KR20230162147A - 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 - Google Patents
영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 Download PDFInfo
- Publication number
- KR20230162147A KR20230162147A KR1020237039925A KR20237039925A KR20230162147A KR 20230162147 A KR20230162147 A KR 20230162147A KR 1020237039925 A KR1020237039925 A KR 1020237039925A KR 20237039925 A KR20237039925 A KR 20237039925A KR 20230162147 A KR20230162147 A KR 20230162147A
- Authority
- KR
- South Korea
- Prior art keywords
- coding unit
- block
- current
- image
- chroma
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 132
- 241000023320 Luma <angiosperm> Species 0.000 claims description 113
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 claims description 113
- 238000005192 partition Methods 0.000 claims description 66
- 230000011218 segmentation Effects 0.000 abstract description 70
- 230000008569 process Effects 0.000 description 56
- 238000010586 diagram Methods 0.000 description 19
- 230000009466 transformation Effects 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000013139 quantization Methods 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 4
- 238000011426 transformation method Methods 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 3
- 238000000638 solvent extraction Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/119—Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/186—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Physics & Mathematics (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
Abstract
현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 크로마 영상 내 복수의 부호화 단위를 결정하고, 크로마 영상 내 복수의 부호화 단위를 기초로 현재 영상을 복호화하는 단계를 포함하는 영상 복호화 방법이 개시된다. 이때, 크로마 영상 내 복수의 부호화 단위를 결정하는 단계는, 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함할 수 있다.
Description
일 실시예에 따른 방법 및 장치는 영상에 포함되는 다양한 형태의 부호화 단위를 이용하여, 영상을 부호화 또는 복호화 할 수 있다. 일 실시예에 따른 방법 및 장치는 크로마 영상을 계층적으로 분할하여 적어도 하나의 부호화 단위를 결정하고, 적어도 하나의 부호화 단위를 이용하여 크로마 영상을 부호화 또는 복호화할 수 있다.
고해상도 또는 고화질 영상 컨텐트를 재생, 저장할 수 있는 하드웨어의 개발 및 보급에 따라, 고해상도 또는 고화질 영상 컨텐트를 효과적으로 부호화 또는 복호화 하는 코덱(codec)의 필요성이 증대하고 있다. 부호화된 영상 컨텐트는 복호화됨으로써 재생될 수 있다. 최근에는 이러한 고해상도 또는 고화질 영상 컨텐트를 효과적으로 압축하기 위한 방법들이 실시되고 있다. 예를 들면, 부호화 하려는 영상을 임의적 방법으로 처리하는 과정을 통한 효율적 영상 압축 방법이 실시되고 있다.
영상을 압축하기 위하여 다양한 데이터 단위가 이용될 수 있으며 이러한 데이터 단위들 간에 포함관계가 존재할 수 있다. 이러한 영상 압축에 이용되는 데이터 단위의 크기를 결정하기 위해 다양한 방법에 의해 데이터 단위가 분할될 수 있으며 영상의 특성에 따라 최적화된 데이터 단위가 결정됨으로써 영상의 부호화 또는 복호화가 수행될 수 있다.
본 개시의 일 실시예에 따른 영상 복호화 방법은 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 상기 루마 영상을 계층적으로 분할하여 상기 루마 영상 내 복수의 부호화 단위를 결정하는 단계; 상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 상기 크로마 영상을 계층적으로 분할하여 상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계; 및 상기 결정된 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 상기 현재 영상을 복호화하는 단계를 포함하고, 상기 분할 형태 모드는 블록의 분할 방향, 및 분할 타입 중 적어도 하나에 기초한 모드이고, 상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계는, 상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 상기 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함하는 것을 특징으로 한다.
본 개시의 일 실시예에 따른 영상 복호화 장치는 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 상기 루마 영상을 계층적으로 분할하여 상기 루마 영상 내 복수의 부호화 단위를 결정하고, 상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 상기 크로마 영상을 계층적으로 분할하여 상기 크로마 영상 내 복수의 부호화 단위를 결정하고, 상기 결정된 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 상기 현재 영상을 복호화하는 적어도 하나의 프로세서를 포함하고, 상기 분할 형태 모드는 블록의 분할 방향, 및 분할 타입 중 적어도 하나에 기초한 모드이고, 상기 적어도 하나의 프로세서가 상기 크로마 영상 내 복수의 부호화 단위를 결정할 때, 상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 상기 적어도 하나의 프로세서가 상기 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 것을 특징으로 한다.
본 개시의 일 실시예에 따른 영상 복호화 방법은 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 루마 영상을 계층적으로 분할하여 상기 루마 영상 내 복수의 부호화 단위를 결정하는 단계; 상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계; 및 상기 결정된 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 상기 현재 영상을 부호화하는 단계를 포함하고,
상기 분할 형태 모드는 블록의 분할 방향, 및 분할 타입 중 적어도 하나에 기초한 모드이고,
상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계는,
상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 상기 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함하는 것을 특징으로 한다.
본 개시의 일 실시예에 따른 영상 부호화 방법 또는 복호화 방법에 대한 컴퓨터 프로그램은 컴퓨터로 판독 가능한 기록매체에 기록될 수 있다.
도 1a는 다양한 실시예에 따른 영상 복호화 장치의 블록도를 도시한다.
도 1b는 다양한 실시예에 따른 영상 복호화 방법의 흐름도를 도시한다.
도 1c는 다양한 실시예에 따른 영상 복호화부의 블록도를 도시한다.
도 2a는 다양한 실시예에 따른 영상 부호화 장치의 블록도를 도시한다.
도 2b는 다양한 실시예에 따른 영상 부호화 방법의 흐름도를 도시한다.
도 2c는 다양한 실시예에 따른 영상 복호화부의 블록도를 도시한다.
도 3은 일 실시예에 따라 영상 복호화 장치가 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
도 4는 일 실시예에 따라 영상 복호화 장치가 비-정사각형의 형태인 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
도 5는 일 실시예에 따라 영상 복호화 장치가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 부호화 단위를 분할하는 과정을 도시한다.
도 6은 일 실시예에 따라 영상 복호화 장치가 홀수개의 부호화 단위들 중 소정의 부호화 단위를 결정하기 위한 방법을 도시한다.
도 7은 일 실시예에 따라 영상 복호화 장치가 현재 부호화 단위를 분할하여 복수개의 부호화 단위들을 결정하는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
도 8은 일 실시예에 따라 영상 복호화 장치가 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것임을 결정하는 과정을 도시한다.
도 9는 일 실시예에 따라 영상 복호화 장치가 제1 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
도 10은 일 실시예에 따라 영상 복호화 장치가 제1 부호화 단위가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
도 11은 일 실시예에 따라 분할 형태 모드에 대한 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 영상 복호화 장치가 정사각형 형태의 부호화 단위를 분할하는 과정을 도시한다.
도 12는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
도 13은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
도 14은 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
도 15는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
도 16은 일 실시예에 따라 픽쳐에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
도 17a 내지 17b은 다양한 실시예에 따라, 분할 트리 타입이 싱글 트리인 경우, 일정 크기 이하의 크로마 블록으로의 분할을 허용하지 않는 방법을 설명하기 위한 도면이다.
도 18은 일 실시예에 따라, 분할 트리 타입이 듀얼 트리인 경우, 일정 크기 이하의 크로마 블록으로의 분할을 허용하지 않는 방법을 설명하기 위한 도면이다.
도 19는 일 실시예에 따라 픽처의 경계에 놓인 블록을 픽처 경계의 방향에 기초한 분할 형태 모드를 이용하여 분할하는 방법을 설명하기 위한 도면이다.
도 20a 내지 20b는 일 실시예에 따라 허용하는 바이너리 분할 뎁스를 적용하여 픽처의 경계에 놓인 블록을 바이너리 분할하는 경우에 최소 크기의 블록이 나오는지 여부에 기초하여 픽처의 경계에 놓인 블록을 분할하는 방법을 설명하기 위한 도면이다.
도 1b는 다양한 실시예에 따른 영상 복호화 방법의 흐름도를 도시한다.
도 1c는 다양한 실시예에 따른 영상 복호화부의 블록도를 도시한다.
도 2a는 다양한 실시예에 따른 영상 부호화 장치의 블록도를 도시한다.
도 2b는 다양한 실시예에 따른 영상 부호화 방법의 흐름도를 도시한다.
도 2c는 다양한 실시예에 따른 영상 복호화부의 블록도를 도시한다.
도 3은 일 실시예에 따라 영상 복호화 장치가 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
도 4는 일 실시예에 따라 영상 복호화 장치가 비-정사각형의 형태인 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
도 5는 일 실시예에 따라 영상 복호화 장치가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 부호화 단위를 분할하는 과정을 도시한다.
도 6은 일 실시예에 따라 영상 복호화 장치가 홀수개의 부호화 단위들 중 소정의 부호화 단위를 결정하기 위한 방법을 도시한다.
도 7은 일 실시예에 따라 영상 복호화 장치가 현재 부호화 단위를 분할하여 복수개의 부호화 단위들을 결정하는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
도 8은 일 실시예에 따라 영상 복호화 장치가 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것임을 결정하는 과정을 도시한다.
도 9는 일 실시예에 따라 영상 복호화 장치가 제1 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
도 10은 일 실시예에 따라 영상 복호화 장치가 제1 부호화 단위가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
도 11은 일 실시예에 따라 분할 형태 모드에 대한 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 영상 복호화 장치가 정사각형 형태의 부호화 단위를 분할하는 과정을 도시한다.
도 12는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
도 13은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
도 14은 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
도 15는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
도 16은 일 실시예에 따라 픽쳐에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
도 17a 내지 17b은 다양한 실시예에 따라, 분할 트리 타입이 싱글 트리인 경우, 일정 크기 이하의 크로마 블록으로의 분할을 허용하지 않는 방법을 설명하기 위한 도면이다.
도 18은 일 실시예에 따라, 분할 트리 타입이 듀얼 트리인 경우, 일정 크기 이하의 크로마 블록으로의 분할을 허용하지 않는 방법을 설명하기 위한 도면이다.
도 19는 일 실시예에 따라 픽처의 경계에 놓인 블록을 픽처 경계의 방향에 기초한 분할 형태 모드를 이용하여 분할하는 방법을 설명하기 위한 도면이다.
도 20a 내지 20b는 일 실시예에 따라 허용하는 바이너리 분할 뎁스를 적용하여 픽처의 경계에 놓인 블록을 바이너리 분할하는 경우에 최소 크기의 블록이 나오는지 여부에 기초하여 픽처의 경계에 놓인 블록을 분할하는 방법을 설명하기 위한 도면이다.
발명의 실시를 위한 최선의 형태
본 개시의 일 실시예에 따른 영상 복호화 방법은 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 상기 루마 영상을 계층적으로 분할하여 상기 루마 영상 내 복수의 부호화 단위를 결정하는 단계; 상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 상기 크로마 영상을 계층적으로 분할하여 상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계; 및 상기 결정된 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 상기 현재 영상을 복호화하는 단계를 포함하고, 상기 분할 형태 모드는 블록의 분할 방향, 및 분할 타입 중 적어도 하나에 기초한 모드이고,
상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계는,
상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 상기 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함하는 것을 특징으로 한다.
상기 분할 타입은 바이너리 분할(binary split), 트라이 분할(tri split), 쿼드 분할(quad split) 중 하나를 나타낼 수 있다.
상기 소정의 크기는 4x2 및 2x4 및 2x2 중 하나일 수 있다.
상기 소정의 넓이는 8 및 4 중 하나일 수 있다.
상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 상기 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계는, 상기 현재 크로마 블록의 크기 또는 넓이 및 상기 현재 크로마 블록의 분할 형태 모드에 기초한 조건을 만족하는지 여부에 따라, 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은지 여부를 결정하는 단계; 및 상기 결정의 결과에 따라, 상기 현재 크로마 블록의 분할 형태 모드에 기초한 상기 현재 크로마 블록의 분할을 허용하지 않는다고 결정하고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함할 수 있다.
상기 현재 크로마 블록의 크기 또는 넓이, 및 상기 현재 크로마 블록의 분할 형태 모드에 기초한 조건은, 상기 현재 크로마 블록의 분할 타입이 쿼드 분할임을 나타내는 경우, 상기 현재 크로마 블록의 너비(width) 또는 높이(height)가 4보다 작거나 같은지에 관한 조건일 수 있다.
상기 현재 크로마 블록의 크기 또는 넓이, 및 상기 현재 크로마 블록의 분할 형태 모드에 기초한 조건은, 상기 현재 크로마 블록의 분할 타입이 바이너리 분할임을 나타내는 경우, 상기 현재 크로마 블록의 넓이가 16보다 작거나 같은지에 관한 조건일 수 있다.
상기 현재 크로마 블록의 크기 또는 넓이, 및 상기 현재 크로마 블록의 분할 형태 모드에 기초한 조건은,
상기 현재 크로마 블록의 분할 타입이 트라이 분할임을 나타내는 경우, 상기 현재 크로마 블록의 넓이가 32보다 작거나 같은지에 관한 조건일 수 있다.
상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드는 상기 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드와 독립적일 수 있다.
상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드는 상기 크로마 영상 내 블록들에 대응하는 현재 영상의 루마 영상 내 대응 블록들의 분할 형태 모드에 종속적이고, 상기 크로마 영상 내 블록의 크기는 상기 현재 영상의 크로마 서브 샘플링 방식(chroma sub sampling format) 및 상기 루마 영상 내 대응 블록의 크기에 기초하여 결정될 수 있다.
상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상의 현재 크로마 블록을 분할하여 생성될 복수의 블록 중 하나의 블록의 크기가 2xN(N은 2보다 크거나 같은 정수) 또는 Nx2보다 작거나 같은 경우, 상기 현재 크로마 블록의 분할 형태 모드에 기초한 상기 현재 크로마 블록의 분할을 허용하지 않는다고 결정하고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함할 수 있다.
상기 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 상기 루마 영상을 계층적으로 분할하여 상기 루마 영상 내 복수의 부호화 단위를 결정하는 단계는, 루마 영상에 포함된 현재 루마 블록이 픽처의 오른쪽 경계 상에 위치하는 경우, 바이너리 분할 및 쿼드 분할 중 하나의 분할 타입을 나타내는 플래그를 비트스트림으로부터 획득하는 단계; 및 상기 획득된 플래그를 기초로 상기 현재 루마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함할 수 있다.
본 개시의 일 실시예에 따른 영상 복호화 장치는 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 상기 루마 영상을 계층적으로 분할하여 상기 루마 영상 내 복수의 부호화 단위를 결정하고, 상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 상기 크로마 영상을 계층적으로 분할하여 상기 크로마 영상 내 복수의 부호화 단위를 결정하고, 상기 결정된 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 상기 현재 영상을 복호화하는 적어도 하나의 프로세서를 포함하고, 상기 분할 형태 모드는 블록의 분할 방향, 및 분할 타입 중 적어도 하나에 기초한 모드이고, 상기 적어도 하나의 프로세서가 상기 크로마 영상 내 복수의 부호화 단위를 결정할 때, 상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 상기 적어도 하나의 프로세서가 상기 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정할 수 있다.
본 개시의 일 실시예에 따른 영상 부호화 방법은 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 루마 영상을 계층적으로 분할하여 상기 루마 영상 내 복수의 부호화 단위를 결정하는 단계; 상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계; 및 상기 결정된 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 상기 현재 영상을 부호화하는 단계를 포함하고, 상기 분할 형태 모드는 블록의 분할 방향, 및 분할 타입 중 적어도 하나에 기초한 모드이고, 상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계는, 상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 상기 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함할 수 있다.
본 개시의 일 실시예에 따른 영상 부호화 방법 또는 복호화 방법에 대한 컴퓨터 프로그램은 컴퓨터로 판독 가능한 기록매체에 기록될 수 있다.
발명의 실시를 위한 형태
개시된 실시예의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것일 뿐이다.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 개시된 실시예에 대해 구체적으로 설명하기로 한다.
본 명세서에서 사용되는 용어는 본 개시에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 관련 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 개시에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 개시의 전반에 걸친 내용을 토대로 정의되어야 한다.
본 명세서에서의 단수의 표현은 문맥상 명백하게 단수인 것으로 특정하지 않는 한, 복수의 표현을 포함한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
또한, 명세서에서 사용되는 "부"라는 용어는 소프트웨어 또는 하드웨어 구성요소를 의미하며, "부"는 어떤 역할들을 수행한다. 그렇지만 "부"는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. "부"는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 "부"는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 "부"들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 "부"들로 결합되거나 추가적인 구성요소들과 "부"들로 더 분리될 수 있다.
본 개시의 일 실시예에 따르면 "부"는 프로세서 및 메모리로 구현될 수 있다. 용어 "프로세서" 는 범용 프로세서, 중앙 처리 장치 (CPU), 마이크로프로세서, 디지털 신호 프로세서 (DSP), 제어기, 마이크로제어기, 상태 머신, 및 등을 포함하도록 넓게 해석되어야 한다. 몇몇 환경에서는, "프로세서" 는 주문형 반도체 (ASIC), 프로그램가능 로직 디바이스 (PLD), 필드 프로그램가능 게이트 어레이 (FPGA), 등을 지칭할 수도 있다. 용어 "프로세서" 는, 예를 들어, DSP 와 마이크로프로세서의 조합, 복수의 마이크로프로세서들의 조합, DSP 코어와 결합한 하나 이상의 마이크로프로세서들의 조합, 또는 임의의 다른 그러한 구성들의 조합과 같은 처리 디바이스들의 조합을 지칭할 수도 있다.
용어 "메모리" 는 전자 정보를 저장 가능한 임의의 전자 컴포넌트를 포함하도록 넓게 해석되어야 한다. 용어 메모리는 임의 액세스 메모리 (RAM), 판독-전용 메모리 (ROM), 비-휘발성 임의 액세스 메모리 (NVRAM), 프로그램가능 판독-전용 메모리 (PROM), 소거-프로그램가능 판독 전용 메모리 (EPROM), 전기적으로 소거가능 PROM (EEPROM), 플래쉬 메모리, 자기 또는 광학 데이터 저장장치, 레지스터들, 등과 같은 프로세서-판독가능 매체의 다양한 유형들을 지칭할 수도 있다. 프로세서가 메모리에 메모리로부터 정보를 판독하고/하거나 메모리에 정보를 기록할 수 있다면 메모리는 프로세서와 전자 통신 상태에 있다고 불린다. 프로세서에 집적된 메모리는 프로세서와 전자 통신 상태에 있다.
이하, "영상"은 비디오의 정지영상와 같은 정적 이미지이거나 동영상, 즉 비디오 그 자체와 같은 동적 이미지를 나타낼 수 있다.
이하 "샘플"은, 영상의 샘플링 위치에 할당된 데이터로서 프로세싱 대상이 되는 데이터를 의미한다. 예를 들어, 공간영역의 영상에서 픽셀값, 변환 영역 상의 변환 계수들이 샘플들일 수 있다. 이러한 적어도 하나의 샘플들을 포함하는 단위를 블록이라고 정의할 수 있다.
*아래에서는 첨부한 도면을 참고하여 실시예에 대하여 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그리고 도면에서 본 개시를을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략한다.
이하 도 1 내지 도 20을 참조하여 다양한 실시예에 따라 영상 부호화 장치 및 영상 복호화 장치, 영상 부호화 방법 및 영상 복호화 방법이 상술된다. 도 3 내지 도 16을 참조하여 다양한 실시예에 따라 영상의 데이터 단위를 결정하는 방법이 설명되고, 도 1, 도 2 및, 도 17 내지 도 20를 참조하여 다양한 실시예에 따라 다양한 형태의 부호화 단위에 기초하여 영상을 부호화 또는 복호화하기 위한 영상 부호화 장치 영상 복호화 장치, 영상 부호화 방법 및 영상 복호화 방법이 설명된다.
이하 도 1 및 도 2를 참조하여 본 개시의 일 실시예에 따라 다양한 형태의 부호화 단위에 기초하여 영상을 부호화 또는 복호화하기 위한 부호화/복호화 방법 및 장치가 상술된다.
도 1a는 다양한 실시예에 따른 영상 복호화 장치의 블록도를 도시한다.
다양한 실시예에 따른 영상 복호화 장치(100)는 부호화 단위 결정부(105) 및 영상 복호화부(110)를 포함할 수 있다. 부호화 단위 결정부(105) 및 영상 복호화부(110)는 적어도 하나의 프로세서를 포함할 수 있다. 또한, 부호화 단위 결정부(105) 및 영상 복호화부(110)는 적어도 하나의 프로세서가 수행할 명령어들을 저장하는 메모리를 포함할 수 있다. 영상 복호화부(110)는 부호화 단위 결정부(105)와 별도의 하드웨어로 구현되거나, 부호화 단위 결정부(105)를 포함할 수 있다.
부호화 단위 결정부(105)는 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 루마 영상을 계층적으로 분할하여 루마 영상 내 복수의 부호화 단위를 결정할 수 있다.
부호화 단위 결정부(105)는 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 크로마 영상 내 복수의 부호화 단위를 결정할 수 있다.
부호화 단위 결정부(105)는 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 수 있는 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은지 여부를 결정할 수 있다. 현재 크로마 블록의 분할 형태 모드는 블록의 분할 방향, 및 분할 타입 중 적어도 하나에 기초한 모드일 수 있다.
부호화 단위 결정부(105)는 상기 결정의 결과에 따라, 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않는다고 결정할 수 있다.
부호화 단위 결정부(105)는 허용하지 않는다고 결정된 분할 형태 모드를 제외한 나머지 허용하는 현재 블록의 분할 형태 모드 중 하나의 분할 형태 모드에 기초하여 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정할 수 있다. 부호화 단위 결정부(105)는 허용하는 현재 블록의 분할 형태 모드가 존재하지 않는 경우, 더 이상 분할하지 않고, 현재 크로마 블록을 부호화 단위로 결정할 수 있다.
부호화 단위 결정부(105)는 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 수 있는 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같다고 결정한 경우, 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않는다고 결정할 수 있다. 이때, 소정의 크기는 4x2, 2x4 및 2x2 중 하나일 수 있다. 또한, 소정의 넓이는 8 및 4 중 하나일 수 있다.
