KR20230113487A - High-conductivity PEDOT:PSS and ionic liquid composite ink, manufacturing method and application thereof - Google Patents

High-conductivity PEDOT:PSS and ionic liquid composite ink, manufacturing method and application thereof Download PDF

Info

Publication number
KR20230113487A
KR20230113487A KR1020220124031A KR20220124031A KR20230113487A KR 20230113487 A KR20230113487 A KR 20230113487A KR 1020220124031 A KR1020220124031 A KR 1020220124031A KR 20220124031 A KR20220124031 A KR 20220124031A KR 20230113487 A KR20230113487 A KR 20230113487A
Authority
KR
South Korea
Prior art keywords
pss
ionic liquid
pedot
electrode
present
Prior art date
Application number
KR1020220124031A
Other languages
Korean (ko)
Inventor
박 스티브
백승혁
박현민
오병국
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of KR20230113487A publication Critical patent/KR20230113487A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/268Bioelectric electrodes therefor characterised by the electrode materials containing conductive polymers, e.g. PEDOT:PSS polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/54Inks based on two liquids, one liquid being the ink, the other liquid being a reaction solution, a fixer or a treatment solution for the ink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing
    • F26B5/065Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing the product to be freeze-dried being sprayed, dispersed or pulverised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Wood Science & Technology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

PEDOT:PSS과 상기 PEDOT:PSS와 이온교환을 할 수 있는 이온성 액체를 혼합한 용액을 준비하는 단계; 상기 용액을 동결건조시키는 단계; 상기 동결건조된 물질을 용액에 혼합하여 콜로이드 용액을 제조하는 단계; 및 상기 콜로이드 용액으로부터 잉크물질을 추출하는 단계를 포함하는 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크 제조방법이 제공된다. Preparing a mixture of PEDOT:PSS and an ionic liquid capable of ion exchange with the PEDOT:PSS; Freeze-drying the solution; preparing a colloidal solution by mixing the lyophilized material with a solution; and extracting an ink material from the colloidal solution.

Description

고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크, 제조방법 및 그 응용{High-conductivity PEDOT:PSS and ionic liquid composite ink, manufacturing method and application thereof}High-conductivity PEDOT:PSS and ionic liquid composite ink, manufacturing method and application thereof

본 발명은 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크, 제조방법 및 그 응용에 관한 것으로, 보다 상세하게는 높은 전기전도도(~286S/cm)와 낮은 임피던스(2,183Ω at 1Khz Frequency)를 가지면서, 물에 녹지 않는 전도성고분자 기반 3d 프린팅이 가능한 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크, 제조방법 및 그 응용에 관한 것이다. The present invention relates to a highly conductive PEDOT: PSS and ionic liquid composite ink, manufacturing method, and application thereof, and more particularly, while having high electrical conductivity (~286S/cm) and low impedance (2,183Ω at 1Khz Frequency) , Highly conductive PEDOT:PSS and ionic liquid composite ink capable of 3D printing based on water-insoluble conductive polymer, manufacturing method and application thereof.

폴리(3,4-에틸렌디옥시티오펜) : 폴리(스티렌술포네이트)(Poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate)) (PEDOT : PSS)는 고전도성 고분자 중 가장 대표적인 물질로서, 전기 전도도와 광투과도가 우수하고, 뛰어난 유연성을 가지고 있다.Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) is the most representative material among highly conductive polymers, and has excellent electrical conductivity. It has excellent light transmittance and excellent flexibility.

이러한 PEDOT:PSS는 투명전극이나 정공수송층의 소재로 각광을 받고 있으나 전도도에 악영향을 주는 PSS 상을 제조후 물을 이용하여 제거하여야 한다. 하지만 단순히 PEDOT:PSS와 이온성 액체를 섞어줄 경우, 용액이 불균일하여 블레이드 코팅이 불가능할뿐만 아니라, 점도도 낮아 3D 프린팅이 안된다는 단점이 있다. 또한 기존에 보고되어 있는 3D 프린팅이 가능한 PEDOT:PSS 기반 잉크의 경우, 전기전도도가 155S/cm정도로 낮고, bioelectronics 분야에 사용하기 위해서는 1일간의 추가적인 어닐링 공정이 필요하기 때문에, 바로 사용할 수 없다는 단점이 있고, 녹는점이 낮지만 체내 장기와 비슷한 물성을 가지는 하이드로젤과 융합하여 사용할 수 없다는 단점 또한 있다. Such PEDOT: PSS is in the limelight as a material for a transparent electrode or a hole transport layer, but the PSS phase that adversely affects conductivity must be removed using water after preparation. However, when PEDOT:PSS and ionic liquid are simply mixed, not only is blade coating impossible because the solution is non-uniform, but also has a disadvantage that 3D printing is not possible due to low viscosity. In addition, in the case of the previously reported PEDOT:PSS-based ink, which can be 3D printed, the electrical conductivity is as low as 155 S/cm, and an additional annealing process of 1 day is required to use in the field of bioelectronics, so it cannot be used immediately. It has a low melting point, but there is also a disadvantage that it cannot be used in combination with a hydrogel that has properties similar to those of internal organs.

따라서, 높은 점도도와 함께 높은 점도를 동시에 가지며 더 나아가 별도의 어닐링 공정없이도 바로 사용할 수 있는 새로운 고전도성 PEDOT:PSS와 이에 기반한 잉크의 개발이 필요한 상황이다. Therefore, it is necessary to develop a new highly conductive PEDOT:PSS and an ink based thereon that have high viscosity and high viscosity at the same time and can be used immediately without a separate annealing process.

(1) 대한민국 공개특허 10-2018-0016737(2018.02.12)(1) Republic of Korea Patent Publication 10-2018-0016737 (2018.02.12) (2) 대한민국 공개특허 10-2015-0071741 (2015.05.22)(2) Republic of Korea Patent Publication 10-2015-0071741 (2015.05.22)

(1). Yuk, H., Lu, B., Lin, S. et al. 3D 프린팅 of conducting polymers. Nat Commun 11, 1604 (2020).(One). Yuk, H., Lu, B., Lin, S. et al. 3D printing of conducting polymers. Nat Commun 11, 1604 (2020). (2). Liu, Y., Liu, J., Chen, S. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng 3, 58-68 (2019).(2). Liu, Y., Liu, J., Chen, S. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng 3, 58-68 (2019). (3). Mei Ying Teo, Narrendar RaviChandran, Nara Kim, Seyoung Kee, Logan Stuart, Kean C. Aw, and Jonathan Stringer ACS Applied Materials & Interfaces 2019 11 (40), 37069-37076(3). Mei Ying Teo, Narrendar RaviChandran, Nara Kim, Seyoung Kee, Logan Stuart, Kean C. Aw, and Jonathan Stringer ACS Applied Materials & Interfaces 2019 11 (40), 37069-37076

따라서, 본 발명이 해결하고자 하는 과제는 높은 점도도와 함께 높은 점도를 동시에 가지며 더 나아가 별도의 어닐링 공정없이도 바로 사용할 수 있는 새로운 고전도성 PEDOT:PSS와 이에 기반한 잉크와 그 제조공정을 제공하는 것이다. Therefore, the problem to be solved by the present invention is to provide a new highly conductive PEDOT:PSS that has both high viscosity and high viscosity and can be used immediately without a separate annealing process, an ink based thereon, and a manufacturing process thereof.

상기 과제를 해결하기 위하여, 본 발명은 PEDOT:PSS과 상기 PEDOT:PSS와 이온교환을 할 수 있는 이온성 액체를 혼합한 용액을 준비하는 단계; 상기 용액을 동결건조시키는 단계; 상기 동결건조된 물질을 용액에 혼합하여 콜로이드 용액을 제조하는 단계; 및 상기 콜로이드 용액으로부터 잉크물질을 추출하는 단계를 포함하는 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크 제조방법을 제공한다. In order to solve the above problems, the present invention provides a mixture of PEDOT: PSS and an ionic liquid capable of ion exchange with the PEDOT: PSS; Freeze-drying the solution; preparing a colloidal solution by mixing the lyophilized material with a solution; and extracting an ink material from the colloidal solution.

본 발명의 일 실시예에서, 상기 이온성 액체는 TCB:EMIM 또는 TCB:HMIM이다. In one embodiment of the present invention, the ionic liquid is TCB:EMIM or TCB:HMIM.

본 발명의 일 실시예에서, 상기 콜로이드 용액을 제조하는 단계는 초음파 처리로 수행된다. In one embodiment of the present invention, preparing the colloidal solution is performed by sonication.

본 발명의 일 실시예에서, 상기 콜로이드 용액은 계면활성제를 더 포함한다. In one embodiment of the present invention, the colloidal solution further includes a surfactant.

본 발명의 일 실시예에서, 상기 동결건조는 액화질소로 상기 용액을 급냉시키는 단계를 포함한다. In one embodiment of the present invention, the lyophilization comprises quenching the solution with liquid nitrogen.

본 발명은 또한 상술한 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크 제조방법에 의하여 제조된 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크를 제공한다. The present invention also provides a high-conductivity PEDOT:PSS and ionic liquid composite ink prepared by the above-described high-conductivity PEDOT:PSS and ionic liquid composite ink manufacturing method.

본 발명은 또한 상šDㄴ 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크로 제조된 전극을 제공한다. The present invention also provides an electrode made of a composite ink of high-phase and highly conductive PEDOT:PSS and an ionic liquid.

본 발명의 일 실시예에서, 상기 전극의 전도도는 200S/cm를 초과하며, 상기 전극은 하이드로겔과 물리적으로 부착가능하다. In one embodiment of the present invention, the conductivity of the electrode exceeds 200 S / cm, The electrode is physically attachable with the hydrogel.

본 발명은 또한 상술한 전극을 포함하는 전자소자를 제공하며, 상기 전자소자는 바이오전자소자이다. The present invention also provides an electronic device including the electrode described above, and the electronic device is a bioelectronic device.

본 발명의 일 실시예에서, 상기 전자소자는 생체 신호를 감지하는 센서소자이며, 상기 전극은 상기 생체 신호를 모니터링하는 센싱전극이다. In one embodiment of the present invention, the electronic element is a sensor element for detecting the bio-signal, and the electrode is a sensing electrode for monitoring the bio-signal.

본 발명에 따른 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크는 전기전도성과 점성이 기존 잉크들에 비해 높기 때문에 3d프린팅이 가능하며, 따라서 전극 인쇄기술 분야에서 사용될 수 있다. 또한 본 발명에 따른 잉크는 물에 녹지 않기 때문에, 바이오전자소자(Bioelectronics) 분야 및 물에 녹지 않는 전극 등에도 사용될 수 있다. Since the highly conductive PEDOT:PSS and ionic liquid composite ink according to the present invention has higher electrical conductivity and viscosity than conventional inks, 3D printing is possible, and thus it can be used in the field of electrode printing technology. In addition, since the ink according to the present invention is insoluble in water, it can be used in the field of bioelectronics and electrodes insoluble in water.

도 1은 본 발명의 일 실시예에 따른 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크 제조방법의 단계도이다.
도 2는 본 발명에 따른 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크를 3D 프린팅하여 제조된 전극의 사진이고, 도 3은 이를 통하여 체내 근육의 움직을 측정한 센서(EMG) 데이터이다.
도 4는 본 발명에 따른 잉크 기반 전극을 이용하여 심박을 측정한 센서(ECG) 데이터이다.
도 5는 본 발명에 따른 잉크 기반 전극을 이용하여 Electrochemical Impedance Spectroscopy를 측정한 데이터이다.
도 6은 본 발명에 따른 잉크 기반 전극의 전사 후 전기전도도 데이터이다.
도 7은 하이드로젤과 본 발명에 따른 전극을 붙였을 때 SEM 이미지이다.
도 8은 본 발명에 따라 제작한 잉크의 점도를 측정한 데이터이다.
도 9는 본 발명에 따른 잉크의 우수한 세포독성에 대한 실험결과이다.
도 10은 본 발명의 실시예에 사용된 이온성 액체인 EMIM:TCB 가 원심분리 과정에서 DI water에 녹은 이미지이고, 도 11은 원심분리 시스템의 사진과, 상층부 용액(DI water)에 Ionic liquid와 PSS가 녹아 나왔다는 XPS 분석결과이다.
도 12는 밀봉한 상태에서 영상 4도로 냉장보관시킨 후의 사진이다.
1 is a step diagram of a method for preparing a high conductivity PEDOT: PSS and ionic liquid composite ink according to an embodiment of the present invention.
Figure 2 is a photograph of an electrode manufactured by 3D printing the highly conductive PEDOT: PSS and ionic liquid composite ink according to the present invention, and Figure 3 is sensor (EMG) data obtained by measuring the movement of muscles in the body through this.
4 is sensor (ECG) data obtained by measuring heart rate using the ink-based electrode according to the present invention.
5 is electrochemical impedance spectroscopy measurement data using the ink-based electrode according to the present invention.
6 is electrical conductivity data after transfer of the ink-based electrode according to the present invention.
7 is a SEM image when a hydrogel and an electrode according to the present invention are attached.
8 is data obtained by measuring the viscosity of the ink prepared according to the present invention.
9 is an experimental result for excellent cytotoxicity of the ink according to the present invention.
10 is an image of EMIM:TCB, an ionic liquid used in an embodiment of the present invention, dissolved in DI water during centrifugation, and FIG. 11 is a photograph of a centrifugal separation system, and ionic liquid and This is the result of XPS analysis that PSS has melted.
Figure 12 is a photograph after refrigeration at 4 degrees in the sealed state.

이하, 본 발명에 따른 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크, 제조방법 및 그 응용을, 바람직한 실시예를 첨부한 도면들에 의거하여 상세히 설명한다. 참고로, 본 명세서 및 청구범위에 사용된 용어와 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석해야만 한다. 또한, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Hereinafter, a highly conductive PEDOT: PSS and ionic liquid composite ink according to the present invention, a manufacturing method, and applications thereof will be described in detail based on the accompanying drawings of preferred embodiments. For reference, the terms and words used in this specification and claims should not be construed as being limited to their ordinary or dictionary meanings, and the inventors use the concept of terms appropriately to describe their invention in the best way. It should be interpreted as meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined. In addition, the embodiments described in this specification and the configurations shown in the drawings are only one of the most preferred embodiments of the present invention, and do not represent all of the technical ideas of the present invention. It should be understood that there may be equivalents and variations.

본 발명은 상술한 과제를 해결하기 위하여, 동결건조 방식으로 PEDOT:PSS와 이온성 액체 복합체 잉크를 제조하는 방법을 제공한다. In order to solve the above problems, the present invention provides a method for preparing a PEDOT: PSS and ionic liquid composite ink by lyophilization.

본 명세서에서 "동결건조"라 함은 액체질소에 넣어 급냉시킨 후 이를 저온,저기압의 환경에 넣어 얼어서 고체상태로 되어있는 용매를 승화시키는 공정으로, 본 발명에서는 PEDOT:PSS와 이온성 용매 중합체의 구조가 잘 유지된다는 장점이 있고, 이에 따라 전기적인 물성의 보존을 할 수 있다는 장점이 있다. In the present specification, "freeze drying" refers to a process of sublimating a solvent in a solid state by putting it in liquid nitrogen and rapidly cooling it in a low-temperature, low-pressure environment, and in the present invention, PEDOT: PSS and an ionic solvent polymer There is an advantage that the structure is well maintained, and accordingly, there is an advantage that the electrical properties can be preserved.

도 1은 본 발명의 일 실시예에 따른 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크 제조방법의 단계도이다. 1 is a step diagram of a method for preparing a high conductivity PEDOT: PSS and ionic liquid composite ink according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 일 실시예에 따른 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크 제조방법은, PEDOT:PSS과 상기 PEDOT:PSS와 이온교환을 할 수 있는 이온성 액체를 혼합한 용액을 급냉시키는 단계; 상기 급냉한 용액을 동결건조시키는 단계; 상기 동결건조된 물질을 용액에 혼합하여 콜로이드 용액을 제조하는 단계; 및 상기 콜로이드 용액으로부터 잉크물질을 추출하는 단계를 포함한다. Referring to FIG. 1, a method for manufacturing a highly conductive PEDOT: PSS and ionic liquid composite ink according to an embodiment of the present invention is a mixture of PEDOT: PSS and an ionic liquid capable of ion exchange with the PEDOT: PSS. quenching the solution; Freeze-drying the quenched solution; preparing a colloidal solution by mixing the lyophilized material with a solution; and extracting an ink material from the colloidal solution.

이하 실시예를 통하여 본 발명을 보다 상세히 설명한다. 하지만, 본 발명의 범위는 하기 실시예에 의하여 제한되지 않는다. The present invention will be described in more detail through the following examples. However, the scope of the present invention is not limited by the following examples.

실시예Example

(1). PEDOT:PSS : Deionized water : 이온성 액체= 2ml : 1ml : 30mg 비율로 넣고 12시간 동안 교반시켰다.(One). PEDOT: PSS: Deionized water: Ionic liquid = 2ml: 1ml: 30mg ratio was added and stirred for 12 hours.

(2). (1)의 용액을 액체질소에 넣어 영하 섭씨 96도 수준으로 급냉하고, 동결건조시켰다. (2). The solution of (1) was put into liquid nitrogen, rapidly cooled to minus 96 degrees Celsius, and lyophilized.

(3). (2)번 물질 : DI water : 계면활성제인 폴리소베이트 80(TWEEN 80)= 200mg : 10ml : 30mg 비율로 넣은 후 3시간동안 500 W, 20 kHz로 팁 초음파처리(tip sonication) 과정을 진행하였다. 이로써 (3)번 물질이 콜로이드 형태로 DI water 내에 분산되게 하였다. (3). Substance (2): DI water: Polysorbate 80 (TWEEN 80) as a surfactant = 200mg: 10ml: After adding in the ratio of 30mg, tip sonication was performed at 500 W and 20 kHz for 3 hours. . This allowed the material (3) to be dispersed in DI water in a colloidal form.

(6). (5)번 물질을 15,000rpm으로 45분간 2번 원심분리시켜 콜로이드 상의 PEDOT:PSS와 이온성 액체 복합체 잉크를 농축하여 추출하였다. 2번을 진행한 이유는 세포독성을 좋게 만들기 위해서 이며, 이러한 세포독성에 있어서의 효과는 이하 실험예를 통하여 보다 상세히 설명한다. (6). Material (5) was centrifuged twice at 15,000 rpm for 45 minutes to concentrate and extract colloidal PEDOT:PSS and ionic liquid composite ink. The reason for proceeding with No. 2 is to improve cytotoxicity, and the effect on cytotoxicity will be described in more detail through the following experimental examples.

본 실시예에서는 PEDOT:PSS의 수분산액으로 Heraeus사의 PH-1000을 사용하였고, 이온성 액체(ionic liquid)로는 시그마 알드리치사의 TCB:EMIM(1-Ethyl-3-methylimidazolium tetracyanoborate Solarpur)을 사용하였다. 하지만, PEDOT:PSS와 이온 교환반응을 일으킬 수 있는 이온성 액체라면 TCB:EMIM 을 대체하여 사용할 수 있으며, 예를 들어 TCB:HMIM(1-hexyl-3- methylimidazolium tetracyanoborate) 등이 그 예이다. 또한 팁 초음파처리(tip sonication) 과정에 사용하는 용매는 DI Water 이외에도 PEDOT의 -O,-S 작용기와 수소결합을 할 수 있는 용매라면 잉크제작에 사용될 수 있으며, 예를 들어 IPA, DMSO, 에탄올이 그 예이다. In this example, PH-1000 from Heraeus was used as an aqueous dispersion of PEDOT:PSS, and TCB:EMIM (1-Ethyl-3-methylimidazolium tetracyanoborate Solarpur) from Sigma-Aldrich was used as an ionic liquid. However, any ionic liquid that can cause an ion exchange reaction with PEDOT:PSS can be used instead of TCB:EMIM, for example, TCB:HMIM (1-hexyl-3-methylimidazolium tetracyanoborate). In addition, any solvent used in the tip sonication process can be used for ink production if it can hydrogen bond with -O, -S functional groups of PEDOT in addition to DI water. For example, IPA, DMSO, and ethanol That's an example.

실험예Experimental Example

도 2는 본 발명에 따른 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크를 3D 프린팅하여 제조된 전극의 사진이고, 도 3은 이를 통하여 체내 근육의 움직임을 측정한 센서(EMG) 데이터이다. Figure 2 is a photograph of an electrode manufactured by 3D printing the highly conductive PEDOT: PSS and ionic liquid composite ink according to the present invention, and Figure 3 is sensor (EMG) data measuring the movement of internal muscles through this.

도 2 및 3을 참조하면, 굴곡이 있는 표면에 접착될 수 있는 비평탄화된 기판에도 본 발명에 따른 잉크는 전극물질로 사용될 수 있으며, 실제 근육 움직임도 잘 센싱하는 것을 알 수 있다. Referring to FIGS. 2 and 3 , it can be seen that the ink according to the present invention can be used as an electrode material even on a non-flattened substrate that can be adhered to a curved surface, and can also sense actual muscle movements well.

도 4는 본 발명에 따른 잉크 기반 전극을 이용하여 심박을 측정한 센서(ECG) 데이터이다. 4 is sensor (ECG) data obtained by measuring heart rate using the ink-based electrode according to the present invention.

도 4를 참조하면, 본 발명에 따른 잉크는 바이오 전자소자로서도 안정적인 신호 센싱이 가능하다는 것을 알 수 있다. Referring to FIG. 4 , it can be seen that the ink according to the present invention enables stable signal sensing even as a bio-electronic device.

도 5는 본 발명에 따른 잉크 기반 전극을 이용하여 Electrochemical Impedance Spectroscopy를 측정한 데이터이다. 도 5에서 동작 전극, 카운터 전극은 본 발명에 따른 잉크로부터 제조된 전극이고 상대전극은 금이었다. 여기에서 전극노출 면적은 4 mm 2 수준이었다. 5 is electrochemical impedance spectroscopy measurement data using the ink-based electrode according to the present invention. In FIG. 5, the working electrode and the counter electrode are electrodes made from the ink according to the present invention, and the counter electrode is gold. Here, the electrode exposure area was about 4 mm 2 .

도 5를 참조하면, 생체내 신경장치(in-vivo neural device)의 작동범위인 1Khz에서 2,184Kohm의 낮은 임피던스를 가지고 있는 것을 보았을 때 체내에 삽입하는 바이오전자소자에서도 본 발명에 따른 잉크 기반 전극이 활용될 수 있다.Referring to FIG. 5, when it is seen that it has a low impedance of 2,184Kohm at 1Khz, which is the operating range of an in-vivo neural device, the ink-based electrode according to the present invention is also used in a bioelectronic device to be inserted into the body. can be utilized

도 6은 본 발명에 따른 잉크 기반 전극의 전사 후 전기전도도 데이터이다.6 is electrical conductivity data after transfer of the ink-based electrode according to the present invention.

도 6에서는 본 발명에 따른 전극을 배터리 분리막으로 쓰이는 celgard 2400에 프린팅을 한 후 거기에서 떼어내는 방식으로 전사를 진행하였으며, 전극을 제조 후 소자 기판으로 전사시켰다. 도 6을 참조하면, 본 발명에 따른 잉크는 전극 형태로 전사하더라도 전기전도도가 크게 변하지 않음을 알 수 있다. In FIG. 6, the electrode according to the present invention was printed on celgard 2400 used as a battery separator, and then transferred by removing it from there, and the electrode was manufactured and then transferred to the device substrate. Referring to FIG. 6 , it can be seen that the electrical conductivity of the ink according to the present invention does not change significantly even when transferred in the form of an electrode.

특히 기존의 3D 프린팅이 가능하다고 보고된 PEDOT:PSS의 전기전도도 최대치가, 불과 155S/cm정도임을 고려하여 볼 때, 동결건조 방식으로 제조된 잉크로부터 제조된 전극은 무려 200S/cm를 초과하는 고전도도를 갖는다는 것은 본 발명에 따른 PEDOT:PSS가 가지는 우수한 특성이다. 이는 이온성액체와 PEDOT:PSS의 이온교환효과에 따른 효과로 판단된다. In particular, considering that the maximum electrical conductivity of PEDOT:PSS, which has been reported to be possible for conventional 3D printing, is only about 155 S/cm, the electrode prepared from the ink manufactured by the freeze-drying method has a high level of over 200 S/cm. Having viscosity is an excellent characteristic of PEDOT:PSS according to the present invention. This is judged to be an effect according to the ion exchange effect of the ionic liquid and PEDOT:PSS.

도 7은 하이드로젤과 본 발명에 따른 전극을 붙였을 때 SEM 이미지이다. 7 is a SEM image when a hydrogel and an electrode according to the present invention are attached.

도 7을 참조하면, 하이드로젤과 매우 잘 붙어있음을 알 수 있다. 이는 본 발명에 따른 전극은 생체내 수분 등을 함유한 조직과도 잘 부착될 수 있음을 시사한다. Referring to FIG. 7 , it can be seen that the hydrogel adheres very well. This suggests that the electrode according to the present invention can be well attached even to tissues containing moisture in vivo.

도 8은 본 발명에 따라 제작한 잉크의 점도를 측정한 데이터이다. 8 is data obtained by measuring the viscosity of the ink prepared according to the present invention.

도 8을 참조하면, 물을 첨가함에 따라 점도가 감소하는 것을 알 수 있다. 이것은 사용 목적에 따라 점도를 용매 선택에 따라 자유로이 조절할 수 있음을 시사한다. Referring to FIG. 8 , it can be seen that the viscosity decreases as water is added. This suggests that the viscosity can be freely adjusted according to the solvent selection according to the purpose of use.

도 9는 본 발명에 따른 잉크의 우수한 세포독성에 대한 실험결과이다. 9 is an experimental result for excellent cytotoxicity of the ink according to the present invention.

도 9의 실험에서는 세포주는 인간 세포로 유방 조직에서 분리된 상피 세포인 MDA-MB-231이었으며, 농도는 5 x 104 cell/ml, Cell viability assay kit (CCK8 assay kit)로 24시간 처리하여 세포 생존율을 측정하였다. In the experiment of FIG. 9, the cell line was MDA-MB-231, which is an epithelial cell isolated from breast tissue as a human cell, and the concentration was 5 x 10 4 cell/ml, and cells were treated for 24 hours with a Cell viability assay kit (CCK8 assay kit). Survival rates were measured.

도 9를 참조하면, 제일 우측의 아무 처리하지 않은 대조군 세포 대비 종래의 고전도성 PEDOT:PSS-이온성 액체 복합체의 경우(우측 보라색), 매우 강한 세포 독성을 갖는 것을 알 수 있다. 정상 세포 대비 PEDOT:PSS-이온성 액체 복합체에 세포를 노출시키는 경우, 생존율이 불과 20% 수준이었으며, 이를 생체전자소자 분야에 사용하기 위해서는 별도의 독성을 제거하는 공정을 하여야 했다. 하지만, 본 발명의 경우(가운데 녹색), 세포 생존율이 86%까지 증가하는 것을 알 수 있다. 이것은 본 발명에 따라 동결건조 방식으로 제조된 PEDOT:PSS 잉크가 생체 내 전극 소재로 적합하다는 것을 의미한다. Referring to FIG. 9, it can be seen that the conventional highly conductive PEDOT:PSS-ionic liquid complex (purple color on the right) has very strong cytotoxicity compared to untreated control cells on the far right. When cells were exposed to the PEDOT:PSS-ionic liquid complex compared to normal cells, the survival rate was only 20%, and a separate process to remove toxicity was required to use it in the field of bioelectronic devices. However, in the case of the present invention (green in the middle), it can be seen that the cell viability increases up to 86%. This means that the PEDOT:PSS ink prepared by the freeze-drying method according to the present invention is suitable as an in vivo electrode material.

종래 기술에서는 PEDOT:PSS의 전기전도도를 향상시키기 위해서 DMSO라는 유기 용매나, 이온성 액체를 넣어서 도핑을 진행하였는데, 유기 용매와 이온성 액체 모두 독성을 가지고 있었기 때문에 이를 제거하여야만 했다. 예를 들어 유기용매를 사용했을 경우에는 24시간 이상 가열, 이온성 액체를 사용했을 경우에는 물 속에 24시간 이상 담궈 세포독성을 없애는 작업을 진행하였는데, 이는 결국 제조된 물질이 바이오 전자소자의 전극 등으로 바로 사용할 수 없다는 것을 의미한다. 하지만 본 발명의 경우, 동결건조 후 원심분리를 하는 공정에서 이온성 액체가 물에 녹아서 제거되게 되며, 원심분리 후에 바로 바이오 전자소자의 구성물질로 사용할 수 있다. In the prior art, in order to improve the electrical conductivity of PEDOT:PSS, doping was performed by putting an organic solvent called DMSO or an ionic liquid, but since both the organic solvent and the ionic liquid had toxicity, they had to be removed. For example, when organic solvents were used, cytotoxicity was removed by heating for more than 24 hours, and when ionic liquids were used, immersed in water for more than 24 hours. means that it cannot be used directly. However, in the case of the present invention, in the process of centrifugation after freeze-drying, the ionic liquid is dissolved in water and removed, and can be used as a constituent material of a bioelectronic device immediately after centrifugation.

도 10은 본 발명의 실시예에 사용된 이온성 액체인 EMIM:TCB 가 원심분리 과정에서 DI water에 녹은 이미지이고, 도 11은 원심분리 시스템의 사진과, 상층부 용액(DI water)에 Ionic liquid와 PSS가 녹아 나왔다는 XPS 분석결과이다. 10 is an image of EMIM:TCB, an ionic liquid used in an embodiment of the present invention, dissolved in DI water during centrifugation, and FIG. 11 is a photograph of a centrifugal separation system, and ionic liquid and This is the result of XPS analysis that PSS has melted.

도 10 및 11을 참조하면, 동결건조 후 원심분리 공정에서 세포독성에 악영향을 주는 ionic liquid와 전기전도도에 악영향을 주는 PSS가 제거되었음을 알 수 있다. Referring to FIGS. 10 and 11, it can be seen that ionic liquid, which adversely affects cytotoxicity, and PSS, which adversely affects electrical conductivity, are removed in the centrifugation process after freeze-drying.

본 발명에 따른 동결건조 후 원심분리 방식으로 제조된 PEDOT:PSS와 이온성 액체 복합체 잉크는 장기간 사용이 가능하다는 장점이 있다. The PEDOT:PSS and ionic liquid composite ink prepared by centrifugation after freeze-drying according to the present invention has the advantage that it can be used for a long time.

도 12는 밀봉한 상태에서 영상 4℃로 냉장보관시킨 후의 사진이다. 12 is a photograph after refrigerating at 4° C. in a sealed state.

도 12를 참조하면, 영상 4℃로 1달간 보관시킨 잉크가 프린팅 가능한 수준의 분산도 등을 유지하는 것을 알 수 있다. Referring to FIG. 12, it can be seen that the ink stored for 1 month at 4° C. maintains a degree of dispersion at a printable level.

Claims (12)

PEDOT:PSS과 상기 PEDOT:PSS와 이온교환을 할 수 있는 이온성 액체를 혼합한 용액을 준비하는 단계;
상기 용액을 동결건조시키는 단계;
상기 동결건조된 물질을 용액에 혼합하여 콜로이드 용액을 제조하는 단계; 및
상기 콜로이드 용액으로부터 잉크물질을 추출하는 단계를 포함하는 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크 제조방법.
Preparing a mixture of PEDOT:PSS and an ionic liquid capable of ion exchange with the PEDOT:PSS;
Freeze-drying the solution;
preparing a colloidal solution by mixing the lyophilized material with a solution; and
Highly conductive PEDOT: PSS and ionic liquid composite ink manufacturing method comprising the step of extracting an ink material from the colloidal solution.
제 1항에 있어서,
상기 이온성 액체는 TCB:EMIM 또는 TCB:HMIM인 것을 특징으로 하는 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크 제조방법.
According to claim 1,
The ionic liquid is a high conductivity PEDOT: PSS and ionic liquid composite ink manufacturing method, characterized in that TCB: EMIM or TCB: HMIM.
제 1항에 있어서,
상기 콜로이드 용액을 제조하는 단계는 초음파 처리로 수행되는 것을 특징으로 하는 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크 제조방법.
According to claim 1,
The step of preparing the colloidal solution is a highly conductive PEDOT: PSS and ionic liquid composite ink manufacturing method, characterized in that carried out by ultrasonic treatment.
제 1항에 있어서,
상기 콜로이드 용액은 계면활성제를 더 포함하는 것을 특징으로 하는 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크 제조방법.
According to claim 1,
The colloidal solution further comprises a surfactant. Highly conductive PEDOT: PSS and ionic liquid composite ink manufacturing method.
제 1항에 있어서,
상기 동결건조는 액화질소로 상기 용액을 급냉시키는 단계를 포함하는 것을 특징으로 하는 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크 제조방법.
According to claim 1,
The freeze-drying method comprises the step of quenching the solution with liquid nitrogen.
제 1항 내지 제 5항 중 어느 한 항에 따른 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크 제조방법에 의하여 제조된 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크. A high-conductivity PEDOT:PSS and ionic liquid composite ink prepared by the method for manufacturing a high-conductivity PEDOT:PSS and ionic liquid composite ink according to any one of claims 1 to 5. 제 6항에 따른 고전도성 PEDOT:PSS와 이온성 액체 복합체 잉크로 제조된 전극. An electrode made of the highly conductive PEDOT:PSS according to claim 6 and the ionic liquid composite ink. 제 7항에 있어서,
상기 전극의 전도도는 200S/cm를 초과하는 것을 특징으로 하는 전극.
According to claim 7,
The electrode, characterized in that the conductivity of the electrode exceeds 200S / cm.
제 8항에 있어서,
상기 전극은 하이드로겔과 물리적으로 부착가능한 것을 특징으로 하는 전극.
According to claim 8,
The electrode is an electrode, characterized in that physically attachable to the hydrogel.
제 7항에 따른 전극을 포함하는 전자소자. An electronic device comprising the electrode according to claim 7 . 제 10항에 있어서,
상기 전자소자는 바이오전자소자인 것을 특징으로 하는 전자소자.
According to claim 10,
The electronic device, characterized in that the electronic device is a bioelectronic device.
제 11항에 있어서,
상기 전자소자는 생체 신호를 감지하는 센서소자이며, 상기 전극은 상기 생체 신호를 모니터링하는 센싱전극인 것을 특징으로 하는 전자소자.
According to claim 11,
The electronic device according to claim 1 , wherein the electronic device is a sensor device for detecting a biosignal, and the electrode is a sensing electrode for monitoring the biosignal.
KR1020220124031A 2022-01-21 2022-09-29 High-conductivity PEDOT:PSS and ionic liquid composite ink, manufacturing method and application thereof KR20230113487A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220009440 2022-01-21
KR1020220009440 2022-01-21

Publications (1)

Publication Number Publication Date
KR20230113487A true KR20230113487A (en) 2023-07-31

Family

ID=87458428

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220124031A KR20230113487A (en) 2022-01-21 2022-09-29 High-conductivity PEDOT:PSS and ionic liquid composite ink, manufacturing method and application thereof

Country Status (1)

Country Link
KR (1) KR20230113487A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150071741A (en) 2013-12-18 2015-06-29 한국에너지기술연구원 Combustion system using combustion process of moving gate device
KR20180016737A (en) 2015-07-27 2018-02-19 히사미쓰 세이야꾸 가부시키가이샤 Asenapine-containing adhesive patch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150071741A (en) 2013-12-18 2015-06-29 한국에너지기술연구원 Combustion system using combustion process of moving gate device
KR20180016737A (en) 2015-07-27 2018-02-19 히사미쓰 세이야꾸 가부시키가이샤 Asenapine-containing adhesive patch

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
(1). Yuk, H., Lu, B., Lin, S. et al. 3D 프린팅 of conducting polymers. Nat Commun 11, 1604 (2020).
(2). Liu, Y., Liu, J., Chen, S. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng 3, 58-68 (2019).
(3). Mei Ying Teo, Narrendar RaviChandran, Nara Kim, Seyoung Kee, Logan Stuart, Kean C. Aw, and Jonathan Stringer ACS Applied Materials & Interfaces 2019 11 (40), 37069-37076

Similar Documents

Publication Publication Date Title
Li et al. Tissue adhesive hydrogel bioelectronics
He et al. Anti-freezing and moisturizing conductive hydrogels for strain sensing and moist-electric generation applications
Yang et al. Adhesive and hydrophobic bilayer hydrogel enabled on‐skin biosensors for high‐fidelity classification of human emotion
US8491819B2 (en) High work-function and high conductivity compositions of electrically conducting polymers
Pei et al. Reversible wet‐adhesive and self‐healing conductive composite elastomer of liquid metal
US20160141065A1 (en) Porous substrate electrode body and method for producing same
Guo et al. Application of conductive polymer hydrogels in flexible electronics
Zhang et al. A stretchable, environmentally tolerant, and photoactive liquid metal/MXene hydrogel for high performance temperature monitoring, human motion detection and self-powered application
Tan et al. Dopamine modified polyaniline with improved adhesion, dispersibility, and biocompatibility
Cui et al. A flexible polyaniline-based bioelectronic patch
Bei et al. A self-adhesive and low-temperature-tolerant strain sensor based on organohydrogel for extreme ice and snow motion monitoring
Su et al. Stretchable transparent supercapacitors for wearable and implantable medical devices
KR20230113487A (en) High-conductivity PEDOT:PSS and ionic liquid composite ink, manufacturing method and application thereof
KR20230056716A (en) Measurement of Glucose Near Insulin Delivery Catheters by Minimizing the Adverse Effects of Insulin Preservatives: Alternative Ligands and Redox Mediator Metals
CN114350154B (en) Bioelectrode composition, bioelectrode, method for producing bioelectrode, polymer compound, and complex
JP2011003852A (en) Organic semiconductor thin film with sheet-like crystal of condensed polycyclic aromatic compound containing sulfur atom laminated on substrate, and method of manufacturing the same
Zhou et al. Conducting polymer films and bioelectrodes combining high adhesion and electro-mechanical self-healing
WO2020217996A1 (en) Flexible device and method for manufacturing flexible device
CN114431864A (en) Bioelectrode composition, bioelectrode, and method for producing bioelectrode
Liu et al. Polydopamine interface-modulated MXene-based conductive antibacterial hydrogels for on-skin health monitoring and diabetic wound healing
Wang et al. Hierarchically Structured Hydrogel Composites with Ultra‐High Conductivity for Soft Electronics
Onoda et al. Experimental study of culture for mouse fibroblast used conductive polymer films
JP7444821B2 (en) Bioelectrode composition, bioelectrode, bioelectrode manufacturing method, and silicon material particles
Li et al. Swimmable Micro‐Battery for Targeted Power Delivery
EP2206170A1 (en) Method for coating layers which contain nonpolar poly-aromatics