_01BK_01 7,806,476 7,806,476 984,852,104 984,852,104 126.16126.16 97.64%97.64% CGCGGAGACGCGGAGA BK_02BK_02 3,249,990 3,249,990 408,441,100 408,441,100 125.67125.67 97.50%97.50% CGTGTGGTCGTGTGGT BK_03BK_03 4,559,274 4,559,274 574,531,180 574,531,180 126.01126.01 97.70%97.70% GCTGTGGAGCTGTGGA BK_04BK_04 2,613,926 2,613,926 328,857,180 328,857,180 125.81125.81 97.53%97.53% GGATTGGTGGATTGGT Rio_01Rio_01 8,318,062 8,318,062 1,048,888,019 1,048,888,019 126.10126.10 97.82%97.82% GTGAGGGTGTGAGGGT Rio_02Rio_02 5,468,334 5,468,334 690,763,234 690,763,234 126.32126.32 97.96%97.96% TATCGGGATATCGGGA Rio_03Rio_03 6,886,696 6,886,696 863,563,540 863,563,540 125.40125.40 97.60%97.60% TTCCTGGATTCCTGGA Rio_04Rio_04 1,921,542 1,921,542 241,788,575 241,788,575 125.83125.83 97.48%97.48% 평균(AVG)Average (AVG) 13,429,18513,429,185 1,697,872,5351,697,872,535 126.34126.34 97.49%97.49% 합계(SUM)SUM 1,289,201,7981,289,201,798 162,995,763,374162,995,763,374

실시예 3: Alignment to reference genomeExample 3: Alignment to reference genome

앞서 실시예 2에서 디멀티플렉싱 및 시퀀스 퀄리티 트리밍을 통해 확보된 각 샘플의 클린 리드(clean reads)를 표준 유전체(참조 유전체, reference genome)에 매핑(mapping)하고 통계치를 추출하였다.Previously, clean reads of each sample obtained through demultiplexing and sequence quality trimming in Example 2 were mapped to a standard genome (reference genome) and statistics were extracted.

상기 표준 유전체(reference genome)로는, 2018년 12월 09일에 발행된 'GRASSLAND SCIENCE' 65권 2호의 125쪽 내지 134쪽에 개시된 'First assembly of the gene-space of Lolium multiflorum and comparison to other Poaceae genomes'에 포함된 롤리움 멀티플로룸(Lolium multiflorum)의 유전체를 사용하였다.The reference genome is 'First assembly of the gene-space of Lolium multiflorum and comparison to other Poaceae genomes' disclosed on pages 125 to 134 of 'GRASSLAND SCIENCE' Volume 65, Issue 2, published on December 9, 2018. The genome of Lolium multiflorum included in was used.

하기 표 8은 상기 표준 유전체의 통계치를 나타낸 것이다.Table 8 below shows statistical values of the standard genome.

No. of scaffoldsNo. of scaffolds Total length (bp)Total length (bp) Min. length (bp)Min. length (bp) Max. length (bp)Max. length (bp) Avg. length (bp)Avg. length (bp) N50 length (bp)N50 length (bp) 129,579129,579 585,844,536585,844,536 2,0002,000 43,90343,903 4,5214,521 5,0365,036

상기 매핑(mapping)의 통계치 추출에 있어서, 보다 상세하게, 전처리 과정을 통과한 클린 리드(cleaned reads)를 BWA(Burrows-Wheeler Aligner, 0.7.17-r1188) 프로그램을 사용하여 표준 유전체(참조 유전체, reference genome)에 매핑(mapping)을 수행하였다. 매핑(mapping)은 표준 유전체와 시퀀싱한 샘플 간의 로우(raw) SNP (In/Del)을 찾기 위한 선행과정으로서 BAM(Binary alignment Map) 포맷의 파일을 생성하며, 옵션은 기본값으로 설정하였다.In extracting statistical values of the mapping, in more detail, clean reads that have passed the preprocessing process are compared to a standard genome (reference genome, Mapping was performed on the reference genome. Mapping is a prerequisite to finding raw SNPs (In/Del) between the standard genome and sequenced samples, and creates a file in BAM (Binary alignment Map) format, with options set to default.

하기 표 9 및 표 10은 각 샘플의 클린 리드(clean reads)를 표준 유전체에 매칭하여 통계치를 추출한 결과를 나타낸 것이다.Tables 9 and 10 below show the results of extracting statistical values by matching the clean reads of each sample to the standard genome.

실시예 4: Genome-wide SNPExample 4: Genome-wide SNP

실시예 4-1: Raw SNP detection 및 consensus sequence extractExample 4-1: Raw SNP detection and consensus sequence extraction

앞서 개시된 이탈리안 라이그라스 총 96개의 샘플로부터 추출된 클린 리드(cleaned reads)를 표준 유전체(reference genome)에 매핑(mapping)하여 생성된 BAM 포맷의 파일을 SAM 툴(SAM tool, 0.1.16) 프로그램을 사용하여 로우(raw) SNP (In/Del)을 디텍션(detection)하고, 컨센서스 시퀀스(consensus sequence, 공통염기서열)를 추출하였다. 이때 SNP 디텍션(detection)을 하는 과정 전에 씨더스 인-하우스 스크립트(SEEDERS in-house script)를 사용하여 SNP 밸리데이션(validation)을 거친 후, 로우(raw) SNP (In/Del) 디텍션(detection)을 수행하였다. 하기 표 11에 개시된 옵션 이외에는 기본 값을 적용하였다.The BAM format file generated by mapping the clean reads extracted from a total of 96 previously disclosed Italian ryegrass samples to the reference genome was generated using the SAM tool (0.1.16) program. Using this method, raw SNPs (In/Del) were detected and a consensus sequence was extracted. At this time, before the SNP detection process, SNP validation is performed using the SEEDERS in-house script, and then raw SNP (In/Del) detection is performed. carried out. Except for the options disclosed in Table 11 below, default values were applied.

Minimum mapping quality for SNPs (-Q) = 30Minimum mapping quality for SNPs (-Q) = 30 Minimum mapping quality for gaps (-q) = 15Minimum mapping quality for gaps (-q) = 15 Minimum read depth (-d) = 3Minimum read depth (-d) = 3 Maximum read depth (-D) = 611Maximum read depth (-D) = 611 Min In/Del score for nearby SNP filtering (-G) = 30Min In/Del score for nearby SNP filtering (-G) = 30 SNP within INT bp around a gap to be filtered (-w) = 15SNP within INT bp around a gap to be filtered (-w) = 15 Window size for filtering dense SNPs (-W) = 15Window size for filtering dense SNPs (-W) = 15

실시예 4-2: Generate SNP matrixExample 4-2: Generate SNP matrix

분석 대상 간의 SNP 비교 분석을 수행하기 위해 이탈리안 라이그라스 총 96개의 샘플간 통합 SNP 매트릭스(matrix)를 작성하였다. 각 샘플을 표준 유전체(reference genome)와 비교하여 얻은 로우(raw) SNP 포지션(position)을 후보로 하여 합집합의 리스트를 구축하였다. 이때, 빈 영역(non-SNP loci)은 샘플의 공통염기서열(consensus sequence)로부터 채워 넣는 필링(filling) 과정을 거쳐 매트릭스(matrix)를 작성하였다. 이후 샘플 간의 SNP 비교를 통해 미스-콜링(miss-calling)된 SNP (In/Del)좌를 필터(filter)하여 파이널(final) SNP 매트릭스(matrix)를 작성하였다. 해당 좌를 기반으로 SNP (In/Del)을 하기 표 12에 개시된 유형 구분 기준에 따라 분류하였다.To perform comparative analysis of SNPs between analysis subjects, an integrated SNP matrix was created between a total of 96 Italian ryegrass samples. A list of unions was constructed using the raw SNP positions obtained by comparing each sample with the reference genome as candidates. At this time, a matrix was created through a filling process in which empty regions (non-SNP loci) were filled from the consensus sequence of the sample. Afterwards, through SNP comparison between samples, miss-calling SNP (In/Del) loci were filtered to create a final SNP matrix. Based on the corresponding locus, SNPs (In/Del) were classified according to the type classification criteria disclosed in Table 12 below.

Homozygous(동형접합자): read rate ≥ 90%
Heterozygous(이형접합자): 40% ≤ read rate ≤ 60%
Etc.: 20% ≤ read rate ≤ 40%, and 60% ≤ read rate ≤ 90%
Homozygous: read rate ≥ 90%
Heterozygous: 40% ≤ read rate ≤ 60%
Etc.: 20% ≤ read rate ≤ 40%, and 60% ≤ read rate ≤ 90%
Read rate: Total mapped read 수 대비 변이가 발생한 read 수의 비율Read rate: Ratio of the number of mutated reads to the total number of mapped reads

하기 표 13은 상기 유형 구분 기준에 따라 분류된 SNP의 수를 나타낸 것이다.Table 13 below shows the number of SNPs classified according to the above type classification criteria.

