KR20230130707A - 대역통과 샘플링을 이용하는 고해상도 부대역 부호화시간-주파수 파형 레이더 시스템을 위한 송신기 및 수신기 - Google Patents
대역통과 샘플링을 이용하는 고해상도 부대역 부호화시간-주파수 파형 레이더 시스템을 위한 송신기 및 수신기 Download PDFInfo
- Publication number
- KR20230130707A KR20230130707A KR1020237027283A KR20237027283A KR20230130707A KR 20230130707 A KR20230130707 A KR 20230130707A KR 1020237027283 A KR1020237027283 A KR 1020237027283A KR 20237027283 A KR20237027283 A KR 20237027283A KR 20230130707 A KR20230130707 A KR 20230130707A
- Authority
- KR
- South Korea
- Prior art keywords
- signals
- band channel
- signal
- ofdm
- band
- Prior art date
Links
- 238000005070 sampling Methods 0.000 title claims description 30
- 238000012545 processing Methods 0.000 claims description 69
- 238000000034 method Methods 0.000 claims description 36
- 230000000694 effects Effects 0.000 claims description 14
- 230000005540 biological transmission Effects 0.000 claims description 11
- 239000000969 carrier Substances 0.000 claims description 5
- 238000004891 communication Methods 0.000 description 25
- 238000001228 spectrum Methods 0.000 description 25
- 230000006870 function Effects 0.000 description 16
- 230000008569 process Effects 0.000 description 9
- 238000013461 design Methods 0.000 description 8
- 125000004122 cyclic group Chemical group 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000012805 post-processing Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/713—Spread spectrum techniques using frequency hopping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/0007—Code type
- H04J13/0055—ZCZ [zero correlation zone]
- H04J13/0059—CAZAC [constant-amplitude and zero auto-correlation]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0016—Arrangements for synchronising receiver with transmitter correction of synchronization errors
- H04L7/0033—Correction by delay
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/10—Systems for measuring distance only using transmission of interrupted, pulse modulated waves
- G01S13/26—Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
- G01S13/28—Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
- G01S13/284—Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/023—Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
- G01S7/0232—Avoidance by frequency multiplex
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/023—Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
- G01S7/0234—Avoidance by code multiplex
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
- H04L5/0012—Hopping in multicarrier systems
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
장치(116)는, 프로세서(340), 수신기(1100), 및 상기 프로세서(340) 및 상기 수신기(1100)에 동작 가능하게 연결된 적어도 하나의 송신기(900)를 포함한다. 상기 적어도 하나의 송신기(900)는, 시간 도메인에서 순차적으로 생성되는 다중 대역 채널 신호들(multi-band channel signals)을 생성하고, 상기 다중 대역 채널 신호들에 기초하여 반송파 주파수 세트를 변조하고, 상기 시간 도메인에서 순차적으로 서브채널 부호화 OFDM(orthogonal frequency division multiplexing) 신호를 송신하도록 구성된다.
Description
본 개시는 전반적으로 레이더 시스템 기술에 관한 것이다. 보다 구체적으로, 본 개시는 차세대 레이더 시스템에서의 대역통과 샘플링형 소프트웨어 정의 라디오(bandpass sampled software-defined radio)에 관한 것이다.
무선 통신 시스템에서 안테나 어레이의 설계는, 예를 들어 3차원 이미징(imaging), 위치 파악(localization), 포지셔닝(positioning)에서 더 높은 성능을 제공하는 가장 중요한 요소들 중 하나이다. MIMO(Multiple-Input Multiple-Output) 기반 합성 개구 안테나 어레이(synthetic aperture antenna array)는 직교 파형을 송수신하기 위해 여러 개의 안테나를 사용한다. 이러한 합성 개구 안테나 어레이 및 빔포밍은 레이더 및 라이다 이미지 처리, 산업 자동화를 위한 이미징/포지셔닝/위치 파악, 로봇 비전, 통신 시스템을 위한 위치 파악 및 포지셔닝, 모바일 장치 및 통신 시스템을 위한 안테나 어레이 설계에 적용될 수 있다.
본 개시는, 차세대 레이더 시스템 구현을 위한 동시 통신 및 레이더, OFDM(orthogonal frequency division multiplexing) 및 CDMA(code division multiple access)와 같은 새로운 파형들, 빔 및 반송파 할당, 아날로그/디지털 빔포밍을 갖는 MIMO 안테나, 3D/4D 이미징을 제공한다. 또한, 본 개시는 차세대 레이더 시스템 구현의 새로운 아키텍처를 제공한다.
본 개시는 고해상도 레이더를 위한 부대역 부호화(sub-band coded) OFDM 방법 및 장치를 제공한다.
일 실시예에서, 장치가 제공된다. 장치는 프로세서, 수신기, 및 상기 프로세서 및 수신기에 동작 가능하게 연결된 적어도 하나의 송신기를 포함한다. 적어도 하나의 송신기는, 시간 도메인에서 순차적으로 생성되는 다중 대역(multi-band) 채널 신호들을 생성하고, 그 다중 대역 채널 신호들에 기초하여 반송파 주파수 세트를 변조하고, 서브-채널 부호화 OFDM 신호를 시간 도메인에서 순차적으로 송신하도록 구성된다.
다른 실시예에서, 장치의 방법이 제공된다. 상기 방법은 시간 도메인에서 순차적으로 생성되는 다중-대역 채널 신호들을 생성하는 동작, 다중 대역 채널 신호들에 기초하여 반송파 주파수 세트를 변조하는 동작, 및 서브-채널 부호화 OFDM(orthogonal frequency division multiplexing) 신호를 시간 도메인에서 순차적으로 송신하는 동작을 포함한다.
고해상도 레이더 시스템을 위해서는 광대역 신호가 필요하므로, 대역통과 샘플링 및 부대역 신호 처리를 이용한 비용 효율적인 구현 방법들이 제공된다.
다른 기술적 특징들은, 다음의 상세한 설명, 도면 및 청구범위로부터 당업자에게 용이하게 명백해질 수 있다.
하기 상세한 설명 이전에, 본 특허 문서 전체에서 사용되는 특정 단어들 및 문구들의 정의를 설명하는 것이 바람직할 수 있다. 용어 "결합(couple)"와 그 파생어들은, 두 개 이상의 구성요소이 서로 물리적으로 접촉하는지 여부와 관계없이, 그 두 개 이상의 구성요소들 간의 직접 또는 간접 통신을 의미한다. 용어 "송신(transmit)", "수신(receive)" 및 "통신(communicate)"과 이들의 파생어들은, 직접 및 간접 통신을 모두 포함한다. 용어 "포함(include 또는 comprise)" 및 그 파생어들은 제한없이 포함하는 것을 의미한다. 용어 "또는"은 포괄적(및/또는 을 의미)이다. 어구 "관련되다" 및 이의 파생어들은, ~를 포함하다, ~에 포함되다, ~와 상호 연결하다, 함유하다, ~에 함유되다, ~에 또는 ~와 연결되다, ~에 또는 ~와 결합되다, ~와 소통하다, ~와 협력하다, 삽입하다(interleave), 병치하다(juxtapose), 근접하다, ~에 또는 ~와 메이다, 가지다, ~의 속성을 갖다, ~와 또는 ~에 대해 관계를 가지다 등등을 의미한다. 용어 "컨트롤러"는 적어도 하나의 동작을 제어하는 임의의 장치, 시스템 또는 그 일부를 의미한다. 이러한 컨트롤러는 하드웨어 또는 하드웨어와 소프트웨어 및/또는 펌웨어의 조합으로 구현될 수 있다. 임의의 특정 컨트롤러와 관련된 기능은, 로컬이든 원격이든 중앙 집중화되거나 분산될 수 있다. 문구 “적어도 하나”는, 항목들의 목록과 함께 사용될 경우, 그 나열된 항목들 중 하나 이상의 각기 다른 조합들이 사용될 수 있고 목록 중 하나의 항목은 필수적일 수 있음을 의미한다. 예를 들어, "A, B 및 C 중 적어도 하나"는 A, B, C, A와 B, A와 C, B와 C, 그리고 A와 B와 C의 조합들 중 임의의 것을 포함한다.
또한, 이하에서 설명하는 다양한 기능들은, 컴퓨터 판독가능 프로그램 코드로 구성되어 컴퓨터 판독가능 매체에 구현된 하나 이상의 컴퓨터 프로그램에 의해 구현 또는 지원될 수 있다. 용어 "애플리케이션" 및 "프로그램"은, 하나 이상의 컴퓨터 프로그램, 소프트웨어 컴포넌트, 명령어 세트, 프로시저, 함수, 객체, 클래스, 인스턴스, 관련 데이터 또는 적절한 컴퓨터 판독 가능 프로그램으로 구현하도록 조정된 그 일부를 의미한다. 용어 "컴퓨터 판독가능 프로그램 코드”는 소스 코드, 객체 코드 및 실행 가능 코드를 포함한 모든 유형의 컴퓨터 코드를 포함한다. 문구 "컴퓨터 판독가능 매체"는 읽기 전용 메모리(ROM), 임의 액세스 메모리(RAM), 하드 디스크 드라이브, CD(컴팩트 디스크), 디지털 비디오 디스크(DVD) 또는 기타 유형의 메모리 등과 같이 컴퓨터에 의해 액세스 가능한 임의 유형의 매체를 포함한다. "비일시적" 컴퓨터 판독가능 매체는 일시적인 전기 또는 기타 신호를 송신하는 유선, 무선, 광학 또는 기타 통신 링크를 제외한다. 비일시적 컴퓨터 판독가능 매체는 데이터를 영구적으로 저장할 수 있는 매체와, 재기록 가능한 광 디스크 또는 삭제가능 메모리 장치와 같이 데이터를 저장하고 나중에 덮어쓸 수 있는 매체를 포함한다.
기타 단어들과 문구들에 대한 정의가 이 특허 문서 전반에 걸쳐 제공된다. 당업자는, 대부분은 아니지만 많은 경우에, 그러한 정의들이, 그와 같이 정의된 단어들 및 문구들의 이전 사용뿐만 아니라 미래 사용에도 적용됨을 이해해야 한다.
본 개시의 더 완전한 이해를 위해, 첨부된 도면과 함께, 하기 설명을 참조한다.
도 1은, 본 개시의 다양한 실시예에 따른 예시적인 무선 네트워크를 도시한다.
도 2는, 본 개시의 다양한 실시예에 따른 예시적인 gNB(102)를 도시한다.
도 3은, 본 개시의 다양한 실시예에 따른 예시적인 UE를 도시한다.
도 4a 및 도 4b는, 본 개시의 다양한 실시예에 따른, 송신 및 수신 경로당 mmWave 트랜시버의 예시적인 전력 소모를 도시한다.
도 5는, 본 개시의 다양한 실시예에 따른 예시적인 CAZAC 시퀀스 포맷을 도시한다.
도 6a는, 본 개시의 다양한 실시예에 따른 예시적인 4-채널 부호화 OFDM을 도시한다.
도 6b는, 본 개시의 다양한 실시예에 따른 예시적인 2-채널 부호화 OFDM을 도시한다.
도 7a는, 본 개시의 다양한 실시예에 따라, 균일한 단계적 반송파 주파수를 이용한 예시적인 서브채널 부호화 OFDM을 도시한다.
도 7b는, 본 개시의 다양한 실시예에 따른 반송파 주파수 호핑을 이용한 예시적인 서브채널 부호화 OFDM을 도시한다.
도 8은, 본 개시의 다양한 실시예에 따른 다중 채널 부호화 OFDM(4채널 경우)의 예시적인 스펙트럼을 도시한다.
도 9는, 본 개시의 다양한 실시예에 따른 다중 채널 부호화 OFDM 시스템에 대한 예시적인 송신기 아키텍처를 도시한다.
도 10은, 본 개시의 다양한 실시예에 따른, 서브채널 부호화 OFDM 시스템의 예시적인 송신기 아키텍처를 도시한다.
도 11은, 본 개시의 다양한 실시예에 따른, 다중 채널 부호화 OFDM 레이더 시스템의 예시적인 수신기 아키텍처를 도시한다.
도 12는, 본 개시의 다양한 실시예에 따른, 송신기에서의 예시적인 하이브리드 빔포밍 아키텍처를 도시한다.
도 13은, 본 개시의 다양한 실시예에 따른, 고해상도 레이더를 위한 부대역 부호화 OFDM 방법의 흐름도를 도시한다.
도 14는, 본 개시의 다양한 실시예에 따른, 대역통과 샘플링을 이용한 부대역 부호화 OFDM 레이더를 위한 예시적인 송신기 아키텍처를 도시한다.
도 15는, 본 개시의 다양한 실시예에 따른, 통상적 레이더 시스템의 주파수 스펙트럼 및 시간-주파수 스펙트럼의 예를 도시한다.
도 16은, 본 개시의 다양한 실시예에 따른, 대역통과 샘플링을 이용한 부대역 부호화 OFDM 레이더 시스템의 시간-주파수 스펙트럼의 예를 도시한다.
도 17은, 본 개시의 다양한 실시예에 따른, 대역통과 샘플링을 이용한 부대역 부호화 OFDM 레이더의 예시적인 수신기 아키텍처를 도시한다.
도 18은, 본 개시의 다양한 실시예에 따른, 대역통과 샘플링을 이용한 부대역 부호화 OFDM 레이더 시스템의 송신기 아키텍처, 주파수 스펙트럼, 및 시간-주파수 스펙트럼의 예를 도시한다.
도 19는, 본 개시의 다양한 실시예에 따른, 대역통과 샘플링을 이용한 부대역 부호화 OFDM 레이더 시스템의 수신기 아키텍처의 예를 도시한다.
도 20 내지 도 22는, 본 개시의 다양한 실시예에 따른, 대역통과 샘플링을 이용한 부대역 부호화 OFDM 레이더 시스템의 수신기 아키텍처, 주파수 스펙트럼, 및 시간-주파수 스펙트럼의 예를 도시한다.
도 23은, 본 개시의 다양한 실시예에 따른, 대역통과 샘플링을 이용한 부대역 부호화 OFDM 레이더 시스템에 관한 또 다른 수신기 아키텍처의 예를 도시한다.
도 24는 본 개시의 다양한 실시예에 따른 장치에 관한 방법의 흐름도를 도시한다.
도 1은, 본 개시의 다양한 실시예에 따른 예시적인 무선 네트워크를 도시한다.
도 2는, 본 개시의 다양한 실시예에 따른 예시적인 gNB(102)를 도시한다.
도 3은, 본 개시의 다양한 실시예에 따른 예시적인 UE를 도시한다.
도 4a 및 도 4b는, 본 개시의 다양한 실시예에 따른, 송신 및 수신 경로당 mmWave 트랜시버의 예시적인 전력 소모를 도시한다.
도 5는, 본 개시의 다양한 실시예에 따른 예시적인 CAZAC 시퀀스 포맷을 도시한다.
도 6a는, 본 개시의 다양한 실시예에 따른 예시적인 4-채널 부호화 OFDM을 도시한다.
도 6b는, 본 개시의 다양한 실시예에 따른 예시적인 2-채널 부호화 OFDM을 도시한다.
도 7a는, 본 개시의 다양한 실시예에 따라, 균일한 단계적 반송파 주파수를 이용한 예시적인 서브채널 부호화 OFDM을 도시한다.
도 7b는, 본 개시의 다양한 실시예에 따른 반송파 주파수 호핑을 이용한 예시적인 서브채널 부호화 OFDM을 도시한다.
도 8은, 본 개시의 다양한 실시예에 따른 다중 채널 부호화 OFDM(4채널 경우)의 예시적인 스펙트럼을 도시한다.
도 9는, 본 개시의 다양한 실시예에 따른 다중 채널 부호화 OFDM 시스템에 대한 예시적인 송신기 아키텍처를 도시한다.
도 10은, 본 개시의 다양한 실시예에 따른, 서브채널 부호화 OFDM 시스템의 예시적인 송신기 아키텍처를 도시한다.
도 11은, 본 개시의 다양한 실시예에 따른, 다중 채널 부호화 OFDM 레이더 시스템의 예시적인 수신기 아키텍처를 도시한다.
도 12는, 본 개시의 다양한 실시예에 따른, 송신기에서의 예시적인 하이브리드 빔포밍 아키텍처를 도시한다.
도 13은, 본 개시의 다양한 실시예에 따른, 고해상도 레이더를 위한 부대역 부호화 OFDM 방법의 흐름도를 도시한다.
도 14는, 본 개시의 다양한 실시예에 따른, 대역통과 샘플링을 이용한 부대역 부호화 OFDM 레이더를 위한 예시적인 송신기 아키텍처를 도시한다.
도 15는, 본 개시의 다양한 실시예에 따른, 통상적 레이더 시스템의 주파수 스펙트럼 및 시간-주파수 스펙트럼의 예를 도시한다.
도 16은, 본 개시의 다양한 실시예에 따른, 대역통과 샘플링을 이용한 부대역 부호화 OFDM 레이더 시스템의 시간-주파수 스펙트럼의 예를 도시한다.
도 17은, 본 개시의 다양한 실시예에 따른, 대역통과 샘플링을 이용한 부대역 부호화 OFDM 레이더의 예시적인 수신기 아키텍처를 도시한다.
도 18은, 본 개시의 다양한 실시예에 따른, 대역통과 샘플링을 이용한 부대역 부호화 OFDM 레이더 시스템의 송신기 아키텍처, 주파수 스펙트럼, 및 시간-주파수 스펙트럼의 예를 도시한다.
도 19는, 본 개시의 다양한 실시예에 따른, 대역통과 샘플링을 이용한 부대역 부호화 OFDM 레이더 시스템의 수신기 아키텍처의 예를 도시한다.
도 20 내지 도 22는, 본 개시의 다양한 실시예에 따른, 대역통과 샘플링을 이용한 부대역 부호화 OFDM 레이더 시스템의 수신기 아키텍처, 주파수 스펙트럼, 및 시간-주파수 스펙트럼의 예를 도시한다.
도 23은, 본 개시의 다양한 실시예에 따른, 대역통과 샘플링을 이용한 부대역 부호화 OFDM 레이더 시스템에 관한 또 다른 수신기 아키텍처의 예를 도시한다.
도 24는 본 개시의 다양한 실시예에 따른 장치에 관한 방법의 흐름도를 도시한다.
하기 설명된 도 1 내지 도 24, 및 본 특허 문서의 본 개시의 원리를 설명하기 위해 사용된 다양한 실시예는 단지 설명을 위한 것이며 본 개시의 범위를 어떤 식으로든 제한하는 것으로 해석되어서는 안 된다. 당업자는 본 개시의 원리가 적절하게 구성된 임의의 유형의 장치 또는 시스템에서 구현될 수 있음을 이해할 것이다.
이하의 도 1 내지 도 3은 OFDM 또는 직교 주파수 분할 다중 접속(OFDMA) 통신 기술을 사용하여 무선 통신 시스템에서 구현되는 다양한 실시예를 기술한다. 도 1 내지 도 3에 관한 설명은 다양한 실시예가 구현될 수 있는 방식에 대한 물리적 또는 구조적 제한을 의미하지 않는다. 본 개시의 다양한 실시예는 임의의 적절하게 구성된 통신 시스템에서 구현될 수 있다.
도 1은, 본 개시의 다양한 실시예에 따른 예시적인 무선 네트워크를 도시한다. 도 1에 도시된 예시적 무선 네트워크는 단지 설명을 위한 것이다. 무선 네트워크(100)의 다른 실시예들이 본 개시의 범위를 벗어나지 않고서 사용될 수 있다.
도 1에 도시된 바에 의하면, 무선 네트워크는 gNB(101), gNB(102) 및 gNB(103)를 포함한다. gNB(101)는 gNB(102) 및 gNB(103)와 통신한다. gNB(101)는 또한 인터넷, 독점 인터넷 프로토콜(proprietary IP) 네트워크, 또는 기타 데이터 네트워크 등과 같은 적어도 하나의 네트워크(130)와 통신한다.
gNB(102)는, gNB(102)의 커버리지 영역(120) 내의 제1 복수의 사용자 장비(UE)에 대해 네트워크(130)에 대한 무선 광대역 액세스를 제공한다. 제1 복수의 사용자 장비(UE)는, 소규모 사업장(small business; SB)에 위치할 수 있는 UE(111), 기업체(enterprise; E)에 위치할 수 있는 UE(112), WiFi 핫스팟(HS)에 위치할 수 있는 UE(113), 제1 거주지(R)에 위치할 수 있는 UE(114), 제2 거주지(R)에 위치할 수 있는 UE(115), 및 휴대폰, 무선 랩탑, 무선 PDA 등과 같은 모바일 장치(M)일 수 있는 UE(116)를 포함한다. gNB(103)는, gNB(103)의 커버리지 영역(125) 내의 제2 복수의 UE에 대해 네트워크(130)에 대한 무선 광대역 액세스를 제공한다. 제2 복수의 UE는 UE(115) 및 UE(116)를 포함한다. 일부 실시예에서, 하나 이상의 gNB(101-103)는 5G, LTE, LTE-A, WiMAX, WiFi 또는 기타 다른 무선 통신 기술을 사용하여 서로 통신할 수 있고 UE(111-116)와 통신할 수 있다.
네트워크 유형에 따라, "기지국" 또는 "BS"라는 용어가, 네트워크에 대한 무선 액세스를 제공하도록 구성된 임의의 컴포넌트(또는 컴포넌트들의 집합), 예를 들어 송신 포인트(TP), 송신-수신 포인트(TRP), 인핸스드 기지국(eNodeB 또는 eNB), 5G 기지국(gNB), 매크로셀, 펨토셀, WiFi 액세스 포인트(AP) 또는 기타 무선 인에이블 장치(wirelessly enabled devices)를 지칭할 수 있다. 기지국은 하나 이상의 무선 통신 프로토콜, 예를 들어 5G 3GPP NR(new radio interface/access), LTE(long term evolution), LTE-A(LTE advanced), HSPA(high speed packet access), Wi-Fi 802.11a/b/g/n/ac 등에 따라 무선 액세스를 제공할 수 있다. 본 특허 문서에서는. 편의상. "BS"와 "TRP"라는 용어를 혼용하여 원격 터미널에 무선 액세스를 제공하는 네트워크 인프라구조 컴포넌트를 지칭하는데 이용한다. 또한, 네트워크 유형에 따라 "사용자 장비" 또는 "UE"라는 용어는 "모바일 스테이션", "가입자 스테이션", "원격 터미널", "무선 터미널", "수신 포인트", 또는 "사용자 장치" 등의 컴포넌트를 지칭할 수 있다. 편의상, 본 특허 문서에서, "사용자 장비" 및 "UE"라는 용어는 UE가 모바일 장치(예: 모바일 폰 또는 스마트폰)이든 통상 고정 장치로 여겨지는 장치(예를 들어, 데스크톱 컴퓨터 또는 자판기)이든 간에, 무선으로 BS에 무선으로 액세스하는 원격 무선 장비를 지칭하는데 사용된다.
점선은, 대략적 범위의 커버리지 영역들(120, 125)을 나타내며, 이들은 단지 예시 및 설명의 목적으로 대략 원형으로 도시되어 있다. 커버리지 영역들(120, 125)과 같은 gNB와 관련된 커버리지 영역은, gNB의 구성과 자연적 인공적 장애물과 관련된 무선 환경의 변화에 따른 불규칙한 모양을 포함하여 다양한 모양을 가질 수 있음을 분명히 이해해야 한다.
아래에서 더 자세히 설명되는 바와 같이, 하나 이상의 UE(111-116)는, 진보된 무선 통신 시스템에서, 데이터 및 제어 정보에 대한 수신 신뢰성을 위한, 회로, 프로그래밍 또는 이들의 조합을 포함한다. 특정 실시예에서, 하나 이상의 gNB(101-103)는 차세대 레이더 시스템에서 대역통과 샘플링형 소프트웨어 정의 라디오를 위한 회로, 프로그래밍 또는 이들의 조합을 포함한다.
도 1은 무선 네트워크의 일 예를 보여주고 있지만, 도 1에 대해 다양한 변경이 이루어질 수 있다. 예를 들어, 무선 네트워크는 임의의 적절한 배열의, 임의의 수의 gNB 및 임의의 수의 UE를 포함할 수 있다. 또한, gNB(101)는 임의의 수의 UE와 직접 통신할 수 있고 이들 UE에게 네트워크(130)에 대한 무선 광대역 액세스를 제공할 수 있다. 유사하게, 각각의 gNB(102-103)는 네트워크(130)와 직접 통신할 수 있고 UE들에게 네트워크(130)에 대한 직접 무선 광대역 액세스를 제공할 수 있다. 또한, gNB(101, 102 및/또는 103)는, 외부 전화 네트워크 또는 기타 다른 유형의 데이터 네트워크 등과 같은, 또 다른 또는 추가적인 외부 네트워크에 대한 액세스를 제공할 수 있다.
도 2는, 본 개시의 실시예에 따른 예시적인 gNB(102)를 도시한다. 도 2에 도시된 gNB(102)의 실시예는 단지 설명을 위한 것이며, 도 1의 gNB(101, 103)가 동일하거나 유사한 구성을 가질 수 있다. 그러나, gNB들은 매우 다양한 구성으로 제공되며, 도 2는 본 개시의 범위를 gNB의 특정 구현으로 제한하지 않는다.
도 2에 도시된 바와 같이, gNB(102)는 복수의 안테나(205a-205n), 복수의 RF 트랜시버(210a-210n), 송신(TX) 처리 회로(215), 및 수신(RX) 처리 회로(220)를 포함한다. gNB(102)는 또한 컨트롤러/프로세서(225), 메모리(230), 및 백홀 또는 네트워크 인터페이스(235)를 포함한다.
TX 처리 회로(215)는, 컨트롤러/프로세서(225)로부터, 아날로그 또는 디지털 데이터(예: 음성 데이터, 웹 데이터, 이메일 또는 대화형 비디오 게임 데이터)를 수신한다. TX 처리 회로(215)는, 발신(outgoing) 기저대역 데이터를 인코딩, 멀티플렉싱, 및/또는 디지타이징(digitizing)하여, 처리된 기저대역 신호 또는 IF 신호를 생성한다. RF 트랜시버(210a-210n)는, TX 처리 회로(215)로부터 처리된 발신 기저대역 신호 또는 IF 신호를 수신하고 그 기저대역 신호 또는 IF 신호를 안테나(205a-205n)를 통해 송신되는 RF 신호로 상향 변환한다.
RF 트랜시버(210a-210n)는, 안테나(205a-205n)로부터, UE 또는 네트워크(100) 내 임의의 다른 객체들에 의해 반사된 신호 등과 같은, 입력(incoming) RF 신호를 수신한다. RF 트랜시버(210a-210n)는, 입력 RF 신호를 하향 변환하여 IF 신호 또는 기저대역 신호를 생성한다. IF 신호 또는 기저대역 신호는 RX 처리 회로(220)로 전송되고, RX 처리 회로(220)는 기저대역 신호 또는 IF 신호의 필터링, 디코딩, 디지타이징 및/또는 압축 해제(decompressing) 또는 상관(correlating)을 통해, 처리된 기저대역 신호를 생성한다. RX 처리 회로(220)는, 그 처리된 기저대역 신호를, 추가적인 처리를 위해 컨트롤러/프로세서(225)로 송신한다.
컨트롤러/프로세서(225)는, gNB(102)의 전체 동작을 제어하는 하나 이상의 프로세서 또는 기타 다른 처리 장치를 포함할 수 있다. 예를 들어, 컨트롤러/프로세서(225)는, 잘 알려진 원리에 따라, RX 처리 회로(220), TX 처리 회로(215), 및 RF 트랜시버(210a-210n)에 의한 순방향 채널 신호의 수신 및 역방향 채널 신호의 송신을 제어할 수 있다. 컨트롤러/프로세서(225)는, 더 진보된 무선 통신 기능들과 같은 추가적인 기능들도 지원할 수 있다. 예를 들어, 컨트롤러/프로세서(225)는, 원하는 방향에 따라 발신(outgoing) 신호들을 효과적으로 조정하도록 복수의 안테나(205a-205n)로부터의 발신 신호들을 서로 다르게 가중하는 빔포밍 또는 지향성 라우팅(directional routing) 동작을 지원할 수 있다. 컨트롤러/프로세서(225)에 의해 gNB(102)에서 다양한 기타 기능이 지원될 수 있다.
컨트롤러/프로세서(225)는 또한 OS와 같은 메모리(230) 내에 상주하는 프로그램 및 기타 프로세스를 실행할 수 있다. 컨트롤러/프로세서(225)는 실행 프로세스에 의해 요구되는 대로 메모리(230) 안팎으로 데이터를 이동시킬 수 있다.
컨트롤러/프로세서(225)는 또한 백홀 또는 네트워크 인터페이스(235)에 결합된다. 백홀 또는 네트워크 인터페이스(235)는 gNB(102)가 백홀 연결을 통해 또는 네트워크를 통해 다른 장치 또는 시스템과 통신할 수 있게 한다. 인터페이스(235)는 임의의 적합한 유선 또는 무선 연결(들)을 통한 통신을 지원할 수 있다. 예를 들어, gNB(102)가 셀룰러 통신 시스템(예: 5G, LTE 또는 LTE-A를 지원하는 시스템)의 일부로 구현될 경우, 인터페이스(235)는 gNB(102)가 유선 또는 무선 백홀 연결을 통해 다른 gNB와 통신하도록 할 수 있다. gNB(102)가 액세스 포인트로 구현될 경우, 인터페이스(235)는 gNB(102)가 유선 또는 무선 로컬 영역 네트워크를 통해 또는 더 큰 네트워크(예: 인터넷)에 대한 유선 또는 무선 연결을 통해 통신하도록 할 수 있다. 인터페이스(235)는, 이더넷 또는 RF 트랜시버와 같은, 유선 또는 무선 연결을 통한 통신을 지원하는 임의의 적합한 구조를 포함한다.
메모리(230)는 컨트롤러/프로세서(225)에 결합된다. 메모리(230)의 일부는 RAM을 포함할 수 있고, 메모리(230)의 다른 일부는 플래시 메모리 또는 다른 ROM을 포함할 수 있다.
도 2는 gNB(102)의 일 예를 도시하지만, 도 2에 대한 다양한 변경이 이루어질 수 있다. 예를 들어, gNB(102)는, 도 2에 도시된 각 컴포넌트를 임의의 수만큼 포함할 수 있다. 특정 예로서, 지상국은 다수의 인터페이스(235)를 포함할 수 있고, 컨트롤러/프로세서(225)는 서로 다른 네트워크 주소 간에 데이터를 라우팅하는 라우팅 기능을 지원할 수 있다. 다른 특정 예로서, 단일 인스턴스의 TX 처리 회로(215)와 단일 인스턴스의 RX 처리 회로(220)를 포함하는 것으로 도시되어 있지만, gNB(102)는 그 각각의 복수의 인스턴스(예를 들어, RF 트랜시버당 하나)를 포함할 수 있다. 또한, 도 2의 다양한 컴포넌트들은, 결합, 추가 세분화 또는 생략될 수 있고 특정 필요에 따라 추가적인 컴포넌트가 추가될 수도 있다.
도 3은 본 개시의 실시예에 따른 예시적인 UE(116)를 도시한다. 도 3에 도시된 UE(116)의 실시예는 단지 설명을 위한 것이며, 도 1의 UE(111-115)는 동일하거나 유사한 구성을 가질 수 있다. 그러나, UE는 매우 다양한 구성을 가지며, 도 3은 본 개시의 범위를 임의의 특정 구현의 UE로 제한하지 않는다.
개선된 통신 장치는, 전체 기능 블록들에 기초한 하이브리드 빔포밍 동작을 제공하는 송신기 또는 수신기 어레이를 의미할 수 있고, 도 2에서 기지국(BS, gNB)의 일부로서 또는 도 3에서 UE로서 구현될 수 있다.
도 3에 도시된 바와 같이, UE(116)는 안테나(305), 무선 주파수(RF) 트랜시버(310), TX 처리 회로(315), 마이크로폰(320) 및 수신(RX) 처리 회로(325)를 포함한다. UE(116)는 또한 스피커(330), 프로세서(340), 입출력(I/O) 인터페이스(IF)(345), 터치스크린(350), 디스플레이(355) 및 메모리(360)를 포함한다. 메모리(360)는 운영 체제(OS)(361) 및 하나 이상의 애플리케이션(362)을 포함한다.
RF 트랜시버(310)는, 안테나(305)로부터, 네트워크(100)의 gNB에 의해 송신된 입력(incoming) RF 신호를 수신한다. RF 트랜시버(310)는 입력 RF 신호를 하향 변환하여 중간 주파수(IF) 신호 또는 기저대역 신호를 생성한다. IF 신호 또는 기저대역 신호는 RX 처리 회로(325)로 전송되고, RX 처리 회로(325)는 그 기저대역 신호 또는 IF 신호의 필터링, 디코딩 및/또는 디지타이징 및/또는 압축 해제 또는 상관(correlating)을 통해, 처리된 기저대역 신호를 생성한다. RX 처리 회로(325)는, 상기 처리된 기저대역 신호를 (음성 데이터 등의 경우) 스피커(330)로 송신하거나 (웹 브라우징 데이터 등의 경우) 추가적인 처리를 위해 프로세서(340)로 송신한다.
TX 처리 회로(315)는, 마이크로폰(320)으로부터 아날로그 또는 디지털 음성 데이터를 수신하거나 프로세서(340)로부터의 기타 다른 발신(outgoing) 기저대역 데이터(예를 들어, 웹 데이터, 이메일, 또는 대화형 비디오 게임 데이터)를 수신한다. TX 처리 회로(315)는, 발신 기저 대역 데이터의 인코딩, 멀티플렉싱, 및/또는 디지타이징을 통해, 처리된 기저대역 또는 IF 신호를 생성한다. RF 트랜시버(310)가, 상기 처리된 발신 기저대역 또는 IF 신호를 TX 처리 회로(315)로부터 수신하고, 그 기저대역 또는 IF 신호를 안테나(305)를 통해 송신되는 RF 신호로 상향 변환한다.
프로세서(340)는 하나 이상의 프로세서 또는 기타 처리 장치를 포함할 수 있고, UE(116)의 전반적인 동작을 제어하기 위해 메모리(360)에 저장된 OS(361)를 실행할 수 있다. 예를 들어, 프로세서(340)는, 잘 알려진 원리에 따라, RX 처리 회로(325), TX 처리 회로(315), 및 RF 트랜시버(310)에 의한 순방향 채널 신호의 수신 및 역방향 채널 신호의 송신을 제어할 수 있다. 일부 실시예에서, 프로세서(340)는 적어도 하나의 마이크로프로세서 또는 마이크로 컨트롤러를 포함한다.
프로세서(340)는 또한 차세대 레이더 시스템에서의 대역통과 샘플링형 소프트웨어 정의 라디오를 위한 프로세스 등과 같은, 메모리(360)에 상주하는 기타 프로세스 및 프로그램을 실행할 수 있다. 프로세서(340)는 실행 프로세스에 의해 요구되는 대로 메모리(360) 안팎으로 데이터를 이동시킬 수 있다. 일부 실시예에서, 프로세서(340)는, OS(361)에 기초하여 또는 gNB 또는 오퍼레이터로부터 수신된 신호에 응답하여 애플리케이션(362)을 실행하도록 구성된다. 프로세서(340)는 또한 I/O 인터페이스(345)에 결합되며, I/O 인터페이스(345)는 UE(116)에게 랩탑 컴퓨터 및 핸드헬드 컴퓨터 등와 같은 다른 장치에 연결할 수 있는 능력을 제공한다. I/O 인터페이스(345)는 이러한 액세서리와 프로세서(340) 사이의 통신 경로이다.
프로세서(340)는 또한 터치스크린(350) 및 디스플레이(355)에 결합된다. UE(116)의 오퍼레이터는 터치스크린(350)을 사용하여 UE(116)에 데이터를 입력할 수 있다. 디스플레이(355)는 액정 디스플레이, 발광 다이오드 디스플레이, 또는 웹 사이트와 같은 최소한의 제한된 그래픽 및/또는 텍스트를 렌더링할 수 있는 기타 다른 디스플레이일 수 있다.
메모리(360)는 프로세서(340)에 결합된다. 메모리(360)의 일부는 랜덤 액세스 메모리(RAM)를 포함할 수 있고, 메모리(360)의 다른 일부는 플래시 메모리 또는 다른 읽기 전용 메모리(ROM)를 포함할 수 있다.
도 3은 UE(116)의 일 예를 도시하지만, 도 3에 다양한 변경이 이루어질 수 있다. 예를 들어, 도 3의 다양한 컴포넌트들은, 결합, 추가 세분화, 또는 생략될 수 있고, 특정 필요에 따라, 추가적 컴포넌트가 추가될 수도 있다. 특정 예로서, 프로세서(340)는 하나 이상의 CPU 및 하나 이상의 GPU와 같은 다수의 프로세서들로 분할될 수 있다. 또한, 도 3에서는, 모바일 전화 또는 스마트폰으로 구성된 UE(116)가 도시되어 있지만, UE는 다른 유형의 모바일 또는 고정형 장치로서 동작하도록 구성될 수 있다.
CDMA 시스템은, 그 단순성에도 불구하고, 간섭과 다중 경로 분산(multi-path dispersion)을 겪는다는 사실이 잘 알려져 있다.
주파수 변조 연속파(FMCW) 레이더에 대한 OFDM의 이점: 파형 생성이 간단하여 FMCW 및 처프(Chirp) 시퀀스 변조에 비해 트랜시버 복잡성이 감소하는 점; 파형이 하드웨어에서 선형 주파수 생성을 필요로 하지 않는 점; 자체 간섭 및 다중 경로 간섭에 취약한 위상 변조 신호와 달리, OFDM 파형에는 엄격한 위상 노이즈 요구 사항이 없고 다중 경로 간섭이 발생하지 않는 점; 및 OFDM이 MIMO 처리에 이상적으로 적합하다는 점이 잘 알려져 있다.
그러한 이점에도 불구하고, 고해상도 레이더를 위한 OFDM 신호 생성 및 처리는 고해상도 레이더에 필요한 광대역 처리로 인해 여전히 까다롭다. 76GHz 내지 81GHz의 차량용 레이더는 1GHz 내지 5GHz의 신호 대역폭을 갖고 있어, 10Gsps를 넘는 ADC(Analog-to-Digital Conversion) 속도와 많은 수의 비트를 필요로 한다. 수십 내지 수백 개의 채널이 필요한 3D 레이더 이미징의 경우, 광대역 OFDM 레이더 시스템은 비용이 너무 고가이다. 그러므로, 상업적으로 이용 가능한 레이더 트랜시버는 FMCW 신호에 의존한다.
일 예에서, 전력 소비가 고려된다. 최신 mmWave OFDM 시스템의 전력 소비 분석이 도 4a 및 도 4b에 나타나 있다.
도 4a 및 도 4b는, 본 개시의 다양한 실시예에 따른 송신 및 수신 경로당 mmWave 트랜시버의 예시적인 전력 손실을 도시한다. 도 4a 및 도 4b에 도시된 송신 및 수신 경로당 mmWave 트랜시버의 전력 손실의 예는 단지 설명을 위한 것이다. 도 4a 및 도 4b는 본 개시의 범위를 임의의 특정 구현으로 제한하지 않는다.
도 4a 및 도 4b에 도시된 바에 의하면, 전력 증폭기(PA) 및 무선 주파수-ADC(RF-ADC)가 각각 송신 및 수신 경로에서 전력 손실의 67% 및 55%를 차지한다. 저전력 PA와 더 단순한 ADC 설계가 트랜시버 설계에서 매우 중요한다.
일 실시예에서, 저전력 PA를 가지며, 광대역 신호와 관련된 복잡성을 감소시키면서 광대역 OFDM 시스템의 성능 이점을 유지하는, 어그리게이션(aggregation)을 갖춘 서브채널 부호화 OFDM이 제공된다.
FMCW 또는 처프-시퀀스(chirp-sequence) 레이더와 비교할 때, 어그리게이션(aggregation)을 갖춘 서브채널 위상 부호화 OFDM 시스템은 다음과 같은 성능 이점을 갖는다. (1) FMCW 시스템 레인지-도플러 모호성과 달리, 어그리게이션(aggregation)을 갖춘 서브채널 위상 부호화 OFDM 시스템은 독립적으로 레인지 및 도플러 추정을 할 수 있음; (2) 시퀀스 코딩에 의한 간섭 억제; (3) 아날로그 회로에 의해 FMCW에서의 고도로 선형적인 주파수 스위프(highly linear frequency sweep)를 생성할 필요가 없음; (4) FMCW에 비해 고속의 주파수 램프; (5) 시간 또는 주파수에서 복수의 하위 채널을 구현할 수 있어서, 하드웨어 복잡성과 획득 시간 간의 유연한 설계 절충이 가능함; (6) 유연한 MIMO/빔포밍 설계; 및 (7) 대량 MIMO/BF 이득이 저전력 PA를 갖는 시스템을 가능하게 하여, CMOS(complementary metal-oxide-semiconductor) 설계를 이용한 저비용의 확장 가능한(scalable) 구현을 가능하게 하는 점.
도 5는 본 개시의 다양한 실시예에 따른 예시적인 CAZAC 시퀀스 포맷(500)을 도시한다. 도 5에 도시된 예시적 CAZAC 시퀀스 포맷(500)은 단지 설명을 위한 것이다. 도 5는 본 개시의 범위를 임의의 특정 구현으로 제한하지 않는다.
일 실시예에서, CAZAC 시퀀스 포맷(500)은 전자 장치인 송신기에 의해 사용될 수 있다. 일 실시예에서, 전자 장치는 기지국(예를 들어, 도 1에 도시된 101-103) 또는 UE(예를 들어, 도 1에 도시된 111-116)일 수 있다.
도 5에 도시된 바에 의하면, 신호 구조는 기준 신호(reference signal)일 수 있다. 기준 신호는 순환 프리픽스(Cyclic Prefix; CP), CAZAC 시퀀스 및 가드타임(Guard Time; GT)으로 구성된다. GT는, 필요한 시퀀스 길이와 대상 장면의 관심 레인지에 따라 추가된다. 도 5에 도시된 바에 의하면, 포맷 1에서는 단지 하나의 시퀀스 기간만이 도시된다. 더 긴 레인지를 목표로 하거나 높은 신호 저하가 예상되는 악천후 조건과 관련된 동작의 경우, 도 5에 도시된 포맷 2 및 3과 같은 반복 시퀀스가 사용될 수 있다. 포맷 1을 사용하면, 수신기의 SINR이 두 배가 될 수 있지만, 포맷 3에서는 SINR이 4배가 된다. 기준 신호가 차지하는 시간 유닛은 "슬롯"이라고 불린다.
하나 이상의 루트 Zadoff-Chu 시퀀스들에서 생성된, 제로 상관 영역(zero-correlation zone)을 갖는 Zadoff-Chu 시퀀스들에서 다상 시퀀스(polyphase sequence)가 생성된다. 각 레이더 유닛은 사용이 허용된 일련의 시퀀스를 갖도록 구성된다. 예를 들어, 루트 시퀀스에는 허용 가능한 최대 2개의 64개 시퀀스 세트가 있다. 각 레이더 유닛은 송신 시 해당 세트에서 무작위로 시퀀스를 선택한다. 시퀀스 호핑을 사용하여 간섭을 무작위화 할 수 있다. m-시퀀스와 같은 이진 시퀀스 또는 Zadoff-Chu 시퀀스가 이용될 수 있다. Zadoff-Chu 시퀀스는, 주파수 및 시간 도메인 모두에서의 신호의 일정한 포락선 특성(constant envelope property)으로 인해 OFDM 설계에 이상적으로 적합한다.
부호화 OFDM 신호는, 본 개시에서 Zadoff-Chu CAZAC 시퀀스인, 다상 시퀀스로 각 부반송파를 인코딩하여 구성된다. 각각의 부호화 OFDM 신호는 슬롯 및 서브채널이라는 시간-주파수 자원을 차지한다. 각 시간-주파수 자원이 부대역으로 해석될 수 있다. 각각의 부대역에서, 동일하거나 상호 직교하는 CAZAC 시퀀스가 사용될 수 있다. 범용 처프 유사(generalized chirp-like; GCL) 시퀀스와 같은 다른 시퀀스들이 CAZAC 시퀀스 세트를 생성하는데 이용될 수 있다.
부호화 OFDM 신호는, 본 개시에서 Zadoff-Chu CAZAC 시퀀스의 이산 푸리에 변환(discrete Fourier transform: DFT)인, DFT 확산 시퀀스로 각 부반송파를 인코딩하여 구성된다. 각각의 부호화 OFDM 신호는 슬롯 및 서브채널이라는 시간-주파수 자원을 차지한다. 각 시간-주파수 자원은 부대역으로 해석될 수 있다. 각각의 부대역에서, 동일하거나 상호 직교하는 CAZAC 시퀀스들이 사용될 수 있다. GCL(Generalized Chirp-Like) 시퀀스의 DFT와 같은 다른 시퀀스들이 CAZAC 시퀀스들의 DFT 세트를 생성하는데 이용될 수 있다.
다중 채널(multi-channel) 부호화 OFDM 신호가 복수의 반송파에서 기준 신호를 송신하여 생성된다. 4GHz 대역폭을 갖는 79GHz 자동차 레이더의 경우, 채널은 중심 주파수 77.2GHz로부터 시작하여 400MHz 간격으로 분리된 10개의 서브채널(예: 캐리어)을 포함할 수 있다. 반송파 대역폭은 100MHz/200MHz/400MHz/500MHz일 수 있으며, 결과적으로 4GHz 광대역 신호를 포함하는 40/20/10/8개의 서브채널이 야기된다. 송신은 모든 채널에 대해 동시에 작동한다.
도 6a는, 본 개시의 다양한 실시예에 따른 예시적인 4-채널 부호화 OFDM(600)을 도시한다. 도 6a에 도시된 예시적 4-채널 부호화 OFDM(600)는 단지 설명을 위한 것이다. 도 6a는 본 개시의 범위를 임의의 특정 구현으로 제한하지 않는다.
일 실시예에서, 4-채널 부호화 OFDM(600)은 전자 장치인 송신기에 의해 사용될 수 있다. 일 실시예에서, 전자 장치는 기지국(예를 들어, 도 1에 도시된 101-103) 또는 UE(예를 들어, 도 1에 도시된 111-116)일 수 있다.
도 6b는, 본 개시의 다양한 실시예에 따른 예시적인 2-채널 부호화 OFDM(650)을 도시한다. 도 6b에 도시된 예시적 2-채널 부호화 OFDM(650)은 단지 설명을 위한 것이다. 도 6b는 본 개시의 범위를 임의의 특정 구현으로 제한하지 않는다.
일 실시예에서, 2-채널 부호화 OFDM(650)은 전자 장치인 송신기에 의해 사용될 수 있다. 일 실시예에서, 전자 장치는 기지국(예를 들어, 도 1에 도시된 101-103) 또는 UE(예를 들어, 도 1에 도시된 111-116)일 수 있다.
일 실시예에서, 다중 채널의 하위 집합이 한 번에 송신될 수 있다. 다중 채널 부호화 OFDM 신호의 예시가 도 6a 및 도 6b에 도시되어 있다. 서브채널 부호화 OFDM 신호는 서로 다른 서브채널에서 기준 신호를 시간에 따라 순차적으로 송신함으로써 생성된다. 서브채널은 주파수 호핑에 의해 순차적으로 또는 무작위로 생성될 수 있다. 서브채널 부호화 OFDM 신호의 예시가 도 7a 및 도 7b에 도시되어 있다.
도 7a는, 본 개시의 다양한 실시예에 따른 균일하게 시프트된 주파수를 이용한 예시적인 서브채널 부호화 OFDM(700)을 도시한다. 도 7a에 도시된, 균일하게 시프트된 주파수를 이용한 예시적 서브채널 부호화 OFDM(700)은 단지 설명을 위한 것이다. 도 7a는 본 개시의 범위를 임의의 특정 구현으로 제한하지 않는다.
일 실시예에서, 균일하게 시프트된 주파수를 이용한 서브채널 부호화 OFDM(700)은 전자 장치인 송신기에 의해 사용될 수 있다. 일 실시예에서, 전자 장치는 기지국(예를 들어, 도 1에 도시된 101-103) 또는 UE(예를 들어, 도 1에 도시된 111-116)일 수 있다.
도 7b는, 본 개시의 다양한 실시예에 따른 랜덤 주파수 시프팅을 갖는 예시적인 서브채널 부호화 OFDM(750)을 도시한다. 도 7b에 도시된 랜덤 주파수 시프팅을 갖는 서브채널 부호화 OFDM(750)의 예는 단지 설명을 위한 것이다. 도 7b는 본 개시의 범위를 임의의 특정 구현으로 제한하지 않는다.
일 실시예에서, 랜덤 주파수 시프팅을 갖는 서브채널 부호화 OFDM(750)은 전자 장치인 송신기에 의해 사용될 수 있다. 일 실시예에서, 전자 장치는 기지국(예를 들어, 도 1에 도시된 101-103) 또는 UE(예를 들어, 도 1에 도시된 111-116)일 수 있다.
도 8은, 본 개시의 다양한 실시예에 따른 (4채널의 경우의) 예시적 다중 채널 부호화 OFDM 스펙트럼(800)을 도시한다. 도 8에 도시된 (4채널의 경우의) 예시적 다중 채널 부호화 OFDM 스펙트럼은 단지 설명을 위한 것이다. 도 8은 본 개시의 범위를 임의의 특정 구현으로 제한하지 않는다.
구성된 광대역 신호의 스펙트럼이 도 8에 도시되어 있다. 다중 채널 또는 서브채널 OFDM 신호의 경우, 신호는 수신기에서 협대역 신호로 변환되고 각 경로마다 협대역(서브대역) 신호 처리를 거친다. 결과적인 통계(resulting statistics)의 일관성 있는 누적(coherent accumulation)과 상관(correlation)은 광대역 신호와 동등한 통계를 생성한다.
RADAR MAC(Medium Access Control) 컨트롤러는 시간-주파수 자원과 기준 신호의 코드를 할당하는 개체이다. 시간-주파수 자원은 목표 레인지, 송신 전력, 빔포밍 방식 및/또는 수신기에서 측정된 간섭 수준에 기초하여 구성된다. 주파수와 코드 자원은 여러 시퀀스들 및 주파수 부대역들 사이에서 무작위로 이동한다. 자원은 반-정적으로(semi-statically) 재할당되거나 동작 중에 동적 실시간으로 재할당될 수 있다.
도 9는, 본 개시에 따른 다중 채널 부호화 OFDM 시스템의 예시적인 송신기 아키텍처(900)를 도시한다. 도 9에 도시된 다중 채널 부호화 OFDM 시스템의 예시적 송신기 아키텍처(900)는 단지 설명을 위한 것이다. 도 9는 본 개시의 범위를 임의의 특정 구현으로 제한하지 않는다.
도 9에 도시된 바에 의하면, 다중 채널 부호화 OFDM 레이더 시스템의 송신기(900)는 적어도 하나의 송신기(예를 들어, 930, 940 및 950)를 포함할 수 있다. 송신기(930)는 시퀀스 블록(902), 역 고속 푸리에 변환(IFFT) 블록(906), 맵퍼 블록(908), 디지털-아날로그 변환기(DAC) 블록(910 및 912), 위상 시프터 블록(914), 클록 생성기 블록(916), 곱셈기 블록(918 및 920), RF 처리 블록(922) 및 MAC 컨트롤러 블록(924)으로 구현될 수 있다. 송신기(940 및 950)는 각각 송신기(930)와 동일한 구성요소들을 포함할 수 있다. 송신기(940 및 950)는 RADAR 시스템을 구현하기 위해 복제될 수 있다.
일 실시예에서, 다중 채널 부호화 OFDM 시스템의 송신기 아키텍처(900)는 기지국(예를 들어, 도 1에 도시된 101-103) 또는 UE(예를 들어, 도 1에 도시된 111-116)에서 구현될 수 있다.
도 9에 도시된 바에 의하면, 송신기(900)는 반송파 f0, ... ,fN -1을 변조하는 복수의 부대역 채널들로 구성된 송신 신호를 생성한다. 시퀀스 블록(902)은 Zadoff-Chu 시퀀스의 DFT 프리-코딩에 의해 부대역 CAZAC 시퀀스를 생성한다. IFFT 블록(906)은 병렬 프리-코딩된 CAZAC 시퀀스를 획득하고 프리-코딩된 CAZAC 시퀀스의 병렬 스트림을 시간 도메인 신호로 변환한다. 맵퍼 블록(908)은 시간 도메인 신호를 직렬 스트림으로 변환하고 순환 프리픽스를 추가한다. 선택적 가드타임이 추가된다. DAC 블록(910 및 912)은 맵퍼 블록(908)의 출력의 동위상 및 직교 성분(in-phase and quadrature components)을 획득하고 이들을 아날로그 데이터 동위상 및 직교 신호로 변환한다. 위상 시프터 블록(914)은 직교 위상 반송파 주파수를 생성한다. DAC 블록(910 및 912)의 출력들의 동위상 및 직교 아날로그 신호가 곱셈기 블록(918 및 920)에서 반송파 주파수 및 직교 반송파 주파수에 의해 변조된다. RF 처리 블록(922)에서 상기 변조된 신호는 쉐이핑 필터(shaping filter)에 의해 더 처리되고 증폭되어 안테나로 송신된다. MAC 컨트롤러 블록(924)은 송신기의 시간-주파수 및 코드 자원을 구성하고 할당한다.
도 9에 도시된 송신기에 의하면, 아날로그 회로가 DAC의 출력을 수신하고, 반송파를 변조하며, 신호를 증폭 및 필터링하여 해당 신호를 안테나에 공급한다. 도 11에 도시된 수신기에서는, 아날로그 회로가 안테나로부터 신호를 수신하고, 그 신호를 필터링 및 증폭하고, 반송파를 기저대역으로 복조하여 이를 ADC로 보낸다. DAC는 디지털 기저대역 신호를 아날로그 신호로 변환한다. 아날로그 회로는 전력 증폭기(PA), 필터 및 위상 시프터를 결합하여 복수 안테나를 위한 아날로그 빔포밍을 구현할 수 있다. ADC가 아날로그 신호를 디지털 신호로 변환한다. 송신기의 디지털 회로는 시퀀스 및 심볼 변조와 다중화(multiplexing)로부터 기저대역 처리 알고리즘에 의해 디지털 파형을 생성한다. 수신기의 디지털 회로는 기저대역 신호를 처리하고 결정 통계(decision statistic)와 같은 출력 신호를 생성한다.
도 10은, 본 개시의 다양한 실시예에 따른 서브채널 부호화 OFDM 시스템의 예시적 송신기 아키텍처(1000)를 도시한다.
도 10에 도시된 바에 의하면, 송신기(1000)는 시퀀스 블록(1002), IFFT 블록(1006), 맵퍼 블록(1008), DAC 블록(1010 및 1012), 위상 시프터 블록(1014), 클록 생성기 블록(1016), 곱셈기 블록(1018 및 1020), RF 처리 블록(1022) 및 MAC 컨트롤러 블록(1024)으로 구현될 수 있다.
도 10에 도시된 바에 의하면, 송신기(1000)는 반송파 f0, ... ,fN -1을 변조하는 부대역 채널 신호를 생성한다. 부대역 신호는 시간에 따라 순차적으로 생성된다. 시퀀스 블록(1002)은 Zadoff-Chu 시퀀스의 DFT 프리-코딩에 의해 부대역 CAZAC 시퀀스를 생성한다. IFFT 블록(1006)은 병렬 프리-코딩된 CAZAC 시퀀스를 획득하고 프리-코딩된 CAZAC 시퀀스의 병렬 스트림을 시간 도메인 신호로 변환한다. 맵퍼 블록(1008)은 시간 도메인 신호를 직렬 스트림으로 변환하고 순환 프리픽스를 추가한다. 선택적 가드타임이 추가된다. DAC 블록(1010, 1012)은 맵퍼 블록(1008)의 동위상 및 직교 성분을 획득하여 이들을 아날로그 데이터 동위상 및 직교 신호로 변환한다. 위상 시프터 블록(1014)은 클록 생성기 블록(1016)의 반송파 주파수의 직교 아날로그 신호를 생성한다. 곱셈기 블록(1018 및 1020)은 반송파 주파수에 의해 변조된 신호이다. RF 처리 블록(1022)에서, 상기 변조된 반송파는 쉐이핑 필터에 의해 추가로 처리되고 증폭되어 안테나로 송신된다. MAC 컨트롤러 블록(1024)은 송신기의 시간-주파수 및 코드 자원을 구성하고 할당한다.
도 10에 도시된 서브채널 부호화 OFDM 시스템의 예시적 송신기 아키텍처(1000)는 단지 설명을 위한 것이다. 도 10은 본 개시의 범위를 임의의 특정 구현으로 제한하지 않는다.
일 실시예에서, 서브채널 부호화 OFDM 시스템의 송신기 아키텍처(1000)는 기지국(예를 들어, 도 1에 도시된 101-103) 또는 UE(예를 들어, 도 1에 도시된 111-116)에서 구현될 수 있다.
다중 채널 부호화 OFDM 시스템에서는, 복수 인스턴스의 송신 체인이 병렬로 구현되고 처리된다. 서브채널 부호화 OFDM 시스템에서는, 부호화 부대역 OFDM 신호가 각 슬롯마다 서브채널에 해당하는 반송파 주파수로 변조된다.
도 11은, 본 개시의 다양한 실시예에 따른 다중 채널 부호화 OFDM 레이더 시스템의 예시적 수신기 아키텍처(1100)를 도시한다. 도 11에 도시된 예시적 다중 채널 부호화 OFDM 레이더 시스템의 수신기 아키텍처(1100)는 단지 설명을 위한 것이다. 도 11은 본 개시의 범위를 임의의 특정 구현으로 제한하지 않는다.
도 11에 도시된 바에 의하면, 다중 채널 부호화 OFDM 레이더 시스템의 수신기(1100)는 적어도 하나의 수신기(예를 들어, 1130, 1140, 1150)를 포함할 수 있다. 수신기(1130)는 RF 처리 블록(1102), 위상 시프터 블록(1104), 곱셈기 블록(1106 및 1108), ADC 블록(1110 및 1112), 디맵퍼 블록(1114), FFT 블록(1116), 기저대역 처리 블록(1118), 결합기 블록(1118), 클록 생성기 블록(1124), 및 레인지-도플러 처리 블록(1122)으로 구현될 수 있다. 수신기(1140 및 1150)는 각각 수신기(1130)와 동일한 구성요소들을 포함할 수 있다. 수신기(1140 및 1150)는 RADAR 시스템을 구현하기 위해 복제될 수 있다.
일 실시예에서, 다중 채널 부호화 OFDM 레이더 시스템의 수신기 아키텍처(1100)는 기지국(예를 들어, 도 1에 도시된 101-103) 또는 UE(예를 들어, 도 1에 도시된 111-116)에서 구현될 수 있다.
부대역 부호화 OFDM 시스템의 수신기 아키텍처가 도 11에 도시되어 있다. 각 부대역에 대해, 신호가 복조된 다음 부대역 ADC로 이어진다. CP 제거 후, 기저대역 신호의 FFT(Fast Fourier Transform), 기준 신호의 켤레 복소수 곱셈, 이어지는 IFFT를 통해 주파수 영역에서 상관(correlation)이 계산된다.
업-샘플링에서 이어지는 LPF(Low Pass Filter)에 의해 상관 값이 보간된다. 각각의 처리된 부대역 신호가 더해진다. 진폭 또는 진폭 제곱(amplitude square)을 취한 다음 일정 오경보율(constant false alarm rate: CFAR) 검출기로 이어짐으로써 검출 통계가 형성된다. 아티팩트를 제거하기 위해 사후 처리가 수행된다. 또한, 상관 출력은 도플러 추정을 위해 메모리에 저장된다.
다중 채널 부호화 OFDM 시스템에서는, 복수 인스턴스의 수신기 체인이 병렬로 구현되고 처리된다. 서브채널 부호화 OFDM 시스템에서는, 각 서브채널 출력 출력이 검출 및 사후 처리를 위해 시간 경과에 따라 누적된다.
블록들(1102 내지 1118)에서, 부대역 신호 처리가 기술된다. RF 처리 블록(1102)에서 직교 반송파 주파수가 생성된다. 곱셈기 블록(1106 및 1108)에서 안테나로부터 수신된 신호가 복조되어 아날로그 신호의 동위상 및 직교 성분을 생성한다. ADC 블록(1110 및 1112)에서 아날로그 신호는 ADC에 의해 디지털 신호로 변환된다. 디맵퍼 블록(1114)에서는 수신된 I/Q 신호가 S/P(serial-to-parallel) 변환기에 의해 병렬 스트림으로 변환되고 순환 프리픽스가 제거된다. FFT 블록(1116)에서, 디맵퍼 블록(1114)의 출력은 FFT에 의해 주파수 도메인 신호로 더 변환된다. 기저대역 처리 블록(1118)에서, FFT 블록(1116)의 출력 신호는 저장된 기준 신호의 켤레 복소수로 곱해진다. 기저대역 처리 블록(1118)에서, 복소 곱셈기의 출력이 IFFT에 의해 시간 도메인 신호로 변환된다. 신호는 기저대역 처리 블록(1118)에서 업-샘플링되고 필터링된다.
결합기 블록(1120)에서, 결합기가 수신기(1130, 1140 및 1150)로부터의 신호들을 모아(aggregating) 광대역 상관 출력을 생성한다.
레인지-도플러 처리 블록(1122)은 진폭 또는 진폭 제곱을 취한다. 레인지-도플러 처리 블록(1122)은 결과의 검출을 위해 CFAR 기준에 따라 임계값을 적용한다.
레인지-도플러 처리 블록(1122)은 결합기 출력을 복수의 심볼들에 걸쳐 메모리에 저장한다. 레인지-도플러 처리 블록(1122)은 저장된 심볼들을 처리하고 도플러를 추정한다.
레인지-도플러 처리 블록(1122)에서, 검출된 결과 및 도플러 처리된 신호가 사후 처리에서 더 처리된다.
각 서브채널에 대한 파형은, 시스템의 전체 아키텍처를 변경하지 않고서, FBMC(filter-bank multi-carrier) 또는 SC(single-carrier)가 될 수 있다. 부대역 OFDM 신호는 순환 프리픽스가 없는 신호일 수 있다.
레이더 시스템은 레인지(range), 도래각(angle-of-arrival), 및 도플러 추정을 위한 3D 레이더 또는 방위각(Azimuth), 고도(elevation), 레인지 및 도플러 이미지를 위한 4D 이미징 레이더로 구축할 수 있다.
도 12는, 본 개시에 따른, 송신기(1200)에서의 예시적인 하이브리드 빔포밍 아키텍처를 도시한다. 도 12에 도시된 송신기(1200)에서의 하이브리드 빔포밍 아키텍처의 예는 단지 설명을 위한 것이다. 도 12는 본 개시의 범위를 임의의 특정 구현으로 제한하지 않는다.
도 12에 도시된 바에 의하면, 하이브리드 빔포밍 송신기(1200)는 적어도 하나의 송신기(예를 들어, 1230, 1240, 1250)를 포함할 수 있다. 송신기(1230)는 시퀀스 블록(1202), IFFT 블록(1206), 디지털 빔포밍(BF)(1208), 디지털-아날로그 변환기(DAC) 블록(1210 및 1212), 위상 시프터 블록(1260), 클록 생성기 블록(1270), 곱셈기 블록(1214 및 1216), RF 처리 블록(1218), 아날로그 BF 블록(1220) 및 MAC 컨트롤러 블록(1280)으로 구현될 수 있다. 송신기(1240 및 1250)는 각각 송신기(1230)의 동일한 구성요소들을 포함할 수 있다. 송신기(1240 및 1250)는 RADAR 시스템을 구현하기 위해 복제될 수 있다. 일 실시예에서, 송신기(1200)에서의 하이브리드 빔포밍 아키텍처는 기지국(예를 들어, 도 1에 도시된 101-103) 또는 UE(예를 들어, 도 1에 도시된 111-116)에서 구현될 수 있다.
도 12에 도시된 바에 의하면, IFFT 후에 디지털 빔포밍이 적용되고, 이후 아날로그 빔포밍이 적용된다. 다중 채널 아키텍처에서, 디지털 빔포밍 블록(1208)은 각 부대역에 대해 적용되는 반면, 아날로그 빔포밍은 복수의 부대역을 결합한 후 전체 대역폭에 대해 적용된다. 서브채널 아키텍처에서는, 디지털 빔포밍과 아날로그 빔포밍 모두가 각 부대역에 대해 적용될 수 있다. 수신기 처리는 대역 및 안테나 경로별로 적용된다.
시퀀스 블록(1202)에서, 하나 또는 복수의 MIMO 시퀀스가 CAZAC 시퀀스로부터 생성된다. 맵퍼 블록(1206)에서, 시퀀스들이 MIMO 레이어들로 매핑된다. 맵퍼 블록(1206)에서, MIMO 코딩의 각 레이어가 Walsh-Hadamard 코드 또는 DFT 코드를 갖는 MIMO 레이어 부대역 신호들에 적용된다. IFFT 블록(1204) 내지 맵퍼 블록(1206)에서, 시퀀스들이 각 MIMO 레이어에 대한 자원 요소(RE) 매핑에 의해 주파수 도메인에 매핑된다. IFFT 블록(1204) 내지 맵퍼 블록(1206)에서, 각 MIMO 레이어에 대한 RE 매핑된 신호가 IFFT에 의해 시간 도메인으로 변환되고 그 도메인 신호에 순환 프리픽스가 추가된다. 디지털 BF 블록(1208)은 시간 도메인 신호에 시간 도메인 빔포밍 가중치를 적용하여 디지털 빔포밍을 수행한다. DAC 블록(1210 및 1212)에서 디지털 BF 블록(1208)의 출력은 DAC에 의해 아날로그 신호로 변환된다. 아날로그 BF 블록(1220)에서는, 송신기 블록(1230, 1240, 및 1250)의 RF 처리 블록(1218)의 출력 신호들이 결합되고 아날로그 빔포밍으로 더 처리된다.
도 12에 도시된 바에 의하면, 빔(공간), 부대역(주파수), 및 슬롯(시간)이 독립적으로 선택될 수 있어서, 간섭을 피하면서 획득 시간을 향상시킬 수 있다.
도 13은, 진보된 무선 장치(예를 들어, 도 1에 도시된 101-103) 또는 UE(예를 들어, 도 1에 도시된 111-116)에 의해 수행될 수 있는 바와 같이, 본 개시에 따른 고해상도 레이더에 대한 부대역 부호화 OFDM을 위한 방법의 흐름도(1300)를 도시한다. 도 13에 도시된 예시적 방법(1300)은 단지 설명을 위한 것이다. 도 13은 본 개시의 범위를 임의의 특정 구현으로 제한하지 않는다. 도 13에 도시된 컴포넌트들 중 하나 이상이 설명된 기능을 수행하도록 구성된 특수 회로에서 구현될 수도 있고, 컴포넌트들 중 하나 이상이 설명된 기능을 수행하기 위한 명령을 실행하는 하나 이상의 프로세서에서 구현될 수도 있다.
일 실시예에서, 방법(1300)은 차량, 휴대용 전자 장치, 고정형 전자 장치, 및 임의의 유형의 전자 장치에서 구현되는 독립형 레이더 시스템에 의해 수행될 수 있다.
도 13에 도시된 바에 의하면, 방법(1300)은 단계(1302)에서 시작한다.
단계(1302)에서, 진보된 레이더 장치는 광대역 파형 신호를 부대역 신호들의 시퀀스에 기초하여 시간-주파수 파형으로 분해한다.
일 실시예에서, 시간-주파수 레이더 파형은 OFDM, FBMC 또는 DFT 프리-코딩된 단일 반송파 파형이다.
이후, 단계(1305)에서, 진보된 레이더 장치는 상기 분해된 광대역 파형 신호를 기반으로 시간-주파수 레이더 파형을 생성한다.
이후, 단계(1306)에서, 진보된 레이더 장치는, 시간-주파수 레이더 파형에 기초하여, CAZAC(constant amplitude zero auto-correlation) 시퀀스를 OFDM(Orthogonal Frequency Division Multiplexing) 부반송파에 매핑하여 제1 레이더 신호를 생성한다.
다음으로, 단계(1308)에서, 첨단 레이더 장치는, 상기 제1 레이더 신호를, 안테나 세트의 송신 안테나를 통해 목표 물체로 송신한다.
마지막으로, 단계(1310)에서, 진보된 레이더 장치는, 목표 물체로부터 반사 또는 후방 산란된 제2 신호를, 안테나 세트의 수신 안테나를 통해 수신한다.
이하 도 14, 도 15, 도 18, 도 19 및 도 23은, OFDM 또는 OFDMA 통신 기술을 사용하여 무선 통신 시스템에서 구현되는 다양한 실시예들을 설명한다. 도 14, 도 15, 도 18, 도 19 및 도 23에 관한 설명은, 다양한 실시예들이 임의의 적절하게 구성된 통신 시스템에서 구현될 수 있는 방식에 대한 물리적 또는 구조적 제한을 암시하도록 의도된 것이 아니다.
도 14는 대역통과 샘플링을 이용하는 부대역 부호화 OFDM 레이더에 대한 예시적인 송신기 아키텍처(1400)를 도시한다. 송신기(1400)는 시간-주파수 도메인에서 신호를 포맷하는 시간-주파수 맵퍼 블록(1402)을 갖는 OFDM 송신기이다. 도 14의 다른 블록들은 도 9 내지 도 12에 기술된 블록들과 동일하거나 유사한 기능을 수행한다.
도 15는, 본 개시의 다양한 실시예에 있어서, 통상적 레이더 시스템의 레이더 시스템 주파수 스펙트럼 및 시간-주파수 스펙트럼의 예를 도시한다. 도 15에 도시된 시간-주파수, 주파수 스펙트럼(1502)은 fc 반송파 주파수에 의해 변조된 4 대역(f1, f2, f3, f4) 신호의 주파수 스펙트럼의 예를 보여준다.
도 15에 도시된 주파수 및 시간-주파수 스펙트럼(1504)은 fc 반송파 주파수에 의해 변조된 4 대역(f1, f2, f3, f4) 신호의 시간-주파수 스펙트럼의 예를 보여준다. 주파수 및 시간-주파수 스펙트럼(1504)에서, 전체 4개의 대역 신호는 시간 t1에서 동시에 송신된다.
도 16은, 본 개시의 다양한 실시예에 따른 대역통과 샘플링을 이용하는 부대역 부호화 OFDM 레이더 시스템의 예시적 시간-주파수 스펙트럼(1600)을 도시한다. 도 16은, 도 14의 시간-주파수 맵퍼 블록(1402)의 출력의 일 예이다. 시간-주파수 맵퍼 블록(1402)은 부대역 부호화 OFDM 신호를 서로 다른 시간 슬롯들에 매핑한다.
도 15에 도시된 바와 같이 전체 4개의 부대역 부호화 OFDM 신호가 시간 슬롯 t1에 매핑되는 경우 수신기에서 광대역(f1+ f2 +f3 +f4) 신호 처리가 필요로 된다. 그러나 4개의 부대역 부호화 OFDM 신호가 서로 다른 시간 슬롯(t1, t2, t3, t4)에 매핑되는 경우에는 수신기에서 협대역(f1, f2, f3, f4) 신호 처리가 필요로 된다.
도 17은, 본 개시의 다양한 실시예에 따른 대역통과 샘플링을 이용하는 부대역 부호화 OFDM 레이더에 대한 예시적인 수신기 아키텍처(1700)를 도시한다. ADC 블록(1706, 1708)의 입력 대역폭이 줄어들기 때문에, ADC 블록(1706, 1708)의 요구 사항이 완화될 수 있다. 고속 및 광대역 ADC의 비용 및 전력 소비가 매우 높기 때문에, 대역통과 샘플링을 이용하는 부대역 코딩 OFDM 레이더의 트랜시버 아키텍처를 사용하는 것은 고해상도 레이더 애플리케이션을 위한 매우 매력적인 솔루션이다. 수신기 아키텍처(1700)는 또한 RF 처리 블록(1702), 부대역 필터 뱅크 블록(1704) 및 기준 신호 블록(1710)을 포함한다. 도 17의 기술되지 않은 다른 블록들은 도 9 내지 도 12에서 기술된 블록들과 동일하거나 유사한 기능을 수행한다.
도 18은, 본 개시의 다양한 실시예에 따른 대역통과 샘플링을 이용하는 부대역 부호화 OFDM 레이더 시스템의 예시적 주파수 스펙트럼, 시간-주파수 스펙트럼 및 송신기 아키텍처(1800)를 도시한다. 도 18에 도시된 바에 의하면, 송신기(1800)는 기저대역 처리 블록(1802), 시간-주파수 맵퍼 블록(1806), DAC 블록(1810) 및 RF 처리 블록(1812)을 포함한다.
기저대역 처리 블록(1802)은 참조부호(1804)로 도시된 바와 같은 부대역 부호화 OFDM 신호를 생성한다. 시간-주파수 맵퍼 블록(1806)은 기저대역 처리 블록의 출력(1804)을 참조부호(1808)로 도시된 바와 같이 서로 다른 시간 슬롯들에 맵핑한다. 멀리 떨어져 있는 물체들로부터의 반사 지연을 수용하기 위해 부대역 신호들 사이에 가드 인터벌이 필요로 된다.
도 19는, 본 개시의 다양한 실시예에 따른 대역통과 샘플링을 이용하는 부대역 부호화 OFDM 레이더 시스템의 예시적 수신기 아키텍처(1900)를 도시한다. 도 19에 도시된 바에 의하면, 수신기(1900)는 RF 처리 블록(1902), 부대역 필터 뱅크 블록(1904), 협대역 저속 ADC 블록(1906), 지연 보상 블록(1908), 기저대역 처리 블록(1910), 기준 신호 블록(1912) 및 레인지-도플러 처리 블록(1914)을 포함한다.
부대역 필터 뱅크 블록(1904)과 협대역 저속 ADC 블록(1906)을 사용함으로써, 고속/광대역 ADC가 저속/협대역 ADC로 대체될 수 있다. 이는 OFDM 레이더 시스템의 구현 비용과 전력 소비를 줄이다.
도 20 내지 도 22는, 본 개시의 다양한 실시예에 따른 대역통과 샘플링을 이용하는 부대역 부호화 OFDM 레이더 시스템의 주파수 스펙트럼, 시간-주파수 스펙트럼 및 수신기 아키텍처의 예를 도시한다.
도 20은 수신기(2000)를 도시한다. 도 20에 도시된 바에 의하면, 신호는 RF 처리 블록(2002)을 통과하고, 그런 다음 복조된 신호가 부대역 필터 뱅크 블록(2004)을 통과한다. 부대역 필터 뱅크의 목적은 대역통과 샘플링을 위한 대역외 잡음(out-of-band noise)을 줄이는 것이다. 부대역 필터 뱅크 블록(2004)은 대역통과 필터 및 저역통과 필터를 포함한다.
부대역 필터 뱅크 블록(2004)의 출력은, 도 20에 도시된 참조부호(2008 및 2010)에 도시되어 있다. 부대역 필터 뱅크 블록(2004)에서의 추가적 필터링으로 인해, 대역통과 샘플링을 위한 대역외 잡음이 감소된다.
도 21은, 본 개시의 다양한 실시예에 따른 협대역 저속 ADC 및 대역통과 샘플링의 동작(2100)을 도시한다. 협대역 저속 ADC 블록(2102)이 나이퀴스트 이론(Nyquist theory)을 충족하는 경우, 협대역 저속 ADC 블록(2102)의 출력은 참조부호(2104 및 2106)로 도시된 바와 같이 서로 다른 시간 슬롯에서의 복조된 기저대역 신호이다. 부대역 필터 뱅크로 인하여 복조된 신호에는 에일리어싱(ailiasing)이 없을 것이다.
도 22는 곱셈기 블록(2202), 지연 보상/에일리어싱 제거 블록(2206) 및 레인지-도플러 처리 블록(2210)을 도시한다.
도 22에 도시된 바에 의하면, 모든 대역이 기저대역으로 복조되기 때문에, 도 22에 도시된 바와 같이, 송신 신호를 재구성하기 위한 변조 과정이 필요로 된다. 곱셈기 블록(2202)은, 디지털 복소 곱셈기를 이용함으로써, 기저대역 신호를 오리지널 부대역 부호화 신호로 변조한다. 곱셈기 블록(2202)의 출력 스펙트럼이 참조부호(2204)로 도시되어 있다.
레이더의 목적은 송신 신호와 수신 신호 사이의 지연 시간을 측정하는 것이다. 고해상도 레이더 성능을 위해서는, 광대역 신호가 송신 및 수신될 수 있다. 이러한 요구 사항을 충족하기 위해서, 도 15에 도시된 바와 같이 광대역 신호가 동시에 송신될 수 있다.
그러나, 본 개시에서는, 협대역/저속 ADC를 사용하기 위해, 도 16에 도시된 바와 같이 부대역 신호들이 서로 다른 시간 슬롯에서 송신된다. 광대역 신호 시스템과 동일한 수준의 성능을 달성하기 위해, 부대역 신호들 간의 시간 슬롯 차이가 보상될 수 있다. 부대역 부호화 OFDM 신호의 지연 효과가 분석될 수 있기 때문에, 이는, 도 22에 도시된 바와 같이, 지연 보상/에일리어싱 제거 블록(2206)에서 보상될 수 있다.
또한, 연속하는 부대역들 사이의 에일리어싱을 피하기 위해서 부대역 신호 송신 사이의 가드 인터벌(guard interval)(도 16에 도시됨)이 필요로 된다. 송신되는 신호의 이동 시간(travelling time)이 레이더 시스템의 레인지 성능을 결정하므로, 더 긴 레인지의 레이더 시스템의 경우 더 긴 가드 인터벌이 필요한다. 그러나, 가드 인터벌이 증가하면 프레임 속도가 감소할 것이다.
가드 인터벌을 줄이기 위해, (지연 보상/에일리어싱 제거 블록(2206)에서) 에일리어싱 제거가 사용될 수 있다. 시퀀스들의 상관 특성과 에일리어싱 컴포넌트들에 대한 사전 지식을 사용하여, 부대역들 간의 에일리어싱이 제거될 수 있다.
지연 보상되고 에일리어싱 제거된 부대역 송신 신호들이 지연 보상/에일리어싱 제거 블록(2206)의 출력에서 완전히 복구되며, 그 주파수 스펙트럼은 도 22에 도시된 바와 같이 참조부호(2208)로 나타난다. 복구된 신호는, 레인지 및 도플러 정보를 가지는, (도 15에 도시된) 송신된 신호와 동일하다.
도 23은, 본 개시의 다양한 실시예에 따른, 대역통과 샘플링을 이용하는 부대역 부호화 OFDM 레이더 시스템의 또 다른 예시적 수신기 아키텍처(2300)를 도시한다.
도 23에 도시된 바에 의하면, 수신기(2300)는 RF 처리 블록(2302), 부대역 필터 뱅크 블록(2304), 협대역 저속 ADC 블록(2306), 기저대역 처리 블록(2308), 지연 보상된/에일리어싱 제거된 기준 신호 블록(2310), 및 레인지-도플러 처리 블록(2312)을 포함한다. 레이더 시스템이 이미 알려진 시퀀스를 송신하기 때문에, 부대역들 간의 송신 지연 효과 및 에일리어싱 컴포넌트들이 미리 추정되고 계산될 수 있다. 이러한 추정 및 계산이 기준 신호에 반영될 수 있고 지연 보상된/에일리어싱 취소된 기준 신호 블록(2310)에서와 같이 재구성을 위해 사용될 수 있다.
일 실시예에서, 진보된 레이더 장치는 광대역 파형 신호들을 다중 부대역 신호들에 기초하여 시간-주파수 파형으로 분해한다.
일 실시예에서, 진보된 레이더 장치는 시간 도메인 CAZAC 시퀀스에 기초한 DFT 프리-코딩을 사용하여 CAZAC 시퀀스를 생성한다.
일 실시예에서, 진보된 레이더 장치는 CAZAC 시퀀스의 시퀀스 호핑 또는 시간상 주파수 호핑 중 적어도 하나를 수행한다.
일 실시예에서, 진보된 레이더 장치는 시퀀스 세트, 시간, 주파수 패턴, 전력, 호핑 패턴, 빔포밍 및 기준 신호의 간섭 구성에 기초하여 제1 레이더 신호에 대한 시간-주파수 자원을 할당하고; 반-정적(semi-static) 모드 또는 동적 모드에서 시간-주파수 자원을 재할당한다.
일 실시예에서, 진보된 레이더 장치는 부대역 신호들의 각 부대역을 결정하고, 부대역 신호들의 각 부대역에 대한 복수의 디지털 빔포밍을 적용하고 부대역 신호들의 전체 부대역에 대한 단일의 아날로그 빔포밍을 적용한다.
일 실시예에서, 진보된 레이더 장치는: 제1 레이더 신호 및 제2 신호에 기초하여 부대역 신호들 각각을 결정하고; 주파수 도메인에서 부대역 신호들 중 각각을 처리하여 제3 신호를 획득하고; 제3 신호들에 기초하여 부대역 신호들 각각을 모으고(aggregating); 모아진 부대역 신호들 각각에 기초하여 시간 도메인에서 상관 출력을 생성한다.
그러한 실시예에서, 부대역 신호들 각각은 아티팩트 제거를 위한 후처리와 진폭 또는 진폭 제곱(amplitude square)을 사용한 검출을 위해 시간에 걸쳐 누적되고, 상관 출력이 메모리에 저장된다.
일 실시예에 있어서, 진보된 레이더 장치는, 광학계(optical systems), 무선 통신 프로토콜, 또는 유선 통신 프로토콜 중 적어도 하나를 이용하여, 안테나 시스템, 송신기, 수신기 및 상기 송신기, 수신기 및 안테나 시스템과 동작 가능하게 연결된 통신 프로세서를 통해, 신호를 송수신한다.
시간-주파수 도메인에서 부대역의 순서는 무작위일 수 있다. 도 6, 도 7, 도 16, 도 18, 및 도 20 내지 도 22에는, 예시적으로 시간-주파수 도메인에서의 부대역의 순차적인 순서가 도시되어 있지만, 이러한 순서는 순차적이기보다 무작위일 수 있다.
본 특허 문서 전체에서 사용된 특정 단어들과 문구들의 정의를 설명하는 것이 바람직할 수 있다. "애플리케이션" 및 "프로그램"이라는 용어는 하나 이상의 컴퓨터 프로그램, 소프트웨어 컴포넌트, 명령어 세트, 프로시저, 함수, 오브젝트, 클래스, 인스턴스, 관련 데이터 또는 적절한 컴퓨터 코드(소스 코드, 오브젝트 코드 또는 실행 코드를 포함)로 구현하기 위해 채택된 이들의 일부를 지칭한다. "통신한다"라는 용어와 그 파생어들은 직접 및 간접 통신을 모두 포함한다. "포함하다(include 또는 comprise)"라는 용어 및 그 파생어들은 제한없이 포함하는 것을 의미한다. "또는"이라는 용어는 “및/또는”을 의미하는 포괄적인 것이다. "연관된"이라는 문구 및 이의 파생어들은 ~를 포함하다, ~에 포함되다, ~와 상호 연결하다, 함유하다, ~에 함유되다, ~에 또는 ~와 연결되다, ~에 또는 ~와 결합되다, ~와 소통하다, ~와 협력하다, 삽입하다(interleave), 병치하다(juxtapose), 근접하다, ~에 또는 ~와 메이다, 가지다, ~의 속성을 갖다, ~와 또는 ~에 대해 관계를 가지다 등등을 의미할 수 있다. "적어도 하나"라는 문구는, 항목들의 목록과 함께 사용될 경우, 그 나열된 항목들 중 하나 이상의 각기 다른 조합들이 사용될 수 있고 목록 중 하나의 항목은 필수적일 수 있음을 의미한다. 예를 들어, "A, B 및 C 중 적어도 하나"는 A, B, C, A와 B, A와 C, B와 C, 그리고 A와 B와 C의 조합들 중 임의의 것을 포함한다.
도 24는, 진보된 무선 장치(예를 들어, 도 1에 도시된 101-103) 또는 UE(예를 들어, 도 1에 도시된 111-116)에 의해 수행될 수 있는, 본 개시의 다양한 실시예에 따른 장치의 방법에 관한 흐름도(2400)를 도시한다. 도 24에 도시된 예시적 방법(2400)은 단지 설명을 위한 것이다. 도 24는 본 개시의 범위를 임의의 특정 구현으로 제한하지 않는다. 도 24에 도시된 컴포넌트들 중 하나 이상이 설명된 기능을 수행하도록 구성된 특수 회로에서 구현될 수도 있고, 컴포넌트들 중 하나 이상이 설명된 기능을 수행하기 위한 명령을 실행하는 하나 이상의 프로세서에 의해 구현될 수도 있다.
도 24에 도시된 바와 의하면, 방법(2400)은 단계(2402)에서 시작한다. 단계(2402)에서, 장치는 시간 도메인에서 순차적으로 생성되는 다중 대역 채널 신호들을 생성한다. 이어서, 단계(2404)에서, 장치는 다중 대역 채널 신호들에 기초하여 반송파 주파수 세트를 변조한다. 마지막으로, 장치는 단계(2406)에서, 서브채널 부호화 OFDM 신호를 시간 도메인에서 순차적으로 송신한다.
일 실시예에서, 장치는 랜덤 주파수 호핑 동작에 기초하여, 서브채널 부호화 OFDM 신호를 시간 도메인에서 순차적으로 송신한다.
일 실시예에서, 장치는, 다중 대역 채널 신호들 중 각 서브 대역 채널 신호에 적용되는 디지털 빔포밍 동작을 수행하고, 아날로그 빔포밍 동작을 수행한다.
일 실시예에서, 장치는, 시간-주파수 도메인에서 다중 대역 채널 신호를 포맷한다.
일 실시예에서, 장치는, 반송파 주파수 세트 중 복수의 반송파를 이용하는 다중 대역 채널 부호화 OFDM 신호를 수신한다.
일 실시예에서, 장치는, 대역통과 샘플링 동작을 수행하고; 다중 대역 채널 부호화 OFDM 신호들 사이의 지연 효과를 보상하고 부대역 샘플링으로부터의 에일리어싱 효과를 감소시키기 위해 에일리어싱 제거 동작을 수행한다.
일 실시예에서, 장치는, 다중 대역 채널 신호들 중의 각 부대역 채널 신호에 기초하여 송신 지연을 보상하고 다중 대역 채널 부호화 OFDM 신호들 사이의 에일리어싱 컴포넌트를 제거한다.
일 실시예에서, 장치는, 송신 지연 효과를 보상하고 부대역 샘플링으로부터의 에일리어싱 효과를 제거하기 위해 기준 신호를 미리 계산하고, 그러한 기준 신호가 레이더 기저대역 처리에 사용된다.
본 명세서에서의 설명은 임의의 특정 구성요소, 단계 또는 기능이, 청구범위에 포함되어야 하는 필수적이거나 결정적인 요소임을 암시하는 것으로 해석되어서는 안 된다. 본 특허 문서의 범위는 청구범위에 의해서만 정의된다. 또한, 어떠한 청구항도, 청구항에서 기능을 식별하는 분사구와 함께 "~을 위한 수단" 또는 "~를 위한 단계"라는 단어 자체가 명시적으로 사용되지 않은 이상, 첨부된 청구범위나 청구범위 구성요소들 중 어느 것과 관련해서도, 35 USC §112(f)를 인보킹 하고자 의도된 것이 아니다. 청구항에서 "메커니즘", "모듈", "디바이스", "유닛", "컴포넌트", "구성요소", "부재", "장치", "머신", "시스템",” 프로세서” 또는 “컨트롤러” 등(이에 국한되지 않음)의 용어의 사용은, 청구항 자체의 특징들에 의해 수정되거나 강화된 바에 따른, 관련 기술 분야의 당업자에게 알려진 구조를 지칭하는 것으로 이해되고 의도되며 35 U.S.C. § 112(f)를 인보킹 하고자 의도된 것이 아니다.
본 명세서에서는 특정 실시예들 및 일반적으로 연관된 방법들이 설명되었지만, 이러한 실시예들 및 방법들의 변경 및 순열은 당업자에게 명백할 것이다. 따라서, 전술한 예시적 실시예들에 관한 설명은 본 개시를 정의하거나 제한하지 않는다. 다음의 청구범위에 의해 정의된 바에 따라, 본 개시의 범위를 벗어나지 않고서 다양한 변경, 대체 및 변형이 또한 가능하다.
Claims (16)
- 프로세서;
수신기; 및
상기 프로세서 및 상기 수신기에 동작 가능하게 연결된 적어도 하나의 송신기를 포함하는 장치이며,
상기 적어도 하나의 송신기는,
시간 도메인에서 순차적으로 생성되는 다중 대역 채널 신호들(multi-band channel signals)을 생성하고,
상기 다중 대역 채널 신호들에 기초하여 반송파 주파수 세트(a set of carrier frequencies)를 변조하고,
상기 시간 도메인에서 순차적으로 서브채널 부호화 OFDM(orthogonal frequency division multiplexing) 신호를 송신하도록 구성된,
장치. - 제1항에 있어서,
상기 적어도 하나의 송신기는, 랜덤 주파수 호핑 동작(random frequency hopping operation)에 기초하여, 상기 서브채널 부호화 OFDM 신호를 상기 시간 도메인에서 순차적으로 송신하도록 더 구성된, 장치. - 제1항에 있어서,
상기 적어도 하나의 송신기는,
상기 다중 대역 채널 신호들 중의 각 부대역 채널 신호에 적용되는 디지털 빔포밍을 수행하도록 구성된 디지털 빔포머; 및
아날로그 빔포밍 동작을 수행하도록 구성된 아날로그 빔포머를 포함하는, 장치. - 제1항에 있어서,
상기 적어도 하나의 송신기는,
상기 다중 대역 채널 신호들을 시간-주파수 도메인에서 포맷하도록 구성된 시간-주파수 맵퍼를 포함하는, 장치. - 제1항에 있어서,
상기 프로세서에 동작 가능하게 연결된 상기 수신기는,
상기 반송파 주파수 세트 중의 복수의 반송파를 이용하여 다중 대역 채널 부호화 OFDM 신호들을 수신하도록 구성된, 장치. - 제5항에 있어서,
상기 수신기는,
대역통과 샘플링 동작을 수행하도록 구성된 부대역 필터 세트(a set of sub-band filters); 및
다중 대역 채널 부호화 OFDM 신호들 사이의 지연 효과를 보상하고 부대역 샘플링으로부터의 에일리어싱 효과를 줄이기 위한 에일리어싱 제거 동작을 수행하도록 구성된 지연 보상기를 포함하는, 장치. - 제6항에 있어서,
상기 수신기는,
상기 다중 대역 채널 신호들 중의 각 부대역 채널 신호에 기초하여 송신 지연을 보상하고,
다중 대역 채널 부호화 OFDM 신호들 사이에서 에일리어싱 컴포넌트들을 제거하도록 구성된, 장치. - 제7항에 있어서,
상기 수신기는, 송신 지연 효과를 보상하고 상기 부대역 샘플링으로부터의 상기 에일리어싱 효과를 제거하기 위해 기준 신호들을 미리 계산하도록 더 구성되고,
상기 기준 신호들이 레이더 기저대역 처리에 사용되는, 장치. - 장치의 방법으로서,
시간 도메인에서 순차적으로 생성되는 다중 대역 채널 신호들을 생성하는 동작,
상기 다중 대역 채널 신호들에 기초하여 반송파 주파수 세트를 변조하는 동작, 및
상기 시간 도메인에서 순차적으로, 서브채널 부호화 OFDM(orthogonal frequency division multiplexing) 신호를 송신하는 동작을 포함하는, 방법. - 제9항에 있어서,
랜덤 주파수 호핑 동작에 기초하여, 상기 서브채널 부호화 OFDM 신호를 상기 시간 도메인에서 순차적으로 송신하는 동작을 더 포함하는, 방법. - 제9항에 있어서,
상기 다중 대역 채널 신호들 중의 각 부대역 채널 신호에 적용되는 디지털 빔포밍 동작을 수행하는 동작, 및
아날로그 빔포밍 동작을 수행하는 동작을 더 포함하는, 방법. - 제9항에 있어서,
상기 다중 대역 채널 신호들을 시간-주파수 도메인에서 포맷하는 동작을 더 포함하는, 방법. - 제9항에 있어서,
상기 반송파 주파수 세트 중의 복수의 반송파를 이용하여 다중 대역 채널 부호화 OFDM 신호들을 수신하는 동작을 더 포함하는, 방법. - 제13항에 있어서,
대역통과 샘플링 동작을 수행하는 동작; 및
다중 대역 채널 부호화 OFDM 신호들 사이의 지연 효과를 보상하고 부대역 샘플링으로부터의 에일리어싱 효과를 줄이기 위한 에일리어싱 제거 동작을 수행하는 동작을 더 포함하는, 방법. - 제14항에 있어서,
상기 다중 대역 채널 신호들 중의 각 부대역 채널 신호에 기초하여 송신 지연을 보상하는 동작, 및
다중 대역 채널 부호화 OFDM 신호들 사이에서 에일리어싱 컴포넌트들을 제거하는 동작을 더 포함하는, 방법. - 제15항에 있어서,
송신 지연 효과를 보상하고 상기 부대역 샘플링으로부터의 상기 에일리어싱 효과를 제거하기 위해 기준 신호들을 미리 계산하는 동작을 더 포함하고,
상기 기준 신호들이 레이더 기저대역 처리에 사용되는, 방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163135916P | 2021-01-11 | 2021-01-11 | |
US63/135,916 | 2021-01-11 | ||
PCT/US2022/012036 WO2022150783A1 (en) | 2021-01-11 | 2022-01-11 | Transmitter and receiver for high-resolution sub-band coded time‑frequency waveform radar system with bandpass sampling |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20230130707A true KR20230130707A (ko) | 2023-09-12 |
Family
ID=82357039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020237027283A KR20230130707A (ko) | 2021-01-11 | 2022-01-11 | 대역통과 샘플링을 이용하는 고해상도 부대역 부호화시간-주파수 파형 레이더 시스템을 위한 송신기 및 수신기 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240072947A1 (ko) |
EP (1) | EP4272386A1 (ko) |
JP (1) | JP2024505146A (ko) |
KR (1) | KR20230130707A (ko) |
CN (1) | CN117015960A (ko) |
WO (1) | WO2022150783A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024119293A1 (en) * | 2022-12-05 | 2024-06-13 | Qualcomm Incorporated | Estimating orthogonal frequency division multiplexing channels using frequency modulated continuous waveforms |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7639597B2 (en) * | 2000-07-19 | 2009-12-29 | Steve J Shattil | Method and apparatus for transmitting signals having a carrier-interferometry architecture |
US8917198B2 (en) * | 2010-01-05 | 2014-12-23 | Syntropy Systems, Llc | Multi-mode sampling/quantization converters |
WO2012168926A2 (en) * | 2011-06-10 | 2012-12-13 | Technion R&D Foundation | Receiver, transmitter and a method for digital multiple sub-band processing |
US10863313B2 (en) * | 2014-08-01 | 2020-12-08 | Polte Corporation | Network architecture and methods for location services |
JPWO2017098950A1 (ja) * | 2015-12-10 | 2018-09-27 | ソニー株式会社 | 受信装置、及び、データ処理方法 |
EP3912340A4 (en) * | 2019-01-14 | 2022-11-09 | Aura Intelligent Systems, Inc. | SUBBAND AND MULTIBAND CODED OFDM FOR HIGH RESOLUTION RADAR |
-
2022
- 2022-01-11 CN CN202280018402.7A patent/CN117015960A/zh active Pending
- 2022-01-11 JP JP2023541952A patent/JP2024505146A/ja active Pending
- 2022-01-11 EP EP22737309.9A patent/EP4272386A1/en active Pending
- 2022-01-11 WO PCT/US2022/012036 patent/WO2022150783A1/en active Application Filing
- 2022-01-11 US US18/261,092 patent/US20240072947A1/en active Pending
- 2022-01-11 KR KR1020237027283A patent/KR20230130707A/ko unknown
Also Published As
Publication number | Publication date |
---|---|
CN117015960A (zh) | 2023-11-07 |
WO2022150783A1 (en) | 2022-07-14 |
JP2024505146A (ja) | 2024-02-05 |
EP4272386A1 (en) | 2023-11-08 |
US20240072947A1 (en) | 2024-02-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11936477B2 (en) | Sub-band and multi-band coded OFDM for high-resolution radar | |
KR102059379B1 (ko) | 셀룰러 통신 시스템에서 방송 채널 송수신 방법 및 장치 | |
CN108702226B (zh) | 无线通信系统中的测量参考信号的方法和设备 | |
US20230033995A1 (en) | Time-frequency spread waveform for high-resolution digital radar | |
CA2776212C (en) | Method and apparatus for transmitting data in wlan system | |
KR102100462B1 (ko) | 밀리미터파 시스템에서 채널 미세 조정 및 다중 스트림 전송을 지원하기 위한 방법 및 장치 | |
US20120269286A1 (en) | Out-of-band emission cancellation | |
WO2022198349A1 (en) | Method, apparatus, and medium for modulation of waveform in fractional domain for integrated sensing and communication | |
KR20220012251A (ko) | 멀티-스트림 mimo/빔포밍 레이더 | |
EP3997922A1 (en) | Power saving for digital radar | |
CN107371383B (zh) | 用于使用频谱掩模填充来降低无线通信系统中的峰均功率的方法和设备 | |
US8868013B2 (en) | Apparatus and method for transmitting/receiving signal | |
KR20230130707A (ko) | 대역통과 샘플링을 이용하는 고해상도 부대역 부호화시간-주파수 파형 레이더 시스템을 위한 송신기 및 수신기 | |
CN107787564B (zh) | 无线电通信网络中控制器、接入节点以及聚合节点 | |
CN116250350A (zh) | 上行链路传输中的信道接入响应 | |
WO2023092365A1 (en) | Signal structure designs for wireless communication and sensing | |
WO2023092366A1 (en) | Coexistence schemes for wireless communication and sensing | |
US10708012B1 (en) | Wideband subcarrier wireless transceiver circuits and systems | |
CN118282592A (zh) | 无线通信系统中的通信装置及其方法 | |
CN118614009A (zh) | 基于正交频分复用的雷达 | |
CN115941139A (zh) | 一种训练参考信号的传输方法和装置 |