부호화 단위 결정부(105)는 현재 크로마 블록의 크기 또는 넓이 및 현재 크로마 블록의 분할 형태 모드에 기초한 조건을 만족하는지 여부에 따라, 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 수 있는 복수의 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은지 여부를 결정할 수 있다. 이때, 현재 크로마 블록의 크기 또는 넓이 및 현재 블록의 분할 형태 모드에 기초한 조건은 현재 크로마 블록의 분할 타입이 쿼드 분할임을 나타내는 경우, 현재 크로마 블록의 너비 또는 높이가 4보다 작거나 같은지 여부에 대한 조건일 수 있다. 부호화 단위 결정부(105)는 현재 크로마 블록의 분할 타입이 쿼드 분할을 나타내는 경우, 현재 크로마 블록의 크기 또는 너비가 4보다 작거나 같다면, 쿼드 분할에 기초한 분할을 허용하지 않는다고 결정할 수 있다. 즉, 현재 크로마 블록의 높이 또는 너비가 4보다 작거나 같은 경우에 현재 크로마 블록을 쿼드 분할하여 생성된 복수의 크로마 블록 중 하나의 크로마 블록의 높이 또는 너비는 2보다 작거나 같을 수 있다. 따라서, 현재 크로마 블록을 쿼드 분할하여 생성된 복수의 크로마 블록 중 하나의 크로마 블록의 크기는 2x2,4x2,2x4(또는 그보다 작은 크기)일 수 있고, 이러한 블록의 크기를 부호화 단위로 허용하여 부호화하는 경우, 처리량(thoughput)이 감소될 수 있기 때문에 처리량을 향상시키기 위해 현재 블록을 쿼드 분할하는 것을 허용하지 않는다고 결정할 수 있다.
부호화 단위 결정부(105)는 쿼드 분할을 제외한 허용하는 다른 분할 타입에 기초하여 현재 크로마 블록을 분할할 수 있다. 부호화 단위 결정부(105)는 현재 크로마 블록에서 허용하는 분할 타입이 없다면, 더 이상 분할하지 않고 현재 크로마 블록을 부호화 단위로 결정할 수 있다.
현재 크로마 블록의 크기 또는 넓이 및 현재 블록의 분할 형태 모드에 기초한 조건은 현재 크로마 블록의 분할 타입이 바이너리 분할임을 나타내는 경우, 현재 크로마 블록의 넓이가 16보다 작거나 같은지 여부에 대한 조건일 수 있다. 부호화 단위 결정부(105)는 현재 크로마 블록의 분할 타입이 바이너리 분할을 나타내는 경우, 현재 크로마 블록의 넓이가 16보다 작거나 같다면, 바이너리 분할에 기초한 분할을 허용하지 않는다고 결정할 수 있다. 즉, 현재 크로마 블록의 넓이가 16보다 작거나 같은 경우(예를 들어, 현재 크로마 블록의 크기가 2x8, 8x2, 또는 4x4보다 작거나 같은 경우)에 현재 크로마 블록을 바이너리 분할하여 생성된 복수의 크로마 블록 중 하나의 크로마 블록의 크기는 2x4,4x2보다 작거나 같을 수 있다. 이러한 블록의 크기를 부호화 단위로 허용하여 부호화하는 경우, 처리량(thoughput)이 감소될 수 있기 때문에, 처리량을 향상시키기 위해 현재 블록을 바이너리 분할하는 것을 허용하지 않는다고 결정할 수 있다. 부호화 단위 결정부(105)는 바이너리 분할을 제외한 허용하는 다른 분할 타입에 기초하여 현재 크로마 블록을 분할할 수 있다. 부호화 단위 결정부(105)는 현재 크로마 블록에서 허용하는 분할 타입이 없다면, 더 이상 분할하지 않고 현재 크로마 블록을 부호화 단위로 결정할 수 있다.
현재 크로마 블록의 크기 또는 넓이 및 현재 블록의 분할 형태 모드에 기초한 조건은 현재 크로마 블록의 분할 타입이 트라이 분할(혹은 트리플 분할이라 함)임을 나타내는 경우, 현재 크로마 블록의 넓이가 32보다 작거나 같은지 여부에 대한 조건일 수 있다. 부호화 단위 결정부(105)는 현재 크로마 블록의 분할 타입이 트라이 분할을 나타내는 경우, 현재 크로마 블록의 넓이가 32보다 작거나 같다면, 바이너리 분할에 기초한 분할을 허용하지 않는다고 결정할 수 있다. 즉, 현재 크로마 블록의 넓이가 32보다 작거나 같은 경우(예를 들어, 현재 크로마 블록의 크기가 4x8, 8x4, 2x16, 16x2보다 작거나 같은 경우)에 현재 크로마 블록을 트라이 분할하여 생성된 복수의 크로마 블록 중 하나의 크로마 블록의 크기는 2x4,4x2보다 작거나 같을 수 있다. 이러한 블록의 크기를 부호화 단위로 허용하여 부호화하는 경우, 처리량(thoughput)이 감소될 수 있기 때문에 처리량을 향상시키기 위해 현재 블록을 트라이 분할하는 것을 허용하지 않는다고 결정할 수 있다. 부호화 단위 결정부(105)는 트라이 분할을 제외한 허용하는 다른 분할 타입에 기초하여 현재 크로마 블록을 분할할 수 있다. 부호화 단위 결정부(105)는 현재 크로마 블록에서 허용하는 분할 타입이 없다면, 더 이상 분할하지 않고 현재 크로마 블록을 부호화 단위로 결정할 수 있다.
현재 영상의 크로마 영상 내 블록들의 분할 형태 모드는 상기 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드와 독립적일 수 있으나, 이에 제한되지 않고, 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드는 크로마 영상 내 블록들에 대응하는 현재 영상의 루마 영상 내 대응 블록들의 분할 형태 모드에 종속적일 수 있다.
*즉, 부호화 단위 결정부(105)는 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 루마 영상을 계층적으로 분할하여 루마 영상 내 복수의 부호화 단위를 결정하고, 루마 영상에 포함된 블록들의 분할 형태 모드와 동일한 크로마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 크로마 영상 내 복수의 부호화 단위를 결정할 수 있다. 이때, 부호화 단위 결정부(105)는 현재 영상의 크로마 서브 샘플링 방식 및 루마 영상의 대응 블록의 크기에 기초하여 크로마 영상 내 블록의 크기를 결정할 수 있다. 예를 들어, 크로마 서브 샘플링 방식이 YUV 4:2:0 이고, 루마 영상의 대응 블록의 크기가 16x16이라면, 크로마 영상 내 블록의 크기는 8x8로 결정될 수 있다.
부호화 단위 결정부(105)는 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 크로마 영상의 현재 크로마 블록으로부터 분할하여 생성된 복수의 블록 중 하나의 블록의 크기가 2xN(N은 2보다 크거나 같은 정수) 또는 Nx2보다 작거나 같은 경우, 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않는다고 결정할 수 있다. 부호화 단위 결정부(105)는 허용하지 않는 분할 타입을 제외한 나머지 허용 가능한 분할 타입에 기초하여 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정할 수 있다.
영상 복호화부(110)는 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 현재 영상을 복호화할 수 있다.
한편, 각 인터 슬라이스 또는 픽처에서 분할된 각 루마 블록은 다른 예측 모드를 가질 수 있다. 예를 들어, 각 루마 블록은 인터 또는 인트라 예측 모드를 가질 수 있다. 이 경우, 영상 복호화 장치(100)는 대응하는 크로마 블록의 예측 모드를 다음과 같이 결정할 수 있다. 영상 복호화 장치(100)는 현재 슬라이스 또는 픽처가 인터 슬라이스 또는 픽처인 경우, 루마 블록의 넓이 중 인트라 예측 모드를 가지는 루마 블록의 넓이의 비율이 소정의 값보다 크거나 같다면, 크로마 블록의 예측 모드를 인트라 예측 모드로 결정할 수 있다.
영상 복호화 장치(100)는 현재 슬라이스 또는 픽처가 인터 슬라이스 또는 픽처인 경우, 루마 블록의 넓이 중 인터 예측 모드를 가지는 루마 블록의 넓이의 비율이 소정의 값보다 크거나 같다면, 크로마 블록의 예측 모드를 인터 예측 모드로 결정할 수 있다.
영상 복호화 장치(100)는 특정 크기의 루마 블록이 분할되는 경우, 대응하는 크로마 블록의 예측 모드에 관한 정보를 비트스트림으로부터 획득할 수 있다.
영상 복호화 장치(100)는 크로마 블록의 특정 위치에 대응하는 루마 대응 블록의 예측 모드를 크로마 블록의 예측 모드로 결정할 수 있다. 예를 들어 특정 위치는 좌상측 위치, 중심 위치, 좌하측 위치, 상측 위치, 우하측 위치 등의 위치일 수 있다. 이때, 특정 위치는 미리 정의된 위치일 수 있으나, 이에 제한되지 않고, 영상 복호화 장치(100)는 별도의 비트스트림으로부터 특정 위치에 대한 정보를 획득하고, 획득된 정보를 기초로 특정 위치를 결정할 수 있다.
영상 복호화 장치(100)는 처리량을 향상시키기 위해 현재 블록의 크기가 특정 크기보다 작거나 같은 경우이거나, 현재 블록의 넓이가 특정 값보다 작거나 같은 경우 하기와 같은 동작을 수행할 수 있다.
영상 복호화 장치(100)는 DCT(Discrete Cosine Transform)과 같은 변환 방법이 아닌 다른 변환 방법을 이용하여 현재 블록을 역변환할 수 있다. 예를 들어, 영상 복호화부(105)는 현재 블록의 크기가 4x4보다 작은 경우, 하마다드 변환(hadamard transform)을 이용하여 현재 블록을 역변환할 수 있다.
영상 복호화 장치(100)는 현재 블록에 대한 변환 스킵 플래그(transform skip flag)의 값을 항상 1로 설정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 현재 블록에 대한 변환 스킵 플래그를 비트스트림으로부터 획득할 수 있고, 비트스트림으로부터 획득된 변환 스킵 플래그의 값을 기초로 변환 스킵 플래그의 값을 설정할 수 있으나, 현재 블록의 크기가 특정 크기보다 작거나 같은 경우이거나, 현재 블록의 넓이가 특정 값보다 작거나 같은 경우에는, 비트스트림으로부터의 변환 스킵 플래그를 획득하지 않고 현재 블록에 대한 변환 스킵 플래그의 값을 1로 설정할 수 있다.
변환 스킵 플래그는 변환이 이용되는지를 나타내는 플래그로, 그 값이 0인 경우, 영상 복호화 장치(100)는 역변환 동작을 수행하지 않고, 역양자화된 블록을 이용하여 현재 블록을 복원할 수 있고, 그 값이 1인 경우, 영상 복호화 장치(100)는 역양자화된 블록에 대해 역변환 동작을 수행하여 역변환된 블록을 생성하고, 역변환된 블록을 이용하여 현재 블록을 복원할 수 있다.
또한 영상 복호화 장치(100)는 블록의 크기가 특정 크기 또는 넓이보다 작거나 같은 경우 블록의 분할을 허용하지 않는다고 결정할 수 있다. 예를 들어, 현재 블록의 크기가 8x8인 경우, 영상 복호화 장치(100)는 현재 블록의 분할을 허용하지 않는다고 결정할 수 있다. 또한, 예를 들어, 현재 블록의 넓이가 64인 경우 영상 복호화 장치(100)는 현재 블록의 분할을 허용하지 않는다고 결정할 수 있다.
영상 복호화 장치(100)는 인터 슬라이스 또는 픽처인 경우, 블록을 분할할 확률이 블록을 스킵할 확률보다 낮을 수 있기 대문에, 하기와 같은 동작을 수행할 수 있다.
영상 복호화 장치(100)는 비트스트림으로부터 현재 블록의 스킵 정보(skip information)를 현재 블록의 분할 정보보다 먼저 획득할 수 있다.
또한, 영상 복호화 장치(100)는 최대 부호화 단위 레벨에서 최대 부호화 단위가 레지듀얼 정보를 갖는지 여부를 나타내는 플래그 정보를 획득하고, 만약 이 플래그의 값이 최대 부호화 단위가 레지듀얼 정보를 갖지 않음을 나타내는 경우, 영상 복호화 장치(100)는 레지듀얼과 관련된 신택스 엘리먼트들을 비트스트림으로부터 파싱하지 않고, 이와 관련된 복호화 프로세스를 생략(skip)한다고 결정할 수 있다.
또한, 영상 복호화 장치(100)는 인터 슬라이스 또는 픽처의 경우, 비대칭적 바이너리 분할을 허용하지 않는다고 결정할 수 있다.
영상 복호화 장치(100)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 비트스트림으로부터 별도의 정보 획득 없이 현재 블록을 분할할 수 있다. 예를 들어, 영상 복호화 장치(100)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 비트스트림으로부터 별도의 정보 획득 없이 현재 블록을 쿼드 분할할 수 있다. 이때, 분할된 블록이 픽처의 경계 상에 위치하지 않을 때까지 재귀적(recursive)으로 쿼드 분할될 수 있다. 다만, 미리 정해진 분할 뎁스가 있는 경우, 해당 뎁스까지 블록이 분할될 수 있다.
한편, 영상 복호화 장치(100)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 비트스트림으로부터 별도의 정보 획득 없이 현재 블록을 분할할 수 있으나, 다양한 분할 타입 및 분할 방향에 기초하여 현재 블록을 분할할 수 있다. 이때, 영상 복호화 장치(100)는 블록의 경계 조건에 기초하여 현재 블록의 분할 타입 및 분할 방향을 결정할 수 있다. 여기서, 분할된 블록이 픽처의 경계 상에 위치하지 않을 때까지 재귀적(recursive)으로 분할될 수 있다. 다만, 미리 정해진 분할 뎁스가 있는 경우, 해당 뎁스까지 블록이 분할될 수 있다.
예를 들어, 영상 복호화 장치(100)는 현재 블록이 픽처의 아래쪽 경계 상에 위치하는 경우, 현재 블록의 분할 방향을 수평 방향으로 결정하고, 분할 타입을 바이너리 분할(또는 트라이 분할)로 결정하고, 현재 블록의 분할 방향 및 분할 타입에 기초하여 현재 블록을 수평 방향으로 바이너리 분할(또는 트라이 분할)할 수 있다.
영상 복호화 장치(100)는 현재 블록이 픽처의 우측 경계 상에 위치하는 경우, 현재 블록의 분할 방향을 수직 방향으로 결정하고, 현재 블록의 분할 타입을 바이너리 분할(또는 트라이 분할)로 결정하고, 현재 블록의 분할 방향 및 분할 타입에 기초하여 현재 블록을 수직 방향으로 바이너리 분할(또는 트라이 분할)할 수 있다.
영상 복호화 장치(100)는 현재 블록이 픽처의 우하측 경계 상에 위치하는 경우, 현재 블록의 분할 타입을 쿼드 분할로 결정하고, 현재 블록의 분할 타입에 기초하여 현재 블록을 쿼드 분할할 수 있다.
허용 가능한 블록의 분할 타입 또는 분할 방향이 다양해짐에 따라 복잡도가 기하급수적으로 증가하게 되었고, 영상 복호화 장치(100)는 복잡도를 감소시키기 위해 다양한 분할 타입 또는 분할 방향 중 일부 분할 타입 또는 분할 방향을 제한할 수 있다.
예를 들어, 영상 복호화 장치(100)는 바이너리 분할의 분할 뎁스를 제한할 수 있다. 영상 복호화 장치(100)는 허용가능한 블록의 비율 또는 허용가능한 블록의 크기를 제한할 수 있다.
영상 복호화 장치(100)는 상기 제한 조건을 만족하는 분할 형태 모드만을 이용하여 비트스트림으로부터의 별도의 정보 획득 없이 블록을 분할할 수 있다.
영상 복호화 장치(100)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 다양한 복수의 블록의 분할 타입 중 일부 분할 타입만을 허용할 수 있다. 예를 들어, 영상 복호화 장치(100)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 다양한 분할 타입 중 쿼드 분할만을 허용할 수 있다.
영상 복호화 장치(100)는 현재 블록에 이용될 수 있는 특정 분할 형태 모드가 없는 경우에 분할된 블록이 그 블록에서 이용될 수 있는 특정 분할 형태 모드를 가질 때까지 현재 블록을 암시 분할할 수 있다.
영상 복호화 장치(100)는 픽처의 경계 상에 위치하는 현재 블록이 레지듀얼을 갖지 않는 경우, 현재 블록을 더 분할하지 않는다고 결정할 수 있다. 이를 가능하게 하기 위해 영상 복호화 장치(100)는 하기와 같은 동작을 수행할 수 있다.
영상 복호화 장치(100)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 현재 블록에 대한 암시 분할(implicit split)을 허용하는지를 나타내는 플래그를 비트스트림으로부터 획득할 수 있다. 영상 복호화 장치(100)는 플래그의 값이 0과 동일한 경우, 현재 블록에 대한 암시 분할을 허용하지 않는다고 결정할 수 있다. 이 경우, 영상 복호화 장치(100)는 비트스트림으로부터 현재 블록의 분할 형태 모드에 관한 정보를 획득하고, 획득된 정보를 기초로 현재 블록의 분할 형태 모드를 결정할 수 있다. 영상 복호화 장치(100)는 플래그의 값이 1과 동일한 경우, 현재 블록에 대한 암시 분할을 허용한다고 결정할 수 있다. 이 경우, 영상 복호화 장치(100)는 현재 블록에 대하여 암시 분할을 수행할 수 있다.
영상 복호화 장치(100)는 현재 블록이 픽처 경계 상에 위치하는 경우, 현재 블록이 레지듀얼을 갖지 않음을 나타내는 플래그를 비트스트림으로부터 획득할 수 있다. 영상 복호화 장치(100)는 플래그의 값이 0과 동일한 경우, 현재 블록에 대하여 암시 분할을 수행할 수 있다. 영상 복호화 장치(100)는 플래그의 값이 1과 동일한 경우, 현재 블록에 대하여 스킵 모드 복호화 프로세스를 수행한다고 결정할 수 있다.
영상 복호화 장치(100)는 현재 최대 부호화 단위가 픽처의 경계 상에 위치하는 경우, 최대 부호화 단위에 대한 암시 분할을 허용하는지 여부를 나타내는 최대 부호화 단위 레벨의 플래그를 비트스트림으로부터 획득할 수 있다.
영상 복호화 장치(100)는 플래그의 값이 0인 경우, 최대 부호화 단위에 대한 암시 분할을 허용하지 않는다고 결정할 수 있다. 영상 복호화 장치(100)는
플래그의 값이 1인 경우, 최대부호화 단위에 대한 암시 분할을 허용한다고 결정하고, 최대 부호화 단위에 대한 암시 분할 프로세스를 수행할 수 있다.
영상 복호화 장치(100)는 현재 최대 부호화 단위가 픽처 경계 상에 위치하는 경우, 현재 최대 부호화 단위가 레지듀얼을 갖지 않음을 나타내는 플래그를 비트스트림으로부터 획득할 수 있다. 영상 복호화 장치(100)는 플래그의 값이 0과 동일한 경우, 현재 최대 부호화 단위에 대하여 암시 분할을 수행할 수 있다. 영상 복호화 장치(100)는 플래그의 값이 1과 동일한 경우, 현재 최대 부호화 단위에 대하여 스킵 모드 복호화 프로세스를 수행한다고 결정할 수 있다.
영상 복호화 장치(100)는 현재 블록이 픽처의 경계에 위치하는 경우, 현재 블록의 분할 형태 모드를 암시적으로 결정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 경계 조건에 기초하여 복수의 특정 분할 형태 모드 중 하나의 분할 형태 모드를 결정할 수 있다. 영상 복호화 장치(100)는 현재 블록이 픽처의 오른쪽 경계 상에 위치하는 경우, 바이너리 분할 및 쿼드 분할 중 하나의 분할 타입을 나타내는 플래그를 비트스트림으로부터 획득할 수 있다.
영상 복호화 장치(100)는 현재 최대 부호화 단위가 픽처 경계 상에 위치하는 경우, 비트스트림으로부터 현재 최대 부호화 단위에 대해 이용되는 분할 형태 모드에 관한 정보를 획득할 수 있다.
영상 복호화 장치(100)는 현재 블록이 픽처 경계 상에 위치하는 경우, 픽처 내 영역의 비율에 기초하여 현재 블록의 분할 형태 모드를 결정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 픽처 내 블록 영역의 높이 및 너비의 비율에 기초하여 현재 블록의 분할 형태 모드를 결정할 수 있다. 만약 현재 블록이 왼쪽 경계 또는 오른쪽 경계 상에 위치하고, 현재 블록의 너비 및 높이의 비율이 N보다 큰 경우, 영상 복호화 장치(100)는 현재 블록의 분할 타입을 쿼드 분할로 결정할 수 있다. 그렇지 않은 경우, 영상 복호화 장치(100)는 현재 블록의 분할 타입을 바이너리 분할로 결정할 수 있다.
영상 복호화 장치(100)는 현재 블록의 너비 및 높이의 비율이 정수 값과 동일하지 않은 경우, 현재 블록의 분할 타입을 쿼드 분할로 결정하거나, 현재 블록의 분할 타입을 바이너리 분할로 결정할 수 있다.
또는, 영상 복호화 장치(100)는 현재 블록이 픽처의 경계 상에 위치하는지 여부에 관계없이, 현재 블록의 분할 형태 모드에 관한 정보를 비트스트림으로부터 항상 획득할 수 있다. 영상 복호화 장치(100)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 픽처의 경계 상에 위치하지 않는 블록들의 컨텍스트와 다른 CABAC(Context-adaptive binary arithmetic coding) 컨텍스트를 할당하여 엔트로피 복호화를 수행한다고 결정할 수 있다. 영상 복호화 장치(100)는 경계 조건에 기초한 CABAC 컨텍스트를 이용하여 엔트로피 복호화를 수행한다고 결정할 수 있다.
도 1b는 다양한 실시예에 따른 영상 복호화 방법의 흐름도를 도시한다.
S105 단계에서, 영상 복호화 장치(100)는 현재 영상의 루마 영상에 포함된 블록의 분할 형태 모드에 기초하여 루마 영상을 계층적으로 분할하여 루마 영상 내 복수의 부호화 단위를 결정할 수 있다. 분할 형태 모드는 블록의 분할 방향 및 분할 타입 중 적어도 하나에 기초한 모드일 수 있다. 분할 타입은 바이너리 분할(binary split), 트라이 분할(tri split), 쿼드 분할 중 적어도 하나를 나타낼 수 있다.
S110 단계에서, 영상 복호화 장치(100)는 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 크로마 영상 내 복수의 부호화 단위를 결정할 수 있다. 영상 복호화 장치(100)는 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 수 있는 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이보다 작거나 같은 경우, 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정할 수 있다.
S115 단계에서, 영상 복호화 장치(100)는 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 현재 영상을 복호화할 수 있다.
도 1c 는 다양한 실시예에 따른 영상 복호화부(6000)의 블록도를 도시한다.
다양한 실시예에 따른 영상 복호화부(6000)는, 영상 복호화 장치(100)의 영상 복호화부(110)에서 영상 데이터를 부호화하는데 거치는 작업들을 수행한다.
도 1c를 참조하면, 엔트로피 복호화부(6150)는 비트스트림(6050)으로부터 복호화 대상인 부호화된 영상 데이터 및 복호화를 위해 필요한 부호화 정보를 파싱한다. 부호화된 영상 데이터는 양자화된 변환계수로서, 역양자화부(6200) 및 역변환부(6250)는 양자화된 변환 계수로부터 레지듀 데이터를 복원한다.
인트라 예측부(6400)는 블록 별로 인트라 예측을 수행한다. 인터 예측부(6350)는 블록 별로 복원 픽처 버퍼(6300)에서 획득된 참조 영상을 이용하여 인터 예측을 수행한다. 인트라 예측부(6400) 또는 인터 예측부(6350)에서 생성된 각 블록에 대한 예측 데이터와 레지듀 데이터가 더해짐으로써 현재 영상(6050)의 블록에 대한 공간 영역의 데이터가 복원되고, 디블로킹부(6450) 및 SAO 수행부(6500)는 복원된 공간 영역의 데이터에 대해 루프 필터링을 수행하여 필터링된 복원 영상(6600)을 출력할 수 있다. 또한, 복원 픽쳐 버퍼(6300)에 저장된 복원 영상들은 참조 영상으로서 출력될 수 있다.
영상 복호화 장치(100)에서 영상 데이터를 복호화하기 위해, 다양한 실시예에 따른 영상 복호화부(6000)의 단계별 작업들이 블록별로 수행될 수 있다.
도 2a는 다양한 실시예에 따른 영상 부호화 장치의 블록도를 도시한다.
다양한 실시예에 따른 영상 부호화 장치(150)는 부호화 단위 결정부(155) 및 영상 부호화부(160)를 포함할 수 있다.
부호화 단위 결정부(155) 및 영상 부호화부(160)는 적어도 하나의 프로세서를 포함할 수 있다. 또한 부호화 단위 결정부(155) 및 영상 부호화부(160)는 적어도 하나의 프로세서가 수행할 명령어들을 저장하는 메모리를 포함할 수 있다. 영상 부호화부(160)는 부호화 단위 결정부(155)와 별도의 하드웨어로 구현되거나, 부호화 단위 결정부(155)를 포함할 수 있다.
부호화 단위 결정부(155)는 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 루마 영상을 계층적으로 분할하여 루마 영상 내 복수의 부호화 단위를 결정할 수 있다.
부호화 단위 결정부(155)는 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 크로마 영상 내 복수의 부호화 단위를 결정할 수 있다. 부호화 단위 결정부(155)는 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 수 있는 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은지 여부를 결정할 수 있다. 부호화 단위 결정부(155)는 상기 결정의 결과에 따라, 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않는다고 결정할 수 있다.
부호화 단위 결정부(155)는 허용하지 않는다고 결정된 분할 형태 모드를 제외한 나머지 허용하는 현재 블록의 분할 형태 모드 중 하나의 분할 형태 모드에 기초하여 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정할 수 있다. 부호화 단위 결정부(155)는 허용하는 현재 블록의 분할 형태 모드가 존재하지 않는 경우, 더 이상 분할하지 않고, 현재 크로마 블록을 부호화 단위로 결정할 수 있다.
부호화 단위 결정부(155)는 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 수 있는 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같다고 결정한 경우, 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않는다고 결정할 수 있다. 이때, 소정의 크기는 4x2, 2x4 및 2x2 중 하나일 수 있다. 또한, 소정의 너비는 8 및 4 중 하나일 수 있다.
부호화 단위 결정부(155)는 현재 크로마 블록의 크기 또는 넓이 및 현재 크로마 블록의 분할 형태 모드에 기초한 조건을 만족하는지 여부에 따라, 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 수 있는 복수의 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은지 여부를 결정할 수 있다. 이때, 현재 크로마 블록의 크기 또는 넓이 및 현재 블록의 분할 형태 모드에 기초한 조건은 현재 크로마 블록의 분할 타입이 쿼드 분할임을 나타내는 경우, 현재 크로마 블록의 너비 또는 높이가 4보다 작거나 같은지 여부에 대한 조건일 수 있다. 부호화 단위 결정부(155)는 현재 크로마 블록의 분할 타입이 쿼드 분할을 나타내는 경우, 현재 크로마 블록의 크기 또는 너비가 4보다 작거나 같다면, 쿼드 분할에 기초한 분할을 허용하지 않는다고 결정할 수 있다. 즉, 현재 크로마 블록의 높이 또는 너비가 4보다 작거나 같은 경우에 현재 크로마 블록을 쿼드 분할하여 생성된 복수의 크로마 블록 중 하나의 크로마 블록의 높이 또는 너비는 2보다 작거나 같을 수 있다. 따라서, 현재 크로마 블록을 쿼드 분할하여 생성된 복수의 크로마 블록 중 하나의 크로마 블록의 크기는 2x2,4x2,2x4(또는 그보다 작은 크기)일 수 있고, 이러한 블록의 크기를 부호화 단위로 허용하여 부호화 또는 복호화하는 경우, 처리량(thoughput)이 감소될 수 있기 때문에 처리량을 향상시키기 위해 현재 블록을 쿼드 분할하는 것을 허용하지 않는다고 결정할 수 있다. 부호화 단위 결정부(155)는 쿼드 분할을 제외한 허용하는 다른 분할 타입에 기초하여 현재 크로마 블록을 분할할 수 있다. 부호화 단위 결정부(155)는 현재 크로마 블록에서 허용하는 분할 타입이 없다면, 더 이상 분할하지 않고 현재 크로마 블록을 부호화 단위로 결정할 수 있다.
현재 크로마 블록의 크기 또는 넓이 및 현재 블록의 분할 형태 모드에 기초한 조건은 현재 크로마 블록의 분할 타입이 바이너리 분할임을 나타내는 경우, 현재 크로마 블록의 넓이가 16보다 작거나 같은지 여부에 대한 조건일 수 있다. 부호화 단위 결정부(155)는 현재 크로마 블록의 분할 타입이 바이너리 분할을 나타내는 경우, 현재 크로마 블록의 넓이가 16보다 작거나 같다면, 바이너리 분할에 기초한 분할을 허용하지 않는다고 결정할 수 있다. 즉, 현재 크로마 블록의 넓이가 16보다 작거나 같은 경우(예를 들어, 현재 크로마 블록의 크기가 2x8, 8x2, 4x4보다 작거나 같은 경우)에 현재 크로마 블록을 바이너리 분할하여 생성된 복수의 크로마 블록 중 하나의 크로마 블록의 크기는 2x4,4x2보다 작거나 같을 수 있다. 이러한 블록의 크기를 부호화 단위로 허용하여 부호화 또는 복호화하는 경우, 처리량(thoughput)이 감소될 수 있기 때문에, 처리량을 향상시키기 위해 현재 블록을 바이너리 분할하는 것을 허용하지 않는다고 결정할 수 있다. 부호화 단위 결정부(155)는 바이너리 분할을 제외한 허용하는 다른 분할 타입에 기초하여 현재 크로마 블록을 분할할 수 있다. 부호화 단위 결정부(155)는 현재 크로마 블록에서 허용하는 분할 타입이 없다면, 더 이상 분할하지 않고 현재 크로마 블록을 부호화 단위로 결정할 수 있다.
현재 크로마 블록의 크기 또는 넓이 및 현재 블록의 분할 형태 모드에 기초한 조건은 현재 크로마 블록의 분할 타입이 트라이 분할임을 나타내는 경우, 현재 크로마 블록의 넓이가 32보다 작거나 같은지 여부에 대한 조건일 수 있다. 부호화 단위 결정부(155)는 현재 크로마 블록의 분할 타입이 트라이 분할을 나타내는 경우, 현재 크로마 블록의 넓이가 32보다 작거나 같다면, 바이너리 분할에 기초한 분할을 허용하지 않는다고 결정할 수 있다. 즉, 현재 크로마 블록의 넓이가 32보다 작거나 같은 경우(예를 들어, 현재 크로마 블록의 크기가 4x8, 8x4, 2x16, 16x2보다 작거나 같은 경우)에 현재 크로마 블록을 트라이 분할하여 생성된 복수의 크로마 블록 중 하나의 크로마 블록의 크기는 2x4,4x2보다 작거나 같을 수 있다. 이러한 블록의 크기를 부호화 단위로 허용하여 부호화 또는 복호화하는 경우, 처리량(thoughput)이 감소될 수 있기 때문에 처리량을 향상시키기 위해 현재 블록을 트라이 분할하는 것을 허용하지 않는다고 결정할 수 있다. 부호화 단위 결정부(155)는 트라이 분할을 제외한 허용하는 다른 분할 타입에 기초하여 현재 크로마 블록을 분할할 수 있다. 부호화 단위 결정부(155)는 현재 크로마 블록에서 허용하는 분할 타입이 없다면, 더 이상 분할하지 않고 현재 크로마 블록을 부호화 단위로 결정할 수 있다.
현재 영상의 크로마 영상 내 블록들의 분할 형태 모드는 상기 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드와 독립적일 수 있으나, 이에 제한되지 않고, 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드는 크로마 영상 내 블록들에 대응하는 현재 영상의 루마 영상 내 대응 블록들의 분할 형태 모드에 종속적일 수 있다.
즉, 부호화 단위 결정부(155)는 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 루마 영상을 계층적으로 분할하여 루마 영상 내 복수의 부호화 단위를 결정하고, 루마 영상에 포함된 블록들의 분할 형태 모드와 동일한 크로마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 크로마 영상 내 복수의 부호화 단위를 결정할 수 있다. 이때, 부호화 단위 결정부(155)는 현재 영상의 크로마 서브 샘플링 방식 및 루마 영상의 대응 블록의 크기에 기초하여 크로마 영상 내 블록의 크기를 결정할 수 있다. 예를 들어, 크로마 서브 샘플링 방식이 YUV 4:2:0 이고, 루마 영상의 대응 블록의 크기가 16x16이라면, 크로마 영상 내 블록의 크기는 8x8로 결정될 수 있다.
부호화 단위 결정부(155)는 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 크로마 영상의 현재 크로마 블록으로부터 분할된 복수의 블록 중 하나의 블록의 크기가 2xN(N은 2보다 크거나 같은 정수) 또는 Nx2보다 작거나 같은 경우, 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않는다고 결정할 수 있다. 부호화 단위 결정부(155)는 허용하지 않는 분할 타입을 제외한 나머지 허용 가능한 분할 타입에 기초하여 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정할 수 있다.
영상 부호화부(160)는 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 현재 영상을 부호화할 수 있다.
각 인터 슬라이스 또는 픽처에서 분할된 각 루마 블록은 다른 예측 모드를 가질 수 있다. 예를 들어, 각 루마 블록은 인터 또는 인트라 예측 모드를 가질 수 있다. 이 경우, 영상 부호화 장치(150)는 대응하는 크로마 블록의 예측 모드를 다음과 같이 결정할 수 있다. 영상 부호화 장치(150)는 현재 슬라이스 또는 픽처가 인터 슬라이스 또는 픽처인 경우, 루마 블록의 넓이 중 인트라 예측 모드를 가지는 루마 블록의 넓이의 비율이 소정의 값보다 크다면, 크로마 블록의 예측 모드를 인트라 예측 모드로 결정할 수 있다.
영상 부호화 장치(150)는 현재 슬라이스 또는 픽처가 인터 슬라이스 또는 픽처인 경우, 루마 블록의 넓이 중 인터 예측 모드를 가지는 루마 블록의 넓이의 비율이 소정의 값보다 크다면, 크로마 블록의 예측 모드를 인터 예측 모드로 결정할 수 있다.
*영상 부호화 장치(150)는 특정 크기의 루마 블록이 분할되는 경우, 대응하는 크로마 블록의 예측 모드에 관한 정보를 부호화하고, 부호화된 크로마 블록의 예측 모드에 관한 정보를 포함하는 비트스트림을 생성할 수 있다.
영상 부호화 장치(150)는 크로마 블록의 특정 위치에 대응하는 루마 대응 블록의 예측 모드를 크로마 블록의 예측 모드로 결정할 수 있다. 예를 들어 특정 위치는 좌상측 위치, 중심 위치, 좌하측 위치, 상측 위치, 우하측 위치 등의 위치일 수 있다. 이때, 특정 위치는 미리 정의된 위치일 수 있으나, 이에 제한되지 않고, 영상 부호화 장치(150)는 특정 위치에 대한 정보를 부호화하고, 부호화된 특정 위치에 대한 정보를 포함하는 비트스트림을 생성할 수 있다.
영상 부호화 장치(150)는 처리량을 향상시키기 위해 현재 블록의 크기가 특정 크기보다 작거나 같은 경우이거나, 현재 블록의 넓이가 특정 값보다 작거나 같은 경우 하기와 같은 동작을 수행할 수 있다.
영상 부호화 장치(150)는 DCT(Discrete Cosine Transform)과 같은 변환 방법이 아닌 다른 변환 방법을 이용하여 현재 블록을 변환할 수 있다. 예를 들어, 영상 부호화 장치(150)는 현재 블록의 크기가 4x4보다 작은 경우, 하마다드 변환(hadamard transform)을 이용하여 현재 블록을 변환할 수 있다.
영상 부호화 장치(150)는 현재 블록에 대한 변환을 생략한다고 결정할 수 있다. 예를 들어, 영상 부호화 장치(150)는 현재 블록에 대한 변환 스킵 플래그를 부호화하고, 부호화된 플래그를 포함하는 비트스트림을 생성할 수 있으나, 현재 블록의 크기가 특정 크기보다 작거나 같은 경우이거나, 현재 블록의 넓이가 특정 값보다 작거나 같은 경우에는, 현재 블록에 대한 변환을 생략한다고 결정하고, 현재 블록에 대한 변환 스킵 플래그를 부호화하지 않을 수 있다.
또한 영상 부호화 장치(150)는 블록의 크기가 특정 크기 또는 넓이보다 작거나 같은 경우 블록의 분할을 허용하지 않는다고 결정할 수 있다. 예를 들어, 현재 블록의 크기가 8x8인 경우, 영상 부호화 장치(150)는 현재 블록의 분할을 허용하지 않는다고 결정할 수 있다. 또한, 예를 들어, 현재 블록의 넓이가 64인 경우 영상 부호화 장치(150)는 현재 블록의 분할을 허용하지 않는다고 결정할 수 있다.
영상 부호화 장치(150)는 현재 슬라이스 또는 픽처가 인터 슬라이스 또는 픽처인 경우, 블록을 분할할 확률이 블록을 스킵할 확률보다 낮을 수 있기 대문에, 하기와 같은 동작을 수행할 수 있다.
영상 부호화 장치(150)는 현재 블록의 스킵 정보를 현재 블록의 분할 정보보다 먼저 부호화할 수 있다.
또한, 영상 부호화 장치(150)는 최대 부호화 단위가 레지듀얼 정보를 갖지 않는다고 결정하는 경우, 레지듀얼과 관련된 신택스 엘리먼트들을 부호화하지 않는다고 결정하고, 최대 부호화 단위가 레지듀얼 정보를 갖지 않음을 나타내는 플래그를 부호화하고, 부호화된 플래그를 포함하는 비트스트림을 생성할 수 있다.
영상 부호화 장치(150)는 현재 슬라이스 또는 픽처가 인터 슬라이스 또는 픽처의 경우, 비대칭적 바이너리 분할을 허용하지 않는다고 결정할 수 있다.
영상 부호화 장치(150)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 현재 블록을 분할할 수 있다. 이때, 영상 부호화 장치(150)는 현재 블록의 분할 형태 모드에 관한 정보를 부호화하지 않을 수 있다.
예를 들어, 영상 부호화 장치(150)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 별도의 분할 형태 모드 정보의 부호화 없이 현재 블록을 쿼드 분할할 수 있다. 이때, 분할된 블록이 픽처의 경계 상에 위치하지 않을 때까지 재귀적(recursive)으로 쿼드 분할될 수 있다. 다만, 미리 정해진 분할 뎁스가 있는 경우, 해당 뎁스까지 블록이 분할될 수 있다.
한편, 영상 부호화 장치(150)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 별도의 현재 블록에 대한 분할 형태 모드 정보 부호화 없이 현재 블록을 분할할 수 있으나, 다양한 분할 타입 및 분할 방향에 기초하여 현재 블록을 분할할 수 있다. 이 경우, 영상 부호화 장치(150)는 블록의 경계 조건에 기초하여 현재 블록의 분할 타입 및 분할 방향을 결정할 수 있다. 이때, 분할된 블록이 픽처의 경계 상에 위치하지 않을 때까지 재귀적(recursive)으로 분할될 수 있다. 다만, 미리 정해진 분할 뎁스가 있는 경우, 해당 뎁스까지 블록이 분할될 수 있다.
예를 들어, 영상 부호화 장치(150)는 현재 블록이 픽처의 아래쪽 경계 상에 위치하는 경우, 현재 블록의 분할 방향을 수평 방향으로 결정하고, 분할 타입을 바이너리 분할로 결정하고, 현재 블록의 분할 방향 및 분할 타입에 기초하여 현재 블록을 수평 방향으로 바이너리 분할할 수 있다.
영상 부호화 장치(150)는 현재 블록이 픽처의 우측 경계 상에 위치하는 경우, 현재 블록의 분할 방향을 수직 방향으로 결정하고, 현재 블록의 분할 타입을 바이너리 분할로 결정하고, 현재 블록의 분할 방향 및 분할 타입에 기초하여 현재 블록을 수직 방향으로 바이너리 분할할 수 있다.
영상 부호화 장치(150)는 현재 블록이 픽처의 우하측 경계 상에 위치하는 경우, 현재 블록의 분할 타입을 쿼드 분할로 결정하고, 현재 블록의 분할 타입에 기초하여 현재 블록을 쿼드 분할할 수 있다.
허용 가능한 블록의 분할 타입 또는 분할 방향이 다양해짐에 따라 복잡도가 기하급수적으로 증가하게 되었고, 영상 부호화 장치(150)는 복잡도를 감소시키기 위해 다양한 분할 타입 또는 분할 방향 중 일부 분할 타입 또는 분할 방향을 제한할 수 있다.
예를 들어, 영상 부호화 장치(150)는 바이너리 분할의 분할 뎁스를 제한할 수 있다. 영상 부호화 장치(150)는 허용가능한 블록의 비율 또는 허용가능한 블록의 크기를 제한할 수 있다.
영상 부호화 장치(150)는 상기 제한 조건을 만족하는 분할 형태 모드만을 이용하여 블록을 분할하고, 별도의 분할 형태 모드에 관한 정보를 부호화하지 않을 수 있다.
영상 부호화 장치(150)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 다양한 복수의 블록의 분할 타입 중 일부 분할 타입만을 허용할 수 있다. 예를 들어, 영상 부호화 장치(150)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 다양한 분할 타입 중 쿼드 분할만을 허용할 수 있다.
영상 부호화 장치(150)는 현재 블록에 이용될 수 있는 특정 분할 형태 모드가 없는 경우에 분할된 블록이 그 블록에서 이용될 수 있는 특정 분할 형태 모드를 가질 때까지 현재 블록을 암시 분할할 수 있다.
영상 부호화 장치(150)는 픽처의 경계 상에 위치하는 현재 블록이 레지듀얼을 갖지 않는 경우, 현재 블록을 더 분할하지 않는다고 결정할 수 있다. 이를 가능하게 하기 위해 영상 부호화 장치(150)는 하기와 같은 동작을 수행할 수 있다.
영상 부호화 장치(150)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 현재 블록에 대한 암시 분할(implicit split)을 허용하는지를 나타내는 플래그를 부호화할 수 있다. 영상 부호화 장치(150)는 현재 블록에 대한 암시 분할을 허용하지 않는다고 결정하는 경우, 플래그의 값을 0으로 부호화할 수 있다. 이 경우, 영상 부호화 장치(150)는 현재 블록의 분할 형태 모드에 관한 정보를 부호화하고, 부호화된 현재 블록의 분할 형태 모드에 관한 정보를 포함하는 비트스트림을 생성할 수 있다.
영상 부호화 장치(150)는 현재 블록에 대한 암시 분할을 허용한다고 결정하는 경우, 플래그의 값을 1로 부호화할 수 있다.
영상 부호화 장치(150)는 픽처 경계 상에 위치하는 경우, 현재 블록이 레지듀얼을 갖지 않음을 나타내는 플래그를 부호화하고, 부호화된 플래그를 포함하는 비트스트림을 생성할 수 있다.
영상 부호화 장치(150)는 현재 블록에 대하여 암시 분할을 수행하는 경우, 플래그의 값을 0으로 부호화할 수 있다. 영상 부호화 장치(150)는 현재 블록에 대하여 스킵 모드 부호화 프로세스를 수행하는 경우, 플래그의 값을 1로 부호화할 수 있다.
영상 부호화 장치(150)는 현재 최대 부호화 단위가 픽처의 경계 상에 위치하는 경우, 최대 부호화 단위에 대한 암시 분할을 허용하는지 여부를 나타내는 최대 부호화 단위 레벨의 플래그를 부호화할 수 있다.
영상 부호화 장치(150)는 최대 부호화 단위에 대한 암시 분할을 허용하지 않는다고 결정하는 경우, 플래그의 값을 0로 부호화할 수 있다.
영상 부호화 장치(150)는 최대부호화 단위에 대한 암시 분할 프로세스를 수행하는 경우, 플래그의 값을 1로 부호화할 수 있다.
