KR20230108747A - Methods for capturing greenhouse gas and preparing precipitated calcium carbonate by using flyash generated from household waste incinerators - Google Patents
Methods for capturing greenhouse gas and preparing precipitated calcium carbonate by using flyash generated from household waste incinerators Download PDFInfo
- Publication number
- KR20230108747A KR20230108747A KR1020220003389A KR20220003389A KR20230108747A KR 20230108747 A KR20230108747 A KR 20230108747A KR 1020220003389 A KR1020220003389 A KR 1020220003389A KR 20220003389 A KR20220003389 A KR 20220003389A KR 20230108747 A KR20230108747 A KR 20230108747A
- Authority
- KR
- South Korea
- Prior art keywords
- ammonium chloride
- fly ash
- calcium carbonate
- solution
- chloride
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 239000010881 fly ash Substances 0.000 title claims abstract description 44
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 title claims abstract description 34
- 229940088417 precipitated calcium carbonate Drugs 0.000 title claims description 8
- 239000005431 greenhouse gas Substances 0.000 title abstract description 12
- 239000010791 domestic waste Substances 0.000 title abstract description 6
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims abstract description 42
- 235000019270 ammonium chloride Nutrition 0.000 claims abstract description 21
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims abstract description 14
- 239000001110 calcium chloride Substances 0.000 claims abstract description 14
- 229910001628 calcium chloride Inorganic materials 0.000 claims abstract description 14
- 229910000019 calcium carbonate Inorganic materials 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims description 33
- 239000000243 solution Substances 0.000 claims description 28
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 26
- 239000002904 solvent Substances 0.000 claims description 21
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 239000001569 carbon dioxide Substances 0.000 claims description 13
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 13
- 229910021529 ammonia Inorganic materials 0.000 claims description 10
- 239000007864 aqueous solution Substances 0.000 claims description 10
- 238000010828 elution Methods 0.000 claims description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 6
- 239000000446 fuel Substances 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 238000004056 waste incineration Methods 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 239000012153 distilled water Substances 0.000 claims description 4
- 239000003673 groundwater Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 238000002407 reforming Methods 0.000 claims description 2
- 239000004449 solid propellant Substances 0.000 claims description 2
- 239000008399 tap water Substances 0.000 claims description 2
- 235000020679 tap water Nutrition 0.000 claims description 2
- 229940043430 calcium compound Drugs 0.000 claims 4
- 150000001674 calcium compounds Chemical class 0.000 claims 4
- 239000011259 mixed solution Substances 0.000 claims 2
- 238000009835 boiling Methods 0.000 claims 1
- LLSDKQJKOVVTOJ-UHFFFAOYSA-L calcium chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Ca+2] LLSDKQJKOVVTOJ-UHFFFAOYSA-L 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 238000001694 spray drying Methods 0.000 claims 1
- 238000000859 sublimation Methods 0.000 claims 1
- 230000008022 sublimation Effects 0.000 claims 1
- 238000005516 engineering process Methods 0.000 description 9
- 238000001914 filtration Methods 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 6
- 235000019738 Limestone Nutrition 0.000 description 6
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 6
- 239000000428 dust Substances 0.000 description 6
- 239000003546 flue gas Substances 0.000 description 6
- 239000006028 limestone Substances 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 238000003828 vacuum filtration Methods 0.000 description 6
- 239000011575 calcium Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- 239000000292 calcium oxide Substances 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 230000008676 import Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 239000010459 dolomite Substances 0.000 description 2
- 229910000514 dolomite Inorganic materials 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000001151 other effect Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 238000010960 commercial process Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012035 limiting reagent Substances 0.000 description 1
- 238000010128 melt processing Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3085—Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0274—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
- B01J20/0296—Nitrates of compounds other than those provided for in B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
- B01J20/043—Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/305—Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/18—Carbonates
- C01F11/185—After-treatment, e.g. grinding, purification, conversion of crystal morphology
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/36—Nitrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
본 발명은 생활폐기물 소각장에서 발생하는 비산재(flyash)를 환경 친화적이고 안정적으로 처리할 수 있는 기술에 관한 것과 이를 활용하여 온실가스를 영구적으로 포집하는 공정에 관한 것이다. 더욱 상세하게는 비산재의 주성분인 염화칼슘(CaCl2·xH2O)을 활용해 이산화탄소를 영구적으로 포집하는 기술이며, 그 결과물로 경질탄산칼슘과 염화암모늄을 제조할 수 있는 공정에 관한 것이다.The present invention relates to a technology capable of environmentally friendly and stable treatment of flyash generated in a domestic waste incineration plant, and to a process of permanently capturing greenhouse gases using the same. More specifically, it is a technology for permanently capturing carbon dioxide by utilizing calcium chloride (CaCl 2 xH 2 O), the main component of fly ash, and a process for producing light calcium carbonate and ammonium chloride as a result.
생활 폐기물 소각장에서 발생하는 비산재(Flyash)는 2021년 기준 지정폐기물로 분류되어 매립처리되고 있다. 비산재는 염화칼슘·x수화물(CaCl2·xH2O), 수산화칼슘(Ca(OH)2), 탄산칼슘(CaCO3)으로 구성되어 있는데, 이중 염화칼슘·x수화물(CaCl2·xH2O)은 용해도가 높아 토양으로 흡수되어 지하수 오염 등 환경문제를 야기한다. 또한, 매립과정에서 발생하는 유해한 먼지로 매립지 인근 주민들에게 좋지 않은 영향을 끼치는 상황이다. 따라서, 이러한 문제를 해결하기 위한 기술적인 해결책이 요구되고 있다.Flyash generated from domestic waste incinerators is classified as designated waste as of 2021 and is being disposed of in a landfill. Fly ash is composed of calcium chloride x hydrate (CaCl 2 xH 2 O), calcium hydroxide (Ca ( OH) 2 ), and calcium carbonate (CaCO 3 ). It is absorbed into the soil and causes environmental problems such as groundwater contamination. In addition, harmful dust generated during the landfill process has a negative impact on residents near the landfill site. Therefore, a technical solution to solve this problem is required.
공개특허 10-0749344에 따르면, 비산재 처리과정에서 발생하는 유해한 먼지를 원천적으로 차단하기 위해 비산재 분을 오니화 시키는 설비를 개발하였다. 비산재 매립과정에서 발생하는 먼지로 인한 문제는 해결되었으나, 비산재에 포함되어 있는 염화칼슘 등의 용출에 의한 토양 산성화 및 지하수오염의 문제는 여전히 남아있다. 또한 매립량 자체의 변화가 없어 매립지 확보를 위한 과제가 해결되지 않은 상황이며, 공정 중에 사용되는 스팀을 발생시키기 위해 사용되는 에너지원에 의한 온실가스 발생이 된다는 문제점을 안고 있다. According to Patent Publication No. 10-0749344, in order to fundamentally block harmful dust generated in the process of treating fly ash, a facility that turns fly ash into sludge has been developed. Although the problem caused by dust generated during the landfill process of fly ash has been solved, the problem of soil acidification and groundwater contamination due to the elution of calcium chloride contained in fly ash still remains. In addition, there is no change in the amount of landfill itself, so the task of securing a landfill has not been solved, and there is a problem that greenhouse gases are generated by the energy source used to generate steam used during the process.