SampleSample No. of Total SNPNo. of Total SNPs No. of Homozygous SNPNo. of Homozygous SNPs
(read rate ≥ 90%)(read rate ≥ 90%)
No. of Heterozygous SNPNo. of Heterozygous SNPs
(40% ≤ read rate ≤ 60%)(40% ≤ read rate ≤ 60%)
No. of etc. SNPNo. of etc. SNP
(20% ≤ read rate < 40%,(20% ≤ read rate < 40%,
60% < read rate < 90%)60% < read rate < 90%)
KW_01KW_01 334,041 334,041 258,794 258,794 27,911 27,911 47,336 47,336 KW_02KW_02 370,155 370,155 270,313 270,313 38,515 38,515 61,327 61,327 KW_03KW_03 198,035 198,035 156,595 156,595 16,702 16,702 24,738 24,738 KW_04KW_04 226,906 226,906 172,438 172,438 22,037 22,037 32,431 32,431 KS_01KS_01 380,929 380,929 281,305 281,305 37,616 37,616 62,008 62,008 KS_02KS_02 326,216 326,216 243,515 243,515 31,626 31,626 51,075 51,075 KS_03KS_03 281,094 281,094 212,041 212,041 27,242 27,242 41,811 41,811 KS_04KS_04 99,880 99,880 83,523 83,523 6,682 6,682 9,675 9,675 GC2_01GC2_01 484,751 484,751 344,905 344,905 51,501 51,501 88,345 88,345 GC2_02GC2_02 364,455 364,455 274,761 274,761 33,799 33,799 55,895 55,895 GC2_03GC2_03 250,107 250,107 196,642 196,642 20,596 20,596 32,869 32,869 GC2_04GC2_04 172,185 172,185 136,339 136,339 14,449 14,449 21,397 21,397 GC_01GC_01 334,595 334,595 244,670 244,670 34,585 34,585 55,340 55,340 GC_02GC_02 334,687 334,687 257,613 257,613 28,671 28,671 48,403 48,403 GC_03GC_03 260,707 260,707 200,099 200,099 23,525 23,525 37,083 37,083 GC_04GC_04 214,168 214,168 164,867 164,867 19,847 19,847 29,454 29,454 901_01901_01 593,127 593,127 414,218 414,218 63,530 63,530 115,379 115,379 901_02901_02 313,508 313,508 239,767 239,767 28,025 28,025 45,716 45,716 901_03901_03 336,473 336,473 244,224 244,224 35,631 35,631 56,618 56,618 901_04901_04 141,322 141,322 112,549 112,549 11,773 11,773 17,000 17,000 605_01605_01 393,642 393,642 282,746 282,746 42,090 42,090 68,806 68,806 605_02605_02 173,941 173,941 138,049 138,049 14,607 14,607 21,285 21,285 605_03605_03 135,036 135,036 110,228 110,228 10,187 10,187 14,621 14,621 605_04605_04 209,477 209,477 162,759 162,759 19,131 19,131 27,587 27,587 604_01604_01 100,458 100,458 83,326 83,326 7,119 7,119 10,013 10,013 604_02604_02 359,679 359,679 258,410 258,410 39,494 39,494 61,775 61,775 604_03604_03 412,954 412,954 302,930 302,930 40,232 40,232 69,792 69,792 604_04604_04 217,390 217,390 165,108 165,108 20,912 20,912 31,370 31,370 603_01603_01 298,378 298,378 228,396 228,396 26,801 26,801 43,181 43,181 603_02603_02 254,674 254,674 190,503 190,503 25,401 25,401 38,770 38,770 603_03603_03 198,842 198,842 152,766 152,766 18,685 18,685 27,391 27,391 603_04603_04 246,443 246,443 186,899 186,899 23,935 23,935 35,609 35,609 602_01602_01 154,886 154,886 126,361 126,361 11,438 11,438 17,087 17,087 602_02602_02 187,921 187,921 150,479 150,479 14,912 14,912 22,530 22,530 602_03602_03 190,842 190,842 151,221 151,221 15,875 15,875 23,746 23,746 602_04602_04 58,546 58,546 51,014 51,014 3,089 3,089 4,443 4,443 601_01601_01 103,489 103,489 85,287 85,287 7,477 7,477 10,725 10,725 601_02601_02 66,729 66,729 57,560 57,560 3,726 3,726 5,443 5,443 601_03601_03 123,593 123,593 100,632 100,632 9,324 9,324 13,637 13,637 601_04601_04 126,822 126,822 102,498 102,498 9,944 9,944 14,380 14,380 GF3_01GF3_01 232,880 232,880 180,383 180,383 19,426 19,426 33,071 33,071 GF3_02GF3_02 375,031 375,031 279,621 279,621 33,067 33,067 62,343 62,343 GF3_03GF3_03 55,613 55,613 48,218 48,218 3,085 3,085 4,310 4,310 GF3_04GF3_04 118,370 118,370 97,610 97,610 8,480 8,480 12,280 12,280 GF2_01GF2_01 182,844 182,844 148,343 148,343 13,541 13,541 20,960 20,960 GF2_02GF2_02 108,315 108,315 91,477 91,477 6,662 6,662 10,176 10,176 GF2_03GF2_03 256,284 256,284 199,346 199,346 21,492 21,492 35,446 35,446 GF2_04GF2_04 256,699 256,699 199,333 199,333 21,510 21,510 35,856 35,856 GF_01GF_01 171,339 171,339 135,493 135,493 13,981 13,981 21,865 21,865 GF_02GF_02 244,596 244,596 190,448 190,448 20,709 20,709 33,439 33,439 GF_03GF_03 74,607 74,607 63,419 63,419 4,568 4,568 6,620 6,620 GF_04GF_04 348,598 348,598 261,539 261,539 32,219 32,219 54,840 54,840 KWR_01KWR_01 168,850 168,850 134,079 134,079 13,913 13,913 20,858 20,858 KWR_02KWR_02 82,656 82,656 69,360 69,360 5,347 5,347 7,949 7,949 KWR_03KWR_03 126,348 126,348 103,132 103,132 9,401 9,401 13,815 13,815 KWR_04KWR_04 412,013 412,013 295,706 295,706 42,977 42,977 73,330 73,330 AE_01AE_01 170,847 170,847 138,308 138,308 12,784 12,784 19,755 19,755 AE_02AE_02 197,420 197,420 163,240 163,240 12,452 12,452 21,728 21,728 AE_03AE_03 220,598 220,598 176,080 176,080 16,966 16,966 27,552 27,552 AE_04AE_04 218,459 218,459 173,395 173,395 17,146 17,146 27,918 27,918 HS104_01HS104_01 295,216 295,216 230,112 230,112 24,164 24,164 40,940 40,940 HS104_02HS104_02 75,215 75,215 64,840 64,840 4,199 4,199 6,176 6,176 HS104_03HS104_03 204,739 204,739 161,628 161,628 17,029 17,029 26,082 26,082 HS104_04HS104_04 218,793 218,793 171,227 171,227 18,817 18,817 28,749 28,749 HC_01HC_01 257,382 257,382 204,395 204,395 19,245 19,245 33,742 33,742 HC_02HC_02 198,777 198,777 160,944 160,944 14,575 14,575 23,258 23,258 HC_03HC_03 118,006 118,006 100,546 100,546 6,915 6,915 10,545 10,545 HC_04HC_04 189,222 189,222 153,513 153,513 14,079 14,079 21,630 21,630 HS102_01HS102_01 107,836 107,836 88,943 88,943 7,777 7,777 11,116 11,116 HS102_02HS102_02 137,452 137,452 111,562 111,562 10,306 10,306 15,584 15,584 HS102_03HS102_03 27,239 27,239 24,202 24,202 1,365 1,365 1,672 1,672 HS102_04HS102_04 134,099 134,099 107,997 107,997 10,491 10,491 15,611 15,611 HS101_01HS101_01 294,478 294,478 220,586 220,586 27,757 27,757 46,135 46,135 HS101_02HS101_02 188,347 188,347 145,506 145,506 16,788 16,788 26,053 26,053 HS101_03HS101_03 75,385 75,385 63,763 63,763 4,898 4,898 6,724 6,724 HS101_04HS101_04 130,969 130,969 105,758 105,758 10,130 10,130 15,081 15,081 KM_01KM_01 127,088 127,088 103,321 103,321 9,721 9,721 14,046 14,046 KM_02KM_02 209,184 209,184 168,372 168,372 14,887 14,887 25,925 25,925 KM_03KM_03 150,273 150,273 122,600 122,600 10,804 10,804 16,869 16,869 KM_04KM_04 151,921 151,921 123,898 123,898 11,299 11,299 16,724 16,724 KG_01KG_01 97,177 97,177 81,470 81,470 6,452 6,452 9,255 9,255 KG_02KG_02 104,461 104,461 85,859 85,859 7,471 7,471 11,131 11,131 KG_03KG_03 267,736 267,736 207,308 207,308 22,536 22,536 37,892 37,892 KG_04KG_04 134,001 134,001 109,656 109,656 9,960 9,960 14,385 14,385 FLO_01FLO_01 122,959 122,959 100,811 100,811 9,269 9,269 12,879 12,879 FLO_02FLO_02 39,271 39,271 34,460 34,460 2,047 2,047 2,764 2,764 FLO_03FLO_03 53,362 53,362 46,358 46,358 3,014 3,014 3,990 3,990 FLO_04FLO_04 74,002 74,002 63,350 63,350 4,339 4,339 6,313 6,313 BK_01BK_01 123,054 123,054 100,383 100,383 9,246 9,246 13,425 13,425 BK_02BK_02 53,958 53,958 46,499 46,499 3,121 3,121 4,338 4,338 BK_03BK_03 41,617 41,617 36,438 36,438 2,185 2,185 2,994 2,994 BK_04BK_04 26,510 26,510 23,709 23,709 1,192 1,192 1,609 1,609 Rio_01Rio_01 87,307 87,307 71,977 71,977 6,465 6,465 8,865 8,865 Rio_02Rio_02 75,928 75,928 64,652 64,652 4,759 4,759 6,517 6,517 Rio_03Rio_03 59,810 59,810 50,627 50,627 3,856 3,856 5,327 5,327 Rio_04Rio_04 21,932 21,932 19,908 19,908 888 888 1,136 1,136

실시예 4-3: SNP filteringExample 4-3: SNP filtering

이탈리안 라이그라스 96개의 샘플의 SNP 매트릭스를 사용하여 하기 표 14의 조건으로 SNP 필터 과정을 수행하였다.The SNP filter process was performed using the SNP matrix of 96 Italian ryegrass samples under the conditions in Table 14 below.

SNP loci of biallelic
Minor allele frequency > 5%
Missing data < 30%
SNP loci of biallelic
Minor allele frequency > 5%
Missing data < 30%

하기 표 15는 이탈리안 라이그라스 96개의 샘플의 SNP 매트릭스를 사용하여 SNP 필터 과정을 수행한 결과를 나타낸 것이다.Table 15 below shows the results of the SNP filter process using the SNP matrix of 96 Italian ryegrass samples.

필터 단계filter stage 필터 항목filter item SNP matrix lociSNP matrix loci 1One Total SNP matrixTotal SNP matrix 3,675,1673,675,167 22 MAF (minor allele frequency) >5%*1 MAF (minor allele frequency) >5% *1 2,131,7192,131,719 33 Missing data <30%*2 Missing data <30% *2 65,49865,498 44 MAF >5% and Missing data <30%MAF >5% and Missing data <30% 13,19613,196 55 Random 5,000Random 5,000 5,0005,000 *1) MAF(Minor Allele Frequency) > 5%: 해당 좌의 전체 샘플에서 minor allele frequency가 5%보다 큰 SNP를 선발함.
*2) Missing data < 30%: 해당 좌의 전체 샘플에서 missing data가 30% 미만인 SNP를 선발함.
*1) MAF (Minor Allele Frequency) > 5%: SNPs with a minor allele frequency greater than 5% are selected from all samples of the locus.
*2) Missing data < 30%: SNPs with missing data of less than 30% are selected from the entire sample for the corresponding locus.

상기 표 15에 개시된 랜덤(random) 5,000은 필터 처리된 SNP 13,196좌에서 분석에 이용 가능한 수준의 SNP 5,000좌를 대상으로 랜덤 셀렉션(random selection)을 수행한 것을 의미한다.Random 5,000 disclosed in Table 15 means that random selection was performed on 5,000 SNP loci at a level available for analysis from the filtered SNP 13,196 loci.

실시예 5: Construction of phylogenetic treeExample 5: Construction of phylogenetic tree

실시예 5-1: Phylogenetic treeExample 5-1: Phylogenetic tree

앞서 실시예 4에 개시된 필터 과정을 거쳐 선발된 SNP 13,196좌를 대상으로 MEGA6 프로그램을 이용하여 개체간 유연관계 분석을 수행하였다.Inter-individual correlation analysis was performed using the MEGA6 program on 13,196 SNP loci selected through the filtering process previously described in Example 4.

보다 상세하게, 상기 유연관계 분석은 앞서 개시된 SNP 13,196좌를 이용하여 네이버-조이닝(Neighbor-joining) 방법으로 실시되었다. 그 결과, 가지 길이의 합이 14.09591913인 최적의 트리가 완성되었다. 진화 거리는 맥시멈 컴포짓 라이클리후드 방법(Maximum Composite Likelihood method)을 사용하여 계산되었으며, 사이트당 염기 대체 수의 단위를 의미한다.In more detail, the linkage analysis was performed using the Neighbor-joining method using the 13,196 SNP loci disclosed previously. As a result, an optimal tree with a sum of branch lengths of 14.09591913 was completed. Evolutionary distances were calculated using the Maximum Composite Likelihood method and are expressed in units of the number of base substitutions per site.

도 4는 본 발명의 일 실시예에 따른 개체간 유연관계 분석 결과인 계통수를 나타낸 것이다.Figure 4 shows a phylogenetic tree that is the result of analysis of inter-individual kinship relationships according to an embodiment of the present invention.

도 4를 참조하면, 본 발명의 일 실시예에 따른 이탈리안 라이그라스 96 개체의 분류가 구조화된 것을 확인할 수 있다. 상기 계통수에 개시된 EMC(Early Maturing Crop)는 조생종을 의미하고, LMC(Late Maturing Crop)는 장생종을 의미하고, MMC(Medium Maturing Crop)는 중생종을 의미하고, SEMC(Super Early Maturing Crop)은 극조생종을 의미하고, Imported는 수입종을 의미한다.Referring to Figure 4, it can be seen that the classification of Italian ryegrass 96 individuals according to an embodiment of the present invention is structured. EMC (Early Maturing Crop) disclosed in the phylogenetic tree refers to an early maturing crop, LMC (Late Maturing Crop) refers to a long-maturing crop, MMC (Medium Maturing Crop) refers to a medium-maturing crop, and SEMC (Super Early Maturing Crop) refers to an extremely early maturing crop. It means an early maturing species, and Imported means an imported species.

다만, 상기 계통수는 부트스트랩 메소드를 수행하여 얻은 종합수(consensus tree)로, 컷-오프(cut-off) 밸류(value)를 적용하지 않은 결과라는 점을 감안해야 할 것이다.However, it should be taken into account that the phylogenetic tree is a consensus tree obtained by performing the bootstrap method, and is the result without applying a cut-off value.

실시예 5-2: Principal Component Analysis(PCA)Example 5-2: Principal Component Analysis (PCA)

앞서 실시예 4에 개시된 필터 과정을 거쳐 선발된 SNP 13,196좌를 대상으로 R 패키지 SNP릴레이트(R package SNPRelate)를 이용하여 주성분 분석(PCA, Principal Component Analysis)을 수행하였다. 그 결과 두 가지 주요 구성 요소(PC1 및 PC2)는 유전적 변이의 약 17.5%를 설명할 수 있는 것을 확인하였다.Principal component analysis (PCA) was performed using the R package SNPRelate on 13,196 SNP loci selected through the filter process previously described in Example 4. As a result, it was confirmed that the two main components (PC1 and PC2) could explain approximately 17.5% of genetic variation.

도 5a 및 도 5b는 본 발명의 일 실시예에 따른 두 가지 요소에 의한 주성분 분석 결과를 나타낸 것이다.Figures 5a and 5b show the results of principal component analysis based on two factors according to an embodiment of the present invention.

도 5a 및 도 5b를 참조하면, 본 발명의 일 실시예에 따른 이탈리안 라이그라스 96 개체 샘플은 품종에 따라 어느 정도 구분되는 것을 확인할 수 있다. 다만, 2D로 작성된 플롯(plot)에서는 겹쳐지는 부분이 많아 명확하게 구분된다고 하기는 다소 어려움이 있었다. Referring to Figures 5a and 5b, it can be seen that the Italian ryegrass 96 individual samples according to an embodiment of the present invention are differentiated to some extent depending on the variety. However, in the plot written in 2D, there were many overlapping parts, so it was somewhat difficult to clearly distinguish them.

도 6은 본 발명의 일 실시예에 따른 세 가지 요소에 의한 주성분 분석 결과를 나타낸 것이다.Figure 6 shows the results of principal component analysis based on three factors according to an embodiment of the present invention.

도 6을 참조하면, 본 발명의 일 실시예에 따른 이탈리안 라이그라스 96 개체 샘플은 앞서 2D 플롯(plot)보다 명확하게 품종에 따라 구분되는 것을 확인할 수 있다.Referring to FIG. 6, it can be seen that the Italian ryegrass 96 individual samples according to an embodiment of the present invention are more clearly distinguished according to variety than in the previous 2D plot.

