KR20230149792A - Charging station control server and method for estimating state of health of the battery of electric vehicle - Google Patents

Charging station control server and method for estimating state of health of the battery of electric vehicle Download PDF

Info

Publication number
KR20230149792A
KR20230149792A KR1020230140473A KR20230140473A KR20230149792A KR 20230149792 A KR20230149792 A KR 20230149792A KR 1020230140473 A KR1020230140473 A KR 1020230140473A KR 20230140473 A KR20230140473 A KR 20230140473A KR 20230149792 A KR20230149792 A KR 20230149792A
Authority
KR
South Korea
Prior art keywords
charging
amount
battery
current
electric vehicle
Prior art date
Application number
KR1020230140473A
Other languages
Korean (ko)
Inventor
최용길
이계은
노인덕
이준오
Original Assignee
주식회사 펌프킨
최용길
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 펌프킨, 최용길 filed Critical 주식회사 펌프킨
Priority to KR1020230140473A priority Critical patent/KR20230149792A/en
Publication of KR20230149792A publication Critical patent/KR20230149792A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

충전소 제어서버 및 전기차 배터리의 노후도 추정 방법이 개시된다.
본 발명은 전기차 충전기측에서 충전 대상 전기차의 배터리 노후도를 추정할 수 있는 방법을 제공하는 것을 목적으로 하며, 본 발명을 이용하면, 전기차로부터 배터리의 노후도 정보를 제공받지 않더라도 전기차 충전기측에서 충전 대상 전기차의 배터리 노후도를 추정할 수 있는 효과가 있다.
A method for estimating the age of a charging station control server and electric vehicle battery is disclosed.
The purpose of the present invention is to provide a method by which the electric vehicle charger can estimate the battery age of an electric vehicle to be charged. By using the present invention, the electric vehicle charger charges even if battery age information is not provided from the electric vehicle. It has the effect of estimating the battery age of the target electric vehicle.

Description

충전소 제어서버 및 전기차 배터리의 노후도 추정 방법{CHARGING STATION CONTROL SERVER AND METHOD FOR ESTIMATING STATE OF HEALTH OF THE BATTERY OF ELECTRIC VEHICLE}Method for estimating the age of charging station control server and electric vehicle battery {CHARGING STATION CONTROL SERVER AND METHOD FOR ESTIMATING STATE OF HEALTH OF THE BATTERY OF ELECTRIC VEHICLE}

본 발명은 충전소 제어서버 및 전기차 배터리의 노후도 추정 방법에 관한 것이다. The present invention relates to a charging station control server and a method for estimating the age of an electric vehicle battery.

전기차, 특히 차고지에서만 충전을 하는 것이 일반적인 전기버스의 경우, 운행 전에 충분한 배터리 잔존용량 (SOC: State of Charge)을 확보하여야 한다. 특히, 전기 노선버스는 해당 노선버스가 투입되는 운행 일정이 정해져 있으므로, 운행 후 차고지에서의 유휴 시간의 길이와 충전기에서 충전 가능한 단위시간 당 충전전력량을 잘 파악하여야만 한정된 유휴 시간 내에 충분한 잔존용량이 확보되도록 충전을 할 수 있게 된다. In the case of electric vehicles, especially electric buses, which are generally charged only at garages, sufficient battery remaining capacity (SOC: State of Charge) must be secured before driving. In particular, since electric route buses have a set operation schedule, the length of idle time at the garage after operation and the amount of charging power per unit time that can be charged at the charger must be well understood to ensure sufficient remaining capacity within the limited idle time. Be able to charge as much as possible.

이를 위하여 전기차의 배터리 충전시에는 배터리의 노후도(SOH: State of Health)의 개념이 함께 사용된다. 즉, 전기차에 사용되는 배터리는 사용을 거듭함에 따라 노후하게 되므로, 일정 시간 (또는 주행거리)을 초과하여 운행한 전기차의 경우 배터리가 노후하여 수명을 다한 것으로 간주하고 배터리를 교체하게 된다. For this purpose, the concept of battery aging (SOH: State of Health) is used when charging the battery of an electric vehicle. In other words, the battery used in an electric vehicle becomes old as it is used, so in the case of an electric vehicle that has been driven for more than a certain period of time (or mileage), the battery is considered to have reached the end of its life due to aging and the battery is replaced.

한편, 명세서 전체에서, 신규 배터리의 배터리 노후도는 100%인 것으로 정의하고, 배터리를 사용함에 따라 배터리 노후도는 100%보다 적은 값으로 차츰 낮아지는 것으로 본다.Meanwhile, throughout the specification, the battery age of a new battery is defined as 100%, and as the battery is used, the battery age is considered to gradually decrease to a value less than 100%.

이러한 배터리 노후도는 전기차에 설치된 배터리 관리 시스템(BMS: Battery Management System)에서 차량별로 판단이 이루어지게 된다. 전기차는 설치된 배터리의 노후도(SOH)에 관한 정보가 저장되어 있다. 충전소의 충전기는 배터리의 노후도 정보를 필요로 하는 경우가 있으나, 현재로서는 전기차 제조사가 배터리 노후도 정보를 전기차로부터 충전기측으로 제공을 하고 있지 않고 있다. 따라서, 전기차 충전기는 충전을 요하는 전기차의 배터리 노후도 정보를 알고 싶어도 알 수가 없는 상황이다. This battery age is determined for each vehicle by the battery management system (BMS) installed in the electric vehicle. Electric vehicles store information about the level of aging (SOH) of the installed battery. The charger at the charging station may need information on the age of the battery, but currently, electric vehicle manufacturers do not provide information on the age of the battery from the electric vehicle to the charger. Therefore, electric vehicle chargers are unable to obtain information on the battery age of electric vehicles requiring charging even if they want to.

배터리 노후도는 해당 차량에 충전하여야 하는 전력량에 영향을 미치게 된다. 즉, 배터리가 노후할수록 전기차가 동일한 주행거리를 주행하기 위하여 더욱 많은 전력량을 충전하여야 한다. Battery age affects the amount of power that needs to be charged to the vehicle. In other words, as the battery ages, the electric vehicle needs to charge more power to drive the same distance.

이처럼 전기차 충전소가 충전을 요하는 전기차로부터 배터리 노후도 정보를 제공받지 못함에 따른 문제점을 해결하기 위하여, 전기차 충전기측에서 자체적으로 충전 대상 전기차의 배터리 노후도를 추정하는 방법에 관한 요청이 대두되었다. In order to solve the problem of electric vehicle charging stations not receiving battery age information from electric vehicles requiring charging, a request has emerged for a method for electric vehicle chargers to independently estimate the battery age of electric vehicles subject to charging.

KRKR 10-1839141 10-1839141 BB

본 발명은 상기와 같은 요청에 부응하여 착안된 것으로서, 전기차 충전기측에서 충전 대상 전기차의 배터리 노후도를 추정할 수 있는 방법을 제공하는 것을 목적으로 한다. The present invention was conceived in response to the above requests, and its purpose is to provide a method by which an electric vehicle charger can estimate the battery age of an electric vehicle to be charged.