공개특허 10-2313785에 따르면, 발생하는 비산재를 개질하여 감량화하는 용융처리공법을 개발하였다. 하지만, 이 과정 중에 물을 가열하고, 염기도를 조절하는 과정에서 추가로 투입되는 염기성성분(FeO, MnO, CaO, MgO) 및 첨가제(Sb2O5)를 추가로 투입되는 반면, 골재로 재활용되는 최종제품의 가치로 인해 경제적인 측면에서 이득을 보기 희박하다.According to Patent Publication No. 10-2313785, a melt processing method for modifying and reducing the generated fly ash was developed. However, during this process, basic components (FeO, MnO, CaO, MgO) and additives (Sb 2 O 5 ), which are additionally added in the process of heating water and adjusting basicity, are additionally added, while recycling as aggregate Due to the value of the final product, it is unlikely to benefit from an economic point of view.
한편, 경질탄산칼슘 제조를 위한 원료물질로 산화칼슘(CaO)를 사용한다. 이 산화칼슘은 고품위 석회석 광산에서 채굴된 괴 혹은 이를 분쇄한 미분말을 고온(850℃ 이상)에 소성하여 제조된다. 이 과정에서 연료가 사용됨에 따라 온실가스가 발생된다.On the other hand, calcium oxide (CaO) is used as a raw material for producing precipitated calcium carbonate. This calcium oxide is produced by calcining ingots mined from high-grade limestone mines or fine powder obtained by pulverizing them at a high temperature (850 ° C or higher). As fuel is used in this process, greenhouse gases are generated.
석회석으로부터 생석회를 제조하는 알짜반응은 아래와 같다.The net reaction for producing quicklime from limestone is as follows.
CaCO3(s) -> CaO(s) + CO2(g) (850℃)CaCO 3 (s) -> CaO (s) + CO 2 (g) ( 850℃)
공개특허 10-1656035에 따르면, 백운석 분진을 사용하여 경질탄산칼슘을 제조하는 기술을 개발하였다. 종래 사용하던 고품위 석회석 대신 폐분으로 취급되는 백운석 분진을 사용하여 석회석 채굴로 인한 산림파괴를 억제할 수 있으나, 백운석 분진 소성과정에서 다량의 온실가스가 발생해 환경을 보호한다는 관점에서는 한계가 있다.According to Patent Publication No. 10-1656035, a technique for producing precipitated calcium carbonate using dolomite dust was developed. Deforestation due to limestone mining can be suppressed by using dolomite dust, which is treated as waste powder, instead of high-grade limestone used in the past.
본 발명은 전술한 종래의 문제점을 해소하고자 안출된 것으로, 비산재 매립량을 저감하여 매립지 부족, 토양오염과 같은 문제를 해소하고자 한다. 또한, 침강탄산칼슘을 제조할 때 온실가스를 발생시키는 상용 공정을 온실가스 포집형 신 공정으로 대체하여 환경적, 경제적 측면에서 높은 부가가치를 실현하고자 한다.The present invention was made to solve the above-mentioned conventional problems, and aims to solve problems such as landfill shortage and soil contamination by reducing the landfill amount of fly ash. In addition, it is intended to realize high added value in terms of environmental and economic aspects by replacing the commercial process that generates greenhouse gases when manufacturing precipitated calcium carbonate with a new process that captures greenhouse gases.
구체적으로, 비산재 중 온실가스를 영구적으로 포집 할 수 있는 유용한 성분을 선별하고 이산화탄소(CO2, carbon dioxide)를 영구적으로 포집해 고형화하여 탄산칼슘(CaCO3, precipitated calcium carbonate, PCC) 및 염화암모늄(NH4Cl, ammonium chloride)을 제조하는 공정을 개발하였다.Specifically, useful components that can permanently capture greenhouse gases are selected among fly ash, and carbon dioxide (CO 2 , carbon dioxide) is permanently captured and solidified to produce calcium carbonate (CaCO 3 , precipitated calcium carbonate, PCC) and ammonium chloride ( A process for producing NH 4 Cl, ammonium chloride) was developed.
한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the technical problems to be achieved in the present invention are not limited to the above-mentioned technical problems, and other technical problems that are not mentioned will become clear to those skilled in the art from the description below. You will be able to understand.
본 발명의 일 실시예인 생활폐기물 소각장에서 발생하는 비산재를 활용한 온실가스 포집 방법은 비산재를 구성하는 성분 중 CaCl2·xH2O를 선택적으로 용출한 후 여과지를 사용해 불용분과 CaCl2·xH2O용액을 완전 분리하는 1단계; 용출된 용액에 이산화탄소 및 암모니아를 부여해 PCC(s)와 NH4Cl(aq)을 제조하는 탄산화 반응과 PCC(s)와 NH4Cl(aq)를 분리하는 2단계; NH4Cl(aq)을 고형화하는 3단계;를 포함할 수 있다.One embodiment of the present invention, a method for collecting greenhouse gases using fly ash generated in a municipal waste incinerator, selectively elutes CaCl 2 xH 2 O among the components constituting the fly ash, and then uses a filter paper to remove insolubles and CaCl 2 xH 2 O Step 1 of completely separating the solution; a carbonation reaction of producing PCC(s) and NH 4 Cl(aq) by giving carbon dioxide and ammonia to the eluted solution and a second step of separating PCC(s) and NH 4 Cl(aq); It may include; a third step of solidifying NH 4 Cl (aq).
상기 1단계는 용출제로써 CaCl2·xH2O을 용해시킬 수 있는 공정수, 지하수, 수돗물, 증류수, 탈이온수, 아세트산, 알코올, 등을 포함하며, 상온에서도 충분히 CaCl2·xH2O을 용출 시킬 수 있으나, 용출 속도 및 효율을 증대하기 위해 가열 및 냉각 공정을 포함할 수 있다. 비산재 중 CaCl2·xH2O의 형태는 CaCl2·0H2O, CaCl2·1H2O, CaCl2·2H2O 중 1종이상 공존할 수 있는데, CaCl2·2H2O가 60℃에 노출되면 결정수 1개를 잃어 CaCl2·1H2O로 되고, CaCl2·2H2O가 100℃에 노출되면 결정수 2개를 잃어 CaCl2·0H2O로 된다.The first step includes process water, ground water, tap water, distilled water, deionized water, acetic acid, alcohol, etc. capable of dissolving CaCl 2 xH 2 O as eluents, and sufficiently elutes CaCl 2 xH 2 O even at room temperature However, heating and cooling processes may be included to increase the dissolution rate and efficiency. In the form of CaCl 2 2 H 2 O in fly ash, one or more of CaCl 2 0H 2 O, CaCl 2 1H 2 O, and CaCl 2 2H 2 O can coexist. When exposed, 1 water of crystallization is lost and becomes CaCl 2 .1H 2 O. When CaCl 2 2H 2 O is exposed to 100℃, 2 water of crystallization is lost and becomes CaCl 2 0H 2 O.