실시예 5-3: Population structureExample 5-3: Population structure

앞서 실시예 4에 개시된 필터 과정을 거쳐 선발된 SNP 13,196좌에서 분석에 이용 가능한 수준의 SNP 5,000좌를 선발하는 랜덤 셀렉션(random selection)을 3회 실시하여 포퓰레이션 스트럭쳐(population structure) 분석을 수행하였다.Population structure analysis was performed by performing random selection three times to select 5,000 SNP loci at a level usable for analysis from the 13,196 SNP loci selected through the filter process previously described in Example 4. .

하기 표 16은 상기 포퓰레이션 스트럭쳐(population structure) 분석에 사용된 조건을 개시한 것이다.Table 16 below discloses the conditions used in the population structure analysis.

SNP loci of biallelic
Bayesian model-based approach (MCMC: Markov Chain Monte Carlo)
Burn-in period: 10,000
Number of MCMC Reps: 10,000
Ancestry Model: Admixture model
Allele Frequency Model: correlated allele frequency
Number of populations (K): 1 to 10
Number of iterations: 10
SNP loci of biallelic
Bayesian model-based approach (MCMC: Markov Chain Monte Carlo)
Burn-in period: 10,000
Number of MCMC Reps: 10,000
Ancestry Model: Admixture model
Allele Frequency Model: correlated allele frequency
Number of populations (K): 1 to 10
Number of iterations: 10

보다 상세하게, 포퓰레이션 스트럭쳐(population structure) 분석은 적정 K 값(population)를 찾기 위해 여러 K 값으로 분석을 수행하고, 이를 반복 수행하면서 델타-K 메소드(delta-K method, an ad hoc quantity (Δdescribed by Evanno et al. 2005.)를 통해 적정 K 값을 계산하는데, 이때 반복 횟수를 높일수록 많은 시간 및 자원이 필요한 상황이므로, 분석에 이용 가능한 수준의 SNP 5,000좌를 3회 선발하여 세 결과 모두 반복성이 있는 결과를 얻는지 확인하였다. 스트럭쳐(structure) 반복 수행 횟수는 10회로 설정하여 분석하였다.In more detail, population structure analysis performs analysis with multiple K values to find an appropriate K value (population) and performs this repeatedly using the delta-K method, an ad hoc quantity ( Δdescribed by Evanno et al. 2005.), the appropriate K value is calculated. At this time, as the number of repetitions increases, more time and resources are required, so 5,000 SNP loci at a level usable for analysis were selected three times and all three results were calculated. It was confirmed that repeatable results were obtained. The number of structure repetitions was set to 10 and analyzed.

도 7은 본 발명의 일 실시예에 따른 델타-K 메소드 결과를 나타낸 그래프이다.Figure 7 is a graph showing the results of the delta-K method according to an embodiment of the present invention.

도 7을 참조하면, 스트럭쳐(structure)를 10회 반복 수행하여 계산한 결과, K=2일 때 피크(peak)가 확인되었다. 이에 따라, 이하에서는 해당 피크에서의 결과가 담긴 그래프를 확인할 수 있다.Referring to FIG. 7, as a result of calculating the structure by repeating it 10 times, a peak was confirmed when K = 2. Accordingly, below you can see a graph containing the results at the corresponding peak.

하기 표 17은 K=2일 때, 각 품종에 따른 포퓰레이션 스트럭쳐(population structure) 분석 결과를 나타낸 것이다.Table 17 below shows the results of population structure analysis for each variety when K = 2.

SampleSample GroupGroup Missing (%)Missing (%) Pop1Pop1 Pop2Pop2 GF3_02GF3_02 SEMCSEMC 33 0.9350.935 0.0650.065 GF_04GF_04 SEMCSEMC 22 0.9180.918 0.0820.082 GF2_04GF2_04 SEMCSEMC 66 0.7460.746 0.2540.254 GF2_03GF2_03 SEMCSEMC 66 0.7450.745 0.2550.255 GF_02GF_02 SEMCSEMC 66 0.6970.697 0.3030.303 GF3_01GF3_01 SEMCSEMC 88 0.5960.596 0.4040.404 GF2_01GF2_01 SEMCSEMC 1313 0.5490.549 0.4510.451 GF_01GF_01 SEMCSEMC 1212 0.4940.494 0.5060.506 GF3_04GF3_04 SEMCSEMC 2424 0.1630.163 0.8370.837 GF2_02GF2_02 SEMCSEMC 2828 0.0430.043 0.9570.957 GF_03GF_03 SEMCSEMC 3939 0.0050.005 0.9950.995 GF3_03GF3_03 SEMCSEMC 4848 0.0020.002 0.9980.998 GC2_01GC2_01 EMCEMC 1One 0.9990.999 0.0010.001 GC_02GC_02 EMCEMC 22 0.9490.949 0.0510.051 GC2_02GC2_02 EMCEMC 33 0.9260.926 0.0740.074 KS_01KS_01 EMCEMC 44 0.8640.864 0.1360.136 KW_01KW_01 EMCEMC 44 0.8570.857 0.1430.143 GC_01GC_01 EMCEMC 44 0.8550.855 0.1450.145 GC_03GC_03 EMCEMC 44 0.8290.829 0.1710.171 KS_02KS_02 EMCEMC 55 0.7910.791 0.2090.209 KG_03KG_03 EMCEMC 44 0.7880.788 0.2120.212 GC2_03GC2_03 EMCEMC 99 0.6940.694 0.3060.306 KS_03KS_03 EMCEMC 88 0.6860.686 0.3140.314 KW_02KW_02 EMCEMC 44 0.6830.683 0.3170.317 GC_04GC_04 EMCEMC 1212 0.390.39 0.610.61 KW_04KW_04 EMCEMC 1313 0.3560.356 0.6440.644 KW_03KW_03 EMCEMC 1616 0.3140.314 0.6860.686 GC2_04GC2_04 EMCEMC 1717 0.2990.299 0.7010.701 KG_04KG_04 EMCEMC 2020 0.2440.244 0.7560.756 KG_02KG_02 EMCEMC 3636 0.1460.146 0.8540.854 KS_04KS_04 EMCEMC 3636 0.0090.009 0.9910.991 KG_01KG_01 EMCEMC 3232 0.0080.008 0.9920.992 604_03604_03 MMCMMC 1One 0.9990.999 0.0010.001 605_01605_01 MMCMMC 22 0.8820.882 0.1180.118 603_01603_01 MMCMMC 44 0.8810.881 0.1190.119 604_02604_02 MMCMMC 44 0.8280.828 0.1720.172 KM_02KM_02 MMCMMC 99 0.6240.624 0.3760.376 603_04603_04 MMCMMC 1212 0.5620.562 0.4380.438 603_02603_02 MMCMMC 55 0.5610.561 0.4390.439 605_04605_04 MMCMMC 1414 0.4780.478 0.5220.522 602_03602_03 MMCMMC 1515 0.4740.474 0.5260.526 KM_03KM_03 MMCMMC 1717 0.4470.447 0.5530.553 602_02602_02 MMCMMC 1313 0.430.43 0.570.57 604_04604_04 MMCMMC 1010 0.4030.403 0.5970.597 603_03603_03 MMCMMC 1313 0.3490.349 0.6510.651 KM_04KM_04 MMCMMC 1717 0.3310.331 0.6690.669 602_01602_01 MMCMMC 1919 0.2940.294 0.7060.706 605_02605_02 MMCMMC 1616 0.2190.219 0.7810.781 KM_01KM_01 MMCMMC 2121 0.1630.163 0.8370.837 601_04601_04 MMCMMC 2020 0.1410.141 0.8590.859 605_03605_03 MMCMMC 2929 0.1410.141 0.8590.859 601_03601_03 MMCMMC 2424 0.10.1 0.90.9 601_01601_01 MMCMMC 2929 0.0080.008 0.9920.992 604_01604_01 MMCMMC 3535 0.0060.006 0.9940.994 601_02601_02 MMCMMC 4646 0.0010.001 0.9990.999 602_04602_04 MMCMMC 5252 0.0010.001 0.9990.999 901_01901_01 LMCL.M.C. 00 1One 00 KWR_04KWR_04 LMCL.M.C. 22 0.9340.934 0.0660.066 901_02901_02 LMCL.M.C. 44 0.8720.872 0.1280.128 901_03901_03 LMCL.M.C. 22 0.8130.813 0.1870.187 HS101_01HS101_01 LMCL.M.C. 33 0.7590.759 0.2410.241 HS104_01HS104_01 LMCL.M.C. 55 0.7230.723 0.2770.277 HS104_04HS104_04 LMCL.M.C. 1010 0.4970.497 0.5030.503 HS104_03HS104_03 LMCL.M.C. 1313 0.410.41 0.590.59 HS101_02HS101_02 LMCL.M.C. 1111 0.3630.363 0.6370.637 KWR_01KWR_01 LMCL.M.C. 1515 0.2990.299 0.7010.701 HS102_02HS102_02 LMCL.M.C. 2121 0.290.29 0.710.71 HS101_04HS101_04 LMCL.M.C. 2020 0.2030.203 0.7970.797 HS102_04HS102_04 LMCL.M.C. 2323 0.1470.147 0.8530.853 901_04901_04 LMCL.M.C. 2323 0.1220.122 0.8780.878 HS102_01HS102_01 LMCL.M.C. 2525 0.1220.122 0.8780.878 KWR_03KWR_03 LMCL.M.C. 2222 0.0990.099 0.9010.901 KWR_02KWR_02 LMCL.M.C. 3535 0.0020.002 0.9980.998 HS101_03HS101_03 LMCL.M.C. 4040 0.0010.001 0.9990.999 HS102_03HS102_03 LMCL.M.C. 7171 0.0010.001 0.9990.999 HS104_02HS104_02 LMCL.M.C. 4242 0.0010.001 0.9990.999 HC_01HC_01 ImportedImported 55 0.7410.741 0.2590.259 AE_02AE_02 ImportedImported 1010 0.5890.589 0.4110.411 AE_03AE_03 ImportedImported 1010 0.5170.517 0.4830.483 HC_02HC_02 ImportedImported 1111 0.4620.462 0.5380.538 HC_04HC_04 ImportedImported 1313 0.4420.442 0.5580.558 AE_01AE_01 ImportedImported 1414 0.4310.431 0.5690.569 AE_04AE_04 ImportedImported 1010 0.3640.364 0.6360.636 BK_01BK_01 ImportedImported 2121 0.2670.267 0.7330.733 FLO_01FLO_01 ImportedImported 2424 0.2130.213 0.7870.787 HC_03HC_03 ImportedImported 2727 0.1790.179 0.8210.821 Rio_01Rio_01 ImportedImported 3232 0.1040.104 0.8960.896 Rio_02Rio_02 ImportedImported 4040 0.0040.004 0.9960.996 FLO_04FLO_04 ImportedImported 4343 0.0020.002 0.9980.998 BK_02BK_02 ImportedImported 4949 0.0010.001 0.9990.999 BK_03BK_03 ImportedImported 6262 0.0010.001 0.9990.999 BK_04BK_04 ImportedImported 7373 0.0010.001 0.9990.999 FLO_02FLO_02 ImportedImported 6666 0.0010.001 0.9990.999 FLO_03FLO_03 ImportedImported 5151 0.0010.001 0.9990.999 Rio_03Rio_03 ImportedImported 5555 0.0010.001 0.9990.999 Rio_04Rio_04 ImportedImported 7979 0.0010.001 0.9990.999

도 8은 본 발명의 일 실시예에 따라 K 값이 2인 피크에서의 포퓰레이션 스트럭쳐 분석 결과를 나타낸 그래프이다.Figure 8 is a graph showing the results of population structure analysis at a peak with a K value of 2 according to an embodiment of the present invention.

도 8을 참조하면, 각 개체의 SNP가 조상 집단(ancestral population)으로부터 기여된 비율을 세그먼트(segment) 단위로 나타낸 것을 확인할 수 있다. 극조생종, 조생종, 중생종, 만생종, 및 수입종 각각의 종 내에서의 Pop1 및 Pop2 비율은 점차 감소하는 유사한 형상으로 나타는 것을 확인하였다. 또한, Pop1 비율의 최대치에 있어서, 극조생종, 조생종, 중생종, 및 만생종을 포함하는 국내종은 0.935 내지 1인 반면, 수입종은 0.741로 다소 차이가 있는 것을 확인하였다.Referring to Figure 8, it can be seen that the proportion of SNPs of each individual contributed from the ancestral population is shown in segments. It was confirmed that the Pop1 and Pop2 ratios within each species of extremely early, early, intermediate, late, and imported species appeared in a similar pattern with a gradual decrease. In addition, the maximum Pop1 ratio was confirmed to be 0.935 to 1 for domestic species, including extremely early-maturing species, early-maturing species, mid-maturing species, and late-maturing species, while it was 0.741 for imported species, which was slightly different.

실시예 6: Pairwise FExample 6: Pairwise F STS.T. 분석 analyze

앞서 실시예 4에 개시된 필터 과정을 거쳐 선발된 SNP 13,196좌를 이용하여 이탈리안 라이그라스 숙기 관련 그룹(극조생종, 조생종, 중생종, 만생종, 및 수입종) 정보를 기준으로 그룹 간 페어와이즈(pairwise) FST 분석을 수행하였다. 추가로 각 그룹 내 샘플 간 페어와이즈(pairwise) FST 분석도 진행하여 그룹 내 개체 간의 거리를 예측하였다. 상기 FST 값은 0 내지 1 사이로 계산되며, 1에 가까울수록 그룹 간 거리가 먼 것으로 예측 가능하다.Using the 13,196 SNP loci selected through the filter process previously described in Example 4, pairwise F ST Analysis was performed. Additionally, pairwise F ST analysis was performed between samples within each group to predict the distance between objects within the group. The F ST value is calculated between 0 and 1, and the closer it is to 1, the greater the distance between groups can be predicted.