상기와 같은 목적을 달성하기 위하여, 일측면에 따른 충전 제어서버는, 배터리 정격용량 획득부, 충전 전압 제어부, 소비 전력량 측정부, 소비 전류량 계산부, 소비 전류량 저장부, 배터리 노후도 저장부, 운행기록 저장부, 상대전비 측정부, 충전 전력량 저장부 및 통신 인터페이스부를 포함하며, 충전 대상 전기차에 설치된 충전 대상 배터리의 정격 전력량 정보를 획득하는 배터리 정격용량 획득부; 충전기에 연결된 상기 전기차에 인가되는 충전 전압의 크기를 제어하고, 인가된 충전 전압의 평균을 구하는 충전 전압 제어부; 상기 전기차에 공급된 충전 전력량의 크기를 측정하는 소비 전력량 측정부; 상기 평균 전압과 상기 충전 전력량을 이용하여, 상기 전기차에 충전을 수행하는 동안 사용된 전류량을 계산하는 소비 전류량 계산부; 상기 소비 전류량 계산부에서 계산된 충전시 소비 전류량을 저장하는 소비 전류량 저장부; 상기 전기차의 배터리의 추정 노후도를 저장하는 배터리 노후도 저장부; 상기 전기차의 운행에 관한 정보를 저장하는 운행기록 저장부; 상기 전기차의 상대전비를 측정하는 상대전비 측정부; 상기 전기차를 충전한 때의 소비 전력량 정보를 저장하는 충전 전력량 저장부; 및 적어도 하나의 충전기와 연결되어 데이터 통신을 수행하는 통신 인터페이스부; 를 포함한다. In order to achieve the above purpose, the charging control server according to one aspect includes a battery rated capacity acquisition unit, a charging voltage control unit, a power consumption measurement unit, a current consumption calculation unit, a current consumption storage unit, a battery aging storage unit, and an operation unit. a battery rated capacity acquisition unit that includes a recording storage unit, a relative power ratio measurement unit, a charging power storage unit, and a communication interface unit, and acquires information on the rated power amount of the battery to be charged installed in the electric vehicle to be charged; a charging voltage control unit that controls the magnitude of the charging voltage applied to the electric vehicle connected to the charger and calculates the average of the applied charging voltage; a power consumption measurement unit that measures the amount of charging power supplied to the electric vehicle; a current consumption calculator that calculates the amount of current used while charging the electric vehicle using the average voltage and the amount of charging power; a current consumption storage unit that stores the amount of current consumption during charging calculated by the current consumption calculation unit; a battery aging storage unit that stores the estimated aging of the battery of the electric vehicle; a driving record storage unit that stores information regarding the operation of the electric vehicle; A relative fuel ratio measuring unit that measures the relative fuel efficiency of the electric vehicle; a charging power storage unit that stores power consumption information when charging the electric vehicle; and a communication interface unit connected to at least one charger to perform data communication; Includes.

이 때, 상기 소비 전류량 계산부는, 충전시 소비 전력량을 충전시 인가된 평균 전압으로 나누어 충전시 소비 전류량을 구할 수 있다. At this time, the current consumption calculation unit may calculate the amount of current consumption during charging by dividing the amount of power consumption during charging by the average voltage applied during charging.

또한, 상기 소비 전류량 계산부는, 상기 충전시 소비 전류량을 충전을 통하여 상승한 잔존용량으로 나누어 단위 잔존용량 당 소비 전류량을 더 구할 수 있다. Additionally, the current consumption calculation unit may further obtain the amount of current consumption per unit of remaining capacity by dividing the amount of current consumption during charging by the remaining capacity increased through charging.

또한, 상기 배터리 노후도 저장부는, 현재 충전시 단위 잔존용량 당 소비 전류량을 최초 충전시 단위 잔존용량 당 소비 전류량으로 나누어 구해지는 백분율 값으로서 현재 추정 노후도를 계산하고 저장할 수 있다. In addition, the battery aging storage unit may calculate and store the current estimated aging as a percentage value obtained by dividing the current consumption per unit of remaining capacity during current charging by the current consumption per unit of remaining capacity during initial charging.

또한, 상기 상대전비 측정부는, 상기 운행기록 저장부에 저장된 직전 충전 후 주행거리를 직전 충전 후 잔존용량 변화량으로 나누어 상대전비를 측정할 수 있다. Additionally, the relative fuel efficiency measuring unit may measure the relative fuel efficiency by dividing the driving distance after the previous charge stored in the driving record storage unit by the amount of change in remaining capacity after the previous charge.

본 발명의 다른 측면에 따른 배터리 노후도 추정 방법은, 충전 대상 배터리의 최초 충전시 단위용량 당 소비 전류량을 확인하는 단계(S10), 충전 대상 배터리의 현재 단위용량 당 소비 전류량을 확인하는 단계(S20); 및 현재 추정 노후도를 계산하는 단계(S30);를 포함한다.A battery aging estimation method according to another aspect of the present invention includes the steps of checking the amount of current consumption per unit capacity when the battery to be charged is first charged (S10), and the steps of checking the current amount of current consumption per unit capacity of the battery to be charged (S20). ); and calculating the current estimated degree of deterioration (S30).

이 때, 상기 단계(S10)는, 배터리 정격용량 정보를 획득하는 단계(S110); 배터리 최초 충전을 수행하는 단계(S120); 최초 충전시 평균 전압을 측정하는 단계(S130); 최초 충전시 소비 전력량을 측정하는 단계(S140); 및 최초 충전시 소비 전류량을 계산하는 단계(S150)를 더 포함할 수 있다. At this time, the step (S10) includes obtaining battery rated capacity information (S110); Performing initial battery charging (S120); Measuring the average voltage upon initial charging (S130); Measuring the amount of power consumed during initial charging (S140); And it may further include calculating the amount of current consumed during initial charging (S150).

또한, 상기 단계(S150)는, 충전시 소비 전력량을 충전시 인가된 평균 전압으로 나누어 충전시 소비 전류량을 구할 수 있다. Additionally, in step S150, the amount of current consumed during charging can be obtained by dividing the amount of power consumed during charging by the average voltage applied during charging.

또한, 상기 단계(S150)는, 상기 충전시 소비 전류량을 충전을 통하여 상승한 잔존용량으로 나누어 단위 잔존용량 당 소비 전류량을 더 구할 수 있다. In addition, in step S150, the amount of current consumed per unit of remaining capacity can be further obtained by dividing the amount of current consumed during charging by the remaining capacity increased through charging.

또한, 상기 단계(S20)는, 배터리 충전을 수행하는 단계(S220); 현재 충전시 평균 전압을 측정하는 단계(S230); 현재 충전시 소비 전력량을 측정하는 단계(S240); 및 현재 충전시 소비 전류량을 계산하는 단계(S250)를 더 포함할 수 있다. In addition, the step (S20) includes performing battery charging (S220); Measuring the average voltage during current charging (S230); Measuring the amount of power consumed during current charging (S240); And it may further include calculating the amount of current consumed during current charging (S250).

또한, 상기 단계(S250)는, 충전시 소비 전력량을 충전시 인가된 평균 전압으로 나누어 충전시 소비 전류량을 구할 수 있다. Additionally, in step S250, the amount of current consumed during charging can be obtained by dividing the amount of power consumed during charging by the average voltage applied during charging.

또한, 상기 단계(S250)는, 상기 충전시 소비 전류량을 충전을 통하여 상승한 잔존용량으로 나누어 단위 잔존용량 당 소비 전류량을 더 구할 수 있다. In addition, in step S250, the amount of current consumed per unit of remaining capacity can be further obtained by dividing the amount of current consumed during charging by the remaining capacity increased through charging.

본 발명을 이용하면, 전기차로부터 배터리의 노후도 정보를 제공받지 않더라도 전기차 충전기측에서 충전 대상 전기차의 배터리 노후도를 추정할 수 있는 효과가 있다. Using the present invention, there is an effect that the electric vehicle charger can estimate the battery age of the electric vehicle to be charged even if battery age information is not provided from the electric vehicle.

도 1은 전기차 충전소와 충전중인 전기차 및 관련 외부 서버가 연결된 모습을 예시한 도면,
도 2는 본 발명에 따른 전기차의 배터리 노후도 추정 방법 및 최적 충전 전력량 산출 방법이 구현된 충전소 제어서버의 일례를 나타낸 블록도,
도 3은 전기차의 배터리 노후도 추정 방법의 일례를 나타낸 흐름도,
도 4는 도 3의 단계(S10)를 더욱 상세히 나타낸 흐름도,
도 5는 도 3의 단계(S20)를 더욱 상세히 나타낸 흐름도이다.
Figure 1 is a diagram illustrating the connection between an electric vehicle charging station, an electric vehicle being charged, and a related external server.
Figure 2 is a block diagram showing an example of a charging station control server in which the method for estimating the battery age of an electric vehicle and the method for calculating the optimal charging power amount according to the present invention are implemented;
Figure 3 is a flowchart showing an example of a method for estimating the battery age of an electric vehicle;
Figure 4 is a flow chart showing step (S10) of Figure 3 in more detail;
FIG. 5 is a flowchart showing step S20 of FIG. 3 in more detail.

이하에서는 본 발명에 따른 전기차의 배터리 노후도 추정 방법을 도면을 참조하여 구체적으로 설명하기로 한다. Hereinafter, the method for estimating the battery age of an electric vehicle according to the present invention will be described in detail with reference to the drawings.

도 1은 전기차 충전소와 충전중인 전기차 및 관련 외부 서버가 연결된 모습을 예시한 도면이다. Figure 1 is a diagram illustrating the connection between an electric vehicle charging station, an electric vehicle being charged, and a related external server.

도 1에서 나타낸 바와 같이, 전기차 충전소(1)는 충전소 제어서버(10), 적어도 하나의 충전기(11) 및 충전소 제어서버(10)와 적어도 하나의 충전기(11) 사이에서 통신 데이터를 주고받는 통신 네트워크(12)를 포함하여 이루어진다. As shown in Figure 1, the electric vehicle charging station 1 is a charging station control server 10, at least one charger 11, and communication data is exchanged between the charging station control server 10 and the at least one charger 11. It includes a network (12).

하나의 충전기(11)는 한 대의 전기차(2)에 대하여 배터리 충전을 수행한다. 이 때, 배터리의 충전을 위하여 차량으로부터 필요한 데이터를 수신하거나 차량으로 필요한 데이터를 송신하기 위하여 충전기(11)와 전기차(2) 사이에는 통신 회선이 연결된다. 통신 회선으로서는 예컨대 CAN 프로토콜에 따른 유선통신 및/또는 RFID 프로토콜에 따른 무선통신 등이 사용될 수 있다. 또한, 충전기(11)는 충전소 제어서버(10)의 제어에 따른 충전 스케줄에 의거하여 전기차(2)측으로 충전 전력을 공급하게 된다.One charger 11 performs battery charging for one electric vehicle 2. At this time, a communication line is connected between the charger 11 and the electric vehicle 2 to receive necessary data from the vehicle for charging the battery or to transmit necessary data to the vehicle. As a communication line, for example, wired communication according to the CAN protocol and/or wireless communication according to the RFID protocol may be used. Additionally, the charger 11 supplies charging power to the electric vehicle 2 based on a charging schedule controlled by the charging station control server 10.

한편, 충전소 제어서버(10)는 또다른 통신 네트워크를 통하여 운수회사 관리자 서버(3)나 운행 관련 관공서 서버(4)와 더 연결된다. 전기차 충전소(1)에서 가장 중요한 것으로서 충전 전력 사용량에 따른 전기요금 정보 및 전기차에 대한 충전 수행에 따른 충전 요금의 과금 정보 등 비용과 매출에 관한 정보가 포함된다. Meanwhile, the charging station control server 10 is further connected to the transportation company manager server 3 or the operation-related government office server 4 through another communication network. The most important thing in an electric vehicle charging station (1) includes information on costs and sales, such as electricity rate information according to charging power usage and charging information based on charging performance for electric vehicles.

예컨대 운수회사 관리자 서버(3)와 주고받는 정보에는 아래 표와 같은 데이터필드가 포함될 수 있다.For example, information exchanged with the transportation company manager server 3 may include data fields as shown in the table below.

데이터 필드 명칭Data field name 데이터 필드에 관한 설명Description of data fields CHARGER_IDCHARGER_ID 충전기IDCharger ID OUTLET_IDOUTLET_ID 충전건 IDCharge gun ID CARD_NUMCARD_NUM 회원카드번호Membership card number DB_IDDB_ID DB ID DB ID MODEMODE 충전기 운영모드Charger operating mode STATUSSTATUS 충전기 상태charger status STATUS_CODESTATUS_CODE 충전기 상태 코드charger status code batteryStatusbatteryStatus 배터리 상태battery status startSocstartSoc 시작 SOCStartup SOC socRatesocRate 종료 SOCTermination SOC batteryCapacitybatteryCapacity 배터리 커패시터 battery capacitor batteryQntybatteryQnty 배터리 전력사용량 Battery power usage batteryVoltagebatteryVoltage 배터리 전력battery power chargingQntychargingQnty 전력사용량 power usage chargingPricechargingPrice 충전 금액Charge amount batteryTemperbatteryTemper 배터리 온도battery temperature BMS_VERSIONBMS_VERSION BMS 버전BMS version estimateEndestimateEnd 충전종료 예상 일시 남은 시간
(hh mm)
Estimated charging end date and time remaining
(hh mm)
chargingTimechargingTime 전력공급기간(hh mm ss)Power supply period (hh mm ss) chargerCompleteStatuschargerCompleteStatus 충전 완료 상태Charging complete status starttimestarttime 충전 시작 시간Charging start time EndtimeEndtime 충전 종료 시간Charging end time RotateRotate 모니터링 배치 회전 값Monitoring batch rotation value PosxPosx 모니터링 좌표XMonitoring coordinates PosyPosy 모니터링 좌표YMonitoring coordinate Y ColorColor 모니터링 상태 색상Monitoring Status Color queue_numqueue_num 대기순번Waiting turn number chargerVoltagechargerVoltage 충전기 전압charger voltage chargerAmperechargerAmpere 충전기 전류charger current

도 2는 본 발명에 따른 전기차의 배터리 노후도 추정 방법 및 최적 충전 전력량 산출 방법이 구현된 충전소 제어서버의 일례를 나타낸 블록도이다. Figure 2 is a block diagram showing an example of a charging station control server in which the method for estimating the battery age of an electric vehicle and the method for calculating the optimal charging power amount according to the present invention are implemented.

도 2에서 나타낸 바와 같이, 일례에 따른 충전소 제어서버(10)는, 배터리 정격용량 획득부(100), 충전 전압 제어부(110), 소비 전력량 측정부(120), 소비 전류량 계산부(130), 소비 전류량 저장부(140), 배터리 노후도 저장부(150), 운행기록 저장부(160), 상대전비 측정부(170), 충전 전력량 저장부(180) 및 통신 인터페이스부(190)를 포함하여 이루어진다. As shown in FIG. 2, the charging station control server 10 according to an example includes a battery rated capacity acquisition unit 100, a charging voltage control unit 110, a power consumption measurement unit 120, a current consumption calculation unit 130, Including a current consumption storage unit 140, a battery aging storage unit 150, a driving record storage unit 160, a relative power ratio measurement unit 170, a charging power storage unit 180, and a communication interface unit 190. It comes true.

배터리 정격용량 획득부(100)는 충전 대상 전기차에 설치된 충전 대상 배터리의 정격 전력량 정보를 획득한다.The battery rated capacity acquisition unit 100 acquires information on the rated power amount of the battery to be charged installed in the electric vehicle to be charged.

배터리의 정격 전력량 정보는 충전을 위하여 충전기(11)에 연결된 전기차(2)로부터 직접 획득할 수 있다. 또는 전기차(2)로부터 해당 전기차(2)의 차종 정보를 획득하고, 충전소 제어서버(10) 내의 운행기록 저장부(160) 내에 저장되어 있는 차종별 배터리 정보(배터리의 정격 전력량 정보를 포함한다)를 참조하여 배터리의 정격 전력량 정보를 획득할 수도 있다. Information on the rated power of the battery can be obtained directly from the electric vehicle 2 connected to the charger 11 for charging. Alternatively, vehicle model information of the electric vehicle 2 may be obtained from the electric vehicle 2, and battery information for each vehicle type stored in the driving record storage unit 160 of the charging station control server 10 (including information on the rated power of the battery) may be retrieved from the electric vehicle 2. Information on the rated power of the battery can also be obtained by reference.

충전 전압 제어부(110)는 충전기(11)에 연결된 전기차(2)에 인가되는 충전 전압의 크기를 제어한다. 또한, 충전 전압 제어부(110)는 전기차(2)에 인가된 충전전압의 일정 시간 동안의 평균 전압을 구할 수 있다. The charging voltage control unit 110 controls the magnitude of the charging voltage applied to the electric vehicle 2 connected to the charger 11. Additionally, the charging voltage control unit 110 may obtain the average voltage of the charging voltage applied to the electric vehicle 2 for a certain period of time.

소비 전력량 측정부(120)는, 전기차(2)에 공급된 충전 전력량의 크기를 측정한다. 이를 위하여 충전개시시각, 충전종료시각 및 충전소요시간 정보를 활용하며, 측정된 충전 전력량의 크기에 관한 정보를 충전 전력량 저장부(180)에 기록한다. The power consumption measurement unit 120 measures the amount of charging power supplied to the electric vehicle 2. For this purpose, information on the charging start time, charging end time, and charging time is used, and information on the size of the measured charging power is recorded in the charging power storage unit 180.

소비 전류량 계산부(130)는, 충전 전압 제어부(110)에서 측정된 전압 값과 소비 전력량 측정부(120)에서 측정된 충전 전력량의 크기를 이용하여, 전기차(2)에 충전을 수행하는 동안 사용된 전류량을 계산한다. The current consumption calculation unit 130 is used while charging the electric vehicle 2 using the voltage value measured by the charging voltage control unit 110 and the magnitude of the charging power amount measured by the power consumption measuring unit 120. Calculate the current amount.

충전 전압 제어부(110)에서 전기차(2)에 인가된 시각(t1)부터 시각(t2)까지의 충전전압의 평균을 Vavg(t1,t2)(단위는 V(Volt))라 하고, 소비 전력량 측정부(120)에서 측정된 시각(t1)부터 시각(t2)까지의 충전 전력량의 크기를 P(t1,t2)(단위는 Wh(Watt-hour))라고 하면, 소비 전류량 계산부(130)에서 계산되는 소비 전류량 I(t1,t2)(단위는 Ah(Ampere-hour))는, 수학식 1과 같이 나타낼 수 있다.The average of the charging voltage from the time (t 1 ) applied to the electric vehicle 2 in the charging voltage control unit 110 to the time (t 2 ) is called V avg (t 1 , t 2 ) (unit: V (Volt)) If the size of the charging power from the time (t 1 ) measured by the power consumption measurement unit 120 to the time (t 2 ) is P(t 1 ,t 2 ) (unit: Wh (Watt-hour)) , the current consumption amount I(t 1 , t 2 ) (unit: Ah (Ampere-hour)) calculated by the current consumption calculation unit 130 can be expressed as Equation 1.

[수학식 1][Equation 1]

I(t1,t2) = P(t1,t2) / Vavg(t1,t2).I(t 1 ,t 2 ) = P(t 1 ,t 2 ) / V avg (t 1 ,t 2 ).

소비 전류량 저장부(140)는, 소비 전류량 계산부(130)에서 계산된 충전시 소비 전류량을 저장한다. The current consumption storage unit 140 stores the amount of current consumption during charging calculated by the current consumption calculation unit 130.

배터리 노후도 저장부(150)는, 본 발명의 일례에 따라 충전소 제어서버(10)가 계산하는 각 전기차(2)의 배터리의 추정 노후도(Estimated SOH)를 저장한다. 본 발명에서는 각 전기차(2)로부터 노후도(SOH) 정보를 받아서 활용하지 않는다. 따라서, 별도의 언급이 없는 한 이 명세서에서 언급하는 추정 노후도(Estimated SOH) 또는 노후도(SOH)는 모두 충전소 제어서버(10)가 계산하는 각 전기차(2)의 배터리의 추정 노후도인 것으로 이해하여야 한다. The battery age storage unit 150 stores the estimated age (Estimated SOH) of the battery of each electric vehicle 2 calculated by the charging station control server 10 according to an example of the present invention. In the present invention, the degree of obsolescence (SOH) information is not received and utilized from each electric vehicle 2. Therefore, unless otherwise stated, all estimated age (Estimated SOH) or age (SOH) mentioned in this specification is the estimated age of the battery of each electric vehicle (2) calculated by the charging station control server (10). You must understand.

운행기록 저장부(160)는, 전기차(2)의 운행에 관한 기록을 저장한다. The driving record storage unit 160 stores records related to the driving of the electric vehicle 2.

전기차(2)가 노선버스인 경우, 운행기록 저장부(160)에 저장되는 운행기록은 차량번호, 노선번호(노선명), 충전 후 운행 개시시각, 운행 종료시각, 운행 소요시간, 이동거리, 운행 개시시점의 잔존용량(SOC), 운행 종료시점의 잔존용량(SOC)를 포함할 수 있다. If the electric vehicle 2 is a route bus, the operation record stored in the operation record storage unit 160 includes vehicle number, route number (route name), operation start time after charging, operation end time, operation time, travel distance, and operation. It may include the remaining capacity (SOC) at the start of operation and the remaining capacity (SOC) at the end of operation.

상대전비 측정부(170)는, 전기차(2)의 상대전비(電比)를 측정한다. 전비는 내연기관 자동차의 연료 효율을 의미하는 '연비(燃比)'에 대응되는 개념으로서 전기차의 전력 효율을 의미하며, 일반적으로 단위 전력량 당 주행가능거리(km/kWh)한다. 다만, 본 발명에서는 발명의 특징을 더욱 명확히 드러낼 수 있도록 명세서 내에서 “상대전비”의 개념을 단위 잔존용량 당 주행가능거리(km/SOC%)로 정의하였다. The relative power ratio measuring unit 170 measures the relative power ratio of the electric vehicle 2. Fuel economy is a concept that corresponds to 'fuel efficiency', which refers to the fuel efficiency of internal combustion engine vehicles, and refers to the power efficiency of electric vehicles, and is generally expressed as the driving distance per unit amount of power (km/kWh). However, in the present invention, in order to reveal the characteristics of the invention more clearly, the concept of “relative comparison ratio” is defined in the specification as the driving distance per unit of remaining capacity (km/SOC%).

따라서, 별도의 언급이 없는 한 이 명세서에서 언급하는 상대전비는 단위 잔존용량 당 주행가능거리(km/SOC%)인 것으로 이해하여야 한다. Therefore, unless otherwise stated, the relative fuel ratio mentioned in this specification should be understood as the drivable distance per unit of remaining capacity (km/SOC%).

상대전비는 타 차량과 무관하게 단일차량의 충전을 위하여 요구되는 효율적인 전력량을 계산하기 위한 목적으로 사용된다. Relative power ratio is used for the purpose of calculating the efficient amount of power required for charging a single vehicle, regardless of other vehicles.

충전 전력량 저장부(180)는, 전기차(2)를 충전하는 과정에서 소비된 전력량이 소비 전력량 측정부(120)에서 측정되면 이 소비전력량 정보를 저장한다. When the amount of power consumed in the process of charging the electric vehicle 2 is measured by the power consumption measurement unit 120, the charging power storage unit 180 stores the power consumption information.

통신 인터페이스부(190)는 충전소 관리서버(10)에 연결된 적어도 하나의 충전기(11)와의 데이터 통신을 수행한다. 또한, 외부의 운수회사 관리자 서버(3)나 운행 관련 관공서 서버(4)와 더 연결되어 데이터 통신을 수행할 수 있다.The communication interface unit 190 performs data communication with at least one charger 11 connected to the charging station management server 10. In addition, data communication can be performed by being further connected to an external transportation company manager server (3) or a operation-related government office server (4).

도 3은 전기차의 배터리 노후도 추정 방법의 일례를 나타낸 흐름도이다.Figure 3 is a flowchart showing an example of a method for estimating the battery age of an electric vehicle.

도 3에서 나타낸 바와 같이, 전기차의 배터리 노후도 추정 방법은, 충전 대상 배터리의 최초 충전시 단위용량 당 소비 전류량을 확인하는 단계(S10), 충전 대상 배터리의 현재 단위용량 당 소비 전류량을 확인하는 단계(S20) 및 현재 추정 노후도를 계산하는 단계(S30)를 포함한다. As shown in FIG. 3, the method for estimating the battery age of an electric vehicle includes the steps of checking the amount of current consumed per unit capacity when the battery to be charged is first charged (S10), and the step of checking the amount of current consumed per unit capacity of the current battery to be charged. (S20) and calculating the current estimated degree of deterioration (S30).

단계(S10)에서는 충전 대상 전기차에 장착된 배터리에 대한 최초 충전시 단위용량 당 소비 전류량(Ah/SOC%)의 확인이 이루어진다. In step S10, the amount of current consumed per unit capacity (Ah/SOC%) upon initial charging of the battery installed in the electric vehicle to be charged is confirmed.

예컨대 전기차가 상용 노선버스인 경우, 차고지 충전소에서 충전이 이루어지게 된다. 신규 전기 노선버스가 도입되면, 해당 신규 전기 노선버스는 배터리 노후도가 100%인 것으로 간주할 수 있다. For example, if the electric vehicle is a commercial route bus, charging is done at a garage charging station. When a new electric route bus is introduced, the new electric route bus can be considered to have 100% battery aging.

따라서, 신규 전기 노선버스를 최초 충전하는 경우, 배터리 노후도가 100%인 상태에서의 충전 관련 데이터를 얻을 수 있다고 볼 수 있다. Therefore, when charging a new electric route bus for the first time, it can be seen that charging-related data can be obtained when the battery age is 100%.

예컨대, 최초 충전시 충전 전압 제어부(110)에서 전기차(2)에 인가된 시각(t1)부터 시각(t2)까지의 충전전압의 평균을 V0,avg(t1,t2)라 하고, 소비 전력량 측정부(120)에서 측정된 시각(t1)부터 시각(t2)까지의 충전 전력량의 크기를 P0(t1,t2)라고 하면, 소비 전류량 계산부(130)에서 계산되는 소비 전류량 I0(t1,t2)는, 수학식 2와 같이 나타낼 수 있다. For example, during initial charging, the average of the charging voltage from the time (t 1 ) applied to the electric vehicle 2 by the charging voltage control unit 110 to the time (t 2 ) is referred to as V 0,avg (t 1 , t 2 ). , If the size of the charging power from the time (t 1 ) measured by the power consumption measurement unit 120 to the time (t 2 ) is P 0 (t 1 , t 2 ), the current consumption calculation unit 130 calculates The amount of current consumption I 0 (t 1 , t 2 ) can be expressed as Equation 2.

[수학식 2] [Equation 2]

I0(t1,t2) = P0(t1,t2) / V0,avg(t1,t2).I 0 (t 1 ,t 2 ) = P 0 (t 1 ,t 2 ) / V 0,avg (t 1 ,t 2 ).

소비 전류량 저장부(140)는, 소비 전류량 계산부(130)에서 계산된 충전시 소비 전류량을 저장한다. The current consumption storage unit 140 stores the amount of current consumption during charging calculated by the current consumption calculation unit 130.

이 때 충전을 통하여 상승한 잔존용량을 C0(t1,t2)(SOC%)라고 하면, 단위 용량 당 소비 전류량 I0,uint(t1,t2)은, 수학식 3과 같이 나타낼 수 있다. At this time, if the remaining capacity increased through charging is C 0 (t 1 , t 2 )(SOC%), the current consumption per unit capacity I 0,uint (t 1 , t 2 ) can be expressed as Equation 3: there is.

[수학식 3][Equation 3]

I0,unit(t1,t2) = I0(t1,t2) / C0(t1,t2) I 0,unit (t 1 ,t 2 ) = I 0 (t 1 ,t 2 ) / C 0 (t 1 ,t 2 )

= { P0(t1,t2) / V0,avg(t1,t2) } / C0(t1,t2).= {P 0 (t 1 ,t 2 ) / V 0,avg (t 1 ,t 2 ) } / C 0 (t 1 ,t 2 ).

단위는 (Ah/SOC%)가 된다. The unit is (Ah/SOC%).

최초 충전시 단위용량 당 소비 전류량은 충전소 제어서버(10)의 소비 전류량 저장부(140)에 저장될 수 있다. 일단 저장된 최초 충전시 단위용량 당 소비 전류량은, 이후 동일한 전기차가 운행을 반복하면서 배터리의 노화가 진행될 때에, 그 배터리의 노화 정도를 판단하는 기준으로서 활용된다. The amount of current consumption per unit capacity during initial charging may be stored in the current consumption amount storage unit 140 of the charging station control server 10. Once stored, the amount of current consumed per unit capacity upon initial charging is used as a standard to determine the degree of aging of the battery when the same electric vehicle is repeatedly driven and the battery ages.

단계(S20)에서는 충전 대상 배터리의 현재 단위용량 당 소비전류량 확인이 수행된다. In step S20, the amount of current consumption per current unit capacity of the battery to be charged is checked.

단계(S20)는 전기차의 운행이 이루어짐에 따라 배터리의 노화가 진행된 어느 시점(현재 시점)에서, 해당 시점의 단위용량 당 소비전류량을 측정하는 단계이다. Step S20 is a step of measuring the amount of current consumption per unit capacity at a certain point in time (current time) when the aging of the battery progresses as the electric vehicle is driven.

현재 시점에서 충전시 충전 전압 제어부(110)에서 전기차(2)에 인가된 시각(t3)부터 시각(t4)까지의 충전전압의 평균을 Vavg(t3,t4)라 하고, 소비 전력량 측정부(120)에서 측정된 시각(t3)부터 시각(t4)까지의 충전 전력량의 크기를 P(t3,t4)라고 하면, 소비 전류량 계산부(130)에서 계산되는 소비 전류량 I(t3,t4)는, 수학식 4와 같이 나타낼 수 있다. At the current point in time, the average of the charging voltage from the time (t 3 ) applied to the electric vehicle 2 by the charging voltage control unit 110 to the time (t 4 ) is referred to as V avg (t 3 , t 4 ), and the consumption If the size of the charging power from the time (t 3 ) measured by the power measurement unit 120 to the time (t 4 ) is P(t 3 , t 4 ), then the amount of current consumption calculated by the current consumption calculation unit 130 is P(t 3 , t 4 ). I(t 3 ,t 4 ) can be expressed as Equation 4.

[수학식 4][Equation 4]

I(t3,t4) = P(t3,t4) / Vavg(t3,t4).I(t 3 ,t 4 ) = P(t 3 ,t 4 ) / V avg (t 3 ,t 4 ).

마찬가지로, 충전을 통하여 상승한 잔존용량을 C(t3,t3)(SOC%)라고 하면, 단위 용량 당 소비 전류량 Iunit(t3,t4)은, 수학식 5와 같이 나타낼 수 있다. Likewise, if the remaining capacity increased through charging is C(t 3 , t 3 )(SOC%), the current consumption per unit capacity I unit (t 3 , t 4 ) can be expressed as Equation 5.

[수학식 5][Equation 5]

Iunit(t1,t2) = I(t1,t2) / C(t1,t2) I unit (t 1 ,t 2 ) = I(t 1 ,t 2 ) / C(t 1 ,t 2 )

= { P(t1,t2) / Vavg(t1,t2) } / C(t1,t2).= { P(t 1 ,t 2 ) / V avg (t 1 ,t 2 ) } / C(t 1 ,t 2 ).

단위는 (Ah/SOC%)가 된다. The unit is (Ah/SOC%).

단계(S30)에서는 현재 추정 노후도 계산이 수행된다. In step S30, the current estimated deterioration is calculated.

소비 전류량 저장부(140)에는 최초 충전시 단위용량 당 소비 전류량이 저장되어 있기 때문에, 배터리가 전혀 노후되지 않은 시점인 최초 충전시 단위용량 당 소비전류량에 대한 현재 충전시 단위용량 당 소비 전류량의 비율을 백분율로 나타내어 현재 추정 노후도를 정의하고, 이를 SOH(t1,t2,t3,t4)로 표현하면 아래 수학식 6과 같이 나타낼 수 있다. Since the current consumption per unit capacity at the time of initial charging is stored in the current consumption storage unit 140, the ratio of the current consumption per unit capacity during the current charge to the current consumption per unit capacity at the time of initial charging when the battery is not aged at all. The current estimated degree of deterioration is defined by expressing it as a percentage, and this can be expressed as SOH(t 1 ,t 2 ,t 3 ,t 4 ) as shown in Equation 6 below.

[수학식 6][Equation 6]

SOH(t1,t2,t3,t4) = { Iunit(t3,t4) / I0,unit(t1,t2)} × 100SOH(t 1 ,t 2 ,t 3 ,t 4 ) = {I unit (t 3 ,t 4 ) / I 0,unit (t 1 ,t 2 )} × 100

= [{P(t3,t4) / Vavg(t3,t4)} / {P0(t1,t2) / V0,avg(t1,t2)}] × 100 (%).= [{P(t 3 ,t 4 ) / V avg (t 3 ,t 4 )} / {P 0 (t 1 ,t 2 ) / V 0,avg (t 1 ,t 2 )}] × 100 ( %).

또한, 수학식 6에 의하여 현재 추정 노후도 SOH(t1,t2,t3,t4)의 값이 정해지면, 시각(t4)에서 약간의 시간이 경과된 구간(tx~ ty)에 충전하여야 하는 전력량의 크기 P(tx,ty)를 아래 수학식 7을 이용하여 구할 수 있다. In addition, if the value of the current estimated deterioration SOH (t 1 , t 2 , t 3 , t 4 ) is determined by Equation 6 , the section ( t ) can be obtained using Equation 7 below .

[수학식 7][Equation 7]

P(tx,ty) = {SOH(t1,t2,t3,t4) / 100} × P0(t1,t2) (kWh).P(t x ,t y ) = {SOH(t 1 ,t 2 ,t 3 ,t 4 ) / 100} × P 0 (t 1 ,t 2 ) (kWh).

즉, 수학식 7이 의미하는 것은 전기차가 운행됨에 따라 추정 노후도 값이 낮아지게 되면, 배터리의 효율 저하를 고려하여 현재 충전하여야 하는 전력량을 배터리의 효율이 최고이던 최초 시점의 충전 전력량보다 높여야 한다는 것이다. In other words, what Equation 7 means is that if the estimated deterioration value decreases as the electric vehicle is driven, the current amount of charging power must be increased compared to the initial charging power amount at the time when the battery's efficiency was at its highest, taking into account the decrease in battery efficiency. will be.

기존에는 배터리 충전을 요하는 전기차로부터 충전소측으로 일방적으로 제공되는 배터리 노후도 값에만 의존하여 충전을 수행하였다. 따라서 전기차가 제공하는 배터리 노후도 값이 실제와 차이가 있더라도 이를 충전소측에서 검증할 수 있는 방법이 없어서, 과다충전에 따른 폭발 내지 배터리 내구도 저하의 위험에 노출되거나, 반대로 과소충전에 따라 배터리의 용량을 충분히 활용하지 못하여 주행거리를 충분히 늘리지 못하는 문제점에 노출되었다 Previously, charging was performed solely based on the battery age value unilaterally provided to the charging station from an electric vehicle requiring battery charging. Therefore, even if the battery aging value provided by the electric vehicle is different from the actual, there is no way to verify this at the charging station, so it is exposed to the risk of explosion or deterioration of battery durability due to overcharging, or, conversely, battery capacity due to undercharging. was exposed to the problem of not being able to sufficiently increase the driving distance due to insufficient use of

본 발명에서는 이와 같은 과정을 통하여 전기차 충전소 제어서버(10)에서 직접 현재 시점의 배터리 노후도를 추정할 수 있음에 따라, 배터리 충전의 효율성 및 신뢰성을 제고할 수 있게 된다. In the present invention, through this process, the current battery aging can be estimated directly from the electric vehicle charging station control server 10, thereby improving the efficiency and reliability of battery charging.

도 4는 도 3의 단계(S10)를 더욱 상세히 나타낸 흐름도이다. FIG. 4 is a flowchart showing step S10 of FIG. 3 in more detail.

도 4에서 나타낸 바와 같이, 단계(S10)는 배터리 정격용량 정보를 획득하는 단계(S110), 배터리 최초 충전을 수행하는 단계(S120), 최초 충전시 평균 전압을 측정하는 단계(S130), 최초 충전시 소비 전력량을 측정하는 단계(S140) 및 최초 충전시 소비 전류량을 계산하는 단계(S150)를 포함하여 이루어진다. As shown in Figure 4, step (S10) includes obtaining battery rated capacity information (S110), performing initial charging of the battery (S120), measuring the average voltage during initial charging (S130), and initial charging. It includes a step of measuring the amount of power consumed during initial charging (S140) and a step of calculating the amount of current consumed during initial charging (S150).

도 4에서 나타낸 실시예를 구체적으로 표현하기 위하여, 신규로 도입된 전기 노선버스가 충전소에서 최초로 충전이 이루어졌을 때의 충전 관련 데이터가 표 2에서와 같이 충전소 제어서버(10)에서 파악되었다고 해보자. To express the embodiment shown in FIG. 4 in detail, let us assume that charging-related data when a newly introduced electric route bus is first charged at a charging station is identified in the charging station control server 10 as shown in Table 2.

충전소charging station 차량
번호
vehicle
number
노선명Route name 충전기
ID
charger
ID
Outlet
ID
Outlet
ID
충전시작시각Charging start time 충전종료시각Charging end time 충전소요시간Charging time 충전전력량
(kWh)
Charging power amount
(kWh)
충전시작
SOC
Start charging
SOC
충전종료
SOC
Charging complete
SOC
수원여객Suwon Passenger 경기70바1663Gyeonggi 70 Bar 1663 1313 3232 BB 2021-02-26
23:41:29
2021-02-26
23:41:29
2021-02-27
01:39:45
2021-02-27
01:39:45
01:58:1501:58:15 177.28
177.28
2323 9292

표 1이 의미하는 것은, 수원여객 충전소에서 경기70바1663이라는 전기차(노선 13번의 전기 노선버스)가 충전소 내 충전기(충전기ID 32번)의 B 아웃렛을 통하여 배터리 충전을 수행하였다는 사실이다. 또한, 충전은 2021-02-26 23:41:29에 시작되어 1시간 58분 15초 간 이루어진 후 01:39:45에 종료되었으며, 이 때 충전 전력량은 177.28(kWh)이고, 이와 같은 충전을 통하여 배터리의 잔존용량(SOC)은 23%에서 92%로 증가하였음을 함께 알 수 있다. What Table 1 means is that at the Suwon Passenger Charging Station, an electric vehicle called Gyeonggi 70ba 1663 (electric route bus on route 13) charged its battery through the B outlet of the charger (charger ID 32) within the charging station. In addition, charging started at 2021-02-26 23:41:29 and lasted for 1 hour 58 minutes 15 seconds and ended at 01:39:45. At this time, the charging power amount was 177.28 (kWh), and this charging It can be seen that the remaining capacity (SOC) of the battery increased from 23% to 92%.

단계(S110)에서는 전기차의 최초 충전을 수행하기 위하여, 전기차의 배터리 정격용량 정보를 획득한다. 전기차의 배터리 정격용량 정보는 전기차로부터 RFID를 통하여 직접 전송을 받거나, 또는 전기차로부터 해당 전기차의 차종 정보를 RFID를 전송받은 후, 충전소 제어서버(10) 내의 운행기록 저장부(160)에 저장되어 있는 차종별 배터리 정격용량 정보와 대조하여 획득할 수 있다. In step S110, in order to perform initial charging of the electric vehicle, information on the battery rating of the electric vehicle is obtained. The battery rating capacity information of the electric vehicle is transmitted directly from the electric vehicle through RFID, or the model information of the electric vehicle is transmitted through RFID from the electric vehicle and then stored in the driving record storage unit 160 in the charging station control server 10. It can be obtained by comparing it with the battery rating capacity information for each vehicle type.

단계(S120)에서는 충전기로부터 전기차측으로 전력이 공급됨으로써 배터리의 최초 충전이 수행된다. 배터리를 충전할 때에는 전력 효율 및 안전성을 확보하기 위하여 인가 전압과 전류량이 변동되는 것이 일반적이다. In step S120, initial charging of the battery is performed by supplying power from the charger to the electric vehicle. When charging a battery, the applied voltage and current amount generally change to ensure power efficiency and safety.

따라서, 단계(S130)에서는 최초 충전시 전기차에 인가된 평균 전압을 측정한다. 평균 전압을 측정하기 위해서, 충전 시작시각과 충전종료시각 사이를 일정한 시간 간격(예컨대 1초)으로 분할하여, 1초 경과시마다 해당 시점의 전압을 기록함으로써 전체 충전소요시간 동안에 인가된 평균 전압을 구할 수 있다. 이 실시예에서는 평균 전압을 644.18(V)라고 가정한다. Therefore, in step S130, the average voltage applied to the electric vehicle during initial charging is measured. In order to measure the average voltage, the time between the charging start time and the charging end time is divided into regular time intervals (for example, 1 second) and the voltage at that point is recorded every second to obtain the average voltage applied during the entire charging time. You can. In this embodiment, the average voltage is assumed to be 644.18 (V).

단계(S140)에서는 최초 충전시 전기차에 공급된 소비 전력량을 측정한다. 소비 전력량은 소비 전력량 측정부(120)에서 측정될 수 있다. In step S140, the amount of power consumed supplied to the electric vehicle during initial charging is measured. The amount of power consumption can be measured by the power consumption measurement unit 120.

단계(S150)에서는 최초 충전시 소비 전류량 계산이 수행된다. In step S150, the amount of current consumed during initial charging is calculated.

앞서 도 3에서 설명한 바와 같이, 최초 충전시 인가된 평균 전압 및 그 때의 소비 전력량을 알면 소비 전류량을 수학식 1을 통하여 얻을 수 있다. As previously explained in FIG. 3, if the average voltage applied during initial charging and the amount of power consumed at that time are known, the amount of current consumed can be obtained through Equation 1.

최초 충전시 소비 전류량은, 177.28(kWh) * 1000 / 644.18(V) = 275.20(Ah)이 된다. The amount of current consumed during initial charging is 177.28 (kWh) * 1000 / 644.18 (V) = 275.20 (Ah).

단계(S160)에서는 최초 충전시 단위용량 당 소비 전류량 계산이 수행된다. In step S160, the amount of current consumed per unit capacity is calculated during initial charging.

표 1을 참조하면, 충전시 인가된 평균 전압이 664.18(V)이라는 가정 하에, 잔존용량을 23%로부터 92%로 69%P만큼 상승시키기 위하여 266.91(Ah)의 소비 전류량이 필요하였음을 알 수 있다. 즉, 최초 충전시의 단위 용량 당 소비 전류량 I0,unit은, Referring to Table 1, it can be seen that, under the assumption that the average voltage applied during charging is 664.18 (V), a current consumption of 266.91 (Ah) was needed to increase the remaining capacity by 69% from 23% to 92%. there is. In other words, the current consumption per unit capacity at the time of initial charging I 0,unit is,

I0,unit = 275.20 (Ah) / (92 - 23)(SOC%) = 3.99 (Ah/SOC%)I 0,unit = 275.20 (Ah) / (92 - 23)(SOC%) = 3.99 (Ah/SOC%)

로 얻어진다. It is obtained by

도 5는 도 3의 단계(S20)를 더욱 상세히 나타낸 흐름도이다. FIG. 5 is a flowchart showing step S20 of FIG. 3 in more detail.

도 4에서 나타낸 전기차가 운행을 지속한 후의 어느 시점에 충전을 수행한 결과, 평균 전압 665.43(V)으로 221.08(kWh)의 전력량을 전기차에 충전하였고, 그 결과 잔존용량이 7(SOC%)에서 95(SOC%)로 증가한 경우를 생각해보자. As a result of charging at some point after the electric vehicle shown in Figure 4 continues to operate, the electric vehicle was charged with an amount of power of 221.08 (kWh) at an average voltage of 665.43 (V), and as a result, the remaining capacity was 7 (SOC%). Let’s consider the case where it increases to 95 (SOC%).

이 때의 소비 전류량 I는 At this time, the current consumption I is

I = 221.08 (kWh) * 1000 / 665.43(V) = 332.24 (Ah)I = 221.08 (kWh) * 1000 / 665.43(V) = 332.24 (Ah)

가 된다. It becomes.

또한, 단위 용량 당 소비 전류량 Iunit은, In addition, the current consumption per unit capacity I unit is,

Iunit = 332.24 / (95-7) = 3.78(Ah/SOC%)I unit = 332.24 / (95-7) = 3.78(Ah/SOC%)

가 된다. It becomes.

따라서, 수학식 6에 의하여 이 전기차의 추정 배터리 노후도(SOH)를 구하면, Therefore, by calculating the estimated battery age (SOH) of this electric vehicle using Equation 6,

SOH = (Iunit / I0,unit )× 100 = 3.78/3.99 × 100 = 88(%). SOH = (I unit / I 0,unit ) × 100 = 3.78/3.99 × 100 = 88(%).

즉, 배터리의 성능이 최초 상태인 100% 대비 88%로 낮아져 있음을 알 수 있다. In other words, it can be seen that the battery performance has been lowered to 88% compared to the initial state of 100%.

따라서, 수학식 7에 따라 이 시점에 충전하는 배터리는 최초 충전시보다 100/88 = 1.14배만큼의 전력량을 충전하여야 한다. Therefore, according to Equation 7, the battery being charged at this point must be charged with an amount of power equal to 100/88 = 1.14 times that of the initial charge.

또한, 이를 상대전비 계산에 활용할 수 있다. Additionally, this can be used to calculate relative combat ratio.

운행기록 저장부(160)에 저장되어 있는 이 전기차의 주행거리가 180.5 (km)라고 한다면, 이 전기차는 해당 거리를 주행하는 동안 잔존용량이 95(SOC%)에서 7(SOC%)로 감소하였음을 의미한다. If the driving distance of this electric vehicle stored in the driving record storage unit 160 is 180.5 (km), the remaining capacity of this electric vehicle decreased from 95 (SOC%) to 7 (SOC%) while driving the corresponding distance. means.

앞서 설명한 바와 같이, 이 명세서에서는 단위 잔존용량 당 운행할 수 있는 주행거리(km/SOC%)로 상대전비를 정의하였으므로, 상대전비는, 수학식 8과 같이 계산된다. As explained earlier, in this specification, the relative fuel efficiency is defined as the driving distance (km/SOC%) that can be driven per unit of remaining capacity, so the relative fuel efficiency is calculated as Equation 8.

[수학식 8][Equation 8]

(상대전비) = 180.5 / (95-7) = 2.05 (km/SOC%).(Relative comparison) = 180.5 / (95-7) = 2.05 (km/SOC%).

따라서, 전기차가 충전 이후 운행하여야 하는 노선 정보(노선 운행거리 및 1회 충전 시 운행하여야 하는 회수)를 운행기록 저장부(160)에서 참조하면, 수학식 6 및 수학식 7을 통하여 더욱 높은 정확도로 충전 전력량을 구할 수 있게 된다.Therefore, when referring to the route information (route distance traveled and the number of times the electric vehicle must be driven for one charge) on which the electric vehicle must be driven after charging from the driving record storage unit 160, it can be calculated with higher accuracy through Equation 6 and Equation 7. The amount of charging power can be obtained.

Claims (12)

배터리 정격용량 획득부, 충전 전압 제어부, 소비 전력량 측정부, 소비 전류량 계산부, 소비 전류량 저장부, 배터리 노후도 저장부, 운행기록 저장부, 상대전비 측정부, 충전 전력량 저장부 및 통신 인터페이스부를 포함하며,
충전 대상 전기차에 설치된 충전 대상 배터리의 정격 전력량 정보를 획득하는 배터리 정격용량 획득부;
충전기에 연결된 상기 전기차에 인가되는 충전 전압의 크기를 제어하고, 인가된 충전 전압의 평균을 구하는 충전 전압 제어부;
상기 전기차에 공급된 충전 전력량의 크기를 측정하는 소비 전력량 측정부;
상기 평균 전압과 상기 충전 전력량을 이용하여, 상기 전기차에 충전을 수행하는 동안 사용된 전류량을 계산하는 소비 전류량 계산부;
상기 소비 전류량 계산부에서 계산된 충전시 소비 전류량을 저장하는 소비 전류량 저장부;
상기 전기차의 배터리의 추정 노후도를 저장하는 배터리 노후도 저장부;
상기 전기차의 운행에 관한 정보를 저장하는 운행기록 저장부;
상기 전기차의 상대전비를 측정하는 상대전비 측정부;
상기 전기차를 충전한 때의 소비 전력량 정보를 저장하는 충전 전력량 저장부; 및
적어도 하나의 충전기와 연결되어 데이터 통신을 수행하는 통신 인터페이스부;
를 포함하는, 충전 제어서버.
Includes battery rated capacity acquisition unit, charging voltage control unit, power consumption measurement unit, current consumption calculation unit, consumption current storage unit, battery aging storage unit, driving record storage unit, relative power ratio measurement unit, charging power storage unit, and communication interface unit. And
a battery rated capacity acquisition unit that acquires information on the rated power of the battery to be charged installed in the electric vehicle to be charged;
a charging voltage control unit that controls the magnitude of the charging voltage applied to the electric vehicle connected to the charger and calculates the average of the applied charging voltage;
a power consumption measurement unit that measures the amount of charging power supplied to the electric vehicle;
a current consumption calculator that calculates the amount of current used while charging the electric vehicle using the average voltage and the amount of charging power;
a current consumption storage unit that stores the amount of current consumption during charging calculated by the current consumption calculation unit;
a battery aging storage unit that stores the estimated aging of the battery of the electric vehicle;
a driving record storage unit that stores information regarding the operation of the electric vehicle;
A relative fuel ratio measuring unit that measures the relative fuel efficiency of the electric vehicle;
a charging power storage unit that stores power consumption information when charging the electric vehicle; and
A communication interface unit connected to at least one charger to perform data communication;
Including a charging control server.
제1항에 있어서,
상기 소비 전류량 계산부는, 충전시 소비 전력량을 충전시 인가된 평균 전압으로 나누어 충전시 소비 전류량을 구하는, 충전소 제어서버.
According to paragraph 1,
The charging current consumption calculation unit calculates the amount of current consumption during charging by dividing the amount of power consumption during charging by the average voltage applied during charging.
제2항에 있어서,
상기 소비 전류량 계산부는, 상기 충전시 소비 전류량을 충전을 통하여 상승한 잔존용량으로 나누어 단위 잔존용량 당 소비 전류량을 더 구하는, 충전소 제어서버.
According to paragraph 2,
The charging station control server wherein the current consumption calculator calculates the amount of current consumed per unit of remaining capacity by dividing the amount of current consumed during charging by the remaining capacity increased through charging.
제3항에 있어서,
상기 배터리 노후도 저장부는, 현재 충전시 단위 잔존용량 당 소비 전류량을 최초 충전시 단위 잔존용량 당 소비 전류량으로 나누어 구해지는 백분율 값으로서 현재 추정 노후도를 계산하고 저장하는, 충전소 제어서버.
According to paragraph 3,
The battery aging storage unit is a charging station control server that calculates and stores the current estimated aging as a percentage value obtained by dividing the amount of current consumed per unit of remaining capacity during current charging by the amount of current consumed per unit of remaining capacity during initial charging.
제1항에 있어서,
상기 상대전비 측정부는, 상기 운행기록 저장부에 저장된 직전 충전 후 주행거리를 직전 충전 후 잔존용량 변화량으로 나누어 상대전비를 측정하는, 충전소 제어서버.
According to paragraph 1,
The relative fuel efficiency measuring unit is a charging station control server that measures the relative fuel efficiency by dividing the driving distance after the previous charge stored in the driving record storage unit by the change in remaining capacity after the previous charge.
충전 대상 배터리의 최초 충전시 단위용량 당 소비 전류량을 확인하는 단계(S10),
충전 대상 배터리의 현재 단위용량 당 소비 전류량을 확인하는 단계(S20);
및 현재 추정 노후도를 계산하는 단계(S30);를 포함하는, 배터리 노후도 추정 방법.
Checking the amount of current consumed per unit capacity when the battery to be charged is first charged (S10),
Checking the current consumption per unit capacity of the battery to be charged (S20);
And a step of calculating the current estimated age (S30). Method for estimating battery age.
제6항에 있어서,
상기 단계(S10)는,
배터리 정격용량 정보를 획득하는 단계(S110);
배터리 최초 충전을 수행하는 단계(S120);
최초 충전시 평균 전압을 측정하는 단계(S130);
최초 충전시 소비 전력량을 측정하는 단계(S140); 및
최초 충전시 소비 전류량을 계산하는 단계(S150)를 더 포함하는, 배터리 노후도 추정 방법.
According to clause 6,
In the step (S10),
Obtaining battery rated capacity information (S110);
Performing initial battery charging (S120);
Measuring the average voltage upon initial charging (S130);
Measuring the amount of power consumed during initial charging (S140); and
A method for estimating battery age, further comprising calculating the amount of current consumed during initial charging (S150).
제7항에 있어서,
상기 단계(S150)는, 충전시 소비 전력량을 충전시 인가된 평균 전압으로 나누어 충전시 소비 전류량을 구하는, 배터리 노후도 추정 방법.
In clause 7,
The step (S150) is a method of estimating battery aging in which the amount of current consumed during charging is obtained by dividing the amount of power consumed during charging by the average voltage applied during charging.
제8항에 있어서,
상기 단계(S150)는, 상기 충전시 소비 전류량을 충전을 통하여 상승한 잔존용량으로 나누어 단위 잔존용량 당 소비 전류량을 더 구하는, 배터리 노후도 추정 방법.
According to clause 8,
The step (S150) is a method of estimating battery aging in which the amount of current consumed per unit of remaining capacity is further obtained by dividing the amount of current consumed during charging by the remaining capacity increased through charging.
제6항에 있어서,
상기 단계(S20)는,
배터리 충전을 수행하는 단계(S220);
현재 충전시 평균 전압을 측정하는 단계(S230);
현재 충전시 소비 전력량을 측정하는 단계(S240); 및
현재 충전시 소비 전류량을 계산하는 단계(S250)를 더 포함하는, 배터리 노후도 추정 방법.
According to clause 6,
In the step (S20),
Performing battery charging (S220);
Measuring the average voltage during current charging (S230);
Measuring the amount of power consumed during current charging (S240); and
A method for estimating battery age, further comprising calculating the amount of current consumed during current charging (S250).
제7항에 있어서,
상기 단계(S250)는, 충전시 소비 전력량을 충전시 인가된 평균 전압으로 나누어 충전시 소비 전류량을 구하는, 배터리 노후도 추정 방법.
In clause 7,
The step (S250) is a method of estimating battery aging in which the amount of current consumed during charging is obtained by dividing the amount of power consumed during charging by the average voltage applied during charging.
제11항에 있어서,
상기 단계(S250)는, 상기 충전시 소비 전류량을 충전을 통하여 상승한 잔존용량으로 나누어 단위 잔존용량 당 소비 전류량을 더 구하는, 배터리 노후도 추정 방법.
According to clause 11,
The step (S250) is a method of estimating battery aging in which the amount of current consumed during charging is divided by the remaining capacity increased through charging to further obtain the amount of current consumed per unit of remaining capacity.
KR1020230140473A 2021-08-12 2023-10-19 Charging station control server and method for estimating state of health of the battery of electric vehicle KR20230149792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230140473A KR20230149792A (en) 2021-08-12 2023-10-19 Charging station control server and method for estimating state of health of the battery of electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210106482A KR20230024559A (en) 2021-08-12 2021-08-12 Charging station control server and method for estimating state of health of the battery of electric vehicle
KR1020230140473A KR20230149792A (en) 2021-08-12 2023-10-19 Charging station control server and method for estimating state of health of the battery of electric vehicle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020210106482A Division KR20230024559A (en) 2021-08-12 2021-08-12 Charging station control server and method for estimating state of health of the battery of electric vehicle

Publications (1)

Publication Number Publication Date
KR20230149792A true KR20230149792A (en) 2023-10-27

Family

ID=85327831

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020210106482A KR20230024559A (en) 2021-08-12 2021-08-12 Charging station control server and method for estimating state of health of the battery of electric vehicle
KR1020230140473A KR20230149792A (en) 2021-08-12 2023-10-19 Charging station control server and method for estimating state of health of the battery of electric vehicle

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020210106482A KR20230024559A (en) 2021-08-12 2021-08-12 Charging station control server and method for estimating state of health of the battery of electric vehicle

Country Status (1)

Country Link
KR (2) KR20230024559A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116930790B (en) * 2023-09-15 2023-11-21 深圳市海雷新能源有限公司 Electric quantity calibration method for intelligent battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101839141B1 (en) 2016-10-31 2018-03-15 한국기술교육대학교 산학협력단 Method for predicting battery health in consideration of temperature of battery management system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101839141B1 (en) 2016-10-31 2018-03-15 한국기술교육대학교 산학협력단 Method for predicting battery health in consideration of temperature of battery management system

Also Published As

Publication number Publication date
KR20230024559A (en) 2023-02-21

Similar Documents

Publication Publication Date Title
US6417668B1 (en) Vehicle battery condition monitoring system
US9496727B2 (en) Characterizing a rechargeable battery through discontinuous charging
CN102778651B (en) Determine the system and method for battery cell capacity value in many battery
WO2020152901A1 (en) Secondary battery module remaining life diagnosis method and remaining life diagnosis system
CN109633457B (en) Method and system for acquiring residual electric quantity
KR20230149792A (en) Charging station control server and method for estimating state of health of the battery of electric vehicle
US11796596B2 (en) Method of managing battery, battery management system, and electric vehicle charging system having the battery management system
CN111965558B (en) SOH value acquisition method and system, electric vehicle and computer readable storage medium
CN1988314A (en) Method for compensating state of charge of battery and battery management system using the same
US11214150B2 (en) Method and arrangement for determining the state of charge of a battery pack
CN115184830B (en) Battery attenuation estimation method
US10852358B2 (en) Battery capacity estimation device, method and program
CN104335057A (en) Method and device for determining the actual capacity of a battery
CN109311410B (en) Method and system for thermal conditioning of battery packs
CN106696739B (en) A kind of charging method and charging unit of electric car
CN113466716A (en) Battery health state measuring and calculating method and related equipment
KR20200122628A (en) Method for managing battery for vehicle and apparatus for the same
US20230375637A1 (en) Battery diagnostic system
KR20190120794A (en) Method and placement for balancing battery packs
CN112924866A (en) Capacity conservation rate detection method, capacity conservation rate detection device, vehicle and storage medium
CN114217229A (en) Battery SOC correction system, control method thereof, storage medium and electric vehicle
US11738658B2 (en) Method for charging an accumulator battery through a charging terminal
US20110301789A1 (en) Battery power service management system and battery power service management method
CN115632422A (en) Power supply and demand adjustment method and power supply and demand management device
CN110535196B (en) Charging method, charging device, and remote server performed in a power conversion facility

Legal Events

Date Code Title Description
A107 Divisional application of patent