상기 1단계를 통해 용해되지 않은 불용물은 통상적인 여과설비 중 감압필터, 압착식 여과설비(필터프레스), 원심분리 탈수기 등 다양한 방법의 여과설비를 사용해도 무방하다. 여과된 불용물은 수분이 포함된 케이크 형태로 최종 배출되어 먼지가 발생치 않아 운반 및 매립과정을 원활히 수행할 수 있도록 한다.For the insoluble matter that has not been dissolved through the first step, it is okay to use various filtration facilities such as a pressure-reducing filter, compression type filtration facility (filter press), and centrifugal dehydrator among conventional filtration facilities. The filtered insoluble matter is finally discharged in the form of a cake containing moisture, so that dust is not generated so that transportation and landfill processes can be smoothly performed.
CaCl2·xH2O의 용출에 대한 알짜반응식은 아래와 같다.The net reaction equation for elution of CaCl 2 ·xH 2 O is as follows.
CaCl2·xH2O(s) + H2O(l) -> CaCl2·xH2O(aq)CaCl 2 xH 2 O(s) + H 2 O(l) -> CaCl 2 xH 2 O(aq)
상기 2단계는 용출된 용액에 CO2를 부여하는 탄산화 공정에서 암모니아(NH3, ammonia)가 부여되는데, 이는 용출용액 내 염화이온(chloride, Cl-)와 결합할 짝이온을 부여해 Ca2+가 수용액에 용해되어 있는 CO2와 반응을 할 수 있도록 하기 위함이다. 상기 2단계에서 부여되는 NH3는 CO2가 부여되기 전에 상기 1단계를 마친 용출용액에 먼저 부여를 하여도, 또는 CO2와 함께 부여를 하여도, 또는 CO2가 먼저 부여되어도 무방하다. NH3는 수용액의 형태, 액화의 형태, 고압가스의 형태, 질소, 헬륨, 알곤, 또는 이들 중 1개이상과 혼합된 혼합물 등 형태와 농도에 무관하게 사용이 가능하다. 상기2단계에 사용하는 CO2는 혼합물질로 구성된 CO2및 정제된 고순도 CO2까지 사용해도 무방하다. 통상적으로 고체연료를 사용하는 보일러에서 발생하는 연도가스는 10~25vol% CO2, 60~70vol% N2, 4~6vol% H2O, 3~5vol% O2, 수 vol.ppm의 NOx, SOx, CO로 구성되어 있다. 고체가 아닌 액체연료를 사용하는 보일러에서 발생하는 연도가스는 5~10vol% CO2를 포함하고 있으며, C1~C6s 중 1개이상이 혼합되어 사용되는 기체연료 보일러 공정은 1~7vol% CO2를 포함하고 있다. 폐기물 소각로에서 발생하는 CO2 농도는 5~10vol% 이다. 반면, 보일러/소각로가 아닌 석유화학공정에서 발생하는 CO2의 농도는 이보다 높다. 블루수소를 생산하는 개질공정에서 발생하는 CO2는 30~70vol% CO2, 에틸렌으로부터 에틸렌옥사이드 및 에틸렌글리콜을 제조하는 공정은 90vol% CO2 내외로 최종 배출된다. 상기 기술된 고체, 액체, 기체연료를 사용하는 보일러, 폐기물 소각로, 석유화학공정에서 발생하는 CO2 및 이를 포함하는 연도, 공정가스 모두 상기 2단계를 이룸에 있어 유효한 성분이다.The second step is ammonia (NH 3 , ammonia) is given, which is to give a counter ion to combine with chloride (Cl - ) in the elution solution so that Ca 2+ can react with CO 2 dissolved in the aqueous solution. NH 3 given in the second step may be added to the elution solution after the first step before CO 2 is added, or together with CO 2 , or CO 2 may be added first. NH 3 can be used regardless of the form and concentration, such as an aqueous solution, a liquefied form, a high-pressure gas, nitrogen, helium, argon, or a mixture of one or more of these. As the CO 2 used in the second step, it is okay to use up to CO 2 composed of a mixture and purified high-purity CO 2 . Commonly, flue gas generated from boilers using solid fuel contains 10~25 vol% CO 2 , 60~70 vol% N 2 , 4~6 vol% H 2 O, 3~5 vol% O 2 , several vol.ppm NOx, It is composed of SOx and CO. Flue gas generated from boilers using non-solid liquid fuel contains 5-10 vol% CO 2 , and gaseous fuel boiler processes in which one or more of C 1 ~ C 6 s are mixed are 1-7 vol% It contains CO 2 . The concentration of CO 2 generated from the waste incinerator is 5-10 vol%. On the other hand, the concentration of CO 2 from petrochemical processes other than boilers/incinerators is higher. CO 2 generated in the reforming process to produce blue hydrogen is 30~70 vol% CO 2 , and the process of producing ethylene oxide and ethylene glycol from ethylene is finally discharged at around 90 vol% CO 2 . CO 2 generated from boilers, waste incinerators, and petrochemical processes using the above-described solid, liquid, and gaseous fuels, and flue and process gases containing them are all effective components in achieving the second step.
상기 2단계 공정의 알짜반응식과 단위반응식은 아래와 같다.The net reaction formula and unit reaction formula of the two-step process are as follows.
알짜반응: CaCl2·xH2O(aq) + 2NH4 +(aq) + CO3 2-(aq) -> CaCO3(s) + 2NH4Cl(aq)Net reaction: CaCl 2 xH 2 O(aq) + 2NH 4 + (aq) + CO 3 2- (aq) -> CaCO 3 (s) + 2NH 4 Cl(aq)
단위반응1: CaCl2·xH2O(aq) -> Ca2+(aq) + 2Cl-(aq)Unit Reaction 1: CaCl 2 xH 2 O(aq) -> Ca 2+ (aq) + 2Cl - (aq)
단위반응2: NH3(g) + H2O(l) -> [ NH4 +(aq) + OH-(aq) ] or [ NH4OH(aq) ]Unit Reaction 2: NH 3 (g) + H 2 O(l) -> [ NH 4 + (aq) + OH - (aq) ] or [ NH 4 OH(aq) ]
단위반응3: CO2(g) + H2O(l) -> [ 2H+(aq) + CO3 2-(aq) ] or [ H2CO3(aq) ]Unit reaction 3: CO 2 (g) + H 2 O (l) -> [ 2H + (aq) + CO 3 2- (aq) ] or [ H 2 CO 3 (aq) ]
상기 2단계 공정은 상온, 상압 하에서도 진행이 되나, 단위반응3의 반응촉진을 위해 반응 분위기의 온도를 낮추고 압력을 증가시키거나, Ca2+와 CO3 2-의 결합을 촉진시키기 위해 온도를 높여도 상기 알짜반응은 변화없이 진행된다.The two-step process proceeds at room temperature and pressure, but the temperature of the reaction atmosphere is lowered and the pressure is increased to promote the reaction of unit reaction 3, or the temperature is increased to promote the combination of Ca 2+ and CO 3 2- Even if it is increased, the net reaction proceeds without change.
PCC(s)와 NH4Cl(aq)를 분리를 위한 여과설비에는 제한을 두지 않는다. 통상적인 여과설비, 즉, 감압필터, 압착식 여과설비(필터프레스), 원심분리 탈수기 등 다양한 방법의 여과설비를 사용해도 무방하다. 여과된 PCC(s)는 액상슬러리, 고형분 등 다양한 형태로 적용되는 산업군에 제공이 가능하다. There are no restrictions on the filtration equipment for separating PCC(s) and NH 4 Cl(aq). Conventional filtration facilities, that is, pressure-reducing filters, compression filtration facilities (filter press), and filtration facilities of various methods such as centrifugal dehydrators may be used. Filtered PCC(s) can be provided to industrial groups that are applied in various forms such as liquid slurry and solid content.