하기 표 18은 그룹 내에서의 페어와이즈(pairwise) FST 분석 결과를 나타낸 것이다.Table 18 below shows the results of pairwise F ST analysis within the group.

그룹명group name 극조생종Extremely early maturing species 조생종early maturing species 중생종midlife species 만생종Late species 수입종imported species 극조생종Extremely early maturing species -- 0.0250.025 0.0290.029 0.0400.040 0.0330.033 조생종early maturing species 0.0250.025 -- 0.0070.007 0.0280.028 0.0200.020 중생종midlife species 0.0290.029 0.0070.007 -- 0.0150.015 0.0110.011 만생종Late species 0.0400.040 0.0280.028 0.0150.015 -- 0.0170.017 수입종imported species 0.0330.033 0.0200.020 0.0110.011 0.0170.017 --

상기 표 18을 참조하면, 극조생종, 조생종, 중생종, 만생종, 및 수입종은 동속 동종인 롤리움 멀티플로룸(Lolium multiflorum)이므로, FST 값이 상당히 가까운 것을 확인할 수 있다. 즉, 극조생종, 조생종, 중생종, 만생종, 및 수입종은 개체 간의 거리가 상당히 가까운 것을 알 수 있다. 이에 따라, 극조생종, 조생종, 중생종, 만생종, 및 수입종을 구분하는 것은 매우 어려운 것을 확인하였다.Referring to Table 18 above, it can be seen that the extremely early maturing species, early maturing species, mid-growing species, late maturing species, and imported species are of the same genus, Lolium multiflorum , so the F ST values are quite close. In other words, it can be seen that the distance between individuals of extremely early-maturing species, early-maturing species, intermediate-growing species, late-maturing species, and imported species is quite close. Accordingly, it was confirmed that it is very difficult to distinguish between extremely early-maturing species, early-maturing species, mid-maturing species, late-maturing species, and imported species.

하기 표 19는 극조생종 내에서의 페어와이즈(pairwise) FST 분석 결과를 나타낸 것이다.Table 19 below shows the results of pairwise F ST analysis within extremely early maturing species.

극조생종Extremely early maturing species GFGF GF2GF2 GF3GF3 GFGF -- 0.0140.014 0.0090.009 GF2GF2 0.0140.014 -- 0.0160.016 GF3GF3 0.0090.009 0.0160.016 --

하기 표 20은 조생종 내에서의 페어와이즈(pairwise) FST 분석 결과를 나타낸 것이다.Table 20 below shows the results of pairwise F ST analysis within early maturing species.

조생종early maturing species GCGC GC2GC2 KGK.G. KSK.S. KWK.W. GCGC -- 0.0040.004 0.0340.034 0.0270.027 0.0330.033 GC2GC2 0.0040.004 -- 0.0430.043 0.0330.033 0.0350.035 KGK.G. 0.0340.034 0.0430.043 -- 0.0310.031 0.0460.046 KSK.S. 0.0270.027 0.0330.033 0.0310.031 -- 0.0420.042 KWK.W. 0.0330.033 0.0350.035 0.0460.046 0.0420.042 --

하기 표 21은 중생종 내에서의 페어와이즈(pairwise) FST 분석 결과를 나타낸 것이다.Table 21 below shows the results of pairwise F ST analysis within mesozoic species.

중생종midlife species 601601 602602 603603 604604 605605 KMK.M. 601601 -- 0.0840.084 0.0600.060 0.0620.062 0.0820.082 0.0910.091 602602 0.0840.084 -- 0.0360.036 0.0380.038 0.0330.033 0.0370.037 603603 0.0600.060 0.0360.036 -- -0.003-0.003 0.0210.021 0.0360.036 604604 0.0620.062 0.0380.038 -0.003-0.003 -- 0.0220.022 0.0360.036 605605 0.0820.082 0.0330.033 0.0210.021 0.0220.022 -- 0.0420.042 KMK.M. 0.0910.091 0.0370.037 0.0360.036 0.0360.036 0.0420.042 --

하기 표 22는 만생종 내에서의 페어와이즈(pairwise) FST 분석 결과를 나타낸 것이다.Table 22 below shows the results of pairwise F ST analysis within late-ripening species.

만생종Late species 901901 HS101HS101 HS102HS102 HS104HS104 KWRKWR 901901 -- 0.0390.039 0.0680.068 0.0330.033 0.0290.029 HS101HS101 0.0390.039 -- 0.0260.026 0.0200.020 0.0040.004 HS102HS102 0.0680.068 0.0260.026 -- 0.0310.031 0.0190.019 HS104HS104 0.0330.033 0.0200.020 0.0310.031 -- 0.0200.020 KWRKWR 0.0290.029 0.0040.004 0.0190.019 0.0200.020 --

하기 표 23은 수입종 내에서의 페어와이즈(pairwise) FST 분석 결과를 나타낸 것이다.Table 23 below shows the results of pairwise F ST analysis within imported species.

수입종imported species AEA.E. BKB.K. FLOFLO HCHC RioRio AEA.E. -- 0.0430.043 0.0460.046 -0.011-0.011 0.0520.052 BKB.K. 0.0430.043 -- 0.0150.015 0.0490.049 0.0000.000 FLOFLO 0.0460.046 0.0150.015 -- 0.0590.059 -0.007-0.007 HCHC -0.011-0.011 0.0490.049 0.0590.059 -- 0.0700.070 RioRio 0.0520.052 0.0000.000 -0.007-0.007 0.0700.070 --

상기 표 19 내지 표 23을 참조하면, 극조생종, 조생종, 중생종, 만생종, 및 수입종의 각 그룹 내 품종들은 동속 동종인 롤리움 멀티플로룸(Lolium multiflorum)이면서 출수 시기가 유사하다는 공통점을 갖고 있어, FST 값이 상당히 가까운 것을 확인할 수 있다. 즉, 극조생종, 조생종, 중생종, 만생종, 및 수입종의 각 그룹 내 품종들은 개체 간의 거리가 상당히 가까운 것을 알 수 있다. 이에 따라, 극조생종, 조생종, 중생종, 만생종, 및 수입종의 각 그룹 내에서 품종들을 구분하는 것은 매우 어려운 것을 확인하였다.Referring to Tables 19 to 23 above, the cultivars in each group of extremely early maturing species, early maturing species, mid-maturing species, late maturing species, and imported species are of the same genus Lolium multiflorum and have a common feature of having similar heading times, F S.T. You can see that the values are quite close. In other words, it can be seen that the distances between individuals within each group of extremely early-maturing species, early-maturing species, mid-maturing species, late-maturing species, and imported species are quite close. Accordingly, it was confirmed that it was very difficult to distinguish cultivars within each group of extremely early-maturing species, early-maturing species, mid-maturing species, late-maturing species, and imported species.

실시예 7: GenotypingExample 7: Genotyping

HS104 품종 샘플 특이적인 마커 개발을 위하여, 앞서 실시예 4에 개시된 필터 과정을 거쳐 선발된 SNP 13,196좌 중에서 HS104 품종 반복 샘플간 공통좌를 선발하였고, 그 결과는 하기 표 24와 같다.In order to develop a marker specific to the HS104 variety sample, common loci between repeat samples of the HS104 variety were selected among the 13,196 SNP loci selected through the filter process previously described in Example 4, and the results are shown in Table 24 below.

필터 단계filter stage 필터 항목filter item No. of SNPNo. of SNPs 1One 확보된 SNP 총 수Total number of SNPs secured 13,19613,196 22 HS104 반복 샘플간 공통 Homo-type SNP 좌*1Common Homo-type SNP locus between HS104 repeat samples*1 1,0601,060

상기 표 24에 개시된 바와 같이, HS104 품종 반복 샘플간 공통 호모-타입(Homo-type) SNP 좌는 1,060좌가 선발되었다.As shown in Table 24 above, 1,060 common homo-type SNP loci were selected between repeat samples of the HS104 variety.

앞서 선발된 공통좌를 이용하여 HS104 품종과 나머지 92 개체의 샘플 간에 식별 가능한 바코드(barcode) SNP를 선발하였다.Using the previously selected common loci, identifiable barcode SNPs were selected between the HS104 variety and the remaining 92 individual samples.

하기 표 25는 이탈리안 라이그라스 96 개체 중에서 HS104 품종을 식별할 수 있는 6개의 바코드로 구성된 바코드 SNP 세트를 나타낸 것이다.Table 25 below shows a barcode SNP set consisting of 6 barcodes that can identify the HS104 variety among 96 Italian ryegrass individuals.

HS104 구분용 마커세트HS104 classification marker set Marker Set No.Marker Set No. 1One 22 33 44 55 66 후보 마커 수Number of candidate markers 22 1One 1One 1One 1One 1One HS104HS104 bb bb bb bb bb bb KW_01KW_01 aa aa bb aa aa aa KW_02KW_02 aa bb aa aa aa -- KW_03KW_03 hh aa hh aa aa aa KW_04KW_04 hh -- aa -- aa aa KS_01KS_01 bb aa bb hh hh -- KS_02KS_02 bb aa bb bb aa aa KS_03KS_03 hh aa -- hh aa aa KS_04KS_04 hh -- aa -- aa bb GC2_01GC2_01 hh hh bb aa aa hh GC2_02GC2_02 hh hh -- hh aa hh GC2_03GC2_03 hh aa bb aa hh hh GC2_04GC2_04 hh aa aa aa bb -- GC_01GC_01 hh aa hh hh aa aa GC_02GC_02 bb aa hh aa aa hh GC_03GC_03 bb aa bb aa aa bb GC_04GC_04 hh -- aa aa aa hh 901_01901_01 bb hh bb hh hh aa 901_02901_02 bb aa -- hh hh hh 901_03901_03 bb aa bb aa aa hh 901_04901_04 bb hh aa aa hh aa 605_01605_01 aa hh -- aa hh aa 605_02605_02 hh -- aa aa hh aa 605_03605_03 aa -- aa bb bb -- 605_04605_04 aa hh aa aa -- aa 604_01604_01 hh hh aa aa aa -- 604_02604_02 bb aa -- hh aa -- 604_03604_03 hh hh bb hh hh aa 604_04604_04 bb aa aa hh hh bb 603_01603_01 bb aa -- aa hh bb 603_02603_02 bb aa aa aa aa hh 603_03603_03 bb aa aa bb hh -- 603_04603_04 bb aa -- aa hh -- 602_01602_01 bb hh aa aa aa -- 602_02602_02 bb aa -- aa aa -- 602_03602_03 bb aa bb bb hh -- 602_04602_04 bb aa aa -- -- -- 601_01601_01 hh -- aa -- aa aa 601_02601_02 bb -- aa -- -- -- 601_03601_03 bb -- aa bb aa aa 601_04601_04 hh aa aa -- aa -- GF3_01GF3_01 bb hh aa aa aa aa GF3_02GF3_02 bb hh bb aa aa aa GF3_03GF3_03 bb -- aa aa -- -- GF3_04GF3_04 bb aa aa -- aa aa GF2_01GF2_01 bb -- aa hh aa -- GF2_02GF2_02 bb -- aa -- -- aa GF2_03GF2_03 bb aa hh aa aa aa GF2_04GF2_04 bb aa aa bb aa aa GF_01GF_01 bb -- aa aa aa aa GF_02GF_02 bb -- bb aa aa hh GF_03GF_03 bb aa aa -- -- -- GF_04GF_04 bb aa bb bb aa hh KWR_01KWR_01 bb aa aa -- aa -- KWR_02KWR_02 bb -- aa -- hh aa KWR_03KWR_03 hh aa aa -- -- hh KWR_04KWR_04 hh bb aa aa hh bb AE_01AE_01 aa aa -- -- aa -- AE_02AE_02 aa aa -- -- aa bb AE_03AE_03 aa aa -- aa aa bb AE_04AE_04 aa aa aa bb aa bb HC_01HC_01 aa hh hh aa hh bb HC_02HC_02 aa aa bb -- aa bb HC_03HC_03 aa aa -- -- aa -- HC_04HC_04 aa aa bb bb aa bb HS102_01HS102_01 bb -- -- aa aa -- HS102_02HS102_02 bb aa -- aa aa aa HS102_03HS102_03 bb -- aa -- -- aa HS102_04HS102_04 bb -- aa bb hh bb HS101_01HS101_01 bb aa bb bb hh hh HS101_02HS101_02 bb aa aa aa hh hh HS101_03HS101_03 bb aa aa aa aa bb HS101_04HS101_04 bb aa aa bb -- hh KM_01KM_01 aa aa aa -- aa aa KM_02KM_02 hh aa -- -- aa aa KM_03KM_03 aa aa bb bb -- aa KM_04KM_04 aa aa -- -- aa aa KG_01KG_01 hh aa aa aa aa bb KG_02KG_02 -- -- bb hh aa bb KG_03KG_03 hh hh bb aa hh aa KG_04KG_04 hh -- bb bb aa hh FLO_01FLO_01 hh -- bb aa -- bb FLO_02FLO_02 hh aa aa -- -- -- FLO_03FLO_03 aa aa aa -- bb hh FLO_04FLO_04 hh -- aa aa aa aa BK_01BK_01 bb hh -- aa -- bb BK_02BK_02 bb aa aa -- -- -- BK_03BK_03 -- -- -- aa -- -- BK_04BK_04 bb -- aa -- -- -- Rio_01Rio_01 aa -- -- bb bb hh Rio_02Rio_02 aa -- -- -- aa -- Rio_03Rio_03 hh -- aa -- -- aa Rio_04Rio_04 hh aa aa -- -- --

상기 표 25를 참조하면, HS104 품종을 식별할 수 있는 바코드 SNP 세트는 6개의 바코드로 구성되어 있으며, 마커 세트 1번에 2개의 후보좌 및 마커 세트 2번 내지 7번에 1개의 좌를 갖는 것을 확인할 수 있다. 상기 표 25에 개시된 바와 같이, 마커 타입(type)이 HS104 품종과 같은 'bbbbbb'에 해당하는 품종이 없으므로, 본 발명의 일 실시예에 따른 HS104 품종 식별용 바코드 SNP 세트를 이탈리안 라이그라스의 DNA에 사용한다면 상기 이탈리안 라이그라스가 HS104 품종인지 확인할 수 있다.Referring to Table 25 above, the barcode SNP set that can identify the HS104 variety consists of 6 barcodes, with 2 candidate loci in marker set 1 and 1 locus in marker sets 2 to 7. You can check it. As shown in Table 25 above, since there is no cultivar whose marker type is 'bbbbbb' like the HS104 variety, a barcode SNP set for identifying the HS104 variety according to an embodiment of the present invention was added to the DNA of Italian ryegrass. If used, you can check whether the Italian ryegrass is the HS104 variety.