영상 부호화 장치(150)는 현재 최대 부호화 단위가 픽처 경계 상에 위치하는 경우, 현재 최대 부호화 단위가 레지듀얼을 갖지 않음을 나타내는 플래그를 부호화할 수 있다. 영상 부호화 장치(150)는 현재 최대 부호화 단위에 대하여 암시 분할을 수행하는 경우, 플래그의 값을 0과 동일하게 부호화할 수 있다. 영상 부호화 장치(150)는 현재 최대 부호화 단위에 대하여 스킵 모드 부호화 프로세스를 수행한다고 결정한 경우, 플래그의 값을 1과 동일하게 부호화할 수 있다.
영상 부호화 장치(150)는 현재 블록이 픽처의 경계에 위치하는 경우, 현재 블록의 분할 형태 모드를 암시적으로 결정할 수 있다. 예를 들어, 영상 부호화 장치(150)는 경계 조건에 기초하여 복수의 특정 분할 형태 모드 중 하나의 분할 형태 모드를 결정할 수 있다. 영상 부호화 장치(150)는 현재 블록이 픽처의 오른쪽 경계 상에 위치하는 경우, 바이너리 분할 및 쿼드 분할 중 하나의 분할 타입을 나타내는 플래그를 부호화할 수 있다.
영상 부호화 장치(150)는 현재 최대 부호화 단위가 픽처 경계 상에 위치하는 경우, 현재 최대 부호화 단위에 대해 이용되는 분할 형태 모드에 관한 정보를 부호화하고, 부호화된 분할 형태 모드에 관한 정보를 포함하는 비트스트림을 생성할 수 있다.
영상 부호화 장치(150)는 현재 블록이 픽처 경계 상에 위치하는 경우, 픽처 내 영역의 비율에 기초하여 현재 블록의 분할 형태 모드를 결정할 수 있다. 예를 들어, 픽처 내 블록 영역의 높이 및 너비의 비율에 기초하여 현재 블록의 분할 형태 모드를 결정할 수 있다. 만약 현재 블록이 왼쪽 경계 또는 오른쪽 경계 상에 위치하고, 현재 블록의 너비 및 높이의 비율이 N보다 큰 경우, 영상 부호화 장치(150)는 현재 블록의 분할 타입을 쿼드 분할로 결정할 수 있다. 그렇지 않은 경우, 영상 부호화 장치(150)는 현재 블록의 분할 타입을 바이너리 분할로 결정할 수 있다.
영상 부호화 장치(150)는 현재 블록의 너비 및 높이의 비율이 정수 값과 동일하지 않은 경우, 현재 블록의 분할 타입을 쿼드 분할로 결정하거나, 현재 블록의 분할 타입을 바이너리 분할로 결정할 수 있다.
또는, 영상 부호화 장치(150)는 현재 블록이 픽처의 경계 상에 위치하는지 여부에 관계없이, 현재 블록의 분할 형태 모드에 관한 정보를 부호화할 수 있다.
영상 부호화 장치(150)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 픽처의 경계 상에 위치하지 않는 블록들의 컨텍스트와 다른 CABAC(Context-adaptive binary arithmetic coding) 컨텍스트를 할당하여 엔트로피 부호화할 수 있다. 영상 부호화 장치(150)는 경계 조건에 기초한 CABAC 컨텍스트를 이용하여 엔트로피 부호화할 수 있다.
도 2b는 다양한 실시예에 따른 영상 부호화 방법의 흐름도를 도시한다.
S155 단계에서, 영상 부호화 장치(150)는 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 루마 영상을 계층적으로 분할하여 루마 영상 내 복수의 부호화 단위를 결정할 수 있다.
S160 단계에서, 영상 부호화 장치(150)는 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 크로마 영상 내 복수의 부호화 단위를 결정할 수 있다. 영상 부호화 장치(150)는 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 크로마 영상 내 현재 크로마 블록을 분할하여 생성된 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정할 수 있다.
S165 단계에서, 영상 부호화 장치(150)는 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 현재 영상을 부호화할 수 있다.
도 2c는 다양한 실시예에 따른 영상 부호화부의 블록도를 도시한다.
다양한 실시예에 따른 영상 부호화부(7000)는, 비디오 부호화 장치(150)의 영상 부호화부(160)에서 영상 데이터를 부호화하는데 거치는 작업들을 수행한다.
즉, 인트라 예측부(7200)는 현재 영상(7050) 중 블록별로 인트라 예측을 수행하고, 인터 예측부(7150)는 블록별로 현재 영상(7050) 및 복원 픽처 버퍼(7100)에서 획득된 참조 영상을 이용하여 인터 예측을 수행한다.
인트라 예측부(7200) 또는 인터 예측부(7150)로부터 출력된 각 블록에 대한 예측 데이터를 현재 영상(7050)의 인코딩되는 블록에 대한 데이터로부터 빼줌으로써 레지듀 데이터를 생성하고, 변환부(7250) 및 양자화부(7300)는 레지듀 데이터에 대해 변환 및 양자화를 수행하여 블록별로 양자화된 변환 계수를 출력할 수 있다. 역양자화부(7450), 역변환부(7500)는 양자화된 변환 계수에 대해 역양자화 및 역변환을 수행하여 공간 영역의 레지듀 데이터를 복원할 수 있다. 복원된 공간 영역의 레지듀 데이터는 인트라 예측부(7200) 또는 인터 예측부(7150)로부터 출력된 각 블록에 대한 예측 데이터와 더해짐으로써 현재 영상(7050)의 블록에 대한 공간 영역의 데이터로 복원된다. 디블로킹부(7550) 및 SAO 수행부는 복원된 공간 영역의 데이터에 대해 인루프 필터링을 수행하여, 필터링된 복원 영상을 생성한다. 생성된 복원 영상은 복원 픽쳐 버퍼(7100)에 저장된다. 복원 픽처 버퍼(7100)에 저장된 복원 영상들은 다른 영상의 인터예측을 위한 참조 영상으로 이용될 수 있다. 엔트로피 부호화부(7350)는 양자화된 변환 계수에 대해 엔트로피 부호화하고, 엔트로피 부호화된 계수가 비트스트림(7400)으로 출력될 수 있다.
다양한 실시예에 따른 영상 부호화부(7000)가 비디오 부호화 장치(150)에 적용되기 위해서, 다양한 실시예에 따른 영상 부호화부(7000)의 단계별 작업들이 블록별로 수행될 수 있다.
이하에서는 본 개시의 일 실시예에 따라 부호화 단위의 분할에 대하여 자세히 설명한다.
영상은 최대 부호화 단위로 분할될 수 있다. 최대 부호화 단위의 크기는 비트스트림으로부터 획득된 정보에 기초하여 결정될 수 있다. 최대 부호화 단위의 모양은 동일 크기의 정사각형을 가질 수 있다. 하지만 이에 한정되는 것은 아니다. 또한 최대 부호화 단위는 비트스트림으로부터 획득된 분할 형태 모드에 대한 정보에 기초하여 부호화 단위로 계층적으로 분할될 수 있다. 분할 형태 모드에 대한 정보는 분할 여부를 나타내는 정보, 분할 방향 정보 및 분할 타입 정보 중 적어도 하나를 포함할 수 있다. 분할 여부를 나타내는 정보는 부호화 단위를 분할할지 여부를 나타낸다. 분할 방향 정보는 수평 방향 또는 수직 방향 중 하나로 분할함을 나타낸다. 분할 타입 정보는 부호화 단위를 바이너리 분할(binary split), 트라이 분할(tri split)(또는 트리플 분할(triple split이라 함) 또는 쿼드 분할(quad split) 중 하나로 분할함을 나타낸다.
설명의 편의를 위하여 본 개시는 분할 형태 모드에 대한 정보를 분할 여부를 나타내는 정보, 분할 방향 정보 및 분할 타입 정보로 구분하여 설명하였으나, 이에 한정되는 것은 아니다. 영상 복호화 장치(100)는 비트스트림으로부터 분할 형태 모드에 대한 정보를 하나의 빈 스트링으로 획득할 수 있다. 영상 복호화 장치(100)는 하나의 빈 스트링에 기초하여, 부호화 단위를 분할할지 여부, 분할 방향 및 분할 타입을 결정할 수 있다.
부호화 단위는 최대 부호화 단위보다 작거나 같을 수 있다. 예를 들어 분할 형태 모드에 대한 정보가 분할되지 않음을 나타내는 경우 부호화 단위는 최대 부호화 단위와 같은 크기를 가진다. 분할 형태 모드에 대한 정보가 분할됨을 나타내는 경우 최대 부호화 단위는 하위 심도의 부호화 단위로 분할 될 수 있다. 또한 하위 심도의 부호화 단위에 대한 분할 형태 모드에 대한 정보가 분할을 나타내는 경우 하위 심도의 부호화 단위는 더 작은 크기의 부호화 단위로 분할 될 수 있다. 다만, 영상의 분할은 이에 한정되는 것은 아니며 최대 부호화 단위 및 부호화 단위는 구별되지 않을 수 있다. 부호화 단위의 분할에 대해서는 도 3 내지 도 16에서 보다 자세히 설명한다.
또한 부호화 단위는 영상의 예측을 위한 예측 단위로 분할될 수 있다. 예측 단위는 부호화 단위와 같거나 작을 수 있다. 또한 부호화 단위는 영상의 변환을 위한 변환 단위로 분할될 수 있다. 변환 단위는 부호화 단위와 같거나 작을 수 있다. 변환 단위와 예측 단위의 모양 및 크기는 서로 관련 없을 수 있다. 부호화 단위는 예측 단위 및 변환 단위와 구별될 수도 있지만, 부호화 단위, 예측 단위 및 변환 단위는 서로 동일할 수 있다. 예측 단위 및 변환 단위의 분할은 부호화 단위의 분할과 동일한 방식으로 수행될 수 있다. 부호화 단위의 분할에 대해서는 도 3 내지 도 16에서 보다 자세히 설명한다. 본 개시의 현재 블록 및 주변 블록은 최대 부호화 단위, 부호화 단위, 예측 단위 및 변환 단위 중 하나를 나타낼 수 있다. 또한, 현재 블록 또는 현재 부호화 단위는 현재 복호화 또는 부호화가 진행되는 블록 또는 현재 분할이 진행되고 있는 블록이다. 주변 블록은 현재 블록 이전에 복원된 블록일 수 있다. 주변 블록은 현재 블록으로부터 공간적 또는 시간적으로 인접할 수 있다. 주변 블록은 현재 블록의 좌하측, 좌측, 좌상측, 상측, 우상측, 우측, 우하측 중 하나에 위치할 수 있다.
도 3은 일 실시예에 따라 영상 복호화 장치(100)가 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
블록 형태는 4Nx4N,4Nx2N, 2Nx4N, 4NxN, Nx4N, 32NxN, Nx32N, 16NxN, Nx16N , 8NxN 또는 Nx8N을 포함할 수 있다. 여기서 N은 양의 정수일 수 있다. 블록 형태 정보는 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나를 나타내는 정보이다.
부호화 단위의 모양은 정사각형(square) 및 비-정사각형(non-square)을 포함할 수 있다. 부호화 단위의 너비 및 높이의 길이가 같은 경우(즉, 부호화 단위의 블록 형태가 4Nx4N 인 경우), 영상 복호화 장치(100)는 부호화 단위의 블록 형태 정보를 정사각형으로 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위의 모양을 비-정사각형으로 결정할 수 있다.
부호화 단위의 너비 및 높이의 길이가 다른 경우(즉, 부호화 단위의 블록 형태가 4Nx4N,4Nx2N, 2Nx4N, 4NxN, Nx4N, 32NxN, Nx32N, 16NxN, Nx16N , 8NxN 또는 Nx8N 인 경우), 영상 복호화 장치(100)는 부호화 단위의 블록 형태 정보를 비-정사각형으로 결정할 수 있다. 부호화 단위의 모양이 비-정사각형인 경우, 영상 복호화 장치(100)는 부호화 단위의 블록 형태 정보 중 너비 및 높이의 비율을 1:2, 2:1, 1:4, 4:1, 1:8 또는 8:1 중 적어도 하나로 결정할 수 있다. 또한, 부호화 단위의 너비의 길이 및 높이의 길이에 기초하여, 영상 복호화 장치(100)는 부호화 단위가 수평 방향인지 수직 방향인지 결정할 수 있다. 또한, 부호화 단위의 너비의 길이, 높이의 길이 또는 넓이 중 적어도 하나에 기초하여, 영상 복호화 장치(100)는 부호화 단위의 크기를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보를 이용하여 부호화 단위의 형태를 결정할 수 있고, 분할 형태 모드에 대한 정보를 이용하여 부호화 단위가 어떤 형태로 분할되는지를 결정할 수 있다. 즉, 영상 복호화 장치(100)가 이용하는 블록 형태 정보가 어떤 블록 형태를 나타내는지에 따라 분할 형태 모드에 대한 정보가 나타내는 부호화 단위의 분할 방법이 결정될 수 있다.
영상 복호화 장치(100)는 비트스트림으로부터 분할 형태 모드에 대한 정보를 획득할 수 있다. 하지만 이에 한정되는 것은 아니며, 영상 복호화 장치(100) 및 영상 부호화 장치(150)는 블록 형태 정보에 기초하여 미리 약속된 분할 형태 모드에 대한 정보를 획득할 수 있다. 영상 복호화 장치(100)는 최대 부호화 단위 또는 최소 부호화 단위에 대하여 미리 약속된 분할 형태 모드에 대한 정보를 획득할 수 있다. 예를 들어 영상 복호화 장치(100)는 최대 부호화 단위에 대하여 분할 형태 모드에 대한 정보를 쿼드 분할(quad split)로 결정할 수 있다. 또한, 영상 복호화 장치(100)는 최소 부호화 단위에 대하여 분할 형태 모드에 대한 정보를 "분할하지 않음"으로 결정할 수 있다. 구체적으로 영상 복호화 장치(100)는 최대 부호화 단위의 크기를 256x256으로 결정할 수 있다. 영상 복호화 장치(100)는 미리 약속된 분할 형태 모드에 대한 정보를 쿼드 분할로 결정할 수 있다. 쿼드 분할은 부호화 단위의 너비 및 높이를 모두 이등분하는 분할 형태 모드이다. 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 기초하여 256x256 크기의 최대 부호화 단위로부터 128x128 크기의 부호화 단위를 획득할 수 있다. 또한 영상 복호화 장치(100)는 최소 부호화 단위의 크기를 4x4로 결정할 수 있다. 영상 복호화 장치(100)는 최소 부호화 단위에 대하여 "분할하지 않음"을 나타내는 분할 형태 모드에 대한 정보를 획득할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 현재 부호화 단위가 정사각형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 예를 들어 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 따라 정사각형의 부호화 단위를 분할하지 않을지, 수직으로 분할할지, 수평으로 분할할지, 4개의 부호화 단위로 분할할지 등을 결정할 수 있다. 도 3을 참조하면, 현재 부호화 단위(300)의 블록 형태 정보가 정사각형의 형태를 나타내는 경우, 복호화부(120)는 분할되지 않음을 나타내는 분할 형태 모드에 대한 정보에 따라 현재 부호화 단위(300)와 동일한 크기를 가지는 부호화 단위(310a)를 분할하지 않거나, 소정의 분할방법을 나타내는 분할 형태 모드에 대한 정보에 기초하여 분할된 부호화 단위(310b, 310c, 310d 등)를 결정할 수 있다.
도 3을 참조하면 영상 복호화 장치(100)는 일 실시예에 따라 수직방향으로 분할됨을 나타내는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(300)를 수직방향으로 분할한 두 개의 부호화 단위(310b)를 결정할 수 있다. 영상 복호화 장치(100)는 수평방향으로 분할됨을 나타내는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(300)를 수평방향으로 분할한 두 개의 부호화 단위(310c)를 결정할 수 있다. 영상 복호화 장치(100)는 수직방향 및 수평방향으로 분할됨을 나타내는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(300)를 수직방향 및 수평방향으로 분할한 네 개의 부호화 단위(310d)를 결정할 수 있다. 영상 복호화 장치(100)는 일 실시예에 따라 수직방향으로 트라이 (또는 터너리) 분할됨을 나타내는 분할 형태 모드 정보에 기초하여 현재 부호화 단위(300)를 수직방향으로 분할한 세 개의 부호화 단위(310e)를 결정할 수 있다. 영상 복호화 장치(100)는 수평방향으로 터너리 분할됨을 나타내는 분할 형태 모드 정보에 기초하여 현재 부호화 단위(300)를 수평방향으로 분할한 세 개의 부호화 단위(310f)를 결정할 수 있다.
다만 정사각형의 부호화 단위가 분할될 수 있는 분할 형태는 상술한 형태로 한정하여 해석되어서는 안되고, 분할 형태 모드에 대한 정보가 나타낼 수 있는 다양한 형태가 포함될 수 있다. 정사각형의 부호화 단위가 분할되는 소정의 분할 형태들은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
도 4는 일 실시예에 따라 영상 복호화 장치(100)가 비-정사각형의 형태인 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위가 비-정사각형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 따라 비-정사각형의 현재 부호화 단위를 분할하지 않을지 소정의 방법으로 분할할지 여부를 결정할 수 있다. 도 4를 참조하면, 현재 부호화 단위(400 또는 450)의 블록 형태 정보가 비-정사각형의 형태를 나타내는 경우, 영상 복호화 장치(100)는 분할되지 않음을 나타내는 분할 형태 모드에 대한 정보에 따라 현재 부호화 단위(400 또는 450)와 동일한 크기를 가지는 부호화 단위(410 또는 460)를 결정하거나, 소정의 분할방법을 나타내는 분할 형태 모드에 대한 정보에 따라 기초하여 분할된 부호화 단위(420a, 420b, 430a, 430b, 430c, 470a, 470b, 480a, 480b, 480c)를 결정할 수 있다. 비-정사각형의 부호화 단위가 분할되는 소정의 분할 방법은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보를 이용하여 부호화 단위가 분할되는 형태를 결정할 수 있고, 이 경우 분할 형태 모드에 대한 정보는 부호화 단위가 분할되어 생성되는 적어도 하나의 부호화 단위의 개수를 나타낼 수 있다. 도 4를 참조하면 분할 형태 모드에 대한 정보가 두 개의 부호화 단위로 현재 부호화 단위(400 또는 450)가 분할되는 것을 나타내는 경우, 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(400 또는 450)를 분할하여 현재 부호화 단위에 포함되는 두 개의 부호화 단위(420a, 420b, 또는 470a, 470b)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)가 분할 형태 모드에 대한 정보에 기초하여 비-정사각형의 형태의 현재 부호화 단위(400 또는 450)를 분할하는 경우, 영상 복호화 장치(100)는 비-정사각형의 현재 부호화 단위(400 또는 450)의 긴 변의 위치를 고려하여 현재 부호화 단위를 분할할 수 있다. 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)의 형태를 고려하여 현재 부호화 단위(400 또는 450)의 긴 변을 분할하는 방향으로 현재 부호화 단위(400 또는 450)를 분할하여 복수개의 부호화 단위를 결정할 수 있다.
일 실시예에 따라, 분할 형태 모드에 대한 정보가 홀수개의 블록으로 부호화 단위를 분할(트라이 분할; tri split)하는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있다. 예를 들면, 분할 형태 모드에 대한 정보가 3개의 부호화 단위로 현재 부호화 단위(400 또는 450)를 분할하는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)를 3개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)로 분할할 수 있다.
일 실시예에 따라, 현재 부호화 단위(400 또는 450)의 너비 및 높이의 비율이 4:1 또는 1:4 일 수 있다. 너비 및 높이의 비율이 4:1 인 경우, 너비의 길이가 높이의 길이보다 길므로 블록 형태 정보는 수평 방향일 수 있다. 너비 및 높이의 비율이 1:4 인 경우, 너비의 길이가 높이의 길이보다 짧으므로 블록 형태 정보는 수직 방향일 수 있다. 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위를 홀수개의 블록으로 분할할 것을 결정할 수 있다. 또한 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)의 블록 형태 정보에 기초하여 현재 부호화 단위(400 또는 450)의 분할 방향을 결정할 수 있다. 예를 들어 현재 부호화 단위(400)가 수직 방향인 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400)를 수평 방향으로 분할 하여 부호화 단위(430a, 430b, 430c)를 결정할 수 있다. 또한 현재 부호화 단위(450)가 수평 방향인 경우, 영상 복호화 장치(100)는 현재 부호화 단위(450)를 수직 방향으로 분할 하여 부호화 단위(480a, 480b, 480c)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있으며, 결정된 부호화 단위들의 크기 모두가 동일하지는 않을 수 있다. 예를 들면, 결정된 홀수개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c) 중 소정의 부호화 단위(430b 또는 480b)의 크기는 다른 부호화 단위(430a, 430c, 480a, 480c)들과는 다른 크기를 가질 수도 있다. 즉, 현재 부호화 단위(400 또는 450)가 분할되어 결정될 수 있는 부호화 단위는 복수의 종류의 크기를 가질 수 있고, 경우에 따라서는 홀수개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)가 각각 서로 다른 크기를 가질 수도 있다.
일 실시예에 따라 분할 형태 모드에 대한 정보가 홀수개의 블록으로 부호화 단위가 분할되는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있고, 나아가 영상 복호화 장치(100)는 분할하여 생성되는 홀수개의 부호화 단위들 중 적어도 하나의 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 도 4을 참조하면 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)가 분할되어 생성된 3개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)들 중 중앙에 위치하는 부호화 단위(430b, 480b)에 대한 복호화 과정을 다른 부호화 단위(430a, 430c, 480a, 480c)와 다르게 할 수 있다. 예를 들면, 영상 복호화 장치(100)는 중앙에 위치하는 부호화 단위(430b, 480b)에 대하여는 다른 부호화 단위(430a, 430c, 480a, 480c)와 달리 더 이상 분할되지 않도록 제한하거나, 소정의 횟수만큼만 분할되도록 제한할 수 있다.
도 5는 일 실시예에 따라 영상 복호화 장치(100)가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 정사각형 형태의 제1 부호화 단위(500)를 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 일 실시예에 따라 분할 형태 모드에 대한 정보가 수평 방향으로 제1 부호화 단위(500)를 분할하는 것을 나타내는 경우, 영상 복호화 장치(100)는 제1 부호화 단위(500)를 수평 방향으로 분할하여 제2 부호화 단위(510)를 결정할 수 있다. 일 실시예에 따라 이용되는 제1 부호화 단위, 제2 부호화 단위, 제3 부호화 단위는 부호화 단위 간의 분할 전후 관계를 이해하기 위해 이용된 용어이다. 예를 들면, 제1 부호화 단위를 분할하면 제2 부호화 단위가 결정될 수 있고, 제2 부호화 단위가 분할되면 제3 부호화 단위가 결정될 수 있다. 이하에서는 이용되는 제1 부호화 단위, 제2 부호화 단위 및 제3 부호화 단위의 관계는 상술한 특징에 따르는 것으로 이해될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 결정된 제2 부호화 단위(510)를 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 도 5를 참조하면 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(500)를 분할하여 결정된 비-정사각형의 형태의 제2 부호화 단위(510)를 적어도 하나의 제3 부호화 단위(520a, 520b, 520c, 520d 등)로 분할하거나 제2 부호화 단위(510)를 분할하지 않을 수 있다. 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 획득할 수 있고 영상 복호화 장치(100)는 획득한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(500)를 분할하여 다양한 형태의 복수개의 제2 부호화 단위(예를 들면, 510)를 분할할 수 있으며, 제2 부호화 단위(510)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(500)가 분할된 방식에 따라 분할될 수 있다. 일 실시예에 따라, 제1 부호화 단위(500)가 제1 부호화 단위(500)에 대한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제2 부호화 단위(510)로 분할된 경우, 제2 부호화 단위(510) 역시 제2 부호화 단위(510)에 대한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제3 부호화 단위(예를 들면, 520a, 520b, 520c, 520d 등)으로 분할될 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 관련된 분할 형태 모드에 대한 정보 및 블록 형태 정보 중 적어도 하나에 기초하여 재귀적으로 분할될 수 있다. 따라서 비-정사각형 형태의 부호화 단위에서 정사각형의 부호화 단위가 결정될 수 있고, 이러한 정사각형 형태의 부호화 단위가 재귀적으로 분할되어 비-정사각형 형태의 부호화 단위가 결정될 수도 있다.
도 5를 참조하면, 비-정사각형 형태의 제2 부호화 단위(510)가 분할되어 결정되는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 소정의 부호화 단위(예를 들면, 가운데에 위치하는 부호화 단위 또는 정사각형 형태의 부호화 단위)는 재귀적으로 분할될 수 있다. 일 실시예에 따라 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 하나인 정사각형 형태의 제3 부호화 단위(520b)는 수평 방향으로 분할되어 복수개의 제4 부호화 단위로 분할될 수 있다. 복수개의 제4 부호화 단위(530a, 530b, 530c, 530d) 중 하나인 비-정사각형 형태의 제4 부호화 단위(530b 또는 530d)는 다시 복수개의 부호화 단위들로 분할될 수 있다. 예를 들면, 비-정사각형 형태의 제4 부호화 단위(530b 또는 530d)는 홀수개의 부호화 단위로 다시 분할될 수도 있다. 부호화 단위의 재귀적 분할에 이용될 수 있는 방법에 대하여는 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제3 부호화 단위(520a, 520b, 520c, 520d 등) 각각을 부호화 단위들로 분할할 수 있다. 또한 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제2 부호화 단위(510)를 분할하지 않는 것으로 결정할 수 있다. 영상 복호화 장치(100)는 일 실시예에 따라 비-정사각형 형태의 제2 부호화 단위(510)를 홀수개의 제3 부호화 단위(520b, 520c, 520d)로 분할할 수 있다. 영상 복호화 장치(100)는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 소정의 제3 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 예를 들면 영상 복호화 장치(100)는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 가운데에 위치하는 부호화 단위(520c)에 대하여는 더 이상 분할되지 않는 것으로 제한하거나 또는 설정 가능한 횟수로 분할되어야 하는 것으로 제한할 수 있다.
도 5를 참조하면, 영상 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(510)에 포함되는 홀수개의 제3 부호화 단위(520b, 520c, 520d)들 중 가운데에 위치하는 부호화 단위(520c)는 더 이상 분할되지 않거나, 소정의 분할 형태로 분할(예를 들면 4개의 부호화 단위로만 분할하거나 제2 부호화 단위(510)가 분할된 형태에 대응하는 형태로 분할)되는 것으로 제한하거나, 소정의 횟수로만 분할(예를 들면 n회만 분할, n>0)하는 것으로 제한할 수 있다. 다만 가운데에 위치한 부호화 단위(520c)에 대한 상기 제한은 단순한 실시예들에 불과하므로 상술한 실시예들로 제한되어 해석되어서는 안되고, 가운데에 위치한 부호화 단위(520c)가 다른 부호화 단위(520b, 520d)와 다르게 복호화 될 수 있는 다양한 제한들을 포함하는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 분할하기 위해 이용되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 현재 부호화 단위 내의 소정의 위치에서 획득할 수 있다.
도 6은 일 실시예에 따라 영상 복호화 장치(100)가 홀수개의 부호화 단위들 중 소정의 부호화 단위를 결정하기 위한 방법을 도시한다.
도 6을 참조하면, 현재 부호화 단위(600, 650)의 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나는 현재 부호화 단위(600, 650)에 포함되는 복수개의 샘플 중 소정 위치의 샘플(예를 들면, 가운데에 위치하는 샘플(640, 690))에서 획득될 수 있다. 다만 이러한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나가 획득될 수 있는 현재 부호화 단위(600) 내의 소정 위치가 도 6에서 도시하는 가운데 위치로 한정하여 해석되어서는 안되고, 소정 위치에는 현재 부호화 단위(600)내에 포함될 수 있는 다양한 위치(예를 들면, 최상단, 최하단, 좌측, 우측, 좌측상단, 좌측하단, 우측상단 또는 우측하단 등)가 포함될 수 있는 것으로 해석되어야 한다. 영상 복호화 장치(100)는 소정 위치로부터 획득되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 획득하여 현재 부호화 단위를 다양한 형태 및 크기의 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위가 소정의 개수의 부호화 단위들로 분할된 경우 그 중 하나의 부호화 단위를 선택할 수 있다. 복수개의 부호화 단위들 중 하나를 선택하기 위한 방법은 다양할 수 있으며, 이러한 방법들에 대한 설명은 이하의 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(100) 는 현재 부호화 단위를 복수개의 부호화 단위들로 분할하고, 소정 위치의 부호화 단위를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 홀수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 현재 부호화 단위(600) 또는 현재 부호화 단위(650)를 분할하여 홀수개의 부호화 단위들(620a, 620b, 620c) 또는 홀수개의 부호화 단위들(660a, 660b, 660c)을 결정할 수 있다. 영상 복호화 장치(100)는 홀수개의 부호화 단위들(620a, 620b, 620c) 또는 홀수개의 부호화 단위들(660a, 660b, 660c)의 위치에 대한 정보를 이용하여 가운데 부호화 단위(620b)또는 가운데 부호화 단위(660b)를 결정할 수 있다. 예를 들면 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)에 포함되는 소정의 샘플의 위치를 나타내는 정보에 기초하여 부호화 단위들(620a, 620b, 620c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 구체적으로, 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보에 기초하여 부호화 단위들(620a, 620b, 620c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다.
일 실시예에 따라 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 포함할 수 있다. 일 실시예에 따라 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보는 현재 부호화 단위(600)에 포함되는 부호화 단위들(620a, 620b, 620c)의 너비 또는 높이를 나타내는 정보를 포함할 수 있고, 이러한 너비 또는 높이는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 좌표 간의 차이를 나타내는 정보에 해당할 수 있다. 즉, 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 직접 이용하거나 좌표간의 차이값에 대응하는 부호화 단위의 너비 또는 높이에 대한 정보를 이용함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다.
일 실시예에 따라, 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 나타내는 정보는 (xa, ya) 좌표를 나타낼 수 있고, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(530b)의 위치를 나타내는 정보는 (xb, yb) 좌표를 나타낼 수 있고, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 위치를 나타내는 정보는 (xc, yc) 좌표를 나타낼 수 있다. 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 좌표를 이용하여 가운데 부호화 단위(620b)를 결정할 수 있다. 예를 들면, 좌측 상단의 샘플(630a, 630b, 630c)의 좌표를 오름차순 또는 내림차순으로 정렬하였을 때, 가운데에 위치하는 샘플(630b)의 좌표인 (xb, yb)를 포함하는 부호화 단위(620b)를 현재 부호화 단위(600)가 분할되어 결정된 부호화 단위들(620a, 620b, 620c) 중 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 좌표는 픽쳐 내에서의 절대적인 위치를 나타내는 좌표를 나타낼 수 있고, 나아가 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 기준으로, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(630b)의 상대적 위치를 나타내는 정보인 (dxb, dyb)좌표, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 상대적 위치를 나타내는 정보인 (dxc, dyc)좌표를 이용할 수도 있다. 또한 부호화 단위에 포함되는 샘플의 위치를 나타내는 정보로서 해당 샘플의 좌표를 이용함으로써 소정 위치의 부호화 단위를 결정하는 방법이 상술한 방법으로 한정하여 해석되어서는 안되고, 샘플의 좌표를 이용할 수 있는 다양한 산술적 방법으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위(600)를 복수개의 부호화 단위들(620a, 620b, 620c)로 분할할 수 있고, 부호화 단위들(620a, 620b, 620c) 중 소정의 기준에 따라 부호화 단위를 선택할 수 있다. 예를 들면, 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c) 중 크기가 다른 부호화 단위(620b)를 선택할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 나타내는 정보인 (xa, ya) 좌표, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(630b)의 위치를 나타내는 정보인 (xb, yb) 좌표, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 위치를 나타내는 정보인 (xc, yc) 좌표를 이용하여 부호화 단위들(620a, 620b, 620c) 각각의 너비 또는 높이를 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 위치를 나타내는 좌표인 (xa, ya), (xb, yb), (xc, yc)를 이용하여 부호화 단위들(620a, 620b, 620c) 각각의 크기를 결정할 수 있다. 일 실시예에 따라, 영상 복호화 장치(100)는 상단 부호화 단위(620a)의 너비를 현재 부호화 단위(600)의 너비로 결정할 수 있다. 영상 복호화 장치(100)는 상단 부호화 단위(620a)의 높이를 yb-ya로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 가운데 부호화 단위(620b)의 너비를 현재 부호화 단위(600)의 너비로 결정할 수 있다. 영상 복호화 장치(100)는 가운데 부호화 단위(620b)의 높이를 yc-yb로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 하단 부호화 단위의 너비 또는 높이는 현재 부호화 단위의 너비 또는 높이와 상단 부호화 단위(620a) 및 가운데 부호화 단위(620b)의 너비 및 높이를 이용하여 결정할 수 있다. 영상 복호화 장치(100)는 결정된 부호화 단위들(620a, 620b, 620c)의 너비 및 높이에 기초하여 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정할 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 상단 부호화 단위(620a) 및 하단 부호화 단위(620c)의 크기와 다른 크기를 가지는 가운데 부호화 단위(620b)를 소정 위치의 부호화 단위로 결정할 수 있다. 다만 상술한 영상 복호화 장치(100)가 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정하는 과정은 샘플 좌표에 기초하여 결정되는 부호화 단위의 크기를 이용하여 소정 위치의 부호화 단위를 결정하는 일 실시예에 불과하므로, 소정의 샘플 좌표에 따라 결정되는 부호화 단위의 크기를 비교하여 소정 위치의 부호화 단위를 결정하는 다양한 과정이 이용될 수 있다.
영상 복호화 장치(100)는 좌측 부호화 단위(660a)의 좌측 상단의 샘플(670a)의 위치를 나타내는 정보인 (xd, yd) 좌표, 가운데 부호화 단위(660b)의 좌측 상단의 샘플(670b)의 위치를 나타내는 정보인 (xe, ye) 좌표, 우측 부호화 단위(660c)의 좌측 상단의 샘플(670c)의 위치를 나타내는 정보인 (xf, yf) 좌표를 이용하여 부호화 단위들(660a, 660b, 660c) 각각의 너비 또는 높이를 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위들(660a, 660b, 660c)의 위치를 나타내는 좌표인 (xd, yd), (xe, ye), (xf, yf)를 이용하여 부호화 단위들(660a, 660b, 660c) 각각의 크기를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 좌측 부호화 단위(660a)의 너비를 xe-xd로 결정할 수 있다. 영상 복호화 장치(100)는 좌측 부호화 단위(660a)의 높이를 현재 부호화 단위(650)의 높이로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 가운데 부호화 단위(660b)의 너비를 xf-xe로 결정할 수 있다. 영상 복호화 장치(100)는 가운데 부호화 단위(660b)의 높이를 현재 부호화 단위(600)의 높이로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 우측 부호화 단위(660c)의 너비 또는 높이는 현재 부호화 단위(650)의 너비 또는 높이와 좌측 부호화 단위(660a) 및 가운데 부호화 단위(660b)의 너비 및 높이를 이용하여 결정할 수 있다. 영상 복호화 장치(100)는 결정된 부호화 단위들(660a, 660b, 660c)의 너비 및 높이에 기초하여 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정할 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 좌측 부호화 단위(660a) 및 우측 부호화 단위(660c)의 크기와 다른 크기를 가지는 가운데 부호화 단위(660b)를 소정 위치의 부호화 단위로 결정할 수 있다. 다만 상술한 영상 복호화 장치(100)가 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정하는 과정은 샘플 좌표에 기초하여 결정되는 부호화 단위의 크기를 이용하여 소정 위치의 부호화 단위를 결정하는 일 실시예에 불과하므로, 소정의 샘플 좌표에 따라 결정되는 부호화 단위의 크기를 비교하여 소정 위치의 부호화 단위를 결정하는 다양한 과정이 이용될 수 있다.
다만 부호화 단위의 위치를 결정하기 위하여 고려하는 샘플의 위치는 상술한 좌측 상단으로 한정하여 해석되어서는 안되고 부호화 단위에 포함되는 임의의 샘플의 위치에 대한 정보가 이용될 수 있는 것으로 해석될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위의 형태를 고려하여, 현재 부호화 단위가 분할되어 결정되는 홀수개의 부호화 단위들 중 소정 위치의 부호화 단위를 선택할 수 있다. 예를 들면, 현재 부호화 단위가 너비가 높이보다 긴 비-정사각형 형태라면 영상 복호화 장치(100)는 수평 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 수평 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다. 현재 부호화 단위가 높이가 너비보다 긴 비-정사각형 형태라면 영상 복호화 장치(100)는 수직 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 수직 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 짝수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 짝수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 영상 복호화 장치(100)는 현재 부호화 단위를 분할(바이너리 분할 또는 바이 분할; binary split)하여 짝수개의 부호화 단위들을 결정할 수 있고 짝수개의 부호화 단위들의 위치에 대한 정보를 이용하여 소정 위치의 부호화 단위를 결정할 수 있다. 이에 대한 구체적인 과정은 도 6에서 상술한 홀수개의 부호화 단위들 중 소정 위치(예를 들면, 가운데 위치)의 부호화 단위를 결정하는 과정에 대응하는 과정일 수 있으므로 생략하도록 한다.
일 실시예에 따라, 비-정사각형 형태의 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 분할 과정에서 소정 위치의 부호화 단위에 대한 소정의 정보를 이용할 수 있다. 예를 들면 영상 복호화 장치(100)는 현재 부호화 단위가 복수개로 분할된 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 분할 과정에서 가운데 부호화 단위에 포함된 샘플에 저장된 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용할 수 있다.
도 6을 참조하면 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 현재 부호화 단위(600)를 복수개의 부호화 단위들(620a, 620b, 620c)로 분할할 수 있으며, 복수개의 부호화 단위들(620a, 620b, 620c) 중 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나가 획득되는 위치를 고려하여, 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 즉, 현재 부호화 단위(600)의 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나는 현재 부호화 단위(600)의 가운데에 위치하는 샘플(640)에서 획득될 수 있으며, 상기 블록 형태 정보 및 상기 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 현재 부호화 단위(600)가 복수개의 부호화 단위들(620a, 620b, 620c)로 분할된 경우 상기 샘플(640)을 포함하는 부호화 단위(620b)를 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 가운데에 위치하는 부호화 단위로 결정하기 위해 이용되는 정보가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나로 한정하여 해석되어서는 안되고, 다양한 종류의 정보가 가운데에 위치하는 부호화 단위를 결정하는 과정에서 이용될 수 있다.
일 실시예에 따라 소정 위치의 부호화 단위를 식별하기 위한 소정의 정보는, 결정하려는 부호화 단위에 포함되는 소정의 샘플에서 획득될 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 현재 부호화 단위(600)가 분할되어 결정된 복수개의 부호화 단위들(620a, 620b, 620c) 중 소정 위치의 부호화 단위(예를 들면, 복수개로 분할된 부호화 단위 중 가운데에 위치하는 부호화 단위)를 결정하기 위하여 현재 부호화 단위(600) 내의 소정 위치의 샘플(예를 들면, 현재 부호화 단위(600)의 가운데에 위치하는 샘플)에서 획득되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용할 수 있다. 즉, 영상 복호화 장치(100)는 현재 부호화 단위(600)의 블록 형태를 고려하여 상기 소정 위치의 샘플을 결정할 수 있고, 영상 복호화 장치(100)는 현재 부호화 단위(600)가 분할되어 결정되는 복수개의 부호화 단위들(620a, 620b, 620c) 중, 소정의 정보(예를 들면, 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나)가 획득될 수 있는 샘플이 포함된 부호화 단위(620b)를 결정하여 소정의 제한을 둘 수 있다. 도 6을 참조하면 일 실시예에 따라 영상 복호화 장치(100)는 소정의 정보가 획득될 수 있는 샘플로서 현재 부호화 단위(600)의 가운데에 위치하는 샘플(640)을 결정할 수 있고, 영상 복호화 장치(100)는 이러한 샘플(640)이 포함되는 부호화 단위(620b)를 복호화 과정에서의 소정의 제한을 둘 수 있다. 다만 소정의 정보가 획득될 수 있는 샘플의 위치는 상술한 위치로 한정하여 해석되어서는 안되고, 제한을 두기 위해 결정하려는 부호화 단위(620b)에 포함되는 임의의 위치의 샘플들로 해석될 수 있다.
일 실시예에 따라 소정의 정보가 획득될 수 있는 샘플의 위치는 현재 부호화 단위(600)의 형태에 따라 결정될 수 있다. 일 실시예에 따라 블록 형태 정보는 현재 부호화 단위의 형태가 정사각형인지 또는 비-정사각형인지 여부를 결정할 수 있고, 형태에 따라 소정의 정보가 획득될 수 있는 샘플의 위치를 결정할 수 있다. 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위의 너비에 대한 정보 및 높이에 대한 정보 중 적어도 하나를 이용하여 현재 부호화 단위의 너비 및 높이 중 적어도 하나를 반으로 분할하는 경계 상에 위치하는 샘플을 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다. 또다른 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위에 관련된 블록 형태 정보가 비-정사각형 형태임을 나타내는 경우, 현재 부호화 단위의 긴 변을 반으로 분할하는 경계에 인접하는 샘플 중 하나를 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여, 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 부호화 단위에 포함된 소정 위치의 샘플에서 획득할 수 있고, 영상 복호화 장치(100)는 현재 부호화 단위가 분할되어 생성된 복수개의 부호화 단위들을 복수개의 부호화 단위 각각에 포함된 소정 위치의 샘플로부터 획득되는 분할 형태 모드에 대한 정보 및 블록 형태 정보 중 적어도 하나를 이용하여 분할할 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 포함된 소정 위치의 샘플에서 획득되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용하여 재귀적으로 분할될 수 있다. 부호화 단위의 재귀적 분할 과정에 대하여는 도 5를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정할 수 있고, 이러한 적어도 하나의 부호화 단위가 복호화되는 순서를 소정의 블록(예를 들면, 현재 부호화 단위)에 따라 결정할 수 있다.
도 7는 일 실시예에 따라 영상 복호화 장치(100)가 현재 부호화 단위를 분할하여 복수개의 부호화 단위들을 결정하는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보에 따라 제1 부호화 단위(700)를 수직 방향으로 분할하여 제2 부호화 단위(710a, 710b)를 결정하거나 제1 부호화 단위(700)를 수평 방향으로 분할하여 제2 부호화 단위(730a, 730b)를 결정하거나 제1 부호화 단위(700)를 수직 방향 및 수평 방향으로 분할하여 제2 부호화 단위(750a, 750b, 750c, 750d)를 결정할 수 있다.
도 7를 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향으로 분할하여 결정된 제2 부호화 단위(710a, 710b)를 수평 방향(710c)으로 처리되도록 순서를 결정할 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수평 방향으로 분할하여 결정된 제2 부호화 단위(730a, 730b)의 처리 순서를 수직 방향(730c)으로 결정할 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향 및 수평 방향으로 분할하여 결정된 제2 부호화 단위(750a, 750b, 750c, 750d)를 하나의 행에 위치하는 부호화 단위들이 처리된 후 다음 행에 위치하는 부호화 단위들이 처리되는 소정의 순서(예를 들면, 래스터 스캔 순서((raster scan order) 또는 z 스캔 순서(z scan order)(750e) 등)에 따라 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위들을 재귀적으로 분할할 수 있다. 도 7를 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(700)를 분할하여 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)을 결정할 수 있고, 결정된 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d) 각각을 재귀적으로 분할할 수 있다. 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)을 분할하는 방법은 제1 부호화 단위(700)를 분할하는 방법에 대응하는 방법이 될 수 있다. 이에 따라 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)은 각각 독립적으로 복수개의 부호화 단위들로 분할될 수 있다. 도 7를 참조하면 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향으로 분할하여 제2 부호화 단위(710a, 710b)를 결정할 수 있고, 나아가 제2 부호화 단위(710a, 710b) 각각을 독립적으로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 좌측의 제2 부호화 단위(710a)를 수평 방향으로 분할하여 제3 부호화 단위(720a, 720b)로 분할할 수 있고, 우측의 제2 부호화 단위(710b)는 분할하지 않을 수 있다.
일 실시예에 따라 부호화 단위들의 처리 순서는 부호화 단위의 분할 과정에 기초하여 결정될 수 있다. 다시 말해, 분할된 부호화 단위들의 처리 순서는 분할되기 직전의 부호화 단위들의 처리 순서에 기초하여 결정될 수 있다. 영상 복호화 장치(100)는 좌측의 제2 부호화 단위(710a)가 분할되어 결정된 제3 부호화 단위(720a, 720b)가 처리되는 순서를 우측의 제2 부호화 단위(710b)와 독립적으로 결정할 수 있다. 좌측의 제2 부호화 단위(710a)가 수평 방향으로 분할되어 제3 부호화 단위(720a, 720b)가 결정되었으므로 제3 부호화 단위(720a, 720b)는 수직 방향(720c)으로 처리될 수 있다. 또한 좌측의 제2 부호화 단위(710a) 및 우측의 제2 부호화 단위(710b)가 처리되는 순서는 수평 방향(710c)에 해당하므로, 좌측의 제2 부호화 단위(710a)에 포함되는 제3 부호화 단위(720a, 720b)가 수직 방향(720c)으로 처리된 후에 우측 부호화 단위(710b)가 처리될 수 있다. 상술한 내용은 부호화 단위들이 각각 분할 전의 부호화 단위에 따라 처리 순서가 결정되는 과정을 설명하기 위한 것이므로, 상술한 실시예에 한정하여 해석되어서는 안되고, 다양한 형태로 분할되어 결정되는 부호화 단위들이 소정의 순서에 따라 독립적으로 처리될 수 있는 다양한 방법으로 이용되는 것으로 해석되어야 한다.
도 8는 일 실시예에 따라 영상 복호화 장치(100)가 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것임을 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 획득된 블록 형태 정보 및 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위가 홀수개의 부호화 단위들로 분할되는 것을 결정할 수 있다. 도 8를 참조하면 정사각형 형태의 제1 부호화 단위(800)가 비-정사각형 형태의 제2 부호화 단위(810a, 810b)로 분할될 수 있고, 제2 부호화 단위(810a, 810b)는 각각 독립적으로 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)로 분할될 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 제2 부호화 단위 중 좌측 부호화 단위(810a)는 수평 방향으로 분할하여 복수개의 제3 부호화 단위(820a, 820b)를 결정할 수 있고, 우측 부호화 단위(810b)는 홀수개의 제3 부호화 단위(820c, 820d, 820e)로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제3 부호화 단위들(820a, 820b, 820c, 820d, 820e)이 소정의 순서로 처리될 수 있는지 여부를 판단하여 홀수개로 분할된 부호화 단위가 존재하는지를 결정할 수 있다. 도 8를 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(800)를 재귀적으로 분할하여 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)를 결정할 수 있다. 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여, 제1 부호화 단위(800), 제2 부호화 단위(810a, 810b) 또는 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)가 분할되는 형태 중 홀수개의 부호화 단위로 분할되는지 여부를 결정할 수 있다. 예를 들면, 제2 부호화 단위(810a, 810b) 중 우측에 위치하는 부호화 단위가 홀수개의 제3 부호화 단위(820c, 820d, 820e)로 분할될 수 있다. 제1 부호화 단위(800)에 포함되는 복수개의 부호화 단위들이 처리되는 순서는 소정의 순서(예를 들면, z-스캔 순서(z-scan order)(830))가 될 수 있고, 영상 복호화 장치(100)는 우측 제2 부호화 단위(810b)가 홀수개로 분할되어 결정된 제3 부호화 단위(820c, 820d, 820e)가 상기 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 판단할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(800)에 포함되는 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)의 경계에 따라 제2 부호화 단위(810a, 810b)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 예를 들면 비-정사각형 형태의 좌측 제2 부호화 단위(810a)의 높이를 반으로 분할하여 결정되는 제3 부호화 단위(820a, 820b)는 조건을 만족할 수 있다. 우측 제2 부호화 단위(810b)를 3개의 부호화 단위로 분할하여 결정되는 제3 부호화 단위(820c, 820d, 820e)들의 경계가 우측 제2 부호화 단위(810b)의 너비 또는 높이를 반으로 분할하지 못하므로 제3 부호화 단위(820c, 820d, 820e)는 조건을 만족하지 못하는 것으로 결정될 수 있다. 영상 복호화 장치(100)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 우측 제2 부호화 단위(810b)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
도 9은 일 실시예에 따라 영상 복호화 장치(100)가 제1 부호화 단위(900)를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 수신부(미도시)를 통해 획득한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(900)를 분할할 수 있다. 정사각형 형태의 제1 부호화 단위(900)는 4개의 정사각형 형태를 가지는 부호화 단위로 분할되거나 또는 비-정사각형 형태의 복수개의 부호화 단위로 분할할 수 있다. 예를 들면 도 9을 참조하면, 블록 형태 정보가 제1 부호화 단위(900)는 정사각형임을 나타내고 분할 형태 모드에 대한 정보가 비-정사각형의 부호화 단위로 분할됨을 나타내는 경우 영상 복호화 장치(100)는 제1 부호화 단위(900)를 복수개의 비-정사각형의 부호화 단위들로 분할할 수 있다. 구체적으로, 분할 형태 모드에 대한 정보가 제1 부호화 단위(900)를 수평 방향 또는 수직 방향으로 분할하여 홀수개의 부호화 단위를 결정하는 것을 나타내는 경우, 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(900)를 홀수개의 부호화 단위들로서 수직 방향으로 분할되어 결정된 제2 부호화 단위(910a, 910b, 910c) 또는 수평 방향으로 분할되어 결정된 제2 부호화 단위(920a, 920b, 920c)로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(900)에 포함되는 제2 부호화 단위(910a, 910b, 910c, 920a, 920b, 920c)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제2 부호화 단위(910a, 910b, 910c, 920a, 920b, 920c)의 경계에 따라 제1 부호화 단위(900)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 도 9를 참조하면 정사각형 형태의 제1 부호화 단위(900)를 수직 방향으로 분할하여 결정되는 제2 부호화 단위(910a, 910b, 910c)들의 경계가 제1 부호화 단위(900)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(900)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 또한 정사각형 형태의 제1 부호화 단위(900)를 수평 방향으로 분할하여 결정되는 제2 부호화 단위(920a, 920b, 920c)들의 경계가 제1 부호화 단위(900)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(900)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 영상 복호화 장치(100)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 제1 부호화 단위(900)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라, 영상 복호화 장치(100)는 제1 부호화 단위를 분할하여 다양한 형태의 부호화 단위들을 결정할 수 있다.
도 9을 참조하면, 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(900), 비-정사각형 형태의 제1 부호화 단위(930 또는 950)를 다양한 형태의 부호화 단위들로 분할할 수 있다.
도 10은 일 실시예에 따라 영상 복호화 장치(100)가 제1 부호화 단위(1000)가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 수신부(미도시)를 통해 획득한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 정사각형 형태의 제1 부호화 단위(1000)를 비-정사각형 형태의 제2 부호화 단위(1010a, 1010b, 1020a, 1020b)로 분할하는 것으로 결정할 수 있다. 제2 부호화 단위(1010a, 1010b, 1020a, 1020b)는 독립적으로 분할될 수 있다. 이에 따라 영상 복호화 장치(100)는 제2 부호화 단위(1010a, 1010b, 1020a, 1020b) 각각에 관련된 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 복수개의 부호화 단위로 분할하거나 분할하지 않는 것을 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 수직 방향으로 제1 부호화 단위(1000)가 분할되어 결정된 비-정사각형 형태의 좌측 제2 부호화 단위(1010a)를 수평 방향으로 분할하여 제3 부호화 단위(1012a, 1012b)를 결정할 수 있다. 다만 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1010a)를 수평 방향으로 분할한 경우, 우측 제2 부호화 단위(1010b)는 좌측 제2 부호화 단위(1010a)가 분할된 방향과 동일하게 수평 방향으로 분할될 수 없도록 제한할 수 있다. 만일 우측 제2 부호화 단위(1010b)가 동일한 방향으로 분할되어 제3 부호화 단위(1014a, 1014b)가 결정된 경우, 좌측 제2 부호화 단위(1010a) 및 우측 제2 부호화 단위(1010b)가 수평 방향으로 각각 독립적으로 분할됨으로써 제3 부호화 단위(1012a, 1012b, 1014a, 1014b)가 결정될 수 있다. 하지만 이는 영상 복호화 장치(100)가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1000)를 4개의 정사각형 형태의 제2 부호화 단위(1030a, 1030b, 1030c, 1030d)로 분할한 것과 동일한 결과이며 이는 영상 복호화 측면에서 비효율적일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수평 방향으로 제1 부호화 단위(1000)가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위(1020a 또는 1020b)를 수직 방향으로 분할하여 제3 부호화 단위(1022a, 1022b, 1024a, 1024b)를 결정할 수 있다. 다만 영상 복호화 장치(100)는 제2 부호화 단위 중 하나(예를 들면 상단 제2 부호화 단위(1020a))를 수직 방향으로 분할한 경우, 상술한 이유에 따라 다른 제2 부호화 단위(예를 들면 하단 부호화 단위(1020b))는 상단 제2 부호화 단위(1020a)가 분할된 방향과 동일하게 수직 방향으로 분할될 수 없도록 제한할 수 있다.
도 11은 일 실시예에 따라 분할 형태 모드에 대한 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 영상 복호화 장치(100)가 정사각형 형태의 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1100)를 분할하여 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 결정할 수 있다. 분할 형태 모드에 대한 정보에는 부호화 단위가 분할될 수 있는 다양한 형태에 대한 정보가 포함될 수 있으나, 다양한 형태에 대한 정보에는 정사각형 형태의 4개의 부호화 단위로 분할하기 위한 정보가 포함될 수 없는 경우가 있다. 이러한 분할 형태 모드에 대한 정보에 따르면, 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1100)를 4개의 정사각형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할하지 못한다. 분할 형태 모드에 대한 정보에 기초하여 영상 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 각각 독립적으로 분할할 수 있다. 재귀적인 방법을 통해 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등) 각각이 소정의 순서대로 분할될 수 있으며, 이는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1100)가 분할되는 방법에 대응하는 분할 방법일 수 있다.
예를 들면 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1110a)가 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1112a, 1112b)를 결정할 수 있고, 우측 제2 부호화 단위(1110b)가 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1114a, 1114b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1110a) 및 우측 제2 부호화 단위(1110b) 모두 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1116a, 1116b, 1116c, 1116d)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1100)가 4개의 정사각형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
또 다른 예를 들면 영상 복호화 장치(100)는 상단 제2 부호화 단위(1120a)가 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1122a, 1122b)를 결정할 수 있고, 하단 제2 부호화 단위(1120b)가 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1124a, 1124b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 상단 제2 부호화 단위(1120a) 및 하단 제2 부호화 단위(1120b) 모두 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1126a, 1126b, 1126a, 1126b)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1100)가 4개의 정사각형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
도 12는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보에 기초하여 제1 부호화 단위(1200)를 분할할 수 있다. 블록 형태 정보가 정사각형 형태를 나타내고, 분할 형태 모드에 대한 정보가 제1 부호화 단위(1200)가 수평 방향 및 수직 방향 중 적어도 하나의 방향으로 분할됨을 나타내는 경우, 영상 복호화 장치(100)는 제1 부호화 단위(1200)를 분할하여 제2 부호화 단위(예를 들면, 1210a, 1210b, 1220a, 1220b 등)를 결정할 수 있다. 도 12를 참조하면 제1 부호화 단위1200)가 수평 방향 또는 수직 방향만으로 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)는 각각에 대한 블록 형태 정보 및 분할 형태 모드에 대한 정보에 기초하여 독립적으로 분할될 수 있다. 예를 들면 영상 복호화 장치(100)는 제1 부호화 단위(1200)가 수직 방향으로 분할되어 생성된 제2 부호화 단위(1210a, 1210b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 결정할 수 있고, 제1 부호화 단위(1200)가 수평 방향으로 분할되어 생성된 제2 부호화 단위(1220a, 1220b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 결정할 수 있다. 이러한 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)의 분할 과정은 도 11과 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 소정의 순서에 따라 부호화 단위를 처리할 수 있다. 소정의 순서에 따른 부호화 단위의 처리에 대한 특징은 도 7와 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다. 도 12를 참조하면 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1200)를 분할하여 4개의 정사각형 형태의 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)를 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(1200)가 분할되는 형태에 따라 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)의 처리 순서를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수직 방향으로 분할되어 생성된 제2 부호화 단위(1210a, 1210b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 결정할 수 있고, 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1210a)에 포함되는 제3 부호화 단위(1216a, 1216c)를 수직 방향으로 먼저 처리한 후, 우측 제2 부호화 단위(1210b)에 포함되는 제3 부호화 단위(1216b, 1216d)를 수직 방향으로 처리하는 순서(1217)에 따라 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 처리할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수평 방향으로 분할되어 생성된 제2 부호화 단위(1220a, 1220b)를 수직 방향으로 각각 분할하여 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 결정할 수 있고, 영상 복호화 장치(100)는 상단 제2 부호화 단위(1220a)에 포함되는 제3 부호화 단위(1226a, 1226b)를 수평 방향으로 먼저 처리한 후, 하단 제2 부호화 단위(1220b)에 포함되는 제3 부호화 단위(1226c, 1226d)를 수평 방향으로 처리하는 순서(1227)에 따라 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 처리할 수 있다.
도 12를 참조하면, 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)가 각각 분할되어 정사각형 형태의 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)가 결정될 수 있다. 수직 방향으로 분할되어 결정된 제2 부호화 단위(1210a, 1210b) 및 수평 방향으로 분할되어 결정된 제2 부호화 단위(1220a, 1220b)는 서로 다른 형태로 분할된 것이지만, 이후에 결정되는 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)에 따르면 결국 동일한 형태의 부호화 단위들로 제1 부호화 단위(1200)가 분할된 결과가 된다. 이에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 상이한 과정을 통해 재귀적으로 부호화 단위를 분할함으로써 결과적으로 동일한 형태의 부호화 단위들을 결정하더라도, 동일한 형태로 결정된 복수개의 부호화 단위들을 서로 다른 순서로 처리할 수 있다.
도 13은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 심도를 소정의 기준에 따라 결정할 수 있다. 예를 들면 소정의 기준은 부호화 단위의 긴 변의 길이가 될 수 있다. 영상 복호화 장치(100)는 현재 부호화 단위의 긴 변의 길이가 분할되기 전의 부호화 단위의 긴 변의 길이보다 2n (n>0) 배로 분할된 경우, 현재 부호화 단위의 심도는 분할되기 전의 부호화 단위의 심도보다 n만큼 심도가 증가된 것으로 결정할 수 있다. 이하에서는 심도가 증가된 부호화 단위를 하위 심도의 부호화 단위로 표현하도록 한다.
도 13을 참조하면, 일 실시예에 따라 정사각형 형태임을 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는 ′0: SQUARE′를 나타낼 수 있음)에 기초하여 영상 복호화 장치(100)는 정사각형 형태인 제1 부호화 단위(1300)를 분할하여 하위 심도의 제2 부호화 단위(1302), 제3 부호화 단위(1304) 등을 결정할 수 있다. 정사각형 형태의 제1 부호화 단위(1300)의 크기를 2Nx2N이라고 한다면, 제1 부호화 단위(1300)의 너비 및 높이를 1/2배로 분할하여 결정된 제2 부호화 단위(1302)는 NxN의 크기를 가질 수 있다. 나아가 제2 부호화 단위(1302)의 너비 및 높이를 1/2크기로 분할하여 결정된 제3 부호화 단위(1304)는 N/2xN/2의 크기를 가질 수 있다. 이 경우 제3 부호화 단위(1304)의 너비 및 높이는 제1 부호화 단위(1300)의 1/4배에 해당한다. 제1 부호화 단위(1300)의 심도가 D인 경우 제1 부호화 단위(1300)의 너비 및 높이의 1/2배인 제2 부호화 단위(1302)의 심도는 D+1일 수 있고, 제1 부호화 단위(1300)의 너비 및 높이의 1/4배인 제3 부호화 단위(1304)의 심도는 D+2일 수 있다.
일 실시예에 따라 비-정사각형 형태를 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는, 높이가 너비보다 긴 비-정사각형임을 나타내는 ′1: NS_VER′ 또는 너비가 높이보다 긴 비-정사각형임을 나타내는 ′2: NS_HOR′를 나타낼 수 있음)에 기초하여, 영상 복호화 장치(100)는 비-정사각형 형태인 제1 부호화 단위(1310 또는 1320)를 분할하여 하위 심도의 제2 부호화 단위(1312 또는 1322), 제3 부호화 단위(1314 또는 1324) 등을 결정할 수 있다.
영상 복호화 장치(100)는 Nx2N 크기의 제1 부호화 단위(1310)의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 1302, 1312, 1322 등)를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(1310)를 수평 방향으로 분할하여 NxN 크기의 제2 부호화 단위(1302) 또는 NxN/2 크기의 제2 부호화 단위(1322)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 N/2xN 크기의 제2 부호화 단위(1312)를 결정할 수도 있다.
일 실시예에 따라 영상 복호화 장치(100)는 2NxN 크기의 제1 부호화 단위(1320) 의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 1302, 1312, 1322 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(1320)를 수직 방향으로 분할하여 NxN 크기의 제2 부호화 단위(1302) 또는 N/2xN 크기의 제2 부호화 단위(1312)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 NxN/2 크기의 제2 부호화 단위(1322)를 결정할 수도 있다.
일 실시예에 따라 영상 복호화 장치(100)는 NxN 크기의 제2 부호화 단위(1302) 의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(1302)를 수직 방향 및 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304)를 결정하거나 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정하거나 N/2xN/4 크기의 제3 부호화 단위(1324)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 N/2xN 크기의 제2 부호화 단위(1312)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(1312)를 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304) 또는 N/2xN/4 크기의 제3 부호화 단위(1324)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 NxN/2 크기의 제2 부호화 단위(1322)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(1322)를 수직 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304) 또는 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/2xN/4크기의 제3 부호화 단위(1324)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 정사각형 형태의 부호화 단위(예를 들면, 1300, 1302, 1304)를 수평 방향 또는 수직 방향으로 분할할 수 있다. 예를 들면, 2Nx2N 크기의 제1 부호화 단위(1300)를 수직 방향으로 분할하여 Nx2N 크기의 제1 부호화 단위(1310)를 결정하거나 수평 방향으로 분할하여 2NxN 크기의 제1 부호화 단위(1320)를 결정할 수 있다. 일 실시예에 따라 심도가 부호화 단위의 가장 긴 변의 길이에 기초하여 결정되는 경우, 2Nx2N 크기의 제1 부호화 단위(1300)가 수평 방향 또는 수직 방향으로 분할되어 결정되는 부호화 단위의 심도는 제1 부호화 단위(1300)의 심도와 동일할 수 있다.
일 실시예에 따라 제3 부호화 단위(1314 또는 1324)의 너비 및 높이는 제1 부호화 단위(1310 또는 1320)의 1/4배에 해당할 수 있다. 제1 부호화 단위(1310 또는 1320)의 심도가 D인 경우 제1 부호화 단위(1310 또는 1320)의 너비 및 높이의 1/2배인 제2 부호화 단위(1312 또는 1322)의 심도는 D+1일 수 있고, 제1 부호화 단위(1310 또는 1320)의 너비 및 높이의 1/4배인 제3 부호화 단위(1314 또는 1324)의 심도는 D+2일 수 있다.
도 14은 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1400)를 분할하여 다양한 형태의 제2 부호화 단위를 결정할 수 있다. 도 14를 참조하면, 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 따라 제1 부호화 단위(1400)를 수직 방향 및 수평 방향 중 적어도 하나의 방향으로 분할하여 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(1400)에 대한 분할 형태 모드에 대한 정보에 기초하여 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)를 결정할 수 있다.
일 실시예에 따라 정사각형 형태의 제1 부호화 단위(1400)에 대한 분할 형태 모드에 대한 정보에 따라 결정되는 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정사각형 형태의 제1 부호화 단위(1400)의 한 변의 길이와 비-정사각형 형태의 제2 부호화 단위(1402a, 1402b, 1404a, 1404b)의 긴 변의 길이가 동일하므로, 제1 부호화 단위(1400)와 비-정사각형 형태의 제2 부호화 단위(1402a, 1402b, 1404a, 1404b)의 심도는 D로 동일하다고 볼 수 있다. 이에 반해 영상 복호화 장치(100)가 분할 형태 모드에 대한 정보에 기초하여 제1 부호화 단위(1400)를 4개의 정사각형 형태의 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)로 분할한 경우, 정사각형 형태의 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)의 한 변의 길이는 제1 부호화 단위(1400)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)의 심도는 제1 부호화 단위(1400)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 높이가 너비보다 긴 형태의 제1 부호화 단위(1410)를 분할 형태 모드에 대한 정보에 따라 수평 방향으로 분할하여 복수개의 제2 부호화 단위(1412a, 1412b, 1414a, 1414b, 1414c)로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 너비가 높이보다 긴 형태의 제1 부호화 단위(1420)를 분할 형태 모드에 대한 정보에 따라 수직 방향으로 분할하여 복수개의 제2 부호화 단위(1422a, 1422b, 1424a, 1424b, 1424c)로 분할할 수 있다.
일 실시예에 따라 비-정사각형 형태의 제1 부호화 단위(1410 또는 1420)에 대한 분할 형태 모드에 대한 정보에 따라 결정되는 제2 부호화 단위(1412a, 1412b, 1414a, 1414b, 1414c. 1422a, 1422b, 1424a, 1424b, 1424c)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정사각형 형태의 제2 부호화 단위(1412a, 1412b)의 한 변의 길이는 높이가 너비보다 긴 비-정사각형 형태의 제1 부호화 단위(1410)의 한 변의 길이의 1/2배이므로, 정사각형 형태의 제2 부호화 단위(1412a, 1412b)의 심도는 비-정사각형 형태의 제1 부호화 단위(1410)의 심도 D보다 한 심도 하위의 심도인 D+1이다.
나아가 영상 복호화 장치(100)가 분할 형태 모드에 대한 정보에 기초하여 비-정사각형 형태의 제1 부호화 단위(1410)를 홀수개의 제2 부호화 단위(1414a, 1414b, 1414c)로 분할할 수 있다. 홀수개의 제2 부호화 단위(1414a, 1414b, 1414c)는 비-정사각형 형태의 제2 부호화 단위(1414a, 1414c) 및 정사각형 형태의 제2 부호화 단위(1414b)를 포함할 수 있다. 이 경우 비-정사각형 형태의 제2 부호화 단위(1414a, 1414c)의 긴 변의 길이 및 정사각형 형태의 제2 부호화 단위(1414b)의 한 변의 길이는 제1 부호화 단위(1410)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(1414a, 1414b, 1414c)의 심도는 제1 부호화 단위(1410)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(1410)와 관련된 부호화 단위들의 심도를 결정하는 상기 방식에 대응하는 방식으로, 너비가 높이보다 긴 비-정사각형 형태의 제1 부호화 단위(1420)와 관련된 부호화 단위들의 심도를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 분할된 부호화 단위들의 구분을 위한 인덱스(PID)를 결정함에 있어서, 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 14를 참조하면, 홀수개로 분할된 부호화 단위들(1414a, 1414b, 1414c) 중 가운데에 위치하는 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)와 너비는 동일하지만 높이가 다른 부호화 단위들(1414a, 1414c)의 높이의 두 배일 수 있다. 즉, 이 경우 가운데에 위치하는 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)의 두 개를 포함할 수 있다. 따라서, 스캔 순서에 따라 가운데에 위치하는 부호화 단위(1414b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(1414c)는 인덱스가 2가 증가한 3일수 있다. 즉 인덱스의 값의 불연속성이 존재할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 이러한 분할된 부호화 단위들 간의 구분을 위한 인덱스의 불연속성의 존재 여부에 기초하여 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌지 여부를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위로부터 분할되어 결정된 복수개의 부호화 단위들을 구분하기 위한 인덱스의 값에 기초하여 특정 분할 형태로 분할된 것인지를 결정할 수 있다. 도 14를 참조하면 영상 복호화 장치(100)는 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(1410)를 분할하여 짝수개의 부호화 단위(1412a, 1412b)를 결정하거나 홀수개의 부호화 단위(1414a, 1414b, 1414c)를 결정할 수 있다. 영상 복호화 장치(100)는 복수개의 부호화 단위 각각을 구분하기 위하여 각 부호화 단위를 나타내는 인덱스(PID)를 이용할 수 있다. 일 실시예에 따라 PID는 각각의 부호화 단위의 소정 위치의 샘플(예를 들면, 좌측 상단 샘플)에서 획득될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 구분을 위한 인덱스를 이용하여 분할되어 결정된 부호화 단위들 중 소정 위치의 부호화 단위를 결정할 수 있다. 일 실시예에 따라 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(1410)에 대한 분할 형태 모드에 대한 정보가 3개의 부호화 단위로 분할됨을 나타내는 경우 영상 복호화 장치(100)는 제1 부호화 단위(1410)를 3개의 부호화 단위(1414a, 1414b, 1414c)로 분할할 수 있다. 영상 복호화 장치(100)는 3개의 부호화 단위(1414a, 1414b, 1414c) 각각에 대한 인덱스를 할당할 수 있다. 영상 복호화 장치(100)는 홀수개로 분할된 부호화 단위 중 가운데 부호화 단위를 결정하기 위하여 각 부호화 단위에 대한 인덱스를 비교할 수 있다. 영상 복호화 장치(100)는 부호화 단위들의 인덱스에 기초하여 인덱스들 중 가운데 값에 해당하는 인덱스를 갖는 부호화 단위(1414b)를, 제1 부호화 단위(1410)가 분할되어 결정된 부호화 단위 중 가운데 위치의 부호화 단위로서 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 분할된 부호화 단위들의 구분을 위한 인덱스를 결정함에 있어서, 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 14를 참조하면, 제1 부호화 단위(1410)가 분할되어 생성된 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)와 너비는 동일하지만 높이가 다른 부호화 단위들(1414a, 1414c)의 높이의 두 배일 수 있다. 이 경우 가운데에 위치하는 부호화 단위(1414b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(1414c)는 인덱스가 2가 증가한 3일수 있다. 이러한 경우처럼 균일하게 인덱스가 증가하다가 증가너비가이 달라지는 경우, 영상 복호화 장치(100)는 다른 부호화 단위들과 다른 크기를 가지는 부호화 단위를 포함하는 복수개의 부호화 단위로 분할된 것으로 결정할 수 있다, 일 실시예에 따라 분할 형태 모드에 대한 정보가 홀수개의 부호화 단위로 분할됨을 나타내는 경우, 영상 복호화 장치(100)는 홀수개의 부호화 단위 중 소정 위치의 부호화 단위(예를 들면 가운데 부호화 단위)가 다른 부호화 단위와 크기가 다른 형태로 현재 부호화 단위를 분할할 수 있다. 이 경우 영상 복호화 장치(100)는 부호화 단위에 대한 인덱스(PID)를 이용하여 다른 크기를 가지는 가운데 부호화 단위를 결정할 수 있다. 다만 상술한 인덱스, 결정하고자 하는 소정 위치의 부호화 단위의 크기 또는 위치는 일 실시예를 설명하기 위해 특정한 것이므로 이에 한정하여 해석되어서는 안되며, 다양한 인덱스, 부호화 단위의 위치 및 크기가 이용될 수 있는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 재귀적인 분할이 시작되는 소정의 데이터 단위를 이용할 수 있다.
도 15는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
일 실시예에 따라 소정의 데이터 단위는 부호화 단위가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용하여 재귀적으로 분할되기 시작하는 데이터 단위로 정의될 수 있다. 즉, 현재 픽쳐를 분할하는 복수개의 부호화 단위들이 결정되는 과정에서 이용되는 최상위 심도의 부호화 단위에 해당할 수 있다. 이하에서는 설명 상 편의를 위해 이러한 소정의 데이터 단위를 기준 데이터 단위라고 지칭하도록 한다.
일 실시예에 따라 기준 데이터 단위는 소정의 크기 및 형태를 나타낼 수 있다. 일 실시예에 따라, 기준 부호화 단위는 MxN의 샘플들을 포함할 수 있다. 여기서 M 및 N은 서로 동일할 수도 있으며, 2의 승수로 표현되는 정수일 수 있다. 즉, 기준 데이터 단위는 정사각형 또는 비-정사각형의 형태를 나타낼 수 있으며, 이후에 정수개의 부호화 단위로 분할될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐를 복수개의 기준 데이터 단위로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐를 분할하는 복수개의 기준 데이터 단위를 각각의 기준 데이터 단위에 대한 분할 형태 모드에 대한 정보를 이용하여 분할할 수 있다. 이러한 기준 데이터 단위의 분할 과정은 쿼드 트리(quad-tree)구조를 이용한 분할 과정에 대응될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐에 포함되는 기준 데이터 단위가 가질 수 있는 최소 크기를 미리 결정할 수 있다. 이에 따라, 영상 복호화 장치(100)는 최소 크기 이상의 크기를 갖는 다양한 크기의 기준 데이터 단위를 결정할 수 있고, 결정된 기준 데이터 단위를 기준으로 블록 형태 정보 및 분할 형태 모드에 대한 정보를 이용하여 적어도 하나의 부호화 단위를 결정할 수 있다.
도 15를 참조하면, 영상 복호화 장치(100)는 정사각형 형태의 기준 부호화 단위(1500)를 이용할 수 있고, 또는 비-정사각형 형태의 기준 부호화 단위(1502)를 이용할 수도 있다. 일 실시예에 따라 기준 부호화 단위의 형태 및 크기는 적어도 하나의 기준 부호화 단위를 포함할 수 있는 다양한 데이터 단위(예를 들면, 시퀀스(sequence), 픽쳐(picture), 슬라이스(slice), 슬라이스 세그먼트(slice segment), 타일(tile), 타일 그룹(tile group), 최대부호화단위 등)에 따라 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 수신부(미도시)는 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보 중 적어도 하나를 상기 다양한 데이터 단위마다 비트스트림으로부터 획득할 수 있다. 정사각형 형태의 기준 부호화 단위(1500)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 3의 현재 부호화 단위(300)가 분할되는 과정을 통해 상술하였고, 비-정사각형 형태의 기준 부호화 단위(1502)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 4의 현재 부호화 단위(400 또는 450)가 분할되는 과정을 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 소정의 조건에 기초하여 미리 결정되는 일부 데이터 단위에 따라 기준 부호화 단위의 크기 및 형태를 결정하기 위하여, 기준 부호화 단위의 크기 및 형태를 식별하기 위한 인덱스를 이용할 수 있다. 즉, 수신부(미도시)는 비트스트림으로부터 상기 다양한 데이터 단위(예를 들면, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 타일(tile), 타일 그룹(tile group), 최대부호화단위 등) 중 소정의 조건(예를 들면 슬라이스 이하의 크기를 갖는 데이터 단위)을 만족하는 데이터 단위로서 슬라이스, 슬라이스 세그먼트, 타일(tile), 타일 그룹(tile group), 최대부호화 단위 등 마다, 기준 부호화 단위의 크기 및 형태의 식별을 위한 인덱스만을 획득할 수 있다. 영상 복호화 장치(100)는 인덱스를 이용함으로써 상기 소정의 조건을 만족하는 데이터 단위마다 기준 데이터 단위의 크기 및 형태를 결정할 수 있다. 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 상대적으로 작은 크기의 데이터 단위마다 비트스트림으로부터 획득하여 이용하는 경우, 비트스트림의 이용 효율이 좋지 않을 수 있으므로, 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 직접 획득하는 대신 상기 인덱스만을 획득하여 이용할 수 있다. 이 경우 기준 부호화 단위의 크기 및 형태를 나타내는 인덱스에 대응하는 기준 부호화 단위의 크기 및 형태 중 적어도 하나는 미리 결정되어 있을 수 있다. 즉, 영상 복호화 장치(100)는 미리 결정된 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 인덱스에 따라 선택함으로써, 인덱스 획득의 기준이 되는 데이터 단위에 포함되는 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 하나의 최대 부호화 단위에 포함하는 적어도 하나의 기준 부호화 단위를 이용할 수 있다. 즉, 영상을 분할하는 최대 부호화 단위에는 적어도 하나의 기준 부호화 단위가 포함될 수 있고, 각각의 기준 부호화 단위의 재귀적인 분할 과정을 통해 부호화 단위가 결정될 수 있다. 일 실시예에 따라 최대 부호화 단위의 너비 및 높이 중 적어도 하나는 기준 부호화 단위의 너비 및 높이 중 적어도 하나의 정수배에 해당할 수 있다. 일 실시예에 따라 기준 부호화 단위의 크기는 최대부호화단위를 쿼드 트리 구조에 따라 n번 분할한 크기일 수 있다. 즉, 영상 복호화 장치(100)는 최대부호화단위를 쿼드 트리 구조에 따라 n 번 분할하여 기준 부호화 단위를 결정할 수 있고, 다양한 실시예들에 따라 기준 부호화 단위를 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 분할할 수 있다.
도 16은 일 실시예에 따라 픽쳐(1600)에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 픽쳐를 분할하는 적어도 하나의 프로세싱 블록을 결정할 수 있다. 프로세싱 블록이란, 영상을 분할하는 적어도 하나의 기준 부호화 단위를 포함하는 데이터 단위로서, 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위는 특정 순서대로 결정될 수 있다. 즉, 각각의 프로세싱 블록에서 결정되는 적어도 하나의 기준 부호화 단위의 결정 순서는 기준 부호화 단위가 결정될 수 있는 다양한 순서의 종류 중 하나에 해당할 수 있으며, 각각의 프로세싱 블록에서 결정되는 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록마다 결정되는 기준 부호화 단위의 결정 순서는 래스터 스캔(raster scan), Z 스캔(Z-scan), N 스캔(N-scan), 우상향 대각 스캔(up-right diagonal scan), 수평적 스캔(horizontal scan), 수직적 스캔(vertical scan) 등 다양한 순서 중 하나일 수 있으나, 결정될 수 있는 순서는 상기 스캔 순서들에 한정하여 해석되어서는 안 된다.
일 실시예에 따라 영상 복호화 장치(100)는 프로세싱 블록의 크기에 대한 정보를 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 영상 복호화 장치(100)는 프로세싱 블록의 크기에 대한 정보를 비트스트림으로부터 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 이러한 프로세싱 블록의 크기는 프로세싱 블록의 크기에 대한 정보가 나타내는 데이터 단위의 소정의 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 수신부(미도시)는 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 특정의 데이터 단위마다 획득할 수 있다. 예를 들면 프로세싱 블록의 크기에 대한 정보는 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트 등의 데이터 단위로 비트스트림으로부터 획득될 수 있다. 즉 수신부(미도시)는 상기 여러 데이터 단위마다 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 획득할 수 있고 영상 복호화 장치(100)는 획득된 프로세싱 블록의 크기에 대한 정보를 이용하여 픽쳐를 분할하는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있으며, 이러한 프로세싱 블록의 크기는 기준 부호화 단위의 정수배의 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 픽쳐(1600)에 포함되는 프로세싱 블록(1602, 1612)의 크기를 결정할 수 있다. 예를 들면, 영상 복호화 장치(100)는 비트스트림으로부터 획득된 프로세싱 블록의 크기에 대한 정보에 기초하여 프로세싱 블록의 크기를 결정할 수 있다. 도 16을 참조하면, 영상 복호화 장치(100)는 일 실시예에 따라 프로세싱 블록(1602, 1612)의 가로크기를 기준 부호화 단위 가로크기의 4배, 세로크기를 기준 부호화 단위의 세로크기의 4배로 결정할 수 있다. 영상 복호화 장치(100)는 적어도 하나의 프로세싱 블록 내에서 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 프로세싱 블록의 크기에 기초하여 픽쳐(1600)에 포함되는 각각의 프로세싱 블록(1602, 1612)을 결정할 수 있고, 프로세싱 블록(1602, 1612)에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서를 결정할 수 있다. 일 실시예에 따라 기준 부호화 단위의 결정은 기준 부호화 단위의 크기의 결정을 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 비트스트림으로부터 적어도 하나의 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서에 대한 정보를 획득할 수 있고, 획득한 결정 순서에 대한 정보에 기초하여 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다. 결정 순서에 대한 정보는 프로세싱 블록 내에서 기준 부호화 단위들이 결정되는 순서 또는 방향으로 정의될 수 있다. 즉, 기준 부호화 단위들이 결정되는 순서는 각각의 프로세싱 블록마다 독립적으로 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 특정 데이터 단위마다 기준 부호화 단위의 결정 순서에 대한 정보를 비트스트림으로부터 획득할 수 있다. 예를 들면, 수신부(미도시)는 기준 부호화 단위의 결정 순서에 대한 정보를 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 타일(tile), 타일 그룹(tile group), 프로세싱 블록 등의 데이터 단위로마다 비트스트림으로부터 획득할 수 있다. 기준 부호화 단위의 결정 순서에 대한 정보는 프로세싱 블록 내에서의 기준 부호화 단위 결정 순서를 나타내므로, 결정 순서에 대한 정보는 정수개의 프로세싱 블록을 포함하는 특정 데이터 단위 마다 획득될 수 있다.
영상 복호화 장치(100)는 일 실시예에 따라 결정된 순서에 기초하여 적어도 하나의 기준 부호화 단위를 결정할 수 있다.
일 실시예에 따라 수신부(미도시)는 비트스트림으로부터 프로세싱 블록(1602, 1612)과 관련된 정보로서, 기준 부호화 단위 결정 순서에 대한 정보를 획득할 수 있고, 영상 복호화 장치(100)는 상기 프로세싱 블록(1602, 1612)에 포함된 적어도 하나의 기준 부호화 단위를 결정하는 순서를 결정하고 부호화 단위의 결정 순서에 따라 픽쳐(1600)에 포함되는 적어도 하나의 기준 부호화 단위를 결정할 수 있다. 도 16을 참조하면, 영상 복호화 장치(100)는 각각의 프로세싱 블록(1602, 1612)과 관련된 적어도 하나의 기준 부호화 단위의 결정 순서(1604, 1614)를 결정할 수 있다. 예를 들면, 기준 부호화 단위의 결정 순서에 대한 정보가 프로세싱 블록마다 획득되는 경우, 각각의 프로세싱 블록(1602, 1612)과 관련된 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록(1602)과 관련된 기준 부호화 단위 결정 순서(1604)가 래스터 스캔(raster scan)순서인 경우, 프로세싱 블록(1602)에 포함되는 기준 부호화 단위는 래스터 스캔 순서에 따라 결정될 수 있다. 이에 반해 다른 프로세싱 블록(1612)과 관련된 기준 부호화 단위 결정 순서(1614)가 래스터 스캔 순서의 역순인 경우, 프로세싱 블록(1612)에 포함되는 기준 부호화 단위는 래스터 스캔 순서의 역순에 따라 결정될 수 있다.
영상 복호화 장치(100)는 일 실시예에 따라, 결정된 적어도 하나의 기준 부호화 단위를 복호화할 수 있다. 영상 복호화 장치(100)는 상술한 실시예를 통해 결정된 기준 부호화 단위에 기초하여 영상을 복호화 할 수 있다. 기준 부호화 단위를 복호화 하는 방법은 영상을 복호화 하는 다양한 방법들을 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위의 형태를 나타내는 블록 형태 정보 또는 현재 부호화 단위를 분할하는 방법을 나타내는 분할 형태 모드에 대한 정보를 비트스트림으로부터 획득하여 이용할 수 있다. 블록 형태 정보 또는 분할 형태 모드에 대한 정보는 다양한 데이터 단위와 관련된 비트스트림에 포함될 수 있다. 예를 들면, 영상 복호화 장치(100)는 시퀀스 파라미터 세트(sequence parameter set), 픽쳐 파라미터 세트(picture parameter set), 비디오 파라미터 세트(video parameter set), 슬라이스 헤더(slice header), 슬라이스 세그먼트 헤더(slice segment header), 타일 헤더(tile header), 타일 그룹 헤더(tile group header)에 포함된 블록 형태 정보 또는 분할 형태 모드에 대한 정보를 이용할 수 있다. 나아가, 영상 복호화 장치(100)는 최대 부호화 단위, 기준 부호화 단위, 프로세싱 블록마다 비트스트림으로부터 블록 형태 정보 또는 분할 형태 모드에 대한 정보에 대응하는 신택스 엘리먼트를 비트스트림으로부터 획득하여 이용할 수 있다.
도 17 내지 도 20를 참조하여 다양한 실시예에 따라 다양한 형태의 부호화 단위에 기초하여 영상을 부호화 또는 복호화하기 위한 영상 부호화 장치, 영상 복호화 장치, 영상 부호화 방법 및 영상 복호화 방법이 설명된다.
도 17 및 18은 다양한 실시예에 따라, 분할 트리 타입에 따라, 일정 크기 이하의 크로마 블록으로의 분할을 허용하지 않는 방법을 설명하기 위한 도면이다.
도 17a 내지 17b은 다양한 실시예에 따라, 분할 트리 타입이 싱글 트리인 경우, 일정 크기 이하의 크로마 블록으로의 분할을 허용하지 않는 방법을 설명하기 위한 도면이다
도 17a는 일 실시예에 따라, 분할 트리 타입이 싱글 트리인 경우, 일정 크기 이하의 크로마 블록을 분할을 허용하지 않는 방법을 설명하기 위한 도면이다.
분할 트리 타입이 싱글 트리인 경우, 하나의 부호화 단위들의 트리 구조에 따라, 루마 영상의 부호화 단위들의 트리 구조와 크로마 영상의 부호화 단위들의 트리 구조가 결정될 수 있다.
도 17a를 참조하면, 분할 트리 타입이 싱글 트리인 경우, 영상 복호화 장치(100)는 루마 블록(1705) 및 대응 크로마 블록(1710)을 수직 방향으로 바이너리 분할할 수 있다. 영상 복호화 장치(100)는 루마 블록의 허용가능한 최소 크기를 4x4로 결정할 수 있고, 수직 방향으로 바이너리 분할되어 생성될 블록(1715)의 크기가 루마 블록의 허용가능한 최소 크기보다 크므로, 영상 복호화 장치(100)는 루마 블록(1705)을 수직 방향으로 바이너리 분할할 수 있다.
영상 복호화 장치(100)는 크로마 블록의 허용가능한 최소 크기를 4x4로 결정할 수 있고, 영상 복호화 장치(100)는 수직 방향으로 바이너리 분할되어 생성될 블록의 크기가 크로마 블록의 허용가능한 최소 크기보다 작으므로, 크로마 블록(1710)을 분할하지 않는다고 결정할 수 있다.
영상 복호화 장치(100)는 루마 블록(1715) 및 대응 크로마 블록(1710)을 수평 방향으로 바이너리 분할할 수 있다. 영상 복호화 장치(100)는 루마 블록의 허용가능한 최소 크기를 4x4로 결정할 수 있고, 수평 방향으로 바이너리 분할되어 생성될 블록(1720)의 크기가 루마 블록의 허용가능한 최소 크기와 동일하므로, 영상 복호화 장치(100)는 루마 블록(1715)를 수평 방향으로 바이너리 분할할 수 있다.
영상 복호화 장치(100)는 크로마 블록의 허용가능한 최소 크기를 4x4로 결정할 수 있고, 영상 복호화 장치(100)는 수평 방향으로 바이너리 분할되어 생성될 블록의 크기가 크로마 블록의 허용가능한 최소 크기보다 작으므로, 크로마 블록을 더 이상 분할하지 않는다고 결정할 수 있다.
도 17b는 일 실시예에 따라, 분할 트리 타입이 싱글 트리인 경우, 일정 크기 이하의 크로마 블록으로의 분할을 허용하지 않는 방법을 설명하기 위한 도면이다.
도 17b는 다른 실시예에 따라, 분할 트리 타입이 싱글 트리인 경우, 일정 크기 이하의 크로마 블록으로의 분할을 허용하지 않는 방법을 설명하기 위한 도면이다.
도 17b를 참조하면, 분할 트리 타입이 싱글 트리인 경우, 영상 복호화 장치(100)는 루마 블록(1755) 및 대응 크로마 블록(1760)을 수직 방향으로 트라이 분할할 수 있다. 영상 복호화 장치(100)는 루마 블록의 허용가능한 최소 넓이를 16으로 결정할 수 있고, 수직 방향으로 트라이 분할되어 생성될 블록(1765)의 넓이가 루마 블록의 허용가능한 최소 넓이보다 크거나 같으므로, 영상 복호화 장치(100)는 루마 블록(1755)을 수직 방향으로 트라이 분할할 수 있다.
영상 복호화 장치(100)는 크로마 블록의 허용가능한 최소 넓이를 16으로 결정할 수 있고, 수직 방향으로 트라이 분할되어 생성될 블록의 넓이가 크로마 블록의 허용가능한 최소 넓이보다 작으므로, 영상 복호화 장치(100)는 크로마 블록(1760)을 분할하지 않는다고 결정할 수 있다.
도 18은 일 실시예에 따라, 분할 트리 타입이 듀얼 트리인 경우, 일정 크기 이하의 크로마 블록을 분할을 허용하지 않는 방법을 설명하기 위한 도면이다.
분할 트리 타입이 듀얼 트리인 경우, 루마 영상의 부호화 단위들의 트리 구조 및 크로마 영상의 부호화 단위들의 트리 구조가 별도로 결정될 수 있다.
도 18을 참조하면, 영상 복호화 장치(100)는 크로마 블록의 허용가능한 최소 크기를 4x4로 결정할 수 있고, 크로마 블록(1800, 1810, 1820, 1825)으로부터 특정 분할 타입에 따라 분할되어 생성될 블록의 크기가 크로마 블록의 허용가능한 최소 크기인 4x4보다 작으므로, 특정 분할 타입에 따라 크로마 블록(1800)을 분할하지 않는다고 결정할 수 있다.
영상 복호화 장치(100)는 크로마 블록(1800)의 분할 타입이 쿼드 분할인 경우, 크로마 블록(1800)으로부터 쿼드 분할에 따라 분할되어 생성될 블록의 크기가 2x2로 허용가능한 최소 크기인 4x4보다 작으므로, 쿼드 분할에 따라 크로마 블록(1800)을 분할하지 않는다고 결정할 수 있다. 이때, 영상 복호화 장치(100)는 크로마 블록(1800)의 크기에 기초한 조건으로, 분할되어 생성될 블록의 크기가 허용가능한 최소 크기인 4x4보다 작은지를 결정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 크로마 블록(1800)의 높이 또는 너비가 4보다 작거나 같은지 여부를 결정하고, 그 결정 결과에 따라 분할되어 생성될 블록의 크기가 허용가능한 최소 크기인 4x4보다 작다고 결정할 수 있다.
영상 복호화 장치(100)는 크로마 블록(1810)의 분할 타입이 바이너리 분할인 경우, 크로마 블록(1810)으로부터 바이너리 분할에 따라 분할되어 생성될 블록의 크기가 4x2 또는 2x4로 허용가능한 최소 크기인 4x4보다 작으므로, 바이너리 분할에 따라 크로마 블록(1810)을 분할하지 않는다고 결정할 수 있다. 이때, 영상 복호화 장치(100)는 크로마 블록(1810)의 넓이에 기초한 조건으로, 분할되어 생성될 블록의 크기가 허용가능한 최소 크기인 4x4보다 작은지를 결정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 크로마 블록(1810)의 넓이가 16보다 작거나 같은지 여부를 결정하고, 그 결정 결과에 따라 분할되어 생성될 블록의 크기가 허용가능한 최소 크기인 4x4보다 작다고 결정할 수 있다.
영상 복호화 장치(100)는 크로마 블록(1820, 1825)의 분할 타입이 트라이 분할인 경우, 크로마 블록(1820, 1825)으로부터 트라이 분할에 따라 분할되어 생성될 블록의 크기가 4x2 또는 2x4로 허용가능한 최소 크기인 4x4보다 작으므로, 트라이 분할에 따라 크로마 블록(1820, 1825)을 분할하지 않는다고 결정할 수 있다.
이때, 영상 복호화 장치(100)는 크로마 블록(1820, 1825)의 넓이에 기초한 조건으로, 분할되어 생성될 블록의 크기가 허용가능한 최소 크기인 4x4보다 작은지를 결정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 크로마 블록(1820, 1825)의 넓이가 32보다 작거나 같은지 여부를 결정하고, 그 결정 결과에 따라 분할되어 생성될 블록의 크기가 허용가능한 최소 크기인 4x4보다 작다고 결정할 수 있다.
영상 복호화 장치(100)는 항상 크로마 블록의 부호화 단위를 허용가능한 최소 크기보다 크거나 같게 결정함으로써 크로마 블록의 복호화시에 처리량을 향상시킬 수 있다.
도 19 및 20은 다양한 실시예에 따라, 픽처 경계에 놓인 블록을 분할하는 방법을 설명하기 위한 도면이다.
도 19는 일 실시예에 따라 픽처의 경계에 놓인 블록을 경계의 방향에 기초한 분할 형태 모드를 이용하여 분할하는 방법을 설명하기 위한 도면이다.
영상 복호화 장치(100)는 쿼드 분할을 재귀적으로 수행하여 블록을 계층적으로 쿼드 분할할 수 있다. 이때, 쿼드 분할되어 생성될 수 있는 블록의 크기의 범위가 결정될 수 있다. 영상 복호화 장치(100)는 쿼드 분할되어 생성될 수 있는 블록의 크기의 범위 내에서 쿼드 분할을 재귀적으로 수행하여 블록을 계층적으로 쿼드 분할할 수 있다.
영상 복호화 장치(100)는 계층적으로 쿼드 분할하여 생성된 블록을 재귀적으로 바이너리 분할 또는 트라이 분할을 수행할 수 있다. 이때, 바이너리 분할 또는 트라이 분할의 분할 뎁스는 미리 결정될 수 있다. 영상 복호화 장치(100)는 계층적으로 쿼드 분할하여 생성된 블록으로부터 미리 결정된 바이너리 분할 또는 트라이 분할의 분할 뎁스에 기초하여 재귀적으로 바이너리 분할 또는 트라이 분할을 수행할 수 있다.
도 19를 참조하면, 영상 복호화 장치(100)는 현재 블록(1905)이 픽처 경계(1910) 상에 위치하는 경우, 비트스트림으로부터의 분할 형태 모드 정보의 획득 없이 현재 블록(1905)으로부터 허용되는 분할 형태 모드에 따라 현재 블록(1905)을 분할할 수 있다. 예를 들어, 영상 복호화 장치(100)는 허용가능한 현재 블록의 분할 형태 모드의 분할 타입이 트라이 분할 또는 바이너리 분할인 경우, 현재 블록(1905)을 바이너리 분할 (또는 트라이 분할)할 수 있다. 이때, 분할 방향은 현재 블록(1905)의 픽처 경계(1910)의 방향에 따라 수평 방향으로 결정될 수 있다.
영상 복호화 장치(100)는 허용가능한 현재 블록의 분할 형태 모드의 분할 타입이 트라이 분할 또는 바이너리 분할이 아닌 경우, 현재 블록(1910)을 쿼드 분할할 수 있다.
이때, 영상 복호화 장치(100)는 분할되어 생성된 블록이 픽처 경계(1910) 상에 위치하지 않을 때까지 현재 블록(1905)를 재귀적으로 분할할 수 있다.
도 20a 내지 20b는 일 실시예에 따라 허용하는 바이너리 분할 뎁스를 적용하여 픽처의 경계에 놓인 블록을 바이너리 분할하는 경우 최소 블록의 크기가 나오는지 여부에 기초하여 픽처의 경계에 놓인 블록을 분할하는 방법을 설명하기 위한 도면이다.
도 20a를 참조하면, 현재 블록(2000)의 크기가 128x128이고, 현재 블록(2000)의 허용가능한 분할 타입이 바이너리 분할이고, 현재 블록(2000)의 허용가능한 분할 뎁스가 3인 경우, 영상 복호화 장치(100)는 현재 블록(2000)이 현재 픽처의 영상 경계(2005) 상에 위치한다면, 제1 분할 경계(2010)를 기초로 바이너리 분할을 수행하고, 제2 분할 경계(2015)를 기초로 바이너리 분할을 수행하고, 제3 분할 경계(2020)를 기초로 바이너리 분할을 수행할 수 있다. 바이너리 분할 뎁스만큼 바이너리 분할을 수행하였으므로, 영상 복호화 장치(100)는 더 이상 바이너리 분할을 수행할 수 없다. 따라서, 부호화 단위로 결정된 영상 경계(2005) 안쪽의 블록(2025)의 크기는 16x128일 수 있다. 하지만 부호화 단위로 결정된 블록(2025)의 크기가 작지 않기 때문에 그 안에 다양한 움직임 정보 및 픽셀 값 정보를 포함하는 경우 복호화 효율이 낮아지는 문제점이 있다.
도 20b를 참조하면, 현재 블록(2030)의 크기가 128x128이고, 현재 블록(2030)의 허용가능한 분할 타입이 바이너리 분할이고, 현재 블록(2030)의 허용가능한 분할 뎁스가 3인 경우, 영상 복호화 장치(100)는 현재 픽처의 영상 경계(2035) 상에 위치한다면, 현재 블록(2030)의 크기와 현재 블록의 바이너리 분할의 허용 분할 뎁스를 고려하여 현재 블록으로부터 재귀적으로 바이너리 분할되어 생성될 블록의 크기가 최소 블록 크기(예를 들어, 4x4)보다 작거나 같은 경우, 바이너리 분할을 수행하고, 바이너리 분할의 허용 분할 뎁스를 고려하여 현재 블록으로부터 재귀적으로 바이너리 분할되어 생성된 블록의 크기가 최소 블록 크기보다 큰 경우, 쿼드 분할을 수행할 수 있다.
영상 복호화 장치(100)는 바이너리 분할의 허용 분할 뎁스를 고려하여 현재 블록(2030)으로부터 재귀적으로 바이너리 분할되어 생성된 블록의 크기가 최소 블록 크기보다 크므로, 제1 분할 경계(2040)를 기초로 현재 블록(2030)에 대한 쿼드 분할을 수행할 수 있다.
영상 복호화 장치(100)는 바이너리 분할의 최대 허용 분할 뎁스를 고려하여 현재 블록(2045)으로부터 재귀적으로 바이너리 분할되어 생성된 블록의 크기가 최소 블록 크기보다 크므로, 제2 분할 경계(2050)를 기초로 현재 블록(2045)에 대한 쿼드 분할을 수행할 수 있다.
영상 복호화 장치(100)는 바이너리 분할의 최대 허용 분할 뎁스를 고려하여 현재 블록(2055)으로부터 재귀적으로 바이너리 분할된 블록의 크기가 최소 블록 크기보다 작거나 같으므로, 제3 분할 경계(2060)를 기초로 현재 블록(2055)에 대한 바이너리 분할을 수행할 수 있다.
제3 분할 경계(2060)를 기초로 현재 블록(2055)에 대한 바이너리 분할을 수행하여 통해 생성된 영상 경계(2035) 안쪽의 블록(2065)의 크기는 16x32이고, 영상 복호화 장치(100)는 블록(2065)에 대해 추가적으로 바이너리 분할을 수행할 수도 있다. 따라서, 부호화 단위로 결정된 블록은 도 20a와 달리 그 크기가 작을 수 있고, 복호화 효율이 상대적으로 높아질 수 있다.
이상, 도 20a 내지 20b를 참조하여, 영상 복호화 장치(100)는 현재 블록(2000, 2030)의 크기를 128x128로 결정하고, 현재 블록(2000, 2030)의 허용가능한 분할 타입을 바이너리 분할로 결정하고, 현재 블록(2000, 2030)의 허용가능한 분할 뎁스를 3으로 결정하는 경우, 픽처 경계 상에 위치하는 현재 블록(2000, 2030)를 분할하는 방법에 대해서 설명하였으나, 이에 제한되지 않고, 하기와 같은 수도 코드(Psudo Code)에 따라 현재 블록이 픽처 경계 상에 위치하는 경우 현재 블록을 분할할 수 있다.
[Psudo Code]
예를 들어, 상기와 같은 수도 코드(Psudo Code)를 따르는 영상 복호화 장치(100)는 현재 블록의 높이나 너비 중 큰 값을 기준으로 바이너리 분할에 따라 허용하는 분할 뎁스만큼 재귀적으로 분할(바이너리 트리에 기초한 분할)을 수행하였을 때, 해당하는 변이 특정 크기(혹은 그 이하)(여기서, 특정 크기는 최소 블록의 크기일 수 있으나, 사용자가 설정한 크기일 수 있음)가 되는 경우, 바이너리 분할에 따라 현재 블록을 재귀적으로 분할(바이너리 트리에 기초한 분할)할 수 있다. 그 외의 경우, 영상 복호화 장치(100)는 쿼드 분할에 따라 현재 블록을 분할할 수 있다. 구체적으로, 허용하는 바이너리 분할 뎁스(bt_depth)가 3인 경우, 현재 블록의 높이 및 너비 중 큰 값이 최소 크기(min_bt_size)x2x2x2(즉, 최소 크기 x 8) 이하인 경우에만 바이너리 분할에 따라 현재 블록을 재귀적으로 분할할 수 있다.
이상, 도 20a 내지 20b를 참조하여, 영상 복호화 장치(100)는 바이너리 분할 뎁스를 고려하여 바이너리 분할 또는 쿼드 분할하는 방법에 대해서 설명하였으나, 이에 제한되지 않고, 이와 유사하게 바이너리(및 트라이) 분할 뎁스를 고려하여 바이너리 분할, 트라이 분할 또는 쿼드 분할할 수 있음을 당업자는 용이하게 이해할 수 있다.
이제까지 다양한 실시예들을 중심으로 살펴보았다. 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자는 본 개시가 본 개시의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 개시의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 개시에 포함된 것으로 해석되어야 할 것이다.
한편, 상술한 본 개시의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.
Claims (4)
- 루마 블록의 분할 방향 및 분할 타입 중 적어도 하나에 기초하여 하나 이상의 루마 부호화 단위를 획득하는 단계;
상기 획득된 하나 이상의 루마 부호화 단위를 기초로 루마 영상을 복호화하는 단계;
크로마 블록의 넓이가 상기 크로마 블록의 트라이 분할 타입에 따른 소정의 넓이보다 작거나 같은 경우, 상기 트라이 분할 타입에 따른 상기 크로마 블록의 분할을 허용하지 않도록 결정하고, 상기 트라이 분할 타입을 제외한 분할 타입에 따라 하나 이상의 크로마 부호화 단위를 획득하는 단계;
상기 크로마 블록의 넓이가 상기 크로마 블록의 바이너리 분할 타입에 따른 소정의 넓이보다 작거나 같은 경우, 상기 크로마 블록의 분할을 허용하지 않도록 결정하고, 상기 크로마 블록에 포함된 하나의 크로마 부호화 단위를 획득하는 단계; 및
상기 획득된 하나 이상의 크로마 부호화 단위를 기초로 크로마 영상을 복호화하는 단계를 포함하는 영상 복호화 방법.
- 루마 블록의 분할 방향 및 분할 타입 중 적어도 하나에 기초하여 하나 이상의 루마 부호화 단위를 획득하고,
상기 획득된 하나 이상의 루마 부호화 단위를 기초로 루마 영상을 복호화하고,
크로마 블록의 넓이가 상기 크로마 블록의 트라이 분할 타입에 따른 소정의 넓이보다 작거나 같은 경우, 상기 트라이 분할 타입에 따른 상기 크로마 블록의 분할을 허용하지 않도록 결정하고, 상기 트라이 분할 타입을 제외한 분할 타입에 따라 하나 이상의 크로마 부호화 단위를 획득하고,
상기 크로마 블록의 넓이가 상기 크로마 블록의 바이너리 분할 타입에 따른 소정의 넓이보다 작거나 같은 경우, 상기 크로마 블록의 분할을 허용하지 않도록 결정하고, 상기 크로마 블록에 포함된 하나의 크로마 부호화 단위를 획득하고,
상기 획득된 하나 이상의 크로마 부호화 단위를 기초로 크로마 영상을 복호화하는 적어도 하나의 프로세서를 포함하는 영상 복호화 장치.
- 루마 블록의 분할 방향 및 분할 타입 중 적어도 하나에 기초하여 하나 이상의 루마 부호화 단위를 결정하는 단계;
상기 결정된 하나 이상의 루마 부호화 단위를 기초로 루마 영상을 부호화하는 단계;
크로마 블록의 넓이가 상기 크로마 블록의 트라이 분할 타입에 따른 소정의 넓이보다 작거나 같은 경우, 상기 트라이 분할 타입에 따른 상기 크로마 블록의 분할을 허용하지 않도록 결정하고, 상기 트라이 분할 타입을 제외한 분할 타입에 따라 하나 이상의 크로마 부호화 단위를 결정하는 단계;
상기 크로마 블록의 넓이가 상기 크로마 블록의 바이너리 분할 타입에 따른 소정의 넓이보다 작거나 같은 경우, 상기 크로마 블록의 분할을 허용하지 않도록 결정하고, 상기 크로마 블록에 포함된 하나의 크로마 부호화 단위를 결정하는 단계; 및
상기 결정된 하나 이상의 크로마 부호화 단위를 기초로 크로마 영상을 부호화하는 단계를 포함하는 영상 부호화 방법.
- 루마 블록의 분할 방향 및 분할 타입 중 적어도 하나에 기초하여 하나 이상의 루마 부호화 단위를 결정하는 단계;
상기 결정된 하나 이상의 루마 부호화 단위를 기초로 루마 영상을 부호화하는 단계;
크로마 블록의 넓이가 상기 크로마 블록의 트라이 분할 타입에 따른 소정의 넓이보다 작거나 같은 경우, 상기 트라이 분할 타입에 따른 상기 크로마 블록의 분할을 허용하지 않도록 결정하고, 상기 트라이 분할 타입을 제외한 분할 타입에 따라 하나 이상의 크로마 부호화 단위를 결정하는 단계;
상기 크로마 블록의 넓이가 상기 크로마 블록의 바이너리 분할 타입에 따른 소정의 넓이보다 작거나 같은 경우, 상기 크로마 블록의 분할을 허용하지 않도록 결정하고, 상기 크로마 블록에 포함된 하나의 크로마 부호화 단위를 결정하는 단계; 및
상기 결정된 하나 이상의 크로마 부호화 단위를 기초로 크로마 영상을 부호화하는 단계를 포함하는 영상 부호화 방법에 의하여 생성된 비트스트림을 저장하는 컴퓨터 판독 가능한 기록매체.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247015196A KR20240068791A (ko) | 2018-05-10 | 2019-05-10 | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862669667P | 2018-05-10 | 2018-05-10 | |
US62/669,667 | 2018-05-10 | ||
US201862683225P | 2018-06-11 | 2018-06-11 | |
US62/683,225 | 2018-06-11 | ||
PCT/KR2019/005673 WO2019216718A1 (ko) | 2018-05-10 | 2019-05-10 | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 |
KR1020237013209A KR102606290B1 (ko) | 2018-05-10 | 2019-05-10 | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020237013209A Division KR102606290B1 (ko) | 2018-05-10 | 2019-05-10 | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020247015196A Division KR20240068791A (ko) | 2018-05-10 | 2019-05-10 | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230162147A true KR20230162147A (ko) | 2023-11-28 |
KR102665187B1 KR102665187B1 (ko) | 2024-05-14 |
Family
ID=72292986
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020247015196A KR20240068791A (ko) | 2018-05-10 | 2019-05-10 | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 |
KR1020237013209A KR102606290B1 (ko) | 2018-05-10 | 2019-05-10 | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 |
KR1020237039925A KR102665187B1 (ko) | 2018-05-10 | 2019-05-10 | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 |
KR1020207022246A KR102412123B1 (ko) | 2018-05-10 | 2019-05-10 | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 |
KR1020227020795A KR20220088813A (ko) | 2018-05-10 | 2019-05-10 | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020247015196A KR20240068791A (ko) | 2018-05-10 | 2019-05-10 | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 |
KR1020237013209A KR102606290B1 (ko) | 2018-05-10 | 2019-05-10 | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207022246A KR102412123B1 (ko) | 2018-05-10 | 2019-05-10 | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 |
KR1020227020795A KR20220088813A (ko) | 2018-05-10 | 2019-05-10 | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 |
Country Status (1)
Country | Link |
---|---|
KR (5) | KR20240068791A (ko) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140139459A (ko) * | 2014-10-29 | 2014-12-05 | 삼성전자주식회사 | 픽처 경계의 부호화 단위를 부호화, 복호화 하는 방법 및 장치 |
WO2018066809A1 (ko) * | 2016-10-04 | 2018-04-12 | 엘지전자(주) | 크로마 성분 코딩 유닛 분할 방법 및 장치 |
-
2019
- 2019-05-10 KR KR1020247015196A patent/KR20240068791A/ko active Search and Examination
- 2019-05-10 KR KR1020237013209A patent/KR102606290B1/ko active IP Right Grant
- 2019-05-10 KR KR1020237039925A patent/KR102665187B1/ko active IP Right Grant
- 2019-05-10 KR KR1020207022246A patent/KR102412123B1/ko active IP Right Grant
- 2019-05-10 KR KR1020227020795A patent/KR20220088813A/ko active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140139459A (ko) * | 2014-10-29 | 2014-12-05 | 삼성전자주식회사 | 픽처 경계의 부호화 단위를 부호화, 복호화 하는 방법 및 장치 |
WO2018066809A1 (ko) * | 2016-10-04 | 2018-04-12 | 엘지전자(주) | 크로마 성분 코딩 유닛 분할 방법 및 장치 |
Non-Patent Citations (4)
Title |
---|
Huanbang Chen et al. Description of SDR, HDR and 360° video coding technology proposal by Huawei, GoPro, HiSilicon, and Samsung, JVET-J0025_v2, 2018-04-14, pp. 1-128* * |
Jackie Ma et al. Quadtree plus binary tree with shifting, Joint Video exploration Team(JVET), JVET-J0035-v4, 2018-04-13, pp. 1-23* * |
Sunmi Yoo et al. Suggested fix on QTBT, Joint Video exploration Team(JVET), JVET-D0049_v4, 2016-10-10, pp. 1-4* * |
Xiang Li et al. Multi-Type-tree, Joint Video exploration Team(JVET), JVET-D0117, 2016-10-06, pp. 1-3* * |
Also Published As
Publication number | Publication date |
---|---|
KR102606290B1 (ko) | 2023-11-24 |
KR102412123B1 (ko) | 2022-06-22 |
KR20230054914A (ko) | 2023-04-25 |
KR102665187B1 (ko) | 2024-05-14 |
KR20240068791A (ko) | 2024-05-17 |
KR20220088813A (ko) | 2022-06-28 |
KR20200098701A (ko) | 2020-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102341858B1 (ko) | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 | |
KR102389868B1 (ko) | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 | |
KR102641425B1 (ko) | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 | |
KR102637661B1 (ko) | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 | |
KR20200066638A (ko) | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 | |
KR102618499B1 (ko) | 하드웨어 설계를 고려한 비디오 부호화 방법, 부호화 장치, 비디오 복호화 방법, 복호화 장치 | |
CN112385219B (zh) | 用于图像编码的方法和装置以及用于图像解码的方法和装置 | |
KR102606290B1 (ko) | 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |