KR20230024559A - Charging station control server and method for estimating state of health of the battery of electric vehicle - Google Patents

Charging station control server and method for estimating state of health of the battery of electric vehicle Download PDF

Info

Publication number
KR20230024559A
KR20230024559A KR1020210106482A KR20210106482A KR20230024559A KR 20230024559 A KR20230024559 A KR 20230024559A KR 1020210106482 A KR1020210106482 A KR 1020210106482A KR 20210106482 A KR20210106482 A KR 20210106482A KR 20230024559 A KR20230024559 A KR 20230024559A
Authority
KR
South Korea
Prior art keywords
charging
battery
electric vehicle
amount
unit
Prior art date
Application number
KR1020210106482A
Other languages
Korean (ko)
Inventor
최용길
이계은
노인덕
이준오
Original Assignee
주식회사 펌프킨
최용길
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 펌프킨, 최용길 filed Critical 주식회사 펌프킨
Priority to KR1020210106482A priority Critical patent/KR20230024559A/en
Publication of KR20230024559A publication Critical patent/KR20230024559A/en
Priority to KR1020230140473A priority patent/KR20230149792A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]

Abstract

A charging station control server and a method for estimating the age of a battery of an electric vehicle are disclosed. The purpose of the present invention is to provide a method for estimating the age of a battery of an electric vehicle to be charged, from an electric vehicle charger side. The use of the present invention has an effect of estimating the age of a battery of an electric vehicle to be charged, from an electric vehicle charger side even when battery age information is not provided from the electric vehicle. The charging station control server according to the present invention comprises a battery rated capacity acquisition unit, a charging voltage control unit, a power consumption measurement unit, a current consumption calculation unit, a current consumption storage unit, a battery age storage unit, a driving record storage unit, a relative power ratio measurement unit, a charging power storage unit, and a communication interface unit.

Description

충전소 제어서버 및 전기차 배터리의 노후도 추정 방법{CHARGING STATION CONTROL SERVER AND METHOD FOR ESTIMATING STATE OF HEALTH OF THE BATTERY OF ELECTRIC VEHICLE}Charging station control server and method for estimating aging of electric car battery

본 발명은 충전소 제어서버 및 전기차 배터리의 노후도 추정 방법에 관한 것이다. The present invention relates to a charging station control server and a method for estimating the age of an electric vehicle battery.

전기차, 특히 차고지에서만 충전을 하는 것이 일반적인 전기버스의 경우, 운행 전에 충분한 배터리 잔존용량 (SOC: State of Charge)을 확보하여야 한다. 특히, 전기 노선버스는 해당 노선버스가 투입되는 운행 일정이 정해져 있으므로, 운행 후 차고지에서의 유휴 시간의 길이와 충전기에서 충전 가능한 단위시간 당 충전전력량을 잘 파악하여야만 한정된 유휴 시간 내에 충분한 잔존용량이 확보되도록 충전을 할 수 있게 된다. In the case of an electric vehicle, especially an electric bus that is generally charged only in a garage, sufficient remaining battery capacity (SOC: State of Charge) must be secured before operation. In particular, since the operating schedule for the electric route bus is set, sufficient remaining capacity is secured within the limited idle time only when the length of idle time in the garage after operation and the amount of charging power per unit time that can be charged in the charger are well understood. You can charge as much as possible.

이를 위하여 전기차의 배터리 충전시에는 배터리의 노후도(SOH: State of Health)의 개념이 함께 사용된다. 즉, 전기차에 사용되는 배터리는 사용을 거듭함에 따라 노후하게 되므로, 일정 시간 (또는 주행거리)을 초과하여 운행한 전기차의 경우 배터리가 노후하여 수명을 다한 것으로 간주하고 배터리를 교체하게 된다. To this end, the concept of state of health (SOH) of the battery is used together when charging the battery of the electric vehicle. That is, since the battery used in an electric vehicle deteriorates with repeated use, in the case of an electric vehicle that has been operated for more than a certain time (or mileage), the battery is considered to have reached the end of its life due to aging and the battery is replaced.

한편, 명세서 전체에서, 신규 배터리의 배터리 노후도는 100%인 것으로 정의하고, 배터리를 사용함에 따라 배터리 노후도는 100%보다 적은 값으로 차츰 낮아지는 것으로 본다.Meanwhile, throughout the specification, the battery age of a new battery is defined as 100%, and as the battery is used, the battery age is considered to gradually decrease to a value less than 100%.

이러한 배터리 노후도는 전기차에 설치된 배터리 관리 시스템(BMS: Battery Management System)에서 차량별로 판단이 이루어지게 된다. 전기차는 설치된 배터리의 노후도(SOH)에 관한 정보가 저장되어 있다. 충전소의 충전기는 배터리의 노후도 정보를 필요로 하는 경우가 있으나, 현재로서는 전기차 제조사가 배터리 노후도 정보를 전기차로부터 충전기측으로 제공을 하고 있지 않고 있다. 따라서, 전기차 충전기는 충전을 요하는 전기차의 배터리 노후도 정보를 알고 싶어도 알 수가 없는 상황이다. The age of the battery is determined for each vehicle in a battery management system (BMS) installed in the electric vehicle. In an electric vehicle, information about the age (SOH) of the installed battery is stored. Chargers at charging stations sometimes require battery aging information, but at present, electric vehicle manufacturers do not provide battery aging information from electric vehicles to chargers. Therefore, the electric vehicle charger is in a situation where it is impossible to know even if it wants to know the age of the battery of the electric vehicle that requires charging.

배터리 노후도는 해당 차량에 충전하여야 하는 전력량에 영향을 미치게 된다. 즉, 배터리가 노후할수록 전기차가 동일한 주행거리를 주행하기 위하여 더욱 많은 전력량을 충전하여야 한다. The age of the battery affects the amount of power to be charged to the vehicle. That is, as the battery ages, the electric vehicle must charge more power to travel the same mileage.

이처럼 전기차 충전소가 충전을 요하는 전기차로부터 배터리 노후도 정보를 제공받지 못함에 따른 문제점을 해결하기 위하여, 전기차 충전기측에서 자체적으로 충전 대상 전기차의 배터리 노후도를 추정하는 방법에 관한 요청이 대두되었다. In order to solve the problem that the electric vehicle charging station does not receive information on the age of the battery from the electric vehicle that requires charging, a request for a method of estimating the age of the battery of the electric vehicle to be charged has been raised by the electric vehicle charger side.

KRKR 10-1839141 10-1839141 BB

본 발명은 상기와 같은 요청에 부응하여 착안된 것으로서, 전기차 충전기측에서 충전 대상 전기차의 배터리 노후도를 추정할 수 있는 방법을 제공하는 것을 목적으로 한다. The present invention has been conceived in response to the above requests, and an object of the present invention is to provide a method for estimating the age of a battery of an electric vehicle to be charged in an electric vehicle charger.

상기와 같은 목적을 달성하기 위하여, 일측면에 따른 충전 제어서버는, 배터리 정격용량 획득부, 충전 전압 제어부, 소비 전력량 측정부, 소비 전류량 계산부, 소비 전류량 저장부, 배터리 노후도 저장부, 운행기록 저장부, 상대전비 측정부, 충전 전력량 저장부 및 통신 인터페이스부를 포함하며, 충전 대상 전기차에 설치된 충전 대상 배터리의 정격 전력량 정보를 획득하는 배터리 정격용량 획득부; 충전기에 연결된 상기 전기차에 인가되는 충전 전압의 크기를 제어하고, 인가된 충전 전압의 평균을 구하는 충전 전압 제어부; 상기 전기차에 공급된 충전 전력량의 크기를 측정하는 소비 전력량 측정부; 상기 평균 전압과 상기 충전 전력량을 이용하여, 상기 전기차에 충전을 수행하는 동안 사용된 전류량을 계산하는 소비 전류량 계산부; 상기 소비 전류량 계산부에서 계산된 충전시 소비 전류량을 저장하는 소비 전류량 저장부; 상기 전기차의 배터리의 추정 노후도를 저장하는 배터리 노후도 저장부; 상기 전기차의 운행에 관한 정보를 저장하는 운행기록 저장부; 상기 전기차의 상대전비를 측정하는 상대전비 측정부; 상기 전기차를 충전한 때의 소비 전력량 정보를 저장하는 충전 전력량 저장부; 및 적어도 하나의 충전기와 연결되어 데이터 통신을 수행하는 통신 인터페이스부; 를 포함한다. In order to achieve the above object, the charging control server according to one aspect includes a battery rated capacity acquisition unit, a charging voltage control unit, a power consumption measurement unit, a current consumption calculation unit, a current consumption storage unit, a battery aging storage unit, and a driving a battery rated capacity acquisition unit including a recording storage unit, a relative power ratio measuring unit, a charging wattage storage unit, and a communication interface unit, and acquiring rated wattage information of a battery to be charged installed in an electric vehicle to be charged; a charging voltage controller for controlling the magnitude of the charging voltage applied to the electric vehicle connected to the charger and obtaining an average of the applied charging voltage; a power consumption measurement unit measuring the amount of charging power supplied to the electric vehicle; a current consumption calculation unit that calculates an amount of current used while charging the electric vehicle using the average voltage and the amount of charging power; a current consumption storage unit for storing the current consumption calculated by the current consumption calculation unit during charging; a battery age storage unit for storing an estimated age of the battery of the electric vehicle; a driving record storage unit that stores information about driving of the electric vehicle; a relative fuel consumption ratio measurement unit measuring a relative fuel consumption ratio of the electric vehicle; a charging power storage unit that stores power consumption information when the electric vehicle is charged; and a communication interface unit that is connected to at least one charger and performs data communication. includes

이 때, 상기 소비 전류량 계산부는, 충전시 소비 전력량을 충전시 인가된 평균 전압으로 나누어 충전시 소비 전류량을 구할 수 있다. In this case, the current consumption calculator may calculate the current consumption during charging by dividing the power consumption during charging by the average voltage applied during charging.

또한, 상기 소비 전류량 계산부는, 상기 충전시 소비 전류량을 충전을 통하여 상승한 잔존용량으로 나누어 단위 잔존용량 당 소비 전류량을 더 구할 수 있다. In addition, the current consumption calculation unit may further calculate the current consumption per unit remaining capacity by dividing the current consumption during charging by the remaining capacity increased through charging.

또한, 상기 배터리 노후도 저장부는, 현재 충전시 단위 잔존용량 당 소비 전류량을 최초 충전시 단위 잔존용량 당 소비 전류량으로 나누어 구해지는 백분율 값으로서 현재 추정 노후도를 계산하고 저장할 수 있다. In addition, the battery age storage unit may calculate and store the current estimated age as a percentage value obtained by dividing current consumption per unit residual capacity during current charging by current consumption per unit residual capacity during initial charging.

또한, 상기 상대전비 측정부는, 상기 운행기록 저장부에 저장된 직전 충전 후 주행거리를 직전 충전 후 잔존용량 변화량으로 나누어 상대전비를 측정할 수 있다. Also, the relative power ratio measurement unit may measure the relative power ratio by dividing the mileage after the previous charge stored in the driving record storage unit by the amount of change in remaining capacity after the previous charge.

본 발명의 다른 측면에 따른 배터리 노후도 추정 방법은, 충전 대상 배터리의 최초 충전시 단위용량 당 소비 전류량을 확인하는 단계(S10), 충전 대상 배터리의 현재 단위용량 당 소비 전류량을 확인하는 단계(S20); 및 현재 추정 노후도를 계산하는 단계(S30);를 포함한다.A method for estimating battery age according to another aspect of the present invention includes the step of checking the current consumption per unit capacity of a battery to be charged during initial charging (S10), and the step of checking the current consumption per unit capacity of the battery to be charged (S20). ); and calculating the current estimated deterioration (S30).

이 때, 상기 단계(S10)는, 배터리 정격용량 정보를 획득하는 단계(S110); 배터리 최초 충전을 수행하는 단계(S120); 최초 충전시 평균 전압을 측정하는 단계(S130); 최초 충전시 소비 전력량을 측정하는 단계(S140); 및 최초 충전시 소비 전류량을 계산하는 단계(S150)를 더 포함할 수 있다. At this time, the step (S10) may include obtaining battery rated capacity information (S110); Performing an initial battery charge (S120); Measuring an average voltage during initial charging (S130); Measuring the amount of power consumed during initial charging (S140); and calculating an amount of current consumed during initial charging (S150).

또한, 상기 단계(S150)는, 충전시 소비 전력량을 충전시 인가된 평균 전압으로 나누어 충전시 소비 전류량을 구할 수 있다. In addition, in the step S150, the amount of current consumption during charging can be obtained by dividing the amount of power consumption during charging by the average voltage applied during charging.

또한, 상기 단계(S150)는, 상기 충전시 소비 전류량을 충전을 통하여 상승한 잔존용량으로 나누어 단위 잔존용량 당 소비 전류량을 더 구할 수 있다. In addition, in the step S150, the current consumption per unit remaining capacity may be further obtained by dividing the current consumption during charging by the remaining capacity increased through charging.

또한, 상기 단계(S20)는, 배터리 충전을 수행하는 단계(S220); 현재 충전시 평균 전압을 측정하는 단계(S230); 현재 충전시 소비 전력량을 측정하는 단계(S240); 및 현재 충전시 소비 전류량을 계산하는 단계(S250)를 더 포함할 수 있다. In addition, the step (S20), performing a battery charging step (S220); Measuring an average voltage during current charging (S230); Measuring the amount of power consumed during current charging (S240); and calculating an amount of current consumption during current charging (S250).

또한, 상기 단계(S250)는, 충전시 소비 전력량을 충전시 인가된 평균 전압으로 나누어 충전시 소비 전류량을 구할 수 있다. In addition, in the step S250, the amount of current consumption during charging can be obtained by dividing the amount of power consumption during charging by the average voltage applied during charging.

또한, 상기 단계(S250)는, 상기 충전시 소비 전류량을 충전을 통하여 상승한 잔존용량으로 나누어 단위 잔존용량 당 소비 전류량을 더 구할 수 있다. In addition, in the step S250, the current consumption per unit remaining capacity may be further obtained by dividing the current consumption during charging by the remaining capacity increased through charging.

본 발명을 이용하면, 전기차로부터 배터리의 노후도 정보를 제공받지 않더라도 전기차 충전기측에서 충전 대상 전기차의 배터리 노후도를 추정할 수 있는 효과가 있다. If the present invention is used, there is an effect of estimating the age of the battery of the electric vehicle to be charged at the electric vehicle charger side even if the battery age information is not provided from the electric vehicle.

도 1은 전기차 충전소와 충전중인 전기차 및 관련 외부 서버가 연결된 모습을 예시한 도면,
도 2는 본 발명에 따른 전기차의 배터리 노후도 추정 방법 및 최적 충전 전력량 산출 방법이 구현된 충전소 제어서버의 일례를 나타낸 블록도,
도 3은 전기차의 배터리 노후도 추정 방법의 일례를 나타낸 흐름도,
도 4는 도 3의 단계(S10)를 더욱 상세히 나타낸 흐름도,
도 5는 도 3의 단계(S20)를 더욱 상세히 나타낸 흐름도이다.
1 is a diagram illustrating a state in which an electric vehicle charging station, an electric vehicle being charged, and a related external server are connected;
2 is a block diagram showing an example of a charging station control server in which a method for estimating the age of a battery of an electric vehicle and a method for calculating an optimal charging power amount according to the present invention are implemented;
3 is a flowchart showing an example of a method for estimating battery aging of an electric vehicle;
4 is a flowchart showing step S10 of FIG. 3 in more detail;
5 is a flowchart illustrating step S20 of FIG. 3 in more detail.

이하에서는 본 발명에 따른 전기차의 배터리 노후도 추정 방법을 도면을 참조하여 구체적으로 설명하기로 한다. Hereinafter, a method for estimating battery age of an electric vehicle according to the present invention will be described in detail with reference to the drawings.

도 1은 전기차 충전소와 충전중인 전기차 및 관련 외부 서버가 연결된 모습을 예시한 도면이다. 1 is a diagram illustrating a state in which an electric vehicle charging station, an electric vehicle being charged, and a related external server are connected.

도 1에서 나타낸 바와 같이, 전기차 충전소(1)는 충전소 제어서버(10), 적어도 하나의 충전기(11) 및 충전소 제어서버(10)와 적어도 하나의 충전기(11) 사이에서 통신 데이터를 주고받는 통신 네트워크(12)를 포함하여 이루어진다. As shown in FIG. 1, the electric vehicle charging station 1 communicates with the charging station control server 10, at least one charger 11, and communication data exchanged between the charging station control server 10 and at least one charger 11. It consists of a network (12).

하나의 충전기(11)는 한 대의 전기차(2)에 대하여 배터리 충전을 수행한다. 이 때, 배터리의 충전을 위하여 차량으로부터 필요한 데이터를 수신하거나 차량으로 필요한 데이터를 송신하기 위하여 충전기(11)와 전기차(2) 사이에는 통신 회선이 연결된다. 통신 회선으로서는 예컨대 CAN 프로토콜에 따른 유선통신 및/또는 RFID 프로토콜에 따른 무선통신 등이 사용될 수 있다. 또한, 충전기(11)는 충전소 제어서버(10)의 제어에 따른 충전 스케줄에 의거하여 전기차(2)측으로 충전 전력을 공급하게 된다.One charger 11 performs battery charging for one electric vehicle 2 . At this time, a communication line is connected between the charger 11 and the electric vehicle 2 in order to receive necessary data from the vehicle or transmit necessary data to the vehicle for charging the battery. As the communication line, for example, wired communication according to the CAN protocol and/or wireless communication according to the RFID protocol may be used. In addition, the charger 11 supplies charging power to the electric vehicle 2 based on the charging schedule controlled by the charging station control server 10.

한편, 충전소 제어서버(10)는 또다른 통신 네트워크를 통하여 운수회사 관리자 서버(3)나 운행 관련 관공서 서버(4)와 더 연결된다. 전기차 충전소(1)에서 가장 중요한 것으로서 충전 전력 사용량에 따른 전기요금 정보 및 전기차에 대한 충전 수행에 따른 충전 요금의 과금 정보 등 비용과 매출에 관한 정보가 포함된다. On the other hand, the charging station control server 10 is further connected to the transportation company manager server 3 or the service-related government office server 4 through another communication network. The most important thing in the electric vehicle charging station 1 is information on costs and sales, such as electric charge information according to charging power usage and charging information on charging charges according to charging of the electric vehicle.

예컨대 운수회사 관리자 서버(3)와 주고받는 정보에는 아래 표와 같은 데이터필드가 포함될 수 있다.For example, information exchanged with the transport company manager server 3 may include data fields as shown in the table below.

데이터 필드 명칭data field name 데이터 필드에 관한 설명Description of data fields CHARGER_IDCHARGER_ID 충전기IDCharger ID OUTLET_IDOUTLET_ID 충전건 IDCharge gun ID CARD_NUMCARD_NUM 회원카드번호Membership card number DB_IDDB_ID DB ID DB ID MODEMODE 충전기 운영모드charger operation mode STATUSSTATUS 충전기 상태charger status STATUS_CODESTATUS_CODE 충전기 상태 코드charger status code batteryStatusbatteryStatus 배터리 상태battery status startSocstartSoc 시작 SOCstart SOC socRatesocRate 종료 SOCShutdown SOC batteryCapacitybatteryCapacity 배터리 커패시터 battery capacitor batteryQntybatteryQnty 배터리 전력사용량 battery power consumption batteryVoltagebatteryVoltage 배터리 전력battery power chargingQntychargingQnty 전력사용량 power consumption chargingPricechargingPrice 충전 금액charge amount batteryTemperbatteryTemper 배터리 온도battery temperature BMS_VERSIONBMS_VERSION BMS 버전BMS version estimateEndestimateEnd 충전종료 예상 일시 남은 시간
(hh mm)
Estimated date and time of charging end Remaining time
(h h mm)
chargingTimechargingTime 전력공급기간(hh mm ss)Power supply period (hh mm ss) chargerCompleteStatuschargerCompleteStatus 충전 완료 상태full charge status starttimestarttime 충전 시작 시간charging start time EndtimeEndtime 충전 종료 시간charge end time RotateRotate 모니터링 배치 회전 값monitoring batch rotation value PosxPosx 모니터링 좌표Xmonitoring coordinate X PosyPosy 모니터링 좌표YMonitoring coordinate Y ColorColor 모니터링 상태 색상monitoring status color queue_numqueue_num 대기순번waiting list chargerVoltagechargerVoltage 충전기 전압charger voltage chargerAmperechargerAmpere 충전기 전류charger current

도 2는 본 발명에 따른 전기차의 배터리 노후도 추정 방법 및 최적 충전 전력량 산출 방법이 구현된 충전소 제어서버의 일례를 나타낸 블록도이다. 2 is a block diagram showing an example of a charging station control server in which a method for estimating the age of a battery of an electric vehicle and a method for calculating an optimal charging power amount according to the present invention are implemented.

도 2에서 나타낸 바와 같이, 일례에 따른 충전소 제어서버(10)는, 배터리 정격용량 획득부(100), 충전 전압 제어부(110), 소비 전력량 측정부(120), 소비 전류량 계산부(130), 소비 전류량 저장부(140), 배터리 노후도 저장부(150), 운행기록 저장부(160), 상대전비 측정부(170), 충전 전력량 저장부(180) 및 통신 인터페이스부(190)를 포함하여 이루어진다. As shown in FIG. 2, the charging station control server 10 according to an example includes a battery rated capacity acquisition unit 100, a charging voltage control unit 110, a power consumption measurement unit 120, a current consumption calculation unit 130, Including current consumption storage unit 140, battery age storage unit 150, driving record storage unit 160, relative power ratio measurement unit 170, charging power storage unit 180 and communication interface unit 190 It is done.

배터리 정격용량 획득부(100)는 충전 대상 전기차에 설치된 충전 대상 배터리의 정격 전력량 정보를 획득한다.The battery rated capacity acquisition unit 100 acquires information on the rated power of a battery to be charged installed in the electric vehicle to be charged.

배터리의 정격 전력량 정보는 충전을 위하여 충전기(11)에 연결된 전기차(2)로부터 직접 획득할 수 있다. 또는 전기차(2)로부터 해당 전기차(2)의 차종 정보를 획득하고, 충전소 제어서버(10) 내의 운행기록 저장부(160) 내에 저장되어 있는 차종별 배터리 정보(배터리의 정격 전력량 정보를 포함한다)를 참조하여 배터리의 정격 전력량 정보를 획득할 수도 있다. Information on the rated power amount of the battery may be directly obtained from the electric vehicle 2 connected to the charger 11 for charging. Alternatively, vehicle type information of the corresponding electric vehicle 2 is obtained from the electric vehicle 2, and battery information for each vehicle type stored in the driving record storage unit 160 in the charging station control server 10 (including the rated power consumption information of the battery) is stored. Information on the rated power amount of the battery may be obtained by referring to the reference.

충전 전압 제어부(110)는 충전기(11)에 연결된 전기차(2)에 인가되는 충전 전압의 크기를 제어한다. 또한, 충전 전압 제어부(110)는 전기차(2)에 인가된 충전전압의 일정 시간 동안의 평균 전압을 구할 수 있다. The charging voltage control unit 110 controls the magnitude of the charging voltage applied to the electric vehicle 2 connected to the charger 11. In addition, the charging voltage control unit 110 may obtain an average voltage of the charging voltage applied to the electric vehicle 2 for a certain period of time.

소비 전력량 측정부(120)는, 전기차(2)에 공급된 충전 전력량의 크기를 측정한다. 이를 위하여 충전개시시각, 충전종료시각 및 충전소요시간 정보를 활용하며, 측정된 충전 전력량의 크기에 관한 정보를 충전 전력량 저장부(180)에 기록한다. The power consumption measuring unit 120 measures the amount of charging power supplied to the electric vehicle 2 . To this end, information on the charging start time, charging end time, and required charging time is used, and information about the measured amount of charging power is recorded in the charging power storage unit 180.

소비 전류량 계산부(130)는, 충전 전압 제어부(110)에서 측정된 전압 값과 소비 전력량 측정부(120)에서 측정된 충전 전력량의 크기를 이용하여, 전기차(2)에 충전을 수행하는 동안 사용된 전류량을 계산한다. The current consumption calculation unit 130 uses the voltage value measured by the charging voltage control unit 110 and the amount of charging power measured by the power consumption measurement unit 120 while charging the electric vehicle 2. Calculate the amount of current

충전 전압 제어부(110)에서 전기차(2)에 인가된 시각(t1)부터 시각(t2)까지의 충전전압의 평균을 Vavg(t1,t2)(단위는 V(Volt))라 하고, 소비 전력량 측정부(120)에서 측정된 시각(t1)부터 시각(t2)까지의 충전 전력량의 크기를 P(t1,t2)(단위는 Wh(Watt-hour))라고 하면, 소비 전류량 계산부(130)에서 계산되는 소비 전류량 I(t1,t2)(단위는 Ah(Ampere-hour))는, 수학식 1과 같이 나타낼 수 있다.The average of the charging voltages from the time (t 1 ) to the time (t 2 ) applied to the electric vehicle 2 by the charging voltage controller 110 is V avg (t 1 , t 2 ) (unit is V (Volt)). And, if the size of the amount of charging power from the time (t 1 ) to the time (t 2 ) measured by the power consumption measuring unit 120 is P(t 1 , t 2 ) (unit: Wh (Watt-hour)) , Current consumption I (t 1 , t 2 ) (unit: Ah (Ampere-hour)) calculated by the current consumption calculation unit 130 can be expressed as in Equation 1.

[수학식 1][Equation 1]

I(t1,t2) = P(t1,t2) / Vavg(t1,t2).I(t 1 ,t 2 ) = P(t 1 ,t 2 ) / V avg (t 1 ,t 2 ).

소비 전류량 저장부(140)는, 소비 전류량 계산부(130)에서 계산된 충전시 소비 전류량을 저장한다. The current consumption storage unit 140 stores the current consumption calculated by the current consumption calculation unit 130 during charging.

배터리 노후도 저장부(150)는, 본 발명의 일례에 따라 충전소 제어서버(10)가 계산하는 각 전기차(2)의 배터리의 추정 노후도(Estimated SOH)를 저장한다. 본 발명에서는 각 전기차(2)로부터 노후도(SOH) 정보를 받아서 활용하지 않는다. 따라서, 별도의 언급이 없는 한 이 명세서에서 언급하는 추정 노후도(Estimated SOH) 또는 노후도(SOH)는 모두 충전소 제어서버(10)가 계산하는 각 전기차(2)의 배터리의 추정 노후도인 것으로 이해하여야 한다. The battery age storage unit 150 stores the estimated SOH of the battery of each electric vehicle 2 calculated by the charging station control server 10 according to an example of the present invention. In the present invention, the aging degree (SOH) information from each electric vehicle 2 is not received and used. Therefore, unless otherwise stated, the estimated age (Estimated SOH) or age (SOH) mentioned in this specification are all estimated age of the battery of each electric vehicle 2 calculated by the charging station control server 10. You have to understand.

운행기록 저장부(160)는, 전기차(2)의 운행에 관한 기록을 저장한다. The driving record storage unit 160 stores records related to driving of the electric vehicle 2 .

전기차(2)가 노선버스인 경우, 운행기록 저장부(160)에 저장되는 운행기록은 차량번호, 노선번호(노선명), 충전 후 운행 개시시각, 운행 종료시각, 운행 소요시간, 이동거리, 운행 개시시점의 잔존용량(SOC), 운행 종료시점의 잔존용량(SOC)를 포함할 수 있다. If the electric vehicle (2) is a route bus, the driving record stored in the driving record storage unit 160 is the vehicle number, route number (route name), operation start time after charging, operation end time, required operation time, travel distance, operation Remaining capacity (SOC) at the start and remaining capacity (SOC) at the end of operation may be included.

상대전비 측정부(170)는, 전기차(2)의 상대전비(電比)를 측정한다. 전비는 내연기관 자동차의 연료 효율을 의미하는 '연비(燃比)'에 대응되는 개념으로서 전기차의 전력 효율을 의미하며, 일반적으로 단위 전력량 당 주행가능거리(km/kWh)한다. 다만, 본 발명에서는 발명의 특징을 더욱 명확히 드러낼 수 있도록 명세서 내에서 “상대전비”의 개념을 단위 잔존용량 당 주행가능거리(km/SOC%)로 정의하였다. The relative power ratio measuring unit 170 measures the relative power ratio of the electric vehicle 2 . Fuel economy is a concept corresponding to 'fuel efficiency', which means the fuel efficiency of an internal combustion engine vehicle, and refers to the power efficiency of an electric vehicle, and is generally expressed as a driving distance per unit power (km/kWh). However, in the present invention, in order to more clearly reveal the characteristics of the invention, the concept of “relative contrast ratio” is defined as a driving distance per unit remaining capacity (km/SOC%).

따라서, 별도의 언급이 없는 한 이 명세서에서 언급하는 상대전비는 단위 잔존용량 당 주행가능거리(km/SOC%)인 것으로 이해하여야 한다. Therefore, it should be understood that the relative fuel ratio mentioned in this specification is the driving distance per unit residual capacity (km/SOC%) unless otherwise stated.

상대전비는 타 차량과 무관하게 단일차량의 충전을 위하여 요구되는 효율적인 전력량을 계산하기 위한 목적으로 사용된다. The relative fuel ratio is used for the purpose of calculating the effective amount of power required for charging a single vehicle regardless of other vehicles.

충전 전력량 저장부(180)는, 전기차(2)를 충전하는 과정에서 소비된 전력량이 소비 전력량 측정부(120)에서 측정되면 이 소비전력량 정보를 저장한다. When the amount of power consumed in the process of charging the electric vehicle 2 is measured by the power consumption measuring unit 120, the charging power amount storage unit 180 stores the power consumption information.

통신 인터페이스부(190)는 충전소 관리서버(10)에 연결된 적어도 하나의 충전기(11)와의 데이터 통신을 수행한다. 또한, 외부의 운수회사 관리자 서버(3)나 운행 관련 관공서 서버(4)와 더 연결되어 데이터 통신을 수행할 수 있다.The communication interface unit 190 performs data communication with at least one charger 11 connected to the charging station management server 10 . In addition, data communication may be performed by being further connected to an external transportation company manager server 3 or a service-related government office server 4 .

도 3은 전기차의 배터리 노후도 추정 방법의 일례를 나타낸 흐름도이다.3 is a flowchart illustrating an example of a method for estimating the age of a battery of an electric vehicle.

도 3에서 나타낸 바와 같이, 전기차의 배터리 노후도 추정 방법은, 충전 대상 배터리의 최초 충전시 단위용량 당 소비 전류량을 확인하는 단계(S10), 충전 대상 배터리의 현재 단위용량 당 소비 전류량을 확인하는 단계(S20) 및 현재 추정 노후도를 계산하는 단계(S30)를 포함한다. As shown in FIG. 3, the method for estimating battery age of an electric vehicle includes a step of checking the current consumption per unit capacity of a battery to be charged during initial charging (S10), and a step of checking the current consumption per unit capacity of the battery to be charged. (S20) and calculating the current estimated old age (S30).

단계(S10)에서는 충전 대상 전기차에 장착된 배터리에 대한 최초 충전시 단위용량 당 소비 전류량(Ah/SOC%)의 확인이 이루어진다. In step S10, the amount of current consumed per unit capacity (Ah/SOC%) at the time of initial charging of the battery installed in the electric vehicle to be charged is confirmed.

예컨대 전기차가 상용 노선버스인 경우, 차고지 충전소에서 충전이 이루어지게 된다. 신규 전기 노선버스가 도입되면, 해당 신규 전기 노선버스는 배터리 노후도가 100%인 것으로 간주할 수 있다. For example, when an electric vehicle is a commercial route bus, charging is performed at a garage charging station. When a new electric route bus is introduced, the new electric route bus can be regarded as having a battery age of 100%.

따라서, 신규 전기 노선버스를 최초 충전하는 경우, 배터리 노후도가 100%인 상태에서의 충전 관련 데이터를 얻을 수 있다고 볼 수 있다. Therefore, when a new electric route bus is initially charged, it can be seen that charging-related data can be obtained in a state where the battery deterioration is 100%.

예컨대, 최초 충전시 충전 전압 제어부(110)에서 전기차(2)에 인가된 시각(t1)부터 시각(t2)까지의 충전전압의 평균을 V0,avg(t1,t2)라 하고, 소비 전력량 측정부(120)에서 측정된 시각(t1)부터 시각(t2)까지의 충전 전력량의 크기를 P0(t1,t2)라고 하면, 소비 전류량 계산부(130)에서 계산되는 소비 전류량 I0(t1,t2)는, 수학식 2와 같이 나타낼 수 있다. For example, the average of the charging voltages from the time (t 1 ) to the time (t 2 ) applied to the electric vehicle 2 by the charging voltage control unit 110 during initial charging is V 0,avg (t 1 , t 2 ) , If the size of the amount of charging power from the time (t 1 ) to the time (t 2 ) measured by the power consumption measurement unit 120 is P 0 (t 1 , t 2 ), the current consumption calculation unit 130 calculates The current consumption I 0 (t 1 , t 2 ) can be expressed as in Equation 2.

[수학식 2] [Equation 2]

I0(t1,t2) = P0(t1,t2) / V0,avg(t1,t2).I 0 (t 1 ,t 2 ) = P 0 (t 1 ,t 2 ) / V 0,avg (t 1 ,t 2 ).

소비 전류량 저장부(140)는, 소비 전류량 계산부(130)에서 계산된 충전시 소비 전류량을 저장한다. The current consumption storage unit 140 stores the current consumption calculated by the current consumption calculation unit 130 during charging.

이 때 충전을 통하여 상승한 잔존용량을 C0(t1,t2)(SOC%)라고 하면, 단위 용량 당 소비 전류량 I0,uint(t1,t2)은, 수학식 3과 같이 나타낼 수 있다. At this time, if the remaining capacity increased through charging is C 0 (t 1 , t 2 ) (SOC%), the current consumption per unit capacity I 0,uint (t 1 , t 2 ) can be expressed as in Equation 3 there is.

[수학식 3][Equation 3]

I0,unit(t1,t2) = I0(t1,t2) / C0(t1,t2) I 0,unit (t 1 ,t 2 ) = I 0 (t 1 ,t 2 ) / C 0 (t 1 ,t 2 )

= { P0(t1,t2) / V0,avg(t1,t2) } / C0(t1,t2).= { P 0 (t 1 ,t 2 ) / V 0,avg (t 1 ,t 2 ) } / C 0 (t 1 ,t 2 ).

단위는 (Ah/SOC%)가 된다. The unit becomes (Ah/SOC%).

최초 충전시 단위용량 당 소비 전류량은 충전소 제어서버(10)의 소비 전류량 저장부(140)에 저장될 수 있다. 일단 저장된 최초 충전시 단위용량 당 소비 전류량은, 이후 동일한 전기차가 운행을 반복하면서 배터리의 노화가 진행될 때에, 그 배터리의 노화 정도를 판단하는 기준으로서 활용된다. The amount of current consumed per unit capacity at the time of initial charging may be stored in the current consumption storage unit 140 of the charging station control server 10 . Once stored, the amount of current consumed per unit capacity at the time of initial charging is used as a criterion for determining the degree of aging of the battery when the aging of the battery progresses as the same electric vehicle is operated repeatedly.

단계(S20)에서는 충전 대상 배터리의 현재 단위용량 당 소비전류량 확인이 수행된다. In step S20, current consumption per unit capacity of the battery to be charged is checked.

단계(S20)는 전기차의 운행이 이루어짐에 따라 배터리의 노화가 진행된 어느 시점(현재 시점)에서, 해당 시점의 단위용량 당 소비전류량을 측정하는 단계이다. Step S20 is a step of measuring the amount of current consumed per unit capacity at a point in time (current point) when the aging of the battery has progressed as the electric vehicle operates.

현재 시점에서 충전시 충전 전압 제어부(110)에서 전기차(2)에 인가된 시각(t3)부터 시각(t4)까지의 충전전압의 평균을 Vavg(t3,t4)라 하고, 소비 전력량 측정부(120)에서 측정된 시각(t3)부터 시각(t4)까지의 충전 전력량의 크기를 P(t3,t4)라고 하면, 소비 전류량 계산부(130)에서 계산되는 소비 전류량 I(t3,t4)는, 수학식 4와 같이 나타낼 수 있다. The average of the charging voltages from the time (t 3 ) to the time (t 4 ) applied to the electric vehicle 2 by the charging voltage control unit 110 during charging at the current point in time is V avg (t 3 , t 4 ), and consumption If the size of the charging power from the time (t 3 ) to the time (t 4 ) measured by the power measurement unit 120 is P(t 3 , t 4 ), the current consumption calculated by the current consumption calculation unit 130 I(t 3 , t 4 ) can be expressed as in Equation 4.

[수학식 4][Equation 4]

I(t3,t4) = P(t3,t4) / Vavg(t3,t4).I(t 3 ,t 4 ) = P(t 3 ,t 4 ) / V avg (t 3 ,t 4 ).

마찬가지로, 충전을 통하여 상승한 잔존용량을 C(t3,t3)(SOC%)라고 하면, 단위 용량 당 소비 전류량 Iunit(t3,t4)은, 수학식 5와 같이 나타낼 수 있다. Similarly, if the remaining capacity increased through charging is C(t 3 , t 3 ) (SOC%), the current consumption per unit capacity I unit (t 3 , t 4 ) can be expressed as in Equation 5.

[수학식 5][Equation 5]

Iunit(t1,t2) = I(t1,t2) / C(t1,t2) I unit (t 1 ,t 2 ) = I(t 1 ,t 2 ) / C(t 1 ,t 2 )

= { P(t1,t2) / Vavg(t1,t2) } / C(t1,t2).= { P(t 1 ,t 2 ) / V avg (t 1 ,t 2 ) } / C(t 1 ,t 2 ).

단위는 (Ah/SOC%)가 된다. The unit becomes (Ah/SOC%).

단계(S30)에서는 현재 추정 노후도 계산이 수행된다. In step S30, a current estimated old age calculation is performed.

소비 전류량 저장부(140)에는 최초 충전시 단위용량 당 소비 전류량이 저장되어 있기 때문에, 배터리가 전혀 노후되지 않은 시점인 최초 충전시 단위용량 당 소비전류량에 대한 현재 충전시 단위용량 당 소비 전류량의 비율을 백분율로 나타내어 현재 추정 노후도를 정의하고, 이를 SOH(t1,t2,t3,t4)로 표현하면 아래 수학식 6과 같이 나타낼 수 있다. Since the current consumption per unit capacity is stored in the current consumption storage unit 140, the ratio of the current consumption per unit capacity during the current charging to the current consumption per unit capacity during the initial charging, when the battery is not aged at all, is stored in the current consumption storage unit 140. Expressed as a percentage to define the current estimated deterioration, and expressed as SOH (t 1 , t 2 , t 3 , t 4 ), it can be expressed as in Equation 6 below.

[수학식 6][Equation 6]

SOH(t1,t2,t3,t4) = { Iunit(t3,t4) / I0,unit(t1,t2)} × 100SOH(t 1 ,t 2 ,t 3 ,t 4 ) = { I unit (t 3 ,t 4 ) / I 0,unit (t 1 ,t 2 )} × 100

= [{P(t3,t4) / Vavg(t3,t4)} / {P0(t1,t2) / V0,avg(t1,t2)}] × 100 (%).= [{P(t 3 ,t 4 ) / V avg (t 3 ,t 4 )} / {P 0 (t 1 ,t 2 ) / V 0,avg (t 1 ,t 2 )}] × 100 ( %).

또한, 수학식 6에 의하여 현재 추정 노후도 SOH(t1,t2,t3,t4)의 값이 정해지면, 시각(t4)에서 약간의 시간이 경과된 구간(tx~ ty)에 충전하여야 하는 전력량의 크기 P(tx,ty)를 아래 수학식 7을 이용하여 구할 수 있다. In addition, when the values of the current estimated aging SOH (t 1 , t 2 , t 3 , t 4 ) are determined by Equation 6, the interval (t x to t y ), the magnitude of the amount of power to be charged P(t x ,t y ) can be obtained using Equation 7 below.

[수학식 7][Equation 7]

P(tx,ty) = {SOH(t1,t2,t3,t4) / 100} × P0(t1,t2) (kWh).P(t x ,t y ) = {SOH(t 1 ,t 2 ,t 3 ,t 4 ) / 100} × P 0 (t 1 ,t 2 ) (kWh).

즉, 수학식 7이 의미하는 것은 전기차가 운행됨에 따라 추정 노후도 값이 낮아지게 되면, 배터리의 효율 저하를 고려하여 현재 충전하여야 하는 전력량을 배터리의 효율이 최고이던 최초 시점의 충전 전력량보다 높여야 한다는 것이다. In other words, Equation 7 means that when the estimated aging value decreases as the electric vehicle is operated, the amount of power to be charged now should be higher than the amount of power charged at the initial time when the efficiency of the battery was the highest in consideration of the decrease in efficiency of the battery. will be.

기존에는 배터리 충전을 요하는 전기차로부터 충전소측으로 일방적으로 제공되는 배터리 노후도 값에만 의존하여 충전을 수행하였다. 따라서 전기차가 제공하는 배터리 노후도 값이 실제와 차이가 있더라도 이를 충전소측에서 검증할 수 있는 방법이 없어서, 과다충전에 따른 폭발 내지 배터리 내구도 저하의 위험에 노출되거나, 반대로 과소충전에 따라 배터리의 용량을 충분히 활용하지 못하여 주행거리를 충분히 늘리지 못하는 문제점에 노출되었다 In the past, charging was performed depending only on the battery aging value provided unilaterally from an electric vehicle requiring battery charging to a charging station. Therefore, even if the battery aging value provided by the electric vehicle is different from the actual value, there is no way to verify it at the charging station, so it is exposed to the risk of explosion or battery durability due to overcharging, or conversely, the battery capacity is reduced due to undercharging. was exposed to the problem of not sufficiently increasing the mileage due to insufficient utilization of

본 발명에서는 이와 같은 과정을 통하여 전기차 충전소 제어서버(10)에서 직접 현재 시점의 배터리 노후도를 추정할 수 있음에 따라, 배터리 충전의 효율성 및 신뢰성을 제고할 수 있게 된다. In the present invention, the current battery age can be directly estimated from the electric vehicle charging station control server 10 through such a process, and thus the efficiency and reliability of battery charging can be improved.

도 4는 도 3의 단계(S10)를 더욱 상세히 나타낸 흐름도이다. FIG. 4 is a flowchart illustrating step S10 of FIG. 3 in more detail.

도 4에서 나타낸 바와 같이, 단계(S10)는 배터리 정격용량 정보를 획득하는 단계(S110), 배터리 최초 충전을 수행하는 단계(S120), 최초 충전시 평균 전압을 측정하는 단계(S130), 최초 충전시 소비 전력량을 측정하는 단계(S140) 및 최초 충전시 소비 전류량을 계산하는 단계(S150)를 포함하여 이루어진다. As shown in FIG. 4, the steps (S10) include obtaining battery rated capacity information (S110), performing initial charging of the battery (S120), measuring an average voltage during initial charging (S130), and initial charging. It includes measuring the amount of power consumed during charging (S140) and calculating the amount of current consumed during initial charging (S150).

도 4에서 나타낸 실시예를 구체적으로 표현하기 위하여, 신규로 도입된 전기 노선버스가 충전소에서 최초로 충전이 이루어졌을 때의 충전 관련 데이터가 표 2에서와 같이 충전소 제어서버(10)에서 파악되었다고 해보자. In order to express the embodiment shown in FIG. 4 in detail, let's assume that the charging-related data when the newly introduced electric route bus is initially charged at the charging station is identified in the charging station control server 10 as shown in Table 2.

충전소charging station 차량
번호
vehicle
number
노선명route name 충전기
ID
charger
ID
Outlet
ID
Outlet
ID
충전시작시각charging start time 충전종료시각Charging end time 충전소요시간charging time 충전전력량
(kWh)
charging power
(kWh)
충전시작
SOC
start charging
SOC
충전종료
SOC
End of charge
SOC
수원여객Suwon passenger 경기70바1663Gyeonggi 70 bar 1663 1313 3232 BB 2021-02-26
23:41:29
2021-02-26
23:41:29
2021-02-27
01:39:45
2021-02-27
01:39:45
01:58:1501:58:15 177.28
177.28
2323 9292

표 1이 의미하는 것은, 수원여객 충전소에서 경기70바1663이라는 전기차(노선 13번의 전기 노선버스)가 충전소 내 충전기(충전기ID 32번)의 B 아웃렛을 통하여 배터리 충전을 수행하였다는 사실이다. 또한, 충전은 2021-02-26 23:41:29에 시작되어 1시간 58분 15초 간 이루어진 후 01:39:45에 종료되었으며, 이 때 충전 전력량은 177.28(kWh)이고, 이와 같은 충전을 통하여 배터리의 잔존용량(SOC)은 23%에서 92%로 증가하였음을 함께 알 수 있다. What Table 1 means is that an electric vehicle (route number 13 electric route bus) called Gyeonggi 70 bar 1663 at the Suwon passenger charging station performed battery charging through the B outlet of the charger (charger ID number 32) in the charging station. In addition, charging started at 2021-02-26 23:41:29 and ended at 01:39:45 after 1 hour 58 minutes and 15 seconds, at which time the charging power amount was 177.28 (kWh), and such charging Through this, it can be seen that the remaining capacity (SOC) of the battery has increased from 23% to 92%.

단계(S110)에서는 전기차의 최초 충전을 수행하기 위하여, 전기차의 배터리 정격용량 정보를 획득한다. 전기차의 배터리 정격용량 정보는 전기차로부터 RFID를 통하여 직접 전송을 받거나, 또는 전기차로부터 해당 전기차의 차종 정보를 RFID를 전송받은 후, 충전소 제어서버(10) 내의 운행기록 저장부(160)에 저장되어 있는 차종별 배터리 정격용량 정보와 대조하여 획득할 수 있다. In step S110, information on the rated capacity of the battery of the electric vehicle is acquired in order to perform the initial charging of the electric vehicle. The battery rating capacity information of the electric vehicle is directly transmitted from the electric vehicle through RFID, or after receiving the vehicle type information of the electric vehicle from the electric vehicle through RFID, stored in the driving record storage unit 160 in the charging station control server 10 It can be obtained by comparing with the rated capacity information of each vehicle type.

단계(S120)에서는 충전기로부터 전기차측으로 전력이 공급됨으로써 배터리의 최초 충전이 수행된다. 배터리를 충전할 때에는 전력 효율 및 안전성을 확보하기 위하여 인가 전압과 전류량이 변동되는 것이 일반적이다. In step S120, the battery is initially charged by supplying power from the charger to the electric vehicle side. When charging a battery, it is common that the applied voltage and current amount vary in order to secure power efficiency and safety.

따라서, 단계(S130)에서는 최초 충전시 전기차에 인가된 평균 전압을 측정한다. 평균 전압을 측정하기 위해서, 충전 시작시각과 충전종료시각 사이를 일정한 시간 간격(예컨대 1초)으로 분할하여, 1초 경과시마다 해당 시점의 전압을 기록함으로써 전체 충전소요시간 동안에 인가된 평균 전압을 구할 수 있다. 이 실시예에서는 평균 전압을 644.18(V)라고 가정한다. Therefore, in step S130, the average voltage applied to the electric vehicle during initial charging is measured. In order to measure the average voltage, the average voltage applied during the entire charging time is obtained by dividing the charging start time and the charging end time by a certain time interval (e.g., 1 second) and recording the voltage at the corresponding time every 1 second elapses. can In this embodiment, it is assumed that the average voltage is 644.18 (V).

단계(S140)에서는 최초 충전시 전기차에 공급된 소비 전력량을 측정한다. 소비 전력량은 소비 전력량 측정부(120)에서 측정될 수 있다. In step S140, the amount of power consumption supplied to the electric vehicle during initial charging is measured. The amount of power consumption may be measured by the power consumption measurer 120 .

단계(S150)에서는 최초 충전시 소비 전류량 계산이 수행된다. In step S150, current consumption calculation is performed at the time of initial charging.

앞서 도 3에서 설명한 바와 같이, 최초 충전시 인가된 평균 전압 및 그 때의 소비 전력량을 알면 소비 전류량을 수학식 1을 통하여 얻을 수 있다. As described above in FIG. 3 , if the average voltage applied at the time of initial charging and the amount of power consumption at that time are known, the amount of current consumption can be obtained through Equation 1.

최초 충전시 소비 전류량은, 177.28(kWh) * 1000 / 644.18(V) = 275.20(Ah)이 된다. The amount of current consumed during initial charging is 177.28 (kWh) * 1000 / 644.18 (V) = 275.20 (Ah).

단계(S160)에서는 최초 충전시 단위용량 당 소비 전류량 계산이 수행된다. In step S160, current consumption per unit capacity is calculated during initial charging.

표 1을 참조하면, 충전시 인가된 평균 전압이 664.18(V)이라는 가정 하에, 잔존용량을 23%로부터 92%로 69%P만큼 상승시키기 위하여 266.91(Ah)의 소비 전류량이 필요하였음을 알 수 있다. 즉, 최초 충전시의 단위 용량 당 소비 전류량 I0,unit은, Referring to Table 1, under the assumption that the average voltage applied during charging is 664.18 (V), it can be seen that 266.91 (Ah) of current consumption was required to increase the remaining capacity by 69%P from 23% to 92%. there is. That is, the current consumption per unit capacity at the time of initial charging I 0,unit is,

I0,unit = 275.20 (Ah) / (92 - 23)(SOC%) = 3.99 (Ah/SOC%)I 0,unit = 275.20 (Ah) / (92 - 23)(SOC%) = 3.99 (Ah/SOC%)

로 얻어진다. is obtained with

도 5는 도 3의 단계(S20)를 더욱 상세히 나타낸 흐름도이다. 5 is a flowchart illustrating step S20 of FIG. 3 in more detail.

도 4에서 나타낸 전기차가 운행을 지속한 후의 어느 시점에 충전을 수행한 결과, 평균 전압 665.43(V)으로 221.08(kWh)의 전력량을 전기차에 충전하였고, 그 결과 잔존용량이 7(SOC%)에서 95(SOC%)로 증가한 경우를 생각해보자. As a result of charging at some point after the electric vehicle shown in FIG. 4 continued to operate, the electric power amount of 221.08 (kWh) was charged to the electric vehicle at an average voltage of 665.43 (V), and as a result, the remaining capacity was reduced from 7 (SOC%) to 7 (SOC%). Consider the case of an increase to 95 (SOC%).

이 때의 소비 전류량 I는 The current consumption I at this time is

I = 221.08 (kWh) * 1000 / 665.43(V) = 332.24 (Ah)I = 221.08 (kWh) * 1000 / 665.43 (V) = 332.24 (Ah)

가 된다. becomes

또한, 단위 용량 당 소비 전류량 Iunit은, In addition, the current consumption I unit per unit capacity is,

Iunit = 332.24 / (95-7) = 3.78(Ah/SOC%)I unit = 332.24 / (95-7) = 3.78(Ah/SOC%)

가 된다. becomes

따라서, 수학식 6에 의하여 이 전기차의 추정 배터리 노후도(SOH)를 구하면, Therefore, if the estimated battery age (SOH) of this electric vehicle is obtained by Equation 6,

SOH = (Iunit / I0,unit )× 100 = 3.78/3.99 × 100 = 88(%). SOH = (I unit / I 0,unit ) × 100 = 3.78/3.99 × 100 = 88(%).

즉, 배터리의 성능이 최초 상태인 100% 대비 88%로 낮아져 있음을 알 수 있다. That is, it can be seen that the performance of the battery is lowered to 88% compared to the initial state of 100%.

따라서, 수학식 7에 따라 이 시점에 충전하는 배터리는 최초 충전시보다 100/88 = 1.14배만큼의 전력량을 충전하여야 한다. Therefore, according to Equation 7, the battery to be charged at this time must be charged with 100/88 = 1.14 times the amount of power compared to the initial charge.

또한, 이를 상대전비 계산에 활용할 수 있다. In addition, this can be used for calculating the relative power ratio.

운행기록 저장부(160)에 저장되어 있는 이 전기차의 주행거리가 180.5 (km)라고 한다면, 이 전기차는 해당 거리를 주행하는 동안 잔존용량이 95(SOC%)에서 7(SOC%)로 감소하였음을 의미한다. If the driving distance of this electric vehicle stored in the driving record storage unit 160 is 180.5 (km), the remaining capacity of this electric vehicle decreased from 95 (SOC%) to 7 (SOC%) while driving the distance means

앞서 설명한 바와 같이, 이 명세서에서는 단위 잔존용량 당 운행할 수 있는 주행거리(km/SOC%)로 상대전비를 정의하였으므로, 상대전비는, 수학식 8과 같이 계산된다. As described above, in this specification, since the relative fuel efficiency is defined as the driving distance (km/SOC%) that can be driven per unit residual capacity, the relative fuel efficiency is calculated as shown in Equation 8.

[수학식 8][Equation 8]

(상대전비) = 180.5 / (95-7) = 2.05 (km/SOC%).(relative ratio) = 180.5 / (95-7) = 2.05 (km/SOC%).

따라서, 전기차가 충전 이후 운행하여야 하는 노선 정보(노선 운행거리 및 1회 충전 시 운행하여야 하는 회수)를 운행기록 저장부(160)에서 참조하면, 수학식 6 및 수학식 7을 통하여 더욱 높은 정확도로 충전 전력량을 구할 수 있게 된다.Therefore, when referring to the route information (route travel distance and the number of times that the electric vehicle must run during one charge) in the driving record storage unit 160 after charging, higher accuracy is obtained through Equations 6 and 7. The amount of charging power can be calculated.

Claims (12)

배터리 정격용량 획득부, 충전 전압 제어부, 소비 전력량 측정부, 소비 전류량 계산부, 소비 전류량 저장부, 배터리 노후도 저장부, 운행기록 저장부, 상대전비 측정부, 충전 전력량 저장부 및 통신 인터페이스부를 포함하며,
충전 대상 전기차에 설치된 충전 대상 배터리의 정격 전력량 정보를 획득하는 배터리 정격용량 획득부;
충전기에 연결된 상기 전기차에 인가되는 충전 전압의 크기를 제어하고, 인가된 충전 전압의 평균을 구하는 충전 전압 제어부;
상기 전기차에 공급된 충전 전력량의 크기를 측정하는 소비 전력량 측정부;
상기 평균 전압과 상기 충전 전력량을 이용하여, 상기 전기차에 충전을 수행하는 동안 사용된 전류량을 계산하는 소비 전류량 계산부;
상기 소비 전류량 계산부에서 계산된 충전시 소비 전류량을 저장하는 소비 전류량 저장부;
상기 전기차의 배터리의 추정 노후도를 저장하는 배터리 노후도 저장부;
상기 전기차의 운행에 관한 정보를 저장하는 운행기록 저장부;
상기 전기차의 상대전비를 측정하는 상대전비 측정부;
상기 전기차를 충전한 때의 소비 전력량 정보를 저장하는 충전 전력량 저장부; 및
적어도 하나의 충전기와 연결되어 데이터 통신을 수행하는 통신 인터페이스부;
를 포함하는, 충전 제어서버.
Includes battery rated capacity acquisition unit, charging voltage control unit, power consumption measurement unit, current consumption calculation unit, current consumption storage unit, battery age storage unit, operation record storage unit, relative power ratio measurement unit, charging power storage unit and communication interface unit and
a battery rated capacity obtaining unit that obtains information on the rated power of a battery to be charged installed in the electric vehicle to be charged;
a charging voltage controller for controlling the magnitude of the charging voltage applied to the electric vehicle connected to the charger and obtaining an average of the applied charging voltage;
a power consumption measurement unit measuring the amount of charging power supplied to the electric vehicle;
a current consumption calculation unit that calculates an amount of current used while charging the electric vehicle using the average voltage and the amount of charging power;
a current consumption storage unit for storing the current consumption calculated by the current consumption calculation unit during charging;
a battery age storage unit for storing an estimated age of the battery of the electric vehicle;
a driving record storage unit that stores information about driving of the electric vehicle;
a relative fuel consumption ratio measurement unit measuring a relative fuel consumption ratio of the electric vehicle;
a charging power storage unit that stores power consumption information when the electric vehicle is charged; and
a communication interface unit that is connected to at least one charger and performs data communication;
Including, charging control server.
제1항에 있어서,
상기 소비 전류량 계산부는, 충전시 소비 전력량을 충전시 인가된 평균 전압으로 나누어 충전시 소비 전류량을 구하는, 충전소 제어서버.
According to claim 1,
Wherein the current consumption calculation unit calculates the current consumption during charging by dividing the amount of power consumed during charging by the average voltage applied during charging, the charging station control server.
제2항에 있어서,
상기 소비 전류량 계산부는, 상기 충전시 소비 전류량을 충전을 통하여 상승한 잔존용량으로 나누어 단위 잔존용량 당 소비 전류량을 더 구하는, 충전소 제어서버.
According to claim 2,
The charging station control server, wherein the current consumption calculation unit divides the current consumption during charging by the remaining capacity increased through charging to further obtain the current consumption per unit remaining capacity.
제3항에 있어서,
상기 배터리 노후도 저장부는, 현재 충전시 단위 잔존용량 당 소비 전류량을 최초 충전시 단위 잔존용량 당 소비 전류량으로 나누어 구해지는 백분율 값으로서 현재 추정 노후도를 계산하고 저장하는, 충전소 제어서버.
According to claim 3,
The battery aging storage unit calculates and stores the current estimated aging as a percentage value obtained by dividing the current consumption per unit remaining capacity during current charging by the current consumption per unit remaining capacity during initial charging. The charging station control server.
제1항에 있어서,
상기 상대전비 측정부는, 상기 운행기록 저장부에 저장된 직전 충전 후 주행거리를 직전 충전 후 잔존용량 변화량으로 나누어 상대전비를 측정하는, 충전소 제어서버.
According to claim 1,
The charging station control server, wherein the relative power ratio measurement unit measures the relative power ratio by dividing the mileage after the previous charge stored in the driving record storage unit by the amount of change in remaining capacity after the previous charge.
충전 대상 배터리의 최초 충전시 단위용량 당 소비 전류량을 확인하는 단계(S10),
충전 대상 배터리의 현재 단위용량 당 소비 전류량을 확인하는 단계(S20);
및 현재 추정 노후도를 계산하는 단계(S30);를 포함하는, 배터리 노후도 추정 방법.
Checking the amount of current consumed per unit capacity at the time of initial charging of the battery to be charged (S10);
Checking current consumption per unit capacity of the battery to be charged (S20);
and calculating a current estimated age (S30).
제6항에 있어서,
상기 단계(S10)는,
배터리 정격용량 정보를 획득하는 단계(S110);
배터리 최초 충전을 수행하는 단계(S120);
최초 충전시 평균 전압을 측정하는 단계(S130);
최초 충전시 소비 전력량을 측정하는 단계(S140); 및
최초 충전시 소비 전류량을 계산하는 단계(S150)를 더 포함하는, 배터리 노후도 추정 방법.
According to claim 6,
In the step (S10),
Obtaining battery rated capacity information (S110);
Performing an initial battery charge (S120);
Measuring an average voltage during initial charging (S130);
Measuring the amount of power consumed during initial charging (S140); and
A method for estimating battery age, further comprising calculating the amount of current consumed during initial charging (S150).
제7항에 있어서,
상기 단계(S150)는, 충전시 소비 전력량을 충전시 인가된 평균 전압으로 나누어 충전시 소비 전류량을 구하는, 배터리 노후도 추정 방법.
According to claim 7,
In the step (S150), the amount of current consumption during charging is obtained by dividing the amount of power consumed during charging by the average voltage applied during charging.
제8항에 있어서,
상기 단계(S150)는, 상기 충전시 소비 전류량을 충전을 통하여 상승한 잔존용량으로 나누어 단위 잔존용량 당 소비 전류량을 더 구하는, 배터리 노후도 추정 방법.
According to claim 8,
In the step (S150), the amount of current consumed per unit remaining capacity is further obtained by dividing the amount of current consumed during charging by the remaining capacity increased through charging.
제6항에 있어서,
상기 단계(S20)는,
배터리 충전을 수행하는 단계(S220);
현재 충전시 평균 전압을 측정하는 단계(S230);
현재 충전시 소비 전력량을 측정하는 단계(S240); 및
현재 충전시 소비 전류량을 계산하는 단계(S250)를 더 포함하는, 배터리 노후도 추정 방법.
According to claim 6,
In the step (S20),
performing battery charging (S220);
Measuring an average voltage during current charging (S230);
Measuring the amount of power consumed during current charging (S240); and
A method for estimating battery age, further comprising calculating an amount of current consumed during current charging (S250).
제7항에 있어서,
상기 단계(S250)는, 충전시 소비 전력량을 충전시 인가된 평균 전압으로 나누어 충전시 소비 전류량을 구하는, 배터리 노후도 추정 방법.
According to claim 7,
In the step (S250), the amount of power consumption during charging is divided by the average voltage applied during charging to obtain the amount of current consumption during charging.
제11항에 있어서,
상기 단계(S250)는, 상기 충전시 소비 전류량을 충전을 통하여 상승한 잔존용량으로 나누어 단위 잔존용량 당 소비 전류량을 더 구하는, 배터리 노후도 추정 방법.
According to claim 11,
In the step (S250), the amount of current consumed per unit remaining capacity is further obtained by dividing the amount of current consumed during charging by the remaining capacity increased through charging.
KR1020210106482A 2021-08-12 2021-08-12 Charging station control server and method for estimating state of health of the battery of electric vehicle KR20230024559A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210106482A KR20230024559A (en) 2021-08-12 2021-08-12 Charging station control server and method for estimating state of health of the battery of electric vehicle
KR1020230140473A KR20230149792A (en) 2021-08-12 2023-10-19 Charging station control server and method for estimating state of health of the battery of electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210106482A KR20230024559A (en) 2021-08-12 2021-08-12 Charging station control server and method for estimating state of health of the battery of electric vehicle

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020230140473A Division KR20230149792A (en) 2021-08-12 2023-10-19 Charging station control server and method for estimating state of health of the battery of electric vehicle

Publications (1)

Publication Number Publication Date
KR20230024559A true KR20230024559A (en) 2023-02-21

Family

ID=85327831

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020210106482A KR20230024559A (en) 2021-08-12 2021-08-12 Charging station control server and method for estimating state of health of the battery of electric vehicle
KR1020230140473A KR20230149792A (en) 2021-08-12 2023-10-19 Charging station control server and method for estimating state of health of the battery of electric vehicle

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020230140473A KR20230149792A (en) 2021-08-12 2023-10-19 Charging station control server and method for estimating state of health of the battery of electric vehicle

Country Status (1)

Country Link
KR (2) KR20230024559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116930790A (en) * 2023-09-15 2023-10-24 深圳市海雷新能源有限公司 Electric quantity calibration method for intelligent battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101839141B1 (en) 2016-10-31 2018-03-15 한국기술교육대학교 산학협력단 Method for predicting battery health in consideration of temperature of battery management system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101839141B1 (en) 2016-10-31 2018-03-15 한국기술교육대학교 산학협력단 Method for predicting battery health in consideration of temperature of battery management system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116930790A (en) * 2023-09-15 2023-10-24 深圳市海雷新能源有限公司 Electric quantity calibration method for intelligent battery
CN116930790B (en) * 2023-09-15 2023-11-21 深圳市海雷新能源有限公司 Electric quantity calibration method for intelligent battery

Also Published As

Publication number Publication date
KR20230149792A (en) 2023-10-27

Similar Documents

Publication Publication Date Title
EP3916884B1 (en) Secondary battery module remaining life diagnosis method and remaining life diagnosis system
US6417668B1 (en) Vehicle battery condition monitoring system
US7982433B2 (en) Method of adjusting SOC for battery and battery management system using the same
US8060322B2 (en) Battery management system and driving method thereof
US11796596B2 (en) Method of managing battery, battery management system, and electric vehicle charging system having the battery management system
CN109633457B (en) Method and system for acquiring residual electric quantity
US10852358B2 (en) Battery capacity estimation device, method and program
CN1988314A (en) Method for compensating state of charge of battery and battery management system using the same
KR102343974B1 (en) Method and apparatus for determining the state of charge of a battery pack
KR20230149792A (en) Charging station control server and method for estimating state of health of the battery of electric vehicle
CN109311410B (en) Method and system for thermal conditioning of battery packs
KR20200101390A (en) Parking air conditioner, vehicle battery life warning method and system
CN102317103A (en) System and method for controlling the recharging of a battery
CN104335057A (en) Method and device for determining the actual capacity of a battery
US11208003B2 (en) Method and charging device for determining a maximum storage capacity of an energy store
US20160193939A1 (en) Method and arrangement for balancing an energy storage system
KR20200122628A (en) Method for managing battery for vehicle and apparatus for the same
WO2021039018A1 (en) Temperature estimation method, deterioration state estimation method, and lifespan prediction method for secondary battery module, temperature estimation device, deterioration state estimation device, and lifespan prediction device for secondary battery module, and charging device
KR20220147089A (en) How to estimate the health of your battery
US11738658B2 (en) Method for charging an accumulator battery through a charging terminal
CN115632422A (en) Power supply and demand adjustment method and power supply and demand management device
KR101406191B1 (en) Apparatus for estimating soh of battery for vehicle and method thereof
CN115742862A (en) Vehicle-mounted battery management device
US20230001794A1 (en) Method and device for ascertaining a state of health of a battery for a means of transportation
US20230046787A1 (en) Method and device for carrying out a process for charging an appliance battery

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X601 Decision of rejection after re-examination
A107 Divisional application of patent