상기 'a'는 선발된 SNP에서 표준 유전체(reference genome)와 동일한 대립 유전자(얼릴, allele)이며 뎁스(depth) 비율이 동형접합자(homozygote)인 좌를 의미하고, 상기 'b'는 선발된 SNP에서 표준 유전체(reference genome)와 상이한 대립 유전자(얼릴, allele)이며 뎁스(depth) 비율이 동형접합자(homozygote)인 좌를 의미하며, 상기 'h'는 선발된 SNP에서 표준 유전체(reference genome)와 상이한 대립 유전자(얼릴, allele)이며 뎁스(depth) 비율이 이형접합자(heterozygote)인 좌를 의미한다.The 'a' refers to a locus in the selected SNP that is the same allele as the reference genome and the depth ratio is homozygote, and the 'b' refers to the selected SNP It refers to a locus that is an allele that is different from the reference genome and the depth ratio is homozygote, and the 'h' refers to the locus in the selected SNP compared to the reference genome. It refers to a locus with a different allele and a heterozygote depth ratio.

이에 따라, 본 발명의 HS104 품종을 식별할 수 있는 바코드 SNP 세트의 염기서열 정보는 하기 표 26과 같다.Accordingly, the base sequence information of the barcode SNP set that can identify the HS104 variety of the present invention is shown in Table 26 below.

마커 번호marker number 관련 정보Related information 주변 서열(Flanking sequence)Flanking sequence 1(b)1(b) ID: LM_39437611_10876_151303ID: LM_39437611_10876_151303 GTTAGACTTTCTGCATTACTCTTAACTAATAGTTGGAAGAAAAAGTGGATCTGTCGTTGGTGGAAAGTTGGAGTAAGCCCATTGAATTTTCCATTTTAACATATTCAGATTGTCATGGTGTCGCCAAGTCATCCCTGAGGGCAGACGACAGTTTTTTTTGCATCCACTGTGTGTGCGTGCGGGGCTTGAGGATGTACTTGTACTACCCTAAAGAGGGATCAATTAATGGGGTTCATTTTTCTTAAGGCAAACCTTGAATCACAGGGTTTGTACAGCAGATGCTGGATATCTTACACGTAG[G/A]CTTGTTGAAGTAGTTCAACATATTATTGTGCGTAGAAGAGATTGTGGTACTATCCGAGGTATTTCTGTGAATCCTCAAAATGGGATGACGGAAAAACTTTTTGTCCAAACACTAATTGGTCGTGTATTACCAGACGATATAGGGGTAGGGAGGTTATGTACTCGTTTGGTACCAGTTTTATCTTTGACACCCTGGACAGGAAGATATGAATCGTAATAACCTTGTTTCCAAGCTGTTCTACTTTTTATTCAGCTTATACTCCTTCCATTTCTGAAAAGAATGTCTATAAGTTTTTTCCTGGTTAGACTTTCTGCATTACTCTTAACTAATAGTTGGAAAGAAAAAGTGGATCTGTCGTTGGTGGAAAGTTGGAGTAAGCCCATTGAATTTTCCATTTTAACATATTCAGATTGTCATGGTGTCGCCAAGTCATCCCTGAGGGCAGACGACAGTTTTTTTTGCATCCACTGTGTGTGCGTGCGGGGGCTTGAGGATGTACTTGTACTACCCTAAAGAGGGGATCAATTAATGGGGTTCATTTTTCTTAAGGCAAACCTTGAAT CACAGGGTTTGTACAGCAGATGCTGGATATCTTACACGTAG[G/A]CTTGTTGAAGTAGTTCAACATATTATTGTGCGTAGAAGAGATTGTGGTACTATCCGAGGTATTTCTGTGAATCCTCAAAATGGGATGACGGAAAAACTTTTTGTCCAAACACTAATTGGTCGTGTATTACCAGACGATATAGGGGTAGGGAGGTTATGTACTCGTTTGGTACCAGTTTTATCTTTGACACCCTGGACAGGAAGATATGAATCGTAATAACCTTGTTTCCAAGCTGTTCTACTTTTTATTCAGCTTAT ACTCCTTCCATTTCTGAAAAGAATGTCTATAAGTTTTTTCCTG 위치: 442Location: 442 Reference allele:
A
Reference allele:
A
Allele:
[G/A]
Allele:
[G/A]
1(b)1(b) ID: LM_39437611_10876_151303ID: LM_39437611_10876_151303 AGTTGGAAGAAAAAGTGGATCTGTCGTTGGTGGAAAGTTGGAGTAAGCCCATTGAATTTTCCATTTTAACATATTCAGATTGTCATGGTGTCGCCAAGTCATCCCTGAGGGCAGACGACAGTTTTTTTTGCATCCACTGTGTGTGCGTGCGGGGCTTGAGGATGTACTTGTACTACCCTAAAGAGGGATCAATTAATGGGGTTCATTTTTCTTAAGGCAAACCTTGAATCACAGGGTTTGTACAGCAGATGCTGGATATCTTACACGTAGACTTGTTGAAGTAGTTCAACATATTATTGT[C/G]CGTAGAAGAGATTGTGGTACTATCCGAGGTATTTCTGTGAATCCTCAAAATGGGATGACGGAAAAACTTTTTGTCCAAACACTAATTGGTCGTGTATTACCAGACGATATAGGGGTAGGGAGGTTATGTACTCGTTTGGTACCAGTTTTATCTTTGACACCCTGGACAGGAAGATATGAATCGTAATAACCTTGTTTCCAAGCTGTTCTACTTTTTATTCAGCTTATACTCCTTCCATTTCTGAAAAGAATGTCTATAAGTTTTTTCCTGAGTCAGACAATGTAAAGTCTTGACCAAGTTAGTTGGAAGAAAAAGTGGATCTGTCGTTGGTGGAAAGTTGGAGTAAGCCCATTGAATTTTCCATTTTAACATATTCAGATTGTCATGGTGTCGCCAAGTCATCCCTGAGGGCAGACGACAGTTTTTTTTGCATCCACTGTGTGTGCGTGCGGGCTTGAGGATGTACTTGTACTACCCTAAAGAGGGAATCAATTAATGGGGTTCATTTTTCTTAAGGCAAACCTTGAATCACAGGGTTTGTACAGCAGATGCTGGATA TCTTACACGTAGACTTGTTGAAGTAGTTCAACATATTATTGT[C/G]CGTAGAAGAGATTGTGGTACTATCCGAGGTATTTCTGTGAATCCTCAAAATGGGATGACGGAAAAACTTTTTGTCCAAACACTAATTGGTCGTGTATTACCAGACGATATAGGGGTAGGGAGGTTATGTACTCGTTTGGTACCAGTTTTATCTTTGACACCCTGGACAGGAAGATATGAATCGTAATAACCTTGTTTCCAAGCTGTTCTACTTTTTATTCAGCTTATACTCCTTCCATTTCTGAAAAGAATGTCT ATAAGTTTTTCCTGAGTCAGACAATGTAAAGTCTTGACCAAGTT 위치: 472Location: 472 Reference allele:GReference allele:G Allele:[C/G]Allele:[C/G] 2(b)2(b) ID: LM_39420842_4812_72573ID: LM_39420842_4812_72573 GGTGTTGGTTTTGCAAGGGGATCACCGGAGCTACGCCGACGATGAGCACTGCGGCGGTGCCACTCCGGCGAGAATCGAATCAGAGGCTACAGGAGGTTCTAGGATGCGAGATCTAGCTCTACACATGCGTATGCTCACCCTGAACATGATGGCGTGGTCGGCTCCGGCGATCGTCGATGGAGACGACATCGATTGGCGATCTCCTGGTGAACTACTGCGGAAGGGAACGCCGAAATTGAGCCGATTCCTTGCTCCCCTTGATGCTCTGCTCCTCCAGGGTGCTCCTTGAGTCCAGGCGCT[T/C]CTCCTGGACCGCTCAATCGAGCTTGGGGTAGCCTCCTCCGTCGGCTTCGTCTTCGAGTCCAGCGACAGAGAGTGGAAGAAAACGAGAGATAGAAAGCATCTGAGAAGAAATGGAGTGGCGGAGGCGAACAAGAAGTGCACGCAGTGCTGCTGGACATATTTATAGAACACGGCGAGGTCCATCTCGTCATTCCACCGGCGGCAATGGCCGAGATGCAGCGGCGACTATGTAGTGAATATGGGCGTGAATCTTGATGCTCCTGGATAAGCTCGGACGCGAGAGAGATAGTGGAGGGTTCTAGGTGTTGGTTTTGCAAGGGGATCACCGGAGCTACGCCGACGATGAGCACTGCGGGCGGTGCCACTCCGGCGAGAATCGAATCAGAGGCTACAGGAGGTTCTAGGATGCGAGATCTAGCTCTACACATGCGTATGCTCACCCTGAACATGATGGCGTGGTCGGCTCCGGCGATCGTCGATGGAGACGACATCGATTGGCGATCTCCTGGTGAACTACTGCGGAAGGGAACGCCGAAATTGAGCCGATTCCTT GCTCCCCTTGATGCTCTGCTCCTCCAGGGTGCTCCTTGAGTCCAGGCGCT[T/C]CTCCTGGACCGCTCAATCGAGCTTGGGGTAGCCTCCTCCGTCGGCTTCGTCTTCGAGTCCAGCGACAGAGAGTGGAAGAAAACGAGAGATAGAAAGCATCTGAGAAGAAATGGAGTGGCGGAGGCGAACAAGAAGTGCACGCAGTGCTGGCTGGACATATTTATAGAACACGGCGAGGTCCATCTCGTCATTCCACCGGGCGGCAATGGCCGAGATGCAGCGGCGACTATGTAGTGAATATGGGGCGTGAATCT TGATGCTCCTGGATAAGCTCGGACGCGAGAGAGATAGTGGAGGGTTCTA 위치: 2301Location: 2301 Reference allele:CReference allele: C Allele:[T/C]Allele:[T/C] 3(b)3(b) ID: LM_39162661_3016_41723ID: LM_39162661_3016_41723 GATCCCGGCCTATGGCCCCGATCAACATCAGGTTCTTGAAAAAGTACTTTGCGTGTTTTTTTTATTCGCTTTGCCATTTTGCCAAAAAGGGGTTTTCCGATTGCCTATAGAAGTCTTCAGTGCACCTACCATTGCATATGTAGGCTTACTGATGATCGCTTTTCTTCCCCCTTTTCATGAACTACAAAGTCCTACAAAAAAAATCTAGCTTTTTCTAATCACGCTTAGCTTGTGACTGATGATTTGACTGCCTTATGACTTGTCTAGCGGACACACGGTGTATCTCGTGGTAAGTGGAGC[A/G]GCACCTACACCCACAACACACGACACACACACACAATACATGCTCCGAGAGATGGTGGAGAAGACTACTTGGGTACTTCCGAGTAATGAGGTCCCACACCCCCGTTCTTTCGGATGTGTCTCGAGTTCACGGAGACACCATGCCTCGATCCCGGCCTATGGCCCCGATCAACATCAGGTTCTTGAAAAAGTACTTTGCGTGTTTTTTTTATTCGCTTTGCCATTTTGCCAAAAAGGGGTTTTCCGATTGCCTATAGAAGTCTTCAGTGCACCTACCATTGCATATGTAGGCTTACTGATGATCGCTTTTCTTCCCCCTTTTCATGAACTACAAAGTCCTACAAAAAAAATCTAGCTTTTTCTAATCACGCTTAGCTTGTGACTGATGATTTGACTGCCTTATGACTTGTC TAGCGGACACACGGTGTATCTCGTGGTAAGTGGAGC [A/G] GCACCTACACCCACAACACACGACACACACACACAATACATGCTCCGAGAGATGGTGGAGAAGACTACTTGGGTACTTCCGAGTAATGAGGTCCCACACCCCCGTTCTTTCGGATGTGTCTCGAGTTCACGGAGACACCATGCCTC 위치: 2870Location: 2870 Reference allele:GReference allele:G Allele:[A/G]Allele:[A/G] 4(b)4(b) ID: LM_39400933_8530_121559ID: LM_39400933_8530_121559 TGTTGGGATTTTCACTCGATTTGAGGATGATCTTCATTGTTTGCACTGGTATGGTCGATCATGTGCTCGAAAATAATGAGATGGAAAACCATATGCATCATCATCCTGGTGTTCCCCCCAAGCTGAAGAAGATCTCCAATTGTGAGTATACCAACTTAGCCTTGCATCAACTTTGTATGGAGATCTTTTAGTCTGGTTCTTGGTCTATTGGTCATGTTGCCCGAAGCCTGAACTATTTCACCAGGAATCATGTCAGTTGTGTGAACCAGTGGAGCAAAGTTAGTATGATTGTTACATCTC[T/C]GCCACATTGTTATGTTTGCACACAAAATTCTTCAATCAATGGTAGTCCAATAGACATAAGTGAGCAAGCTTATCTTATTTTCCATTAGTGCACAAGGTCATCGTTGATTGATGGCACTCATTCTGAAGATGTCGTTCCCTTGCTGTTCGGGCTGTGTCACCGGAGGTGGACGATAGCACCTTCGTTGTTGATCCTCAGATTTAACAGCGAGGACCCTTTAAGTTTGAGCTCGGTGAAGGCTATTTAATATCTACAGCTCAATCACAAACCTCAAGTGCATATGCCAGATAGACCGTTGGGTGTTGGGATTTTCACTCGATTTGAGGATGATCTTCATTGTTTGCACTGGTATGGTCGATCATGTGCTCGAAAATAATGAGATGGAAAACCATATGCATCATCATCCTGGTGTTCCCCCCAAGCTGAAGAAGATCTCCAATTGTGAGTATACCAACTTAGCCTTGCATCAACTTTGTATGGAGATCTTTTAGTCTGGTTCTTGGTCTATTGGTCATGTTGCCCGAAGCCTGAACTATTTCACCAGGAATCATGTCAGTTGTGTGAA CCAGTGGAGCAAAGTTAGTATGATTGTTACATCTC[T/C]GCCACATTGTTATGTTTGCACACAAAATTCTTCAATCAATGGTAGTCCAATAGACATAAGTGAGCAAGCTTATCTTATTTTCCATTAGTGCACAAGGTCATCGTTGATTGATGGCACTCATTCTGAAGATGTCGTTCCCTTGCTGTTTCGGGCTGTGTCACCGGAGGTGGACGATAGCACCTTCGTTGTTGATCCTCAGATTTAACAGCGAGGACCCTTTAAGTTTGAGCTCGGTGAAGGCTATTTAATATCTACA GCTCAATCACAAACCTCAAGTGCATATGCCAGATAGACCGTTGGG 위치: 1941Location: 1941 Reference allele:CReference allele: C Allele:[T/C]Allele:[T/C] 5(b)5(b) ID: LM_39416471_10931_180747ID: LM_39416471_10931_180747 TGGACGGAGGATGACCCCGGAGACGTTCACTGCTGTGGTCGAGGCTCTCGTCAAGGCAGGGAAGGAGGACGAGGCTGTTCGGTTGTTTAGAGGCTTGGAGAGGCAGAAATTGCTACCTCAGCGAAGTGTTGGTGCTGGAGGGGAAGGCATATGGTCAAGCAGCCTTGCCATGGTCCAGGTACTGTGCATGAAGGGCTACGCTCGTGAGGCTCAGGGTGTGGTGTGGCACCACAAGAGCGAGCTCTCGACGGAGCCCATGGGTAGCATCGTTCAGCGTAGCCTCCTCCATGGATGGTGTGT[A/G]CATGGAAATGCTAAAGAAGCTCGGAGAGTCCTTGATGACATCAAGTCCTCAGGCTTCCCACTAGGGTTGCCGTCGTTCAATGATTTTCTCAACTGTGTTTGCCATAGAAACCTCAAGTTTAACCCTTCTGCGCTTGTTCCCGAAGCTATGGATATTTTAACAGAGATGAGGTTCTGTGGTGTCACCCCTGCTGCATCCAGCTTCAACATCTTGCTTTCTTGTATGGGACGAGCCAGAAGAGTGAAAGAAGCATACAGAATCCTTTATTTGATGAGGGAAGGAAAAGAGGCGTGCTCACCTTGGACGGAGGATGACCCCGGAGACGTTCACTGCTGTGTCGAGGCTCTCGTCAAGGCAGGGAAGGAGGACGAGGCTGTTCGGTTGTTTAGAGGCTTGGAGAGGCAGAAATTGCTACCTCAGCGAAGTGTTGGTGCTGGAGGGGAAGGCATATGGTCAAGCAGCCTTGCCATGGTCCAGGTACTGTGCATGAAGGGCTACGCTCGTGAGGGCTCAGGGTGTGGTGTGGCACCACAAGAGCGAGCTCTCGA CGGAGCCCATGGGTAGCATCGTTCAGCGTAGCCTCCTCCATGGATGGTGTGT[A/G]CATGGAAATGCTAAAGAAGCTCGGAGAGTCCTTGATGACATCAAGTCCTCAGGCTTCCCACTAGGGTTGCCGTCGTTCAATGATTTTCTCAACTGTGTTTGCCATAGAAACCTCAAGTTTAACCCTTCTGCGCTTGTTCCCGAAGCTATGGATATTTTAACAGAGATGAGGTTCTGTGGTGTCACCCCTGCTGCATCCAGCTTCAACATCTTGCTTTCTTGTATGGGACGAGCCAGAAGAGTGAAAGAAGCATAC AGAATCCTTTATTTGATGAGGGAAGGAAAAGAGGGCGTGCTCACCT 위치: 6901Location: 6901 Reference allele:GReference allele:G Allele:[A/G]Allele:[A/G] 6(b)6(b) ID: LM_39185741_5015_67238ID: LM_39185741_5015_67238 TCCCAGAAAAGAATTGAGCACTTGATGTACCACAGAATATGCTTGACATTTAGTTCGAGGAATCCTACAACTGTGTAGATCATGGACCATATGGGTCTCATGGTGACCAGTACTCAAAGCACTATCTTCGGAGGAGGGGACGGTGGCCGAGGTTGTGCGGTAGCATGATTCACGTTGGCGAGGGGTCGCTGGCCACCAGGACTCGTCGACGCAAACGTGAACCATGGAGAGTTGTTTGTCCGCCACGAGCTGTAAGTAGGAGCTTCCTGGCGGCTGCCTCCTCCTCGAGCACATTGGACC[T/A]AGGTGAGCCCTGGTCCTTCTCTCGTGTTACTCTAACTAGCGCTGGTCTTCGTTTAAATCTGTGATAGTGGTTTGTTCTTCCTGCAGGTTCAATCGTGGTTATGTTTTGTATTAACATGGACCCAACAAATGGGCTACTATGGCAACTTGAATCATAGCCTGAATTTCTAAGTTCGATACCATCGGAGATAGGCAAGCTGACAACTTACTCACTTGGATGTCTTTCATTGTTTTACATTAGTTGGTTATTAGTAGTCACTTCTGAGAGGCTTCACTTTTGTATCAGTTTCTCACGGCCCACTCCCAGAAAAGAATTGAGCACTTGATGTACCACAGAATATGCTTGACATTTAGTTCGAGGAATCCTACAACTGTGTAGATCATGGACCATATGGGTCTCATGGTGACCAGTACTCAAAGCACTATCTTCGGAGGAGGGGACGGTGGCCGAGGTTGTGCGGTAGCATGATTCACGTTGGCGAGGGGTCGCTGGCCACCAGGACTCGTCGACGCAAACGTGAACCATGGAGAGTTGTTTGTCCGCCACGAGCTGTAAGTAG GAGCTTCCTGGCGGCTGCCTCCTCCTCGAGCACATTGGACC[T/A]AGGTGAGCCCTGGTCCTTCTCTCGTGTTACTCTAACTAGCGCTGGTCTTCGTTTAAATCTGTGATAGTGGTTTGTTCTTCCTGCAGGTTCAATCGTGGTTATGTTTTGTATTAACATGGACCCAACAAATGGGCTACTATGGCAACTTGAATCATAGCCTGAATTTCTAAGTTCGATACCATCGGAGATAGGCAAGCTGACACAACTTACTCACTTGGATGTCTTTCATTGTTTTACATTAGTTGGTTATTAGTAGTCACT TCTGAGAGGCTTCACTTTTGTATCAGTTTCTCACGGCCCCAC 위치: 1154Location: 1154 Reference allele:AReference allele:A Allele:[T/A]Allele:[T/A] * A: Adenien; G: Guanine; C: Cytosine; T: Thymine; N: Any nucleotide;
a: 선발된 SNP에서 reference genome과 동일한 allele이며 depth 비율이 homozygote인 좌
b: 선발된 SNP에서 reference genome과 상이한 allele이며 depth 비율이 homozygote인 좌
* A: Adenien; G: Guanine; C: Cytosine; T: Thymine; N: Any nucleotide;
a: In the selected SNP, the locus is the same allele as the reference genome and the depth ratio is homozygote.
b: In the selected SNP, an allele that is different from the reference genome and a locus with a depth ratio of homozygote

이상 설명한 내용을 통해 당업자라면 본 발명의 기술 사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다. 따라서 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니며 특허 청구의 범위에 의해 정해져야만 할 것이다.Through the above-described content, those skilled in the art will be able to see that various changes and modifications can be made without departing from the technical spirit of the present invention. Therefore, the technical scope of the present invention is not limited to what is described in the detailed description of the specification and should be defined by the scope of the patent claims.

<110> REPUBLIC OF KOREA(RURAL DEVELOPMENT ADMINISTRATION) <120> SNP MARKERS FOR DISCRIMINATING ITALIAN RYEGRASS HS104 VARIETIES AND METHOD FOR DISCRIMINATING ITALIAN RYEGRASS HS104 VARIETIES USING THE SAME <130> FP-2201004-KR <160> 7 <170> KoPatentIn 3.0 <210> 1 <211> 601 <212> DNA <213> Artificial Sequence <220> <223> Scaffold Sequence of Lolium multiflorum <400> 1 gttagacttt ctgcattact cttaactaat agttggaaga aaaagtggat ctgtcgttgg 60 tggaaagttg gagtaagccc attgaatttt ccattttaac atattcagat tgtcatggtg 120 tcgccaagtc atccctgagg gcagacgaca gttttttttg catccactgt gtgtgcgtgc 180 ggggcttgag gatgtacttg tactacccta aagagggatc aattaatggg gttcattttt 240 cttaaggcaa accttgaatc acagggtttg tacagcagat gctggatatc ttacacgtag 300 rcttgttgaa gtagttcaac atattattgt gcgtagaaga gattgtggta ctatccgagg 360 tatttctgtg aatcctcaaa atgggatgac ggaaaaactt tttgtccaaa cactaattgg 420 tcgtgtatta ccagacgata taggggtagg gaggttatgt actcgtttgg taccagtttt 480 atctttgaca ccctggacag gaagatatga atcgtaataa ccttgtttcc aagctgttct 540 actttttatt cagcttatac tccttccatt tctgaaaaga atgtctataa gttttttcct 600 g 601 <210> 2 <211> 601 <212> DNA <213> Artificial Sequence <220> <223> Scaffold Sequence of Lolium multiflorum <400> 2 agttggaaga aaaagtggat ctgtcgttgg tggaaagttg gagtaagccc attgaatttt 60 ccattttaac atattcagat tgtcatggtg tcgccaagtc atccctgagg gcagacgaca 120 gttttttttg catccactgt gtgtgcgtgc ggggcttgag gatgtacttg tactacccta 180 aagagggatc aattaatggg gttcattttt cttaaggcaa accttgaatc acagggtttg 240 tacagcagat gctggatatc ttacacgtag acttgttgaa gtagttcaac atattattgt 300 scgtagaaga gattgtggta ctatccgagg tatttctgtg aatcctcaaa atgggatgac 360 ggaaaaactt tttgtccaaa cactaattgg tcgtgtatta ccagacgata taggggtagg 420 gaggttatgt actcgtttgg taccagtttt atctttgaca ccctggacag gaagatatga 480 atcgtaataa ccttgtttcc aagctgttct actttttatt cagcttatac tccttccatt 540 tctgaaaaga atgtctataa gttttttcct gagtcagaca atgtaaagtc ttgaccaagt 600 t 601 <210> 3 <211> 601 <212> DNA <213> Artificial Sequence <220> <223> Scaffold Sequence of Lolium multiflorum <400> 3 ggtgttggtt ttgcaagggg atcaccggag ctacgccgac gatgagcact gcggcggtgc 60 cactccggcg agaatcgaat cagaggctac aggaggttct aggatgcgag atctagctct 120 acacatgcgt atgctcaccc tgaacatgat ggcgtggtcg gctccggcga tcgtcgatgg 180 agacgacatc gattggcgat ctcctggtga actactgcgg aagggaacgc cgaaattgag 240 ccgattcctt gctccccttg atgctctgct cctccagggt gctccttgag tccaggcgct 300 yctcctggac cgctcaatcg agcttggggt agcctcctcc gtcggcttcg tcttcgagtc 360 cagcgacaga gagtggaaga aaacgagaga tagaaagcat ctgagaagaa atggagtggc 420 ggaggcgaac aagaagtgca cgcagtgctg ctggacatat ttatagaaca cggcgaggtc 480 catctcgtca ttccaccggc ggcaatggcc gagatgcagc ggcgactatg tagtgaatat 540 gggcgtgaat cttgatgctc ctggataagc tcggacgcga gagagatagt ggagggttct 600 a 601 <210> 4 <211> 447 <212> DNA <213> Artificial Sequence <220> <223> Scaffold Sequence of Lolium multiflorum <400> 4 gatcccggcc tatggccccg atcaacatca ggttcttgaa aaagtacttt gcgtgttttt 60 tttattcgct ttgccatttt gccaaaaagg ggttttccga ttgcctatag aagtcttcag 120 tgcacctacc attgcatatg taggcttact gatgatcgct tttcttcccc cttttcatga 180 actacaaagt cctacaaaaa aaatctagct ttttctaatc acgcttagct tgtgactgat 240 gatttgactg ccttatgact tgtctagcgg acacacggtg tatctcgtgg taagtggagc 300 rgcacctaca cccacaacac acgacacaca cacacaatac atgctccgag agatggtgga 360 gaagactact tgggtacttc cgagtaatga ggtcccacac ccccgttctt tcggatgtgt 420 ctcgagttca cggagacacc atgcctc 447 <210> 5 <211> 601 <212> DNA <213> Artificial Sequence <220> <223> Scaffold Sequence of Lolium multiflorum <400> 5 tgttgggatt ttcactcgat ttgaggatga tcttcattgt ttgcactggt atggtcgatc 60 atgtgctcga aaataatgag atggaaaacc atatgcatca tcatcctggt gttcccccca 120 agctgaagaa gatctccaat tgtgagtata ccaacttagc cttgcatcaa ctttgtatgg 180 agatctttta gtctggttct tggtctattg gtcatgttgc ccgaagcctg aactatttca 240 ccaggaatca tgtcagttgt gtgaaccagt ggagcaaagt tagtatgatt gttacatctc 300 ygccacattg ttatgtttgc acacaaaatt cttcaatcaa tggtagtcca atagacataa 360 gtgagcaagc ttatcttatt ttccattagt gcacaaggtc atcgttgatt gatggcactc 420 attctgaaga tgtcgttccc ttgctgttcg ggctgtgtca ccggaggtgg acgatagcac 480 cttcgttgtt gatcctcaga tttaacagcg aggacccttt aagtttgagc tcggtgaagg 540 ctatttaata tctacagctc aatcacaaac ctcaagtgca tatgccagat agaccgttgg 600 g 601 <210> 6 <211> 601 <212> DNA <213> Artificial Sequence <220> <223> Scaffold Sequence of Lolium multiflorum <400> 6 tggacggagg atgaccccgg agacgttcac tgctgtggtc gaggctctcg tcaaggcagg 60 gaaggaggac gaggctgttc ggttgtttag aggcttggag aggcagaaat tgctacctca 120 gcgaagtgtt ggtgctggag gggaaggcat atggtcaagc agccttgcca tggtccaggt 180 actgtgcatg aagggctacg ctcgtgaggc tcagggtgtg gtgtggcacc acaagagcga 240 gctctcgacg gagcccatgg gtagcatcgt tcagcgtagc ctcctccatg gatggtgtgt 300 rcatggaaat gctaaagaag ctcggagagt ccttgatgac atcaagtcct caggcttccc 360 actagggttg ccgtcgttca atgattttct caactgtgtt tgccatagaa acctcaagtt 420 taacccttct gcgcttgttc ccgaagctat ggatatttta acagagatga ggttctgtgg 480 tgtcacccct gctgcatcca gcttcaacat cttgctttct tgtatgggac gagccagaag 540 agtgaaagaa gcatacagaa tcctttattt gatgagggaa ggaaaagagg cgtgctcacc 600 t 601 <210> 7 <211> 601 <212> DNA <213> Artificial Sequence <220> <223> Scaffold Sequence of Lolium multiflorum <400> 7 tcccagaaaa gaattgagca cttgatgtac cacagaatat gcttgacatt tagttcgagg 60 aatcctacaa ctgtgtagat catggaccat atgggtctca tggtgaccag tactcaaagc 120 actatcttcg gaggagggga cggtggccga ggttgtgcgg tagcatgatt cacgttggcg 180 aggggtcgct ggccaccagg actcgtcgac gcaaacgtga accatggaga gttgtttgtc 240 cgccacgagc tgtaagtagg agcttcctgg cggctgcctc ctcctcgagc acattggacc 300 waggtgagcc ctggtccttc tctcgtgtta ctctaactag cgctggtctt cgtttaaatc 360 tgtgatagtg gtttgttctt cctgcaggtt caatcgtggt tatgttttgt attaacatgg 420 acccaacaaa tgggctacta tggcaacttg aatcatagcc tgaatttcta agttcgatac 480 catcggagat aggcaagctg acaacttact cacttggatg tctttcattg ttttacatta 540 gttggttatt agtagtcact tctgagaggc ttcacttttg tatcagtttc tcacggccca 600 c 601 <110> REPUBLIC OF KOREA(RURAL DEVELOPMENT ADMINISTRATION) <120> SNP MARKERS FOR DISCRIMINATING ITALIAN RYEGRASS HS104 VARIETIES AND METHOD FOR DISCRIMINATING ITALIAN RYEGRASS HS104 VARIETIES USING THE SAME <130> FP-2201004-KR <160> 7 <170> KoPatentIn 3.0 <210> 1 <211> 601 <212> DNA <213> Artificial Sequence <220> <223> Scaffold Sequence of Lolium multiflorum <400> 1 gttagacttt ctgcattact cttaactaat agttggaaga aaaagtggat ctgtcgttgg 60 tggaaagttg gagtaagccc attgaatttt ccattttaac atattcagat tgtcatggtg 120 tcgccaagtc atccctgagg gcagacgaca gttttttttg catccactgt gtgtgcgtgc 180 ggggcttgag gatgtacttg tactacccta aagagggatc aattaatggg gttcattttt 240 cttaaggcaa accttgaatc acagggtttg tacagcagat gctggatatc ttacacgtag 300 rcttgttgaa gtagttcaac atattattgt gcgtagaaga gattgtggta ctatccgagg 360 tatttctgtg aatcctcaaa atgggatgac ggaaaaactt tttgtccaaa cactaattgg 420 tcgtgtatta ccagacgata taggggtagg gaggttatgt actcgtttgg taccagtttt 480 atctttgaca ccctggacag gaagatatga atcgtaataa ccttgtttcc aagctgttct 540 actttttat cagcttatac tccttccatt tctgaaaaga atgtctataa gttttttcct 600 g 601 <210> 2 <211> 601 <212> DNA <213> Artificial Sequence <220> <223> Scaffold Sequence of Lolium multiflorum <400> 2 agttggaaga aaaagtggat ctgtcgttgg tggaaagttg gagtaagccc attgaatttt 60 ccattttaac atattcagat tgtcatggtg tcgccaagtc atccctgagg gcagacgaca 120 gttttttttg catccactgt gtgtgcgtgc ggggcttgag gatgtacttg tactacccta 180 aagagggatc aattaatggg gttcattttt cttaaggcaa accttgaatc acagggtttg 240 tacagcagat gctggatatc ttacacgtag acttgttgaa gtagttcaac atattattgt 300 scgtagaaga gattgtggta ctatccgagg tatttctgtg aatcctcaaa atgggatgac 360 ggaaaaactt tttgtccaaa cactaattgg tcgtgtatta ccagacgata taggggtagg 420 gaggttatgt actcgtttgg taccagtttt atctttgaca ccctggacag gaagatatga 480 atcgtaataa ccttgtttcc aagctgttct actttttat cagcttatac tccttccatt 540 tctgaaaaga atgtctataa gttttttcct gagtcagaca atgtaaagtc ttgaccaagt 600 t601 <210> 3 <211> 601 <212> DNA <213> Artificial Sequence <220> <223> Scaffold Sequence of Lolium multiflorum <400> 3 ggtgttggtt ttgcaagggg atcaccggag ctacgccgac gatgagcact gcggcggtgc 60 cactccggcg agaatcgaat cagaggctac aggaggttct aggatgcgag atctagctct 120 acacatgcgt atgctcaccc tgaacatgat ggcgtggtcg gctccggcga tcgtcgatgg 180 agacgacatc gattggcgat ctcctggtga actactgcgg aagggaacgc cgaaattgag 240 ccgattcctt gctccccttg atgctctgct cctccagggt gctccttgag tccaggcgct 300 yctcctggac cgctcaatcg agcttggggt agcctcctcc gtcggcttcg tcttcgagtc 360 cagcgacaga gagtggaaga aaacgagaga tagaaagcat ctgagaagaa atggagtggc 420 ggaggcgaac aagaagtgca cgcagtgctg ctggacatat ttatagaaca cggcgaggtc 480 catctcgtca ttccaccggc ggcaatggcc gagatgcagc ggcgactatg tagtgaatat 540 gggcgtgaat cttgatgctc ctggataagc tcggacgcga gagagatagt ggagggttct 600 a 601 <210> 4 <211> 447 <212> DNA <213> Artificial Sequence <220> <223> Scaffold Sequence of Lolium multiflorum <400> 4 gatcccggcc tatggccccg atcaacatca ggttcttgaa aaagtacttt gcgtgttttt 60 tttatcgct ttgccatttt gccaaaaagg ggttttccga ttgcctatag aagtcttcag 120 tgcacctacc attgcatatg taggcttact gatgatcgct tttcttcccc cttttcatga 180 actacaaagt cctacaaaaa aaatctagct ttttctaatc acgcttagct tgtgactgat 240 gatttgactg ccttatgact tgtctagcgg acacacggtg tatctcgtgg taagtggagc 300 rgcacctaca cccacaacac acgacacaca cacacaatac atgctccgag agatggtgga 360 gaagactact tgggtacttc cgagtaatga ggtcccacac ccccgttctt tcggatgtgt 420 ctcgagttca cggagacacc atgcctc 447 <210> 5 <211> 601 <212> DNA <213> Artificial Sequence <220> <223> Scaffold Sequence of Lolium multiflorum <400> 5 tgttgggatt ttcactcgat ttgaggatga tcttcattgt ttgcactggt atggtcgatc 60 atgtgctcga aaataatgag atggaaaacc atatgcatca tcatcctggt gttccccccca 120 agctgaagaa gatctccaat tgtgagtata ccaacttagc cttgcatcaa ctttgtatgg 180 agatctttta gtctggttct tggtctattg gtcatgttgc ccgaagcctg aactatttca 240 ccagggaatca tgtcagttgt gtgaaccagt ggagcaaagt tagtatgatt gttacatctc 300 ygccacattg ttatgtttgc acacaaaatt cttcaatcaa tggtagtcca atagacataa 360 gtgagcaagc ttatcttatt ttccattagt gcacaaggtc atcgttgatt gatggcactc 420 attctgaaga tgtcgttccc ttgctgttcg ggctgtgtca ccggaggtgg acgatagcac 480 cttcgttgtt gatcctcaga tttaacagcg aggacccttt aagtttgagc tcggtgaagg 540 ctatttaata tctacagctc aatcacaaac ctcaagtgca tatgccagat agaccgttgg 600 g 601 <210> 6 <211> 601 <212> DNA <213> Artificial Sequence <220> <223> Scaffold Sequence of Lolium multiflorum <400> 6 tggacggagg atgaccccgg agacgttcac tgctgtggtc gaggctctcg tcaaggcagg 60 gaaggaggac gaggctgttc ggttgtttag aggcttggag aggcagaaat tgctacctca 120 gcgaagtgtt ggtgctggag gggaaggcat atggtcaagc agccttgcca tggtccaggt 180 actgtgcatg aagggctacg ctcgtgaggc tcagggtgtg gtgtggcacc acaagagcga 240 gctctcgacg gagcccatgg gtagcatcgt tcagcgtagc ctcctccatg gatggtgtgt 300 rcatggaaat gctaaagaag ctcggagagt ccttgatgac atcaagtcct caggcttccc 360 actagggttg ccgtcgttca atgattttct caactgtgtt tgccatagaa acctcaagtt 420 taacccttct gcgcttgttc ccgaagctat ggatatttta acagagatga ggttctgtgg 480 tgtcacccct gctgcatcca gcttcaacat cttgctttct tgtatgggac gagccagaag 540 agtgaaagaa gcatacagaa tcctttatt gatgagggaa ggaaaagagg cgtgctcacc 600 t601 <210> 7 <211> 601 <212> DNA <213> Artificial Sequence <220> <223> Scaffold Sequence of Lolium multiflorum <400> 7 tcccagaaaa gaattgagca cttgatgtac cacagaatat gcttgacatt tagttcgagg 60 aatcctacaa ctgtgtagat catggaccat atgggtctca tggtgaccag tactcaaagc 120 actatcttcg gaggagggga cggtggccga ggttgtgcgg tagcatgatt cacgttggcg 180 aggggtcgct ggccaccagg actcgtcgac gcaaacgtga accatggaga gttgtttgtc 240 cgccacgagc tgtaagtagg agcttcctgg cggctgcctc ctcctcgagc acattggacc 300 waggtgagcc ctggtccttc tctcgtgtta ctctaactag cgctggtctt cgtttaaatc 360 tgtgatagtg gtttgttctt cctgcaggtt caatcgtggt tatgttttgt attaacatgg 420 acccaacaaa tgggctacta tggcaacttg aatcatagcc tgaatttcta agttcgatac 480 catcggagat aggcaagctg acaacttact cacttggatg tctttcattg ttttacatta 540 gttggttatt agtagtcact tctgagaggc ttcacttttg tatcagtttc tcacggccca 600 c 601

Claims (10)

서열번호 1 또는 서열번호 2, 및 서열번호 3 내지 7의 염기서열로 이루어진 폴리뉴클레오티드에 있어서, 각각의 염기서열 중 서열번호의 301번째 염기의 단일염기다형성(single nucleotide polymorphism, SNP) 마커를 검출할 수 있는 제제를 포함하는 이탈리안 라이그라스 HS104 품종 식별용 조성물.In a polynucleotide consisting of the base sequences of SEQ ID NO. 1 or SEQ ID NO. 2, and SEQ ID NO. 3 to 7, a single nucleotide polymorphism (SNP) marker at the 301st base of SEQ ID NO. among each base sequence can be detected. A composition for identification of Italian ryegrass HS104 variety, comprising an agent capable of identifying the variety. 제1 항에 있어서,
상기 단일염기다형성 마커는,
서열번호 1의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 G 또는 A이고,
서열번호 2의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 C 또는 G이고,
서열번호 3의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 T 또는 C이고,
서열번호 4의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 A 또는 G이고,
서열번호 5의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 T 또는 C이고,
서열번호 6의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 A 또는 G이고,
서열번호 7의 염기서열로 표시되는 폴리뉴클레오티드에서 301번째 염기가 T 또는 A인 단일염기다형성 마커인, 이탈리안 라이그라스 HS104 품종 식별용 조성물.
According to claim 1,
The single nucleotide polymorphism marker is,
In the polynucleotide represented by the base sequence of SEQ ID NO: 1, the 301st base is G or A,
In the polynucleotide represented by the base sequence of SEQ ID NO: 2, the 301st base is C or G,
In the polynucleotide represented by the base sequence of SEQ ID NO: 3, the 301st base is T or C,
In the polynucleotide represented by the base sequence of SEQ ID NO: 4, the 301st base is A or G,
In the polynucleotide represented by the base sequence of SEQ ID NO: 5, the 301st base is T or C,
In the polynucleotide represented by the base sequence of SEQ ID NO: 6, the 301st base is A or G,
A composition for identifying Italian ryegrass HS104, a single nucleotide polymorphism marker in which the 301st base is T or A in the polynucleotide represented by the base sequence of SEQ ID NO: 7.
제1 항에 있어서,
상기 단일염기다형성 마커를 검출할 수 있는 제제는 단일염기다형성 마커 부위를 포함하는, 10개 내지 400개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 또는 이의 상보적인 폴리뉴클레오티드;와 특이적으로 혼성화(hybridization)하는 폴리뉴클레오티드인, 이탈리안 라이그라스 HS104 품종 식별용 조성물.
According to claim 1,
The agent capable of detecting the single nucleotide polymorphism marker includes a polynucleotide consisting of 10 to 400 consecutive DNA sequences containing a single nucleotide polymorphism marker site; A composition for identifying the Italian ryegrass HS104 variety, which is a polynucleotide that specifically hybridizes with a complementary polynucleotide thereof.
제3 항에 있어서,
상기 폴리뉴클레오티드는 단일염기다형성 마커를 검출할 수 있는 프라이머, 프로브, 및 이들의 조합으로 구성된 군으로부터 선택된 하나 이상인, 이탈리안 라이그라스 HS104 품종 식별용 조성물.
According to clause 3,
The polynucleotide is one or more selected from the group consisting of primers, probes, and combinations thereof capable of detecting a single nucleotide polymorphism marker. A composition for identifying the Italian ryegrass HS104 variety.
제1 항 내지 제4 항 중 어느 한 항에 따른 조성물을 포함하는 이탈리안 라이그라스 HS104 품종 식별 키트.An Italian ryegrass HS104 variety identification kit comprising the composition according to any one of claims 1 to 4. 이탈리안 라이그라스의 DNA를 추출하는 단계;
상기 추출된 DNA를 주형으로 하고, 제1 항 내지 제4 항 중 어느 한 항에 따른 조성물을 이용하여 중합효소연쇄반응(PCR)을 수행하는 단계; 및
상기 중합효소연쇄반응에 의해 생성된 산물을 분석하여 상기 이탈리안 라이그라스의 품종을 식별하는 단계;를 포함하는 이탈리안 라이그라스 HS104 품종 식별 방법.
Extracting DNA from Italian ryegrass;
Using the extracted DNA as a template and performing polymerase chain reaction (PCR) using the composition according to any one of claims 1 to 4; and
Identifying the variety of Italian ryegrass by analyzing the product produced by the polymerase chain reaction.
제6 항에 있어서,
상기 품종을 식별하는 단계는,
상기 이탈리안 라이그라스의 DNA 중, 서열번호 1로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 G이거나 서열번호 2로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 C이고,
서열번호 3으로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 T이고,
서열번호 4로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 A이고,
서열번호 5로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 T이고,
서열번호 6으로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 A이고,
서열번호 7로 표시되는 폴리뉴클레오티드에서 301번째 염기의 위치에 대응되는 상기 DNA의 염기가 T인 경우, 상기 이탈리안 라이그라스가 HS104 품종인 것으로 식별하는 이탈리안 라이그라스 HS104 품종 식별 방법.
According to clause 6,
The step of identifying the variety is,
Among the DNA of the Italian ryegrass, the base of the DNA corresponding to the position of the 301st base in the polynucleotide shown in SEQ ID NO: 1 is G, or the base corresponding to the position of the 301st base in the polynucleotide shown in SEQ ID NO: 2 The base of DNA is C,
The base of the DNA corresponding to the 301st base in the polynucleotide represented by SEQ ID NO: 3 is T,
The base of the DNA corresponding to the 301st base in the polynucleotide represented by SEQ ID NO: 4 is A,
The base of the DNA corresponding to the 301st base in the polynucleotide represented by SEQ ID NO: 5 is T,
The base of the DNA corresponding to the 301st base in the polynucleotide represented by SEQ ID NO: 6 is A,
When the base of the DNA corresponding to the position of the 301st base in the polynucleotide represented by SEQ ID NO: 7 is T, the Italian ryegrass is identified as the HS104 variety. A method for identifying the Italian ryegrass HS104 variety.
제6 항에 있어서,
상기 이탈리안 라이그라스의 품종은 코위너(Kowinner), 코스피드(Kospeed), 그린콜(Green Call), 그린콜(Green Call) 2호, IR601, IR602, IR603, IR605, IR901, 그린팜(Green Farm), 그린팜(Green Farm) 2호, 그린팜(Green Farm) 3호, 코윈어리(Kowinearly), 애스(AE), 화산 101호, 화산 102호, 화산 104호, 헤르쿨레스(HC), 코윈마스터(Kowinmaster), 코그린(Kogreen), 플로리다(Florida), 빌켄(Billiken), 및 리오(Rio) 중 어느 하나인 이탈리안 라이그라스 HS104 품종 식별 방법.
According to clause 6,
The Italian ryegrass varieties include Kowinner, Kospeed, Green Call, Green Call No. 2, IR601, IR602, IR603, IR605, IR901, and Green Farm. ), Green Farm No. 2, Green Farm No. 3, Kowinearly, AE, Hwasan No. 101, Hwasan No. 102, Hwasan No. 104, Hercules (HC), Kowin Master How to identify Italian ryegrass HS104 cultivars: (Kowinmaster), Kogreen, Florida, Billiken, and Rio.
서열번호 1 및 서열번호 3 내지 7의 염기서열로 이루어진 폴리뉴클레오티드에 있어서, 각각의 염기서열 중 서열번호의 301번째 염기의 단일염기다형성(single nucleotide polymorphism, SNP) 마커를 검출할 수 있는 제제를 포함하는 이탈리안 라이그라스 HS104 품종 식별용 조성물.In the polynucleotide consisting of the base sequences of SEQ ID NO. 1 and SEQ ID NO. 3 to 7, it includes an agent capable of detecting a single nucleotide polymorphism (SNP) marker at the 301st base of SEQ ID NO. among each base sequence. Composition for identification of Italian ryegrass HS104 variety. 서열번호 2 내지 7의 염기서열로 이루어진 폴리뉴클레오티드에 있어서, 각각의 염기서열 중 서열번호의 301번째 염기의 단일염기다형성(single nucleotide polymorphism, SNP) 마커를 검출할 수 있는 제제를 포함하는 이탈리안 라이그라스 HS104 품종 식별용 조성물.Italian ryegrass containing an agent capable of detecting a single nucleotide polymorphism (SNP) marker at the 301st base of SEQ ID NO:1 in a polynucleotide consisting of the base sequences of SEQ ID NOs: 2 to 7. HS104 Composition for variety identification.
KR1020220064926A 2022-05-26 2022-05-26 Snp markers for discriminating italian ryegrass hs104 varieties and method for discriminating italian ryegrass hs104 varieties using the same KR20230165039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220064926A KR20230165039A (en) 2022-05-26 2022-05-26 Snp markers for discriminating italian ryegrass hs104 varieties and method for discriminating italian ryegrass hs104 varieties using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220064926A KR20230165039A (en) 2022-05-26 2022-05-26 Snp markers for discriminating italian ryegrass hs104 varieties and method for discriminating italian ryegrass hs104 varieties using the same

Publications (1)

Publication Number Publication Date
KR20230165039A true KR20230165039A (en) 2023-12-05

Family

ID=89157161

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220064926A KR20230165039A (en) 2022-05-26 2022-05-26 Snp markers for discriminating italian ryegrass hs104 varieties and method for discriminating italian ryegrass hs104 varieties using the same

Country Status (1)

Country Link
KR (1) KR20230165039A (en)

Similar Documents

Publication Publication Date Title
KR102026758B1 (en) Molecular marker for identifying Perilla cultivars and Perilla wild species based on the information of chloroplast genomes and 45S nrDNAs sequence and uses thereof
KR102062452B1 (en) Genetic maker for parentage and thereod in Turbot
KR101493980B1 (en) Indel marker for discrimination of rice cultivar
WO2016197258A1 (en) Methods and compositions for cannabis characterization
KR20180077873A (en) SNP markers for selection of marker-assisted backcross in watermelon
US20170283854A1 (en) Multiplexed pcr assay for high throughput genotyping
KR100753676B1 (en) TRIM-Br1 and TRIM-Br2 DNA marker system using the same and classification method using the same
KR102458440B1 (en) Primer set for selecting Phytophthora blight resistant pepper and selection method using the same primer set
CN113293218B (en) SNP molecular marker for selecting weight gain character of channel catfish and application
WO2016011258A1 (en) Bulk allele discrimination assay
KR20230165039A (en) Snp markers for discriminating italian ryegrass hs104 varieties and method for discriminating italian ryegrass hs104 varieties using the same
KR20230165037A (en) Snp markers for discriminating italian ryegrass ir605 varieties and method for discriminating italian ryegrass ir605 varieties using the same
KR20230165040A (en) Snp markers for discriminating italian ryegrass kw varieties and method for discriminating italian ryegrass kw varieties using the same
KR20230165042A (en) Snp markers for discriminating italian ryegrass very early maturing variety and early maturing variety, and method for discriminating italian ryegrass very early maturing variety and early maturing variety using the same
KR20230165041A (en) Snp markers for discriminating italian ryegrass domestic and foreign representative varieties and method for discriminating italian ryegrass domestic and foreign representative varieties using the same
KR20230165043A (en) Snp markers for discriminating italian ryegrass maturity representative varieties, and method for discriminating italian ryegrass maturity representative varieties using the same
KR20230165038A (en) Snp markers for discriminating italian ryegrass gf varieties and method for discriminating italian ryegrass gf varieties using the same
KR101535925B1 (en) Microsatellite markers for identification of goats
KR101854896B1 (en) Single nucleotide polymorphism markers for identifying korean traditional dog breeds and uses thereof
US10172305B2 (en) Diagnostic molecular markers for seed lot purity traits in soybeans
KR101993289B1 (en) Molecular marker for discriminating purple color of Perilla leaf and uses thereof
KR102335934B1 (en) SNP marker set for scanning genotypic composition in each chromosome of Perilla and uses thereof
KR102572418B1 (en) Single nucleotide polymorphism (SNP) marker composition for predicting or diagnosing onion gray mold resistance trait and method for prediction or diagnosis using the same
KR102613521B1 (en) Molecular marker for discriminating Sinano Gold apple and its bud mutation cultivar and use thereof
KR102530346B1 (en) Genetic maker for parentage and thereof in Stichopus japonicus