상기 3단계는 NH4Cl(aq) 중 용매를 제거하여 NH4Cl(s)형태로 제조하는 공정이다. 용액 상태의 NH4Cl는 운반 및 보관에 어려움이 있어 효율적인 처리를 위해 용매를 증발시켜 분말화를 한다. 용매를 증발시키기 위해서는 이를 가능케하는 열원을 사용해야 하나 상기 2단계에서 서술한 보일러, 소각로, 석유화학 공정에서 발생하는 연도가스를 사용하면 별도의 에너지 비용 없이 NH4Cl(aq)의 분말화가 가능하다. 보일러, 소각로는 800℃이상, 석유화학공정은 200℃이상에서 운전되고 있어 발생하는 연도가스 또한 이에 상응하는 열을 보유하고 있다. 이를 활용해 NH4Cl(aq)의 분말화가 가능한데, 용액에 해당 연도가스를 직접 주입해 용매의 온도를 상승시켜 기화를 시키거나, 균일한 분말화를 위해 분무건조(spray dryer)설비를 도입하고 연도가스를 열원으로 사용할 수 있다.The third step is a process of preparing NH 4 Cl(s) in the form of NH 4 Cl(aq) by removing the solvent. NH 4 Cl in solution is difficult to transport and store, so the solvent is evaporated and powdered for efficient treatment. In order to evaporate the solvent, a heat source that enables this must be used, but if the boiler, incinerator, and flue gas generated in the petrochemical process described in step 2 are used, NH 4 Cl (aq) can be powdered without additional energy cost. Boilers and incinerators are operated at 800℃ or higher, and petrochemical processes are operated at 200℃ or higher, so the generated flue gas also has corresponding heat. Using this, it is possible to powderize NH 4 Cl (aq). Directly inject flue gas into the solution to raise the temperature of the solvent to vaporize it, or introduce a spray dryer facility for uniform powderization. Flue gas can be used as a heat source.
본 발명에 따르면, 매립되는 비산재에서 용출되는 CaCl2·xH2O(x=0, 1. 2)에 의한 환경오염을 원천 차단하고, 매립량을 저감시켜 매립지 선정에 대한 사회적 문제를 해결할 수 있다. 종래 기술인 고품위 석회석을 원료로 하여 온실가스를 발생시키는 PCC제조기술을 대체하여 온실가스를 포집 하면서 PCC를 제조할 수 있는 친환경 기술이다. 동시에 수입 의존도가 높은 NH4Cl을 제조하여 이를 수입을 대체하고 국산화하여 국가경쟁력 강화에 일환이 되는 높은 부가가치를 창출 할 수 있는 기술이다. 특히, 비산재가 발생하는 소각장에 발명된 공정을 설치하면 비산재와 소각로에서 발생하는 온실가스를 동시에 처리할 수 있어 친환경 소각장 건설이 가능하다.According to the present invention, environmental pollution caused by CaCl 2 xH 2 O (x = 0, 1. 2) eluted from landfill fly ash is blocked at the source, and the amount of landfill is reduced, thereby solving the social problem of landfill site selection. . It is an eco-friendly technology that can manufacture PCC while capturing greenhouse gases by replacing the PCC manufacturing technology that generates greenhouse gases using high-quality limestone as a raw material, which is a conventional technology. At the same time, it is a technology that can create high added value that is part of strengthening national competitiveness by manufacturing NH 4 Cl, which is highly dependent on imports, replacing imports and localizing it. In particular, if the invented process is installed in an incinerator generating fly ash, it is possible to simultaneously treat fly ash and greenhouse gas generated from the incinerator, enabling the construction of an eco-friendly incinerator.
한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the effects obtainable in the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description below. You will be able to.
도 1은 비산재 샘플과 실시예1에 따라 실시된 불용물의 X선회절분석 결과의 일례를 비교하여 도시한 것이다.
도 2는 실시예1, 2, 3, 4, 5, 6에 따라 최종적으로 얻은 PCC의 X선회절분석 결과의 일례를 도시한 것이다.
도 3은 실시예1에 따라 최종적으로 얻은 NH4Cl용액을 증발시킨 후 남은 고형분에 대한 X선회절분석 결과의 일례를 도시한 것이다.Figure 1 shows an example of the results of X-ray diffraction analysis of fly ash samples and insolubles carried out according to Example 1.
2 shows an example of the result of X-ray diffraction analysis of PCC finally obtained according to Examples 1, 2, 3, 4, 5, and 6.
FIG. 3 shows an example of the result of X-ray diffraction analysis of the solid content remaining after evaporation of the NH 4 Cl solution finally obtained according to Example 1. FIG.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법 은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclatures used herein are those well known and commonly used in the art.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the present specification, when a certain component is said to "include", it means that it may further include other components without excluding other components unless otherwise stated.
본 발명은 생활폐기물 소각장에서 발생하는 비산재를 환경친화적으로 처리하는 것이고, 특히 이와 동시에 고부가가치 제품을 개발하는 공정에 관한 것이다.The present invention relates to environmentally friendly treatment of fly ash generated in a domestic waste incineration plant, and particularly to a process for developing high value-added products.
구체적으로, 비산재 중 CaCl2·xH2O(x=0, 1, 2) 용출 및 불용분과 분리하는 1단계; 용출된 용액에 CO2와 NH3를 부여해 PCC(s)와 NH4Cl(aq)을 제조하고 PCC(s)와 NH4Cl(aq)를 분리하는 2단계; NH4Cl(aq)을 고형화하는 3단계;를 포함하여 이루어진다.Specifically, the first step of eluting CaCl 2 ·xH 2 O (x=0, 1, 2) and separating from insoluble content in fly ash; Step 2 of giving CO 2 and NH 3 to the eluted solution to produce PCC(s) and NH 4 Cl(aq) and separating PCC(s) and NH 4 Cl(aq); 3 steps of solidifying NH 4 Cl (aq);
1단계: 비산재 중 CaClStage 1: CaCl in fly ash 22 ·xH·xH 22 O(x=0, 1, 2)) 용출 및 불용분과 분리O(x=0, 1, 2)) elution and separation from insolubles
비산재 중 CaCl2·xH2O(x=0, 1, 2) 용출은 용매와 혼합하여 진행할 수 있다.Elution of CaCl 2 ·xH 2 O (x=0, 1, 2) in the fly ash may proceed by mixing with a solvent.
우선 증류수 준비하고 비산재를 혼합해 충분히 섞이도록 교반한다. 증류수 사용량은 제한은 없으나 CaCl2·xH2O(x=0, 1, 2)의 용매에 대한 용해도를 고려하여 충분히 용해되도록 한다. 용매량이 부족하면 비산재 중 CaCl2·xH2O(x=0, 1, 2)이 충분히 용해되지 않아 공정 효율이 저하될 것이며, 과하면 공정 진행을 위한 반응 설비가 그에 비례해 커져 설비투자 및 운용과정에서 경제성 확보가 어려울 수 있다. 비산재 100중량부에 대해 용매를 50~10,000중량부를 적용할 수 있으며, 바람직하게는 100~5,000중량부를 적용할 수 있다. 비산재 내 CaCl2·xH2O(x=0, 1, 2) 용출률은 용출 공정 후 불용물의 X선회절분석으로 CaCl2·xH2O(x=0, 1, 2)에 해당하는 peak가 있는지 분석하여 CaCl2·xH2O(x=0, 1, 2) 용출률을 판단할 수 있다.First, distilled water is prepared, and the fly ash is mixed and stirred so that it is sufficiently mixed. The amount of distilled water used is not limited, but it should be sufficiently dissolved in consideration of the solubility of CaCl 2 ·xH 2 O (x = 0, 1, 2) in the solvent. If the amount of solvent is insufficient, CaCl 2 xH 2 O (x=0, 1, 2) in the fly ash will not be sufficiently dissolved, resulting in a decrease in process efficiency. Economic feasibility may be difficult. 50 to 10,000 parts by weight of the solvent may be applied to 100 parts by weight of the fly ash, preferably 100 to 5,000 parts by weight. The dissolution rate of CaCl 2 xH 2 O (x=0, 1, 2) in fly ash is determined by X-ray diffraction analysis of insoluble matter after the elution process to determine if there is a peak corresponding to CaCl 2 xH 2 O (x=0, 1, 2). The dissolution rate of CaCl 2 ·xH 2 O (x=0, 1, 2) can be determined by analysis.
CaCl2·xH2O(x=0, 1, 2) 용출 후 불용물과 분리를 위한 설비는 제한을 두지 않는다. 본 발명에서는 실험실 규모로 주로 사용하는 감압여과설비를 사용하였으며, 압착식 여과설비(필터프레스)를 사용했을 때도 이와 동일한 결과를 도출하였다.After eluting CaCl 2 ·xH 2 O (x=0, 1, 2), there is no limit to the equipment for separation from insolubles. In the present invention, a vacuum filtration facility mainly used on a laboratory scale was used, and the same results were obtained when a compression type filtration facility (filter press) was used.
2단계: 용출된 용액에 COStep 2: CO in the eluted solution 22 와 NHand NH 33 를 부여해 PCC(s)와 NHBy giving PCC(s) and NH 44 Cl(aq)제조 및 분리Cl(aq) production and separation
상기 1단계를 통해 제조된 CaCl2·xH2O(x=0, 1, 2)용출액과 CO2를 사용해 PCC, NH4Cl을 제조할 수 있다. 상기 기술된 알짜반응식에 의거하면 PCC, NH4Cl제조를 위해 CO2이외에 NH3를 사용한다. 이는 용출액 내에 존재하는 Cl-와 결합할 수 있는 짝이온을 부여하기 위함이며 아래와 같은 식으로 반응이 진행된다.PCC and NH 4 Cl may be produced using the CaCl 2 ·xH 2 O (x=0, 1, 2) eluate prepared in the first step and CO 2 . According to the net reaction equation described above, NH 3 is used in addition to CO 2 to produce PCC and NH 4 Cl. This is to give a counter ion capable of bonding with Cl − present in the eluate, and the reaction proceeds in the following manner.
NH4 +(aq) + Cl-(aq) -> NH4Cl(aq)NH 4 + (aq) + Cl - (aq) -> NH 4 Cl(aq)
제 2단계 반응은 반응기 내에 CaCl2·xH2O(x=0, 1, 2)용출액, CO2, NH3가 모두 존재하여야만 화학반응이 진행되기 때문에 이들의 부여순서와 관계없이, 그리고 반응물을 주입하는 속도에 관계없이 모든 경우에 있어서 PCC와 NH4Cl을 제조할 수 있다. In the second stage reaction, the chemical reaction proceeds only when CaCl 2 ·xH 2 O (x=0, 1, 2) eluent, CO 2 , and NH 3 are present in the reactor, regardless of the order in which they are given, and the reactants Regardless of the injection rate, PCC and NH 4 Cl can be produced in all cases.
본 발명에서는 CaCl2·xH2O(x=0, 1, 2)용출액을 반응기 내에서 충분히 교반하면서 NH3을 먼저부여하고 그 후에 CO2를 부여하는 방식과, CaCl2·xH2O(x=0, 1, 2)용출액을 반응기 내에서 충분히 교반하면서 CO2를 먼저 부여하고 NH3을 부여하는 방식을 별도로 채택하여 실시하였다.In the present invention, while sufficiently stirring the eluate of CaCl 2 xH 2 O (x=0, 1, 2) in the reactor, NH 3 is first given and then CO 2 is applied, and CaCl 2 xH 2 O (x =0, 1, 2) While sufficiently stirring the eluate in the reactor, CO 2 was first applied and then NH 3 was applied separately.
NH3사용량은 그 제한을 두지 않는데 화학양론적으로 CaCl2·xH2O(x=0, 1, 2) 중 Ca2+가 NH3사용량 대비 많을 경우 NH3는 한계반응물로 작용하여 사용한 NH3가 대부분 탄산화 반응에 참여할 것이며, 그 반대의 경우 과잉반응물로 인해 탄산화 반응 후에도 NH3는 반응 용액 내에 잔류할 것이다. The amount of NH 3 used is not limited. Stoichiometrically, when Ca 2+ in CaCl 2 xH 2 O (x=0, 1, 2) is greater than the amount of NH 3 used, NH 3 acts as a limiting reactant and used NH 3 will mostly participate in the carbonation reaction, and vice versa, NH 3 will remain in the reaction solution even after the carbonation reaction due to excess reactants.
더 나아가, 반응기 내 CO2를 먼저 부여하고 그 후에 NH3부여 시 탄산화 용액의 pH를 실시간으로 분석하면서 부여 속도를 조절하였으며, pH8.5초과, 바람직하게는 pH8.9초과 범위에서 탄산화 반응이 진행될 수 있다. pH가 높을수록 탄산화 반응속도는 빠르고, 높은 전환율 및 PCC선택도 도달에 유리하다.Furthermore, when CO 2 was first added in the reactor and then NH 3 was added, the pH of the carbonation solution was analyzed in real time to adjust the rate of addition, and the carbonation reaction proceeded in a range exceeding pH 8.5, preferably exceeding pH 8.9. can The higher the pH is, the faster the carbonation reaction rate is, and it is advantageous to reach a high conversion rate and PCC selectivity.
반응기 압력의 변화를 주어 반응 촉진 및 지연이 가능하다. 반응기 내 압력을 부여하면 용액 내 용해되는 CO2양이 증가해 더 많은 CO2가 반응을 위한 H2CO3형태의 물질로 전환되기 때문에 Ca2+와 반응할 수 있는 영역이 높아진다. 압력이 높을수록 이 전환률은 상승하기 때문에 반응기 압력은 제한을 두지 않는다. The reaction can be accelerated or delayed by changing the reactor pressure. When the pressure in the reactor is applied, the amount of CO 2 dissolved in the solution increases and more CO 2 is converted to H 2 CO 3 for reaction, so the area capable of reacting with Ca 2+ increases. Since the conversion rate increases as the pressure increases, the reactor pressure is not limited.
본 발명에서는 2bar.g 이하의 압력을 유지하였으며, 그 이상, 혹은 이하의 압력에서 발명을 진행할 경우에도 동일한 결과를 얻었다.In the present invention, the pressure was maintained at 2 bar.g or less, and the same results were obtained even when the invention was performed at a pressure higher or lower.
탄산화 반응 완료 후 PCC(s)와 NH4Cl(aq)분리를 위한 설비는 제한을 두지 않는다. Equipment for separating PCC(s) and NH 4 Cl(aq) after completion of the carbonation reaction is not limited.
본 발명에서는 실험실규모로 주로 사용하는 감압여과설비를 사용하였으며, 압착식 여과설비(필터프레스)를 사용했을 때도 이와 동일한 결과를 도출하였다.In the present invention, a vacuum filtration facility mainly used on a laboratory scale was used, and the same results were obtained when a compression type filtration facility (filter press) was used.
3단계: NHStep 3: NH 44 Cl(aq) 고형화Cl(aq) solidification
상기 2단계를 통해 분리된 NH4Cl(aq) 중 용매를 증발시켜 고형화 시키기 위한 공정이다. 산업군에서는 목적에 맞게 NH4Cl을 고체상태로 사용하거나 용매(주로 물)에 용해시켜 사용하기도 하지만, 보관 및 운반 등 경제적인 이유로 고형화 시키는 것이 바람직하다. 용매 제거를 위해 온도를 부여해 용매를 기화시키는 방법을 채택한다. 온도를 부여하기 위해 통상적으로 에너지를 사용하나, 보일러/소각로/석유화학 공정 등에서 발생하는 폐열을 사용할 경우 별도의 에너지비용이 지출되지 않는다. 다만, NH4Cl은 337.6℃ @1atm에서 승화하는 성질이 있어 고형화 된 NH4Cl이 이 온도에 노출되지 않도록 건조공정에서의 온도조절이 필요하다. 본 발명에서는 용액을 hot plate에 가열하거나 300℃로 열원이 주입되는 분무건조기에 용액을 분사시켜 각각의 NH4Cl 분말을 획득하였으며 그 결과는 동일하였다.This is a process for evaporating and solidifying the solvent in NH 4 Cl (aq) separated through the above two steps. In the industrial group, NH 4 Cl is used in a solid state or dissolved in a solvent (mainly water) to suit the purpose, but it is preferable to solidify it for economic reasons such as storage and transportation. To remove the solvent, a method of vaporizing the solvent by giving a temperature is adopted. Energy is usually used to give temperature, but when using waste heat generated from boilers/incinerators/petrochemical processes, no separate energy costs are incurred. However, since NH 4 Cl has the property of sublimating at 337.6 ° C @ 1 atm, it is necessary to control the temperature in the drying process so that the solidified NH 4 Cl is not exposed to this temperature. In the present invention, each NH 4 Cl powder was obtained by heating the solution on a hot plate or by spraying the solution on a spray dryer in which a heat source is injected at 300 ° C., and the results were the same.
[실시예1][Example 1]
비산재 20g을 1,000g 탈이온수에 혼합하여 상온에서 용해하였다. 다음으로, 감압여과설비를 사용해 용출액을 분리하여 여액만 채취하였다. 분리된 여액에 28wt%NH4OH용액 130g을 혼합하고 99vol% CO2 gas를 용액속에 주입하면서 2bar.g의 압력을 제공하여 탄산화 반응을 실시하였다. 최종적으로 PCC가 생성되어 석출되었다. 감압여과설비를 사용해 PCC와 용매를 분리하였다. 분리한 용매는 분무건조기를 사용해 용매제거를 진행하였는데, 분무설비에 투입되는 hot air의 온도는 300℃로 조절하였다.20 g of fly ash was mixed with 1,000 g of deionized water and dissolved at room temperature. Next, the eluate was separated using a vacuum filtration facility, and only the filtrate was collected. The separated filtrate was mixed with 130 g of 28wt% NH 4 OH solution, and carbonation was performed by supplying a pressure of 2 bar.g while injecting 99 vol% CO 2 gas into the solution. Finally, PCC was generated and precipitated. PCC and the solvent were separated using a vacuum filtration facility. The separated solvent was removed using a spray dryer, and the temperature of the hot air introduced into the spray facility was adjusted to 300 ° C.
[실시예2][Example 2]
제조방법은 실시예1과 같으며, 사용하는 탈이온수는 1,000g 대신에 20g를 사용하였다.The manufacturing method is the same as in Example 1, and 20 g of deionized water was used instead of 1,000 g.
[실시예3][Example 3]
제조방법은 실시예1과 같으며, 사용하는 28wt%NH4OH용액은 130g 대신에 520g을 투입하였다.The manufacturing method is the same as in Example 1, and 520 g of 28 wt% NH 4 OH solution was added instead of 130 g.
[실시예4][Example 4]
비산재 20g을 1,000g 탈이온수에 혼합하여 상온에서 용해하였다. 다음으로, 감압여과설비를 사용해 용출액을 분리하여 여액만 채취하였다. 분리된 99%CO2 gas를 용액속에 주입하면서 2bar.g의 압력을 제공하고 용액의 pH를 실시간으로 분석하면서 10.5을 유지하도록 28wt%NH4OH용액을 주입하여 탄산화 반응을 실시한다. 최종적으로 PCC가 생성되어 석출되었다. 감압여과설비를 사용해 PCC와 용매를 분리하였다. 분리한 용매는 분무건조기를 사용해 용매 제거를 진행하였는데, 분무 설비에 투입되는 hot air의 온도는 300℃로 조절하였다.20 g of fly ash was mixed with 1,000 g of deionized water and dissolved at room temperature. Next, the eluate was separated using a vacuum filtration facility, and only the filtrate was collected. While injecting the separated 99% CO 2 gas into the solution, a pressure of 2 bar.g is provided, and a carbonation reaction is performed by injecting 28wt% NH 4 OH solution to maintain 10.5 while analyzing the pH of the solution in real time. Finally, PCC was generated and precipitated. PCC and the solvent were separated using a vacuum filtration facility. The separated solvent was removed using a spray dryer, and the temperature of the hot air introduced into the spray facility was adjusted to 300 ° C.
[실시예5][Example 5]
제조방법은 실시예4과 같으며, 용액의 pH는 10.5대신에 9.0을 유지하도록 한다.The manufacturing method is the same as in Example 4, and the pH of the solution is maintained at 9.0 instead of 10.5.
[실시예6][Example 6]
제조방법은 실시예1과 같으며, 사용하는 CO2는 99vol%대신 15vol% CO2 - 85vol% N2를 사용한다The manufacturing method is the same as in Example 1, and the CO 2 used is 15vol% CO 2 - 85vol% N 2 instead of 99vol%
도1, 2, 3을 통해 실시예1, 2, 3, 4, 5, 6의 결과물을 나타내었다.The results of Examples 1, 2, 3, 4, 5, and 6 are shown through FIGS. 1, 2, and 3.
도 1은 생활폐기물 소각장에서 발생한 비산재와 실시예1을 통해 얻어진 불용물에 대한 X선회절분석 결과를 비교하여 나타낸 것이다. 도 1에 따르면, 비산재에서 분석된 CaCl2·2H2O가 불용물에는 포함되지 않음을 확인하였다. 이를 통해 CaCl2·2H2O는 용매에 의해 모두 용해됨을 확인하였다.1 shows a comparison of the X-ray diffraction analysis results for fly ash generated in a municipal waste incineration plant and insoluble matter obtained through Example 1. According to FIG. 1, it was confirmed that CaCl 2 ·2H 2 O analyzed in fly ash was not included in insoluble matter. Through this, it was confirmed that CaCl 2 ·2H 2 O was all dissolved by the solvent.
도 2는 실시예1, 2, 3, 4, 5, 6를 통해 얻어진 PCC에 대한 X선회절분석 결과를 나타낸 것이다. 도 2에 따르면 실시예 1, 2, 3, 4, 5, 6를 통해 모두 PCC가 제조됨을 확인하였다.Figure 2 shows the results of X-ray diffraction analysis of PCC obtained through Examples 1, 2, 3, 4, 5, and 6. According to FIG. 2, it was confirmed that PCC was prepared through Examples 1, 2, 3, 4, 5, and 6.
도 3은 실시예1을 통해 얻어진 NH4Cl(s)에 대한 X선회절분석 결과를 나타낸 것이다. 도 3에 따르면, NH4Cl에 해당하는 peak가 주로 분석됨에 따라 최종적으로 NH4Cl(s)이 제조됨을 확인하였다.FIG. 3 shows the results of X-ray diffraction analysis for NH 4 Cl(s) obtained in Example 1. FIG. According to FIG. 3, as the peak corresponding to NH 4 Cl was mainly analyzed, it was confirmed that NH 4 Cl(s) was finally prepared.
본 발명에 따른 효과Effect according to the present invention
상기 전술한 바와 같이, 생활 폐기물 소각장에서 발생하는 비산재를 처리하여 매립에 대한 사회적 문제를 일부 해결할 수 있고, 발생하는 이산화탄소를 영구적으로 포집하여 지구온난화문제를 해결할 수 있다. 또한, 종래 기술인 고품위석회석으로부터 제조되는 PCC공정을 대체할 수 있어 국토를 보호할 수 있는 기술이고, 수입에 의존하는 NH4Cl을 국산화하여 국가경쟁력 강화에 일환이 될 수 있는 기술이다.As described above, it is possible to partially solve the social problem of landfill by treating the fly ash generated in the domestic waste incineration plant, and solve the global warming problem by permanently capturing the generated carbon dioxide. In addition, it is a technology that can protect the country by replacing the PCC process produced from high-grade limestone, which is a conventional technology, and it is a technology that can be part of strengthening national competitiveness by localizing NH 4 Cl, which depends on imports.
한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the effects obtainable in the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description below. You will be able to.
Claims (9)
상기 분리된 칼슘화합물에 이산화탄소와 암모니아를 부여함으로써, 경질탄산칼슘과 염화암모늄 수용액을 제조하는 탄산화 반응과 상기 경질탄산칼슘을 상기 염화암모늄 수용액과 분리하는 제 2 단계; 및
상기 염화암모늄 수용액 중 용매를 제거하여 염화암모늄 분말로 제조하는 제 3 단계;를 포함하는 소각장에서 발생하는 비산재를 활용한 경질탄산칼슘 및 염화암모늄의 제조방법.A first step of selectively extracting and separating available calcium compounds from fly ash generated in a municipal waste incineration plant;
a carbonation reaction of preparing precipitated calcium carbonate and aqueous ammonium chloride solution by applying carbon dioxide and ammonia to the separated calcium compound, and a second step of separating the precipitated calcium carbonate from the aqueous ammonium chloride solution; and
A method for producing light calcium carbonate and ammonium chloride using fly ash generated in an incinerator comprising a; third step of removing the solvent from the aqueous ammonium chloride solution to prepare ammonium chloride powder.
상기 제 1 단계에서,
상기 칼슘화합물을 선택적으로 추출하기 위해 사용하는 용매는 공정수, 지하수, 수돗물, 증류수, 탈이온수, 아세트산, 알코올 중 적어도 하나를 선택 적용 가능하고,
상기 칼슘화합물은 염화칼슘·0수화물, 염화칼슘·1수화물, 염화칼슘·2수화물 중 적어도 하나가 포함되며,
상기 제 1 단계는,
상기 비산재 100중량부에 대하여 용매 50~10,000중량부를 사용하여 염화칼슘·x수화물(x=0, 1, 2)를 용출하는 1-1단계; 및
상기 염화칼슘·x수화물 용출에 따른 염화칼슘·x수화물 수용액과 불용물을 분리하는 1-2단계;를 포함하는 소각장에서 발생하는 비산재를 활용한 경질탄산칼슘 및 염화암모늄의 제조방법.According to claim 1,
In the first step,
The solvent used to selectively extract the calcium compound is at least one of process water, ground water, tap water, distilled water, deionized water, acetic acid, and alcohol,
The calcium compound includes at least one of calcium chloride 0 hydrate, calcium chloride 1 hydrate, and calcium chloride 2 hydrate,
The first step is
Step 1-1 of eluting calcium chloride x hydrate (x = 0, 1, 2) using 50 to 10,000 parts by weight of a solvent based on 100 parts by weight of the fly ash; and
A method for producing light calcium carbonate and ammonium chloride using fly ash generated from an incineration plant, including steps 1 and 2 of separating the calcium chloride x hydrate aqueous solution and insoluble matter according to the calcium chloride x hydrate elution.
상기 제 2 단계는,
상기 분리된 염화칼슘·x수화물 수용액을 사용해 탄산화 반응을 진행하기 위하여 염화칼슘·x수화물 수용액을 이루는 비산재 원료 100중량부에 암모니아 88~374중량부와 이산화탄소를 사용하여 탄산화 반응을 하여 상기 경질탄산칼슘과 상기 염화암모늄수용액을 제조하는 2-1단계; 및
상기 경질탄산칼슘과 염화암모늄수용액을 분리하는 2-2단계;를 포함하는 소각장에서 발생하는 비산재를 활용한 경질탄산칼슘 및 염화암모늄의 제조방법.According to claim 1,
In the second step,
In order to carry out the carbonation reaction using the separated calcium chloride x hydrate aqueous solution, a carbonation reaction is performed using 88 to 374 parts by weight of ammonia and carbon dioxide in 100 parts by weight of the fly ash raw material constituting the calcium chloride x hydrate aqueous solution to obtain the light calcium carbonate and the above Step 2-1 of preparing an aqueous ammonium chloride solution; and
A method for producing light calcium carbonate and ammonium chloride using fly ash generated in an incinerator comprising a step 2-2 of separating the light calcium carbonate and the aqueous ammonium chloride solution.
상기 탄산화 반응에 사용되는 상기 암모니아는, 수용액의 형태, 액화의 형태, 고압가스의 형태, 질소, 헬륨, 알곤, 또는 이들 중 1개이상과 혼합된 혼합물 중 1종 이상의 형태로 사용되는 소각장에서 발생하는 비산재를 활용한 경질탄산칼슘 및 염화암모늄의 제조방법.According to claim 3,
The ammonia used in the carbonation reaction is generated in an incinerator used in the form of one or more of the form of aqueous solution, form of liquefaction, form of high-pressure gas, nitrogen, helium, argon, or a mixture mixed with one or more of them. Method for producing light calcium carbonate and ammonium chloride using fly ash.
상기 탄산화 반응에 사용되는 상기 이산화탄소는,
고체연료, 액체연료, 기체연료 중 1개 이상을 사용하는 보일러, 수소를 생산하는 개질공정과 에틸렌옥사이드 제조공정에서 발생하는 조성이 3 내지 99%인 이산화탄소를 적어도 하나를 선택 적용하여 수행되는 소각장에서 발생하는 비산재를 활용한 경질탄산칼슘 및 염화암모늄의 제조방법.According to claim 3,
The carbon dioxide used in the carbonation reaction is
In an incineration plant performed by selectively applying at least one of carbon dioxide with a composition of 3 to 99% generated in a boiler using one or more of solid fuel, liquid fuel, and gas fuel, a reforming process for producing hydrogen, and a process for manufacturing ethylene oxide Method for producing light calcium carbonate and ammonium chloride using generated fly ash.
상기 제2-1단계는,
염화칼슘·x수화물 수용액, 암모니아 및 이산화탄소 혼합에 있어서 상기 암모니아를 염화칼슘·x수화물 수용액과 혼합한 후 상기 이산화탄소를 상기 혼합액에 투입하여 수행되는 소각장에서 발생하는 비산재를 활용한 경질탄산칼슘 및 염화암모늄의 제조방법.According to claim 3,
In the 2-1 step,
Production of light calcium carbonate and ammonium chloride using fly ash generated from an incineration plant performed by mixing the ammonia with the calcium chloride x hydrate aqueous solution and then injecting the carbon dioxide into the mixed solution in mixing the calcium chloride x hydrate aqueous solution, ammonia and carbon dioxide method.
상기 제2-1단계는,
염화칼슘·x수화물 수용액, 암모니아 및 이산화탄소 혼합에 있어서 상기 이산화탄소를 상기 수용액과 혼합하는 동시에 상기 암모니아를 상기 혼합액에 투입하여 수행되는 소각장에서 발생하는 비산재를 활용한 경질탄산칼슘 및 염화암모늄의 제조방법.According to claim 3,
In the 2-1 step,
In mixing the calcium chloride x hydrate aqueous solution, ammonia and carbon dioxide, the carbon dioxide is mixed with the aqueous solution and the ammonia is added to the mixed solution at the same time.
상기 제3 단계는,
상기 염화암모늄 수용액을 구성하는 성분 중 용매를 제거를 위해 분무건조 및 끓음의 방법 중 1종 이상을 사용하여 수행하고,
상기 염화암모늄 승화를 방지하기 위해 염화암모늄이 노출되는 온도는 337.6℃ 이하에서 온도를 유지하여 수행되는 소각장에서 발생하는 비산재를 활용한 경질탄산칼슘 및 염화암모늄의 제조방법.According to claim 1,
The third step,
It is carried out using at least one of the methods of spray drying and boiling to remove the solvent among the components constituting the aqueous ammonium chloride solution,
The temperature at which ammonium chloride is exposed to prevent sublimation of ammonium chloride is a method for producing light calcium carbonate and ammonium chloride using fly ash generated in an incinerator performed by maintaining the temperature at 337.6 ° C or lower.
Precipitated calcium carbonate and ammonium chloride prepared according to the method according to any one of claims 1 to 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220003389A KR20230108747A (en) | 2022-01-10 | 2022-01-10 | Methods for capturing greenhouse gas and preparing precipitated calcium carbonate by using flyash generated from household waste incinerators |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220003389A KR20230108747A (en) | 2022-01-10 | 2022-01-10 | Methods for capturing greenhouse gas and preparing precipitated calcium carbonate by using flyash generated from household waste incinerators |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20230108747A true KR20230108747A (en) | 2023-07-19 |
Family
ID=87425711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220003389A KR20230108747A (en) | 2022-01-10 | 2022-01-10 | Methods for capturing greenhouse gas and preparing precipitated calcium carbonate by using flyash generated from household waste incinerators |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20230108747A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100749344B1 (en) | 2006-10-19 | 2007-08-29 | 주식회사 그린스코 | The mixer for sludge processing of fly ash of wastes incinerator |
KR101656035B1 (en) | 2015-04-30 | 2016-09-08 | 한국지질자원연구원 | A method for the synthesis of precipitated calcium carbonate from dolomite kiln dust |
KR102313785B1 (en) | 2021-01-25 | 2021-10-15 | 홍진의 | Melt treatment method with improved recyclability of incineration ash and fly ash |
-
2022
- 2022-01-10 KR KR1020220003389A patent/KR20230108747A/en not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100749344B1 (en) | 2006-10-19 | 2007-08-29 | 주식회사 그린스코 | The mixer for sludge processing of fly ash of wastes incinerator |
KR101656035B1 (en) | 2015-04-30 | 2016-09-08 | 한국지질자원연구원 | A method for the synthesis of precipitated calcium carbonate from dolomite kiln dust |
KR102313785B1 (en) | 2021-01-25 | 2021-10-15 | 홍진의 | Melt treatment method with improved recyclability of incineration ash and fly ash |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11285437B2 (en) | Systems and methods for carbon capture | |
CN102114383B (en) | Ammonia-chemical-chain-cycle-based carbon dioxide capture and conversion method | |
Liu et al. | Energy-efficient mineral carbonation of blast furnace slag with high value-added products | |
Jeon et al. | CO2 storage and CaCO3 production using seawater and an alkali industrial by-product | |
Rahmani | An experimental study of accelerated mineral carbonation of industrial waste red gypsum for CO2 sequestration | |
Mattila et al. | Production of precipitated calcium carbonate from steel converter slag and other calcium-containing industrial wastes and residues | |
US9653190B2 (en) | Removal device for radioactive cesium | |
CN103974757A (en) | Process and system for capturing carbon dioxide from a gas stream | |
US20120291675A1 (en) | Methods and products utilizing magnesium oxide for carbon dioxide sequestration | |
US7998446B2 (en) | Flue gas desulfurization process utilizing hydrogen peroxide | |
CN106517621B (en) | Recycling process of ammonium chloride-containing wastewater | |
US8231850B2 (en) | Economical sequestration of carbon dioxide by the mixed gas | |
CN1772345A (en) | Waste gas desulfurizing method with composite absorbant comprising pyrolusite and pH buffering agent | |
CN113149055A (en) | Method for preparing calcium carbonate and sulfate by using industrial desulfurized gypsum | |
CN101745309A (en) | Flue gas desulfurization (FGD) and comprehensive utilization method for flyash pudding blast furnace slag | |
Lin et al. | Carbon dioxide sequestration by industrial wastes through mineral carbonation: Current status and perspectives | |
CN115432724B (en) | Recycling treatment method of magnesium ammonium waste salt | |
CN101869804B (en) | Desulfuration process of sintering flue gas of semidry-method recirculating fluidized bed | |
CN102210966A (en) | Method for purifying flue gas | |
CN113087003A (en) | Carbon dioxide absorption and utilization method and application thereof | |
Hong et al. | Metal recovery from iron slag via pH swing-assisted carbon mineralization with various organic ligands | |
US9403119B1 (en) | Emission gas treatment method and emission gas treatment apparatus | |
KR20230108747A (en) | Methods for capturing greenhouse gas and preparing precipitated calcium carbonate by using flyash generated from household waste incinerators | |
CN102671523A (en) | Method for fixing light calcium carbonate as CO2 byproduct by using humate and desulfurization gypsum | |
KR102556853B1 (en) | Carbon Dioxide Removing System From Exhaust Gases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal |