KR20230108694A - Method for recovering magnesium using the precipitates and sulfuric acid produced from the chlorine generation system using seawater and brackish water electrolysis - Google Patents
Method for recovering magnesium using the precipitates and sulfuric acid produced from the chlorine generation system using seawater and brackish water electrolysis Download PDFInfo
- Publication number
- KR20230108694A KR20230108694A KR1020220154549A KR20220154549A KR20230108694A KR 20230108694 A KR20230108694 A KR 20230108694A KR 1020220154549 A KR1020220154549 A KR 1020220154549A KR 20220154549 A KR20220154549 A KR 20220154549A KR 20230108694 A KR20230108694 A KR 20230108694A
- Authority
- KR
- South Korea
- Prior art keywords
- magnesium
- sulfuric acid
- seawater
- generation system
- brackish water
- Prior art date
Links
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 title claims abstract description 113
- 239000011777 magnesium Substances 0.000 title claims abstract description 70
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 title claims abstract description 66
- 229910052749 magnesium Inorganic materials 0.000 title claims abstract description 66
- 239000013535 sea water Substances 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 43
- 239000002244 precipitate Substances 0.000 title claims abstract description 43
- 239000000460 chlorine Substances 0.000 title claims abstract description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 40
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 229910052801 chlorine Inorganic materials 0.000 title claims abstract description 38
- 238000005868 electrolysis reaction Methods 0.000 title 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims abstract description 90
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims abstract description 45
- 235000019341 magnesium sulphate Nutrition 0.000 claims abstract description 45
- 239000003960 organic solvent Substances 0.000 claims abstract description 35
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims abstract description 21
- 239000000347 magnesium hydroxide Substances 0.000 claims abstract description 21
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims abstract description 21
- 230000001376 precipitating effect Effects 0.000 claims abstract description 11
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 57
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 46
- 238000002156 mixing Methods 0.000 claims description 10
- 238000010828 elution Methods 0.000 claims description 7
- 150000002681 magnesium compounds Chemical class 0.000 claims description 7
- 239000002699 waste material Substances 0.000 claims description 5
- 238000005660 chlorination reaction Methods 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 3
- 239000012141 concentrate Substances 0.000 claims description 2
- 239000003480 eluent Substances 0.000 claims description 2
- 238000001771 vacuum deposition Methods 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 abstract 1
- 238000001704 evaporation Methods 0.000 abstract 1
- 238000001556 precipitation Methods 0.000 description 24
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000013049 sediment Substances 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 10
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 238000011084 recovery Methods 0.000 description 7
- 229910019440 Mg(OH) Inorganic materials 0.000 description 6
- 239000000395 magnesium oxide Substances 0.000 description 6
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 235000010755 mineral Nutrition 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- 239000011575 calcium Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000004876 x-ray fluorescence Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000010459 dolomite Substances 0.000 description 2
- 229910000514 dolomite Inorganic materials 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Inorganic materials [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004451 qualitative analysis Methods 0.000 description 2
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- -1 5.1 wt%) Substances 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052599 brucite Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000011405 expansive cement Substances 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004079 fireproofing Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 150000004688 heptahydrates Chemical class 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B26/00—Obtaining alkali, alkaline earth metals or magnesium
- C22B26/20—Obtaining alkaline earth metals or magnesium
- C22B26/22—Obtaining magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/04—Extraction of metal compounds from ores or concentrates by wet processes by leaching
- C22B3/045—Leaching using electrochemical processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/04—Extraction of metal compounds from ores or concentrates by wet processes by leaching
- C22B3/06—Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
- C22B3/08—Sulfuric acid, other sulfurated acids or salts thereof
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/04—Extraction of metal compounds from ores or concentrates by wet processes by leaching
- C22B3/16—Extraction of metal compounds from ores or concentrates by wet processes by leaching in organic solutions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Organic Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
본 발명은 해수 및/또는 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침전물과 황산을 이용하여 마그네슘을 회수하는 방법에 관한 것이다.The present invention relates to a method for recovering magnesium using sediment and sulfuric acid generated in an electrolytic chlorine generation system using seawater and/or brackish water.
마그네슘은 강철만큼 강하고, 알루미늄보다 40 % 가벼우며, 무게 대비 고강도 특성, 내구성, 내충격성 및 구조적 특성으로 인해 다양한 용도로 사용되고 있다. 국내 주요산업인 전자, 자동차, 철강 산업에서 마그네슘은 매우 중요한 원자재로 사용되며, 향후 고경량, 고품위 제품생산을 위한 마그네슘의 수요는 크게 증가할 것으로 예상된다. 또한 그 화합물은 제약 산업과 농업, 건축을 포함한 다양한 산업에서의 활용도가 매우 크다. 현재 국내에서 소비되는 마그네슘은 대부분 수입에 의존하고 있다.Magnesium is as strong as steel, 40% lighter than aluminum, and is used in a variety of applications due to its high strength-to-weight ratio, durability, impact resistance and structural properties. Magnesium is used as a very important raw material in the electronics, automobile, and steel industries, which are major industries in Korea. In addition, the compound has great applications in various industries, including the pharmaceutical industry, agriculture, and construction. Currently, most of the magnesium consumed in Korea is dependent on imports.
전 세계 마그네슘의 육상매장량은 약 36억 톤으로 추정되며, 주로 마그네사이트(magnesite), 백운석(dolomite), 사문석(serpentine), 수활석(brucite) 등의 광물로 존재한다. 해수에서 마그네슘 농도는 약 1300 mg/L이며, 전체 해수량을 고려하면 해수에 존재하는 마그네슘의 총량은 184 x 1015톤으로 육상자원의 약 500,000 배에 달한다.The world's terrestrial reserves of magnesium are estimated to be about 3.6 billion tons, and they are mainly present as minerals such as magnesite, dolomite, serpentine, and brucite. The concentration of magnesium in seawater is about 1300 mg/L, and considering the total amount of seawater, the total amount of magnesium present in seawater is 184 x 10 15 tons, which is about 500,000 times that of land resources.
마그네슘을 회수하는 방법은 크게 광물로부터 회수하는 방법과 해수(염수와 간수 포함)로부터 회수하는 방법으로 나눌 수 있다. 광물에서 마그네슘을 회수할 때는 산을 이용하여 마그네슘을 추출한 후 알칼리 물질을 주입하여 침전반응을 통해서 마그네슘을 고체화시킨다. 해수로부터 마그네슘을 회수하는 방법은 알칼리 물질을 이용한 침전, 이온교환수지 이용, 용매추출법 등이 있다.Methods for recovering magnesium can be largely divided into a method for recovering magnesium from minerals and a method for recovering magnesium from seawater (including brine and brine). When magnesium is recovered from minerals, magnesium is extracted using an acid, and then an alkaline substance is injected to solidify magnesium through a precipitation reaction. Methods for recovering magnesium from seawater include precipitation using alkali materials, use of ion exchange resins, and solvent extraction methods.
지금까지 알칼리 침전제를 이용하여 해수로부터 마그네슘을 회수하는 연구가 많이 진행되었다. 주로 사용한 침전제는 lime, dolomite, NaOH, KOH, NH4OH 등이고, 대부분의 경우 마그네슘을 침전시키기 전에 칼슘을 제거하였다. 기존의 알칼리 침전제를 이용한 마그네슘 회수에서 가장 큰 어려움은, 생성되는 수산화마그네슘을 침전시키고 여과하는 것이었다. 이것은 수산화마그네슘이 미립자일 뿐만 아니라 낮은 결정화 특성을 나타내기 때문이다.Until now, many studies on the recovery of magnesium from seawater using alkaline precipitants have been conducted. Mainly used precipitants are lime, dolomite, NaOH, KOH, NH 4 OH, etc., and in most cases, calcium is removed before magnesium is precipitated. The greatest difficulty in recovering magnesium using conventional alkaline precipitants was to precipitate and filter the magnesium hydroxide produced. This is because magnesium hydroxide is not only fine particles but also exhibits low crystallization characteristics.
해수로부터 마그네슘을 추출하여 마그네시아(산화마그네슘)를 생산하는 기술은 세계적으로 이미 상용화되어있으나 경제성 확보가 쉽지 않아 고효율 및 경제적 추출기술의 개발이 여전히 요구되고 있다. 특히 NaOH, NH4OH 등의 알칼리 침전제 비용 등과 관련된 경제성이 기술 실용화의 큰 걸림돌이라고 할 수 있다. 이 문제를 해결하는 여러 가지 방법 중, 기존의 침전제를 대체할 저렴한 침전제 발굴이 대안이 될 수 있다. 예를 들면, 제지슬러지 소각재(paper sludge ash, PSA), 시멘트 킬른 더스트(cement kiln dust, CKD), 슬래그, 석탄회 등 알칼리 산업 부산물이 침전제로 사용될 수 있다. 그러나 지금까지 산업부산물을 침전제로 사용한 연구는 거의 진행되지 않았다. Kang et al (2012)이 해수에 석탄과 NaOH를 첨가하여 마그네슘을 수산화마그네슘 형태로 회수하는 연구를 수행한 적이 있을 뿐이다.The technology of extracting magnesium from seawater to produce magnesia (magnesium oxide) has already been commercialized worldwide, but it is not easy to secure economic feasibility, so the development of highly efficient and economical extraction technology is still required. In particular, economic feasibility related to the cost of alkali precipitants such as NaOH and NH 4 OH can be said to be a major obstacle to commercialization of the technology. Among many ways to solve this problem, finding an inexpensive precipitant to replace the existing precipitant can be an alternative. For example, alkaline industrial by-products such as paper sludge ash (PSA), cement kiln dust (CKD), slag, and coal ash can be used as precipitants. However, few studies have been conducted so far using industrial by-products as precipitants. Kang et al (2012) have only conducted a study to recover magnesium in the form of magnesium hydroxide by adding coal and NaOH to seawater.
산업에 가장 많이 사용되는 마그네슘 화합물은 염화마그네슘(MgCl2), 수산화마그네슘[Mg(OH)2], 황산마그네슘(MgSO4) 등이다. 황산마그네슘은 광물이나 인공적인 합성을 통해서 얻어지며, 주로 탄산마그네슘(MgCO3)이나 산화마그네슘(MgO)에 황산을 주입하여 제조한다. 황산마그네슘은 물에 매우 잘 용해된다. 예를 들면, 20℃, 40℃에서 물 100 mL에 각각 71 g, 91 g의 황산마그네슘이 용해된다. 그러나 알코올에는 거의 녹지 않고, 아세톤에는 불용성이다. 한편, 황산마그네슘은 온도에 따라 다양한 형태의 수화물로 존재하지만(MgSO4·xH2O, x=1~7) 7수화염이 가장 일반적인 형태이다. 주로 종이의 충전제, 내화제, 비료, 의약품 등에 사용된다.The most used magnesium compounds in industry are magnesium chloride (MgCl 2 ), magnesium hydroxide [Mg(OH) 2 ], magnesium sulfate (MgSO 4 ), and the like. Magnesium sulfate is obtained through mineral or artificial synthesis, and is mainly prepared by injecting sulfuric acid into magnesium carbonate (MgCO 3 ) or magnesium oxide (MgO). Magnesium sulfate is very soluble in water. For example, 71 g and 91 g of magnesium sulfate are dissolved in 100 mL of water at 20°C and 40°C, respectively. However, it is practically insoluble in alcohol and insoluble in acetone. On the other hand, magnesium sulfate exists as a hydrate in various forms depending on the temperature (MgSO 4 ·xH 2 O, x = 1 to 7), but heptahydrate is the most common form. It is mainly used as a paper filler, fireproofing agent, fertilizer, medicine, etc.
기존의 알칼리 침전제를 이용한 마그네슘 회수에서 가장 큰 어려움은, 생성되는 수산화마그네슘을 침전시키고 여과하는 것이었다. 이것은 수산화마그네슘이 미립자일 뿐만 아니라 낮은 결정화 특성을 나타내기 때문이다. 해수로부터 마그네슘을 추출하여 마그네시아(산화마그네슘)를 생산하는 기술은 세계적으로 이미 상용화되어있으나 경제성 확보가 쉽지 않아 고효율 및 경제적 추출기술의 개발이 여전히 요구되고 있다. 특히 NaOH, NH4OH 등의 알칼리 침전제 비용 등과 관련된 경제성이 기술 실용화의 큰 걸림돌이라고 할 수 있다. 또한 기존의 해수로부터 마그네슘을 분리하는 연구는 해수에 NaOH를 첨가하여 마그네슘을 수산화마그네슘 형태로 회수하는 연구가 주를 이루고 있으며, 산을 첨가하여 마그네슘을 마그네슘염 형태로 분리하는 연구도 수행되었지만 회수율이 낮고 대량의 산(acid)을 이용하므로 경제성 문제가 있다. The greatest difficulty in recovering magnesium using conventional alkaline precipitants was to precipitate and filter the magnesium hydroxide produced. This is because magnesium hydroxide is not only fine particles but also exhibits low crystallization characteristics. The technology of extracting magnesium from seawater to produce magnesia (magnesium oxide) has already been commercialized worldwide, but it is not easy to secure economic feasibility, so the development of highly efficient and economical extraction technology is still required. In particular, economic feasibility related to the cost of alkali precipitants such as NaOH and NH 4 OH can be said to be a major obstacle to commercialization of the technology. In addition, research on separating magnesium from existing seawater mainly focuses on recovering magnesium in the form of magnesium hydroxide by adding NaOH to seawater, and research on separating magnesium in the form of magnesium salt by adding acid has also been conducted, but the recovery rate There is an economic problem because a low and large amount of acid is used.
[선행 특허 문헌][Prior Patent Literature]
대한민국 특허공개번호 제10-1828471호Korean Patent Publication No. 10-1828471
본 발명은 상기의 필요성에 의하여 안출된 것으로서 본 발명의 목적은 해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침전물로부터 산업에 사용되는 마그네슘 화합물을 회수하는 방법을 제공하는 것이다. The present invention has been made in view of the above needs, and an object of the present invention is to provide a method for recovering magnesium compounds used in industry from precipitates generated in an electrolytic chlorine generation system using seawater and brackish water.
본 발명의 다른 목적은 해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침전물로부터 산업에 사용되는 마그네슘 화합물을 제공하는 것이다.Another object of the present invention is to provide a magnesium compound used in industry from precipitates generated in an electrolytic chlorine generation system using seawater and brackish water.
상기의 목적을 달성하기 위하여 본 발명은 해수 또는 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침천물로부터 마그네슘을 회수하는 방법에 있어서,In order to achieve the above object, the present invention provides a method for recovering magnesium from precipitate generated in an electrolytic chlorine generation system using seawater or brackish water,
해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침전물인 수산화마그네슘에 황산을 이용하여 마그네슘을 용출하는 단계;Eluting magnesium by using sulfuric acid from magnesium hydroxide, which is a precipitate generated in an electrolytic chlorine generation system using seawater and brackish water;
상기 마그네슘 용출 용액에 유기용매를 첨가하여 황산마그네슘(MgSO4·xH2O(s))를 석출하는 단계; 및 Precipitating magnesium sulfate (MgSO 4 ·xH 2 O(s)) by adding an organic solvent to the magnesium elution solution; and
상기 황산마그네슘을 석출 후, 유기용매와 황산을 감압증발법을 이용해서 분리하고, 상기 유기용매를 재사용하는 단계After the magnesium sulfate is precipitated, the organic solvent and sulfuric acid are separated using a vacuum evaporation method, and the organic solvent is reused.
를 포함하는 해수 또는 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침천물로부터 마그네슘을 회수하는 방법을 제공한다.It provides a method for recovering magnesium from precipitate generated in an electrolytic chlorine generation system using seawater or brackish water comprising a.
본 발명의 일 구현예에 있어서, 상기 황산은 산업현장 이용된 폐황산 또는 황산인 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the sulfuric acid is preferably waste sulfuric acid or sulfuric acid used in industrial fields, but is not limited thereto.
본 발명의 또 다른 구현예에 있어서, 상기 해수는 해수 농축액인 것이 바람직하나 이에 한정되지 아니한다.In another embodiment of the present invention, the seawater is preferably a seawater concentrate, but is not limited thereto.
본 발명의 일 구현예에 있어서, 상기 방법은 황산(H2SO4)을 해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침천물에 처리하여 고농도의 마그네슘을 추출한 후 유기용매를 이용하여 황산마그네슘을 분리하는 것이 바람직하고,In one embodiment of the present invention, the method is to extract high-concentration magnesium by treating sulfuric acid (H 2 SO 4 ) with sediment generated in an electrolytic chlorine generation system using seawater and brackish water, and then using an organic solvent. It is preferable to separate magnesium sulfate,
본 발명의 일 실시예에 있어서, 상기 유기용매는 에탄올 또는 아세톤인 것이 바람직하고 아세톤인 것이 더욱 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the organic solvent is preferably ethanol or acetone, more preferably acetone, but is not limited thereto.
본 발명의 일 구현예에 있어서, 상기 방법은 전기분해식 염소생성시스템에서 발생하는 침전물인 수산화마그네슘에 0.5 내지 1M 황산을 이용하여 용출하고, 상기 용출액에 상기 황산 대 에탄올 및 아세톤 중 하나의 용매를 1:1.5~1:2(v:v) 비율로 혼합하여 황산마그네슘을 석출하는 것을 포함하는 것이 바람직하고,In one embodiment of the present invention, the method is to elute magnesium hydroxide, which is a precipitate generated in an electrolytic chlorination system, using 0.5 to 1M sulfuric acid, and to the eluate, one solvent of sulfuric acid to ethanol and acetone is added. It is preferable to include precipitating magnesium sulfate by mixing in a ratio of 1: 1.5 to 1: 2 (v: v),
상기 방법은 전기분해식 염소생성시스템에서 발생하는 침전물인 수산화마그네슘에 0.5M 황산을 이용하여 용출하고, 상기 용출액에 황산 대 아세톤을 1:2(v:v) 비율로 혼합하여 황산마그네슘을 석출하는 것을 포함하는 것이 더욱 바람직하나 이에 한정되지 아니한다.The method is to elute magnesium hydroxide, which is a precipitate generated in an electrolytic chlorination system, using 0.5M sulfuric acid, and mix sulfuric acid to acetone in a ratio of 1: 2 (v: v) to the eluate to precipitate magnesium sulfate. It is more preferable to include, but is not limited thereto.
또한 본 발명은 상기 본 발명의 방법에 의하여 회수된 마그네슘 화합물을 제공한다.In addition, the present invention provides a magnesium compound recovered by the method of the present invention.
본 발명의 일 구현예에 있어서, 상기 마그네슘은 황산마그네슘인 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the magnesium is preferably magnesium sulfate, but is not limited thereto.
이하 본 발명을 설명한다.The present invention will be described below.
본 발명은 해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침천물과 황산(H2SO4)을 이용하여 고농도의 마그네슘을 추출한 후 유기용매를 이용하여 황산마그네슘을 침전 분리하는 2단계 과정으로 기존 해수나 해수 농축수로부터 마그네슘을 분리하기 위한 수산화마그네슘(Mg(OH)2)을 생성하는 공정이 필요하지 않으며, 해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침천물로에는 고농도의 마그네슘이 존재하여 황산을 이용하는 방법을 이용하면 고효율의 회수율과 경제성을 확보할 수 있다. The present invention is a two-step process of extracting high-concentration magnesium using sediment and sulfuric acid (H 2 SO 4 ) generated in an electrolytic chlorine production system using seawater and brackish water, and then precipitating and separating magnesium sulfate using an organic solvent. As a result, the process of producing magnesium hydroxide (Mg(OH) 2 ) to separate magnesium from existing seawater or seawater concentrated water is not required, and the precipitate generated from the electrolytic chlorine generation system using seawater and brackish water contains high concentrations. Magnesium exists, so if you use a method using sulfuric acid, you can secure a high recovery rate and economic feasibility.
또한 일반적으로 황산의 농도가 증가할 수록 MgSO4 석출 효율이 증가하였는데, 본 발명에서는 가장 낮은 농도인 0.5M 황산에서 석출량이 가장 많았으며(침전물 1g당 1.5g(에탄올), 1.7g(아세톤) 석출), EDX와 XPS결과 다른 무기성 불순물이 없는 형태로 석출되어 고순도의 MgSO4를 얻을 수 있는 차별성이 있으며, 사용한 유기용매는 회수율(99.5% 이상)으로 재이용이 가능하다.In addition, in general, as the concentration of sulfuric acid increased, the efficiency of MgSO4 precipitation increased. In the present invention, the lowest concentration, 0.5M sulfuric acid, had the highest precipitation amount (1.5g (ethanol) and 1.7g (acetone) per 1g of precipitate) , EDX and XPS results show that it is precipitated in the form of no other inorganic impurities and has the distinction of obtaining high-purity MgSO4, and the used organic solvent can be reused with a recovery rate (99.5% or more).
본 발명에 의하면, 해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침천물과 황산(H2SO4)을 이용하여 고농도의 마그네슘을 추출한 후 유기용매를 이용하여 황산마그네슘을 침전 분리하는 2단계 과정으로 기존 해수나 해수 농축수로부터 마그네슘을 분리하기 위한 수산화마그네슘(Mg(OH)2)을 생성하는 공정이 필요하지 않으며, 해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침천물로에는 고농도의 마그네슘이 존재하여 황산을 이용하는 방법을 이용하면 고효율의 회수율과 경제성을 확보할 수 있다. 또한, 본 발명은 해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침천물과 황산을 사용하여 산업폐기물 발생량을 저감하고 산업에 많이 사용되는 유용자원인 마그네슘 화합물을 제공하는 장점이 있다.According to the present invention, after extracting high-concentration magnesium using sediment and sulfuric acid (H 2 SO 4 ) generated in an electrolytic chlorine generation system using seawater and brackish water, magnesium sulfate is precipitated and separated using an organic solvent. As a step-by-step process, the process of producing magnesium hydroxide (Mg(OH) 2 ) to separate magnesium from existing seawater or seawater concentrated water is not required, and it is produced as sediment generated from the electrolytic chlorine production system using seawater and brackish water. Since there is a high concentration of magnesium, using a method using sulfuric acid can secure a high recovery rate and economic feasibility. In addition, the present invention has the advantage of reducing industrial waste generation by using sediment and sulfuric acid generated in an electrolytic chlorine generation system using seawater and brackish water and providing a magnesium compound, which is a useful resource widely used in industry.
도 1은 본 발명의 해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침천물과 황산을 이용하여 마그네슘을 회수하는 방법을 모식화하여 나타낸 것으로,
a) 해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침전물을 얻는 단계,
b) 상기 침전물을 폐황산이나 황산 용액을 이용해서 Mg2+와 SO4 2- 용존상태로 분리하는 단계,
c) 유기용매(아세톤, 에탄올, 메탄올, 아세토나이트릴, 이소프로필알코올 등)를 사용해서 MgSO4·xH2O(s) 석출하는 단계,
d) MgSO4·xH2O(s) 석출 후, 유기용매와 황산을 분리하는 단계와 상기 분리된 유기용매를 재사용하는 단계로 이루어짐.
도 2는 염소생성시스템 침전물인 수산화마그네슘(Mg(OH)2)의 FE-SEM/EDX 분석결과를 나타낸 그림.
도 3은 전기분해식 염소생성시스템에서 발생하는 침전물의 XPS 분석결과를 나타낸 그림,
도 4 내지 도 8은 황산마그네슘 석출 후 FE-SEM/EDX 분석결과를 나타낸 그림,
도 9 내지 도 13은 황산마그네슘 석출 후 XPS 분석결과를 나타낸 그림으로, 석출물 정성분석 결과 황산마그네슘(MgSO4)이 주요구성 성분으로 SEM-EDX결과와 일치하는 것을 알 수 있다.
도 14는 회수된 용매, (a) 에탄올과 (b) 아세톤의 GC-MS 분석결과이다. 1 schematically shows a method for recovering magnesium using sediment and sulfuric acid generated in the electrolytic chlorine generation system using seawater and brackish water according to the present invention.
a) obtaining sediment generated from an electrolytic chlorine generation system using seawater and brackish water;
b) separating the precipitate into Mg 2+ and SO 4 2- dissolved state using waste sulfuric acid or sulfuric acid solution;
c) precipitating MgSO 4 xH 2 O(s) using an organic solvent (acetone, ethanol, methanol, acetonitrile, isopropyl alcohol, etc.);
d) After precipitation of MgSO 4 ·xH 2 O(s), the organic solvent and sulfuric acid are separated, and the separated organic solvent is reused.
Figure 2 is a figure showing the results of FE-SEM / EDX analysis of magnesium hydroxide (Mg (OH) 2 ), which is a precipitate of a chlorine production system.
3 is a diagram showing the results of XPS analysis of precipitates generated in the electrolytic chlorine generation system;
4 to 8 are diagrams showing the results of FE-SEM / EDX analysis after magnesium sulfate precipitation;
9 to 13 are figures showing the XPS analysis results after magnesium sulfate precipitation, and as a result of qualitative analysis of the precipitate, it can be seen that magnesium sulfate (MgSO 4 ) is consistent with the SEM-EDX results as a major component.
14 is a GC-MS analysis result of the recovered solvents, (a) ethanol and (b) acetone.
이하 비한정적인 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 단 하기 실시예는 본 발명을 예시하기 위한 의도로 기재된 것으로서 본 발명의 범위는 하기 실시예에 의하여 제한되는 것으로 해석되지 아니한다.Hereinafter, the present invention will be described in more detail through non-limiting examples. However, the following examples are described with the intention of illustrating the present invention, and the scope of the present invention is not construed as being limited by the following examples.
본 발명에 대한 개략:MgSOOverview of the Invention: MgSO 44 ·xH·xH 22 O(s) 석출 방법O(s) precipitation method
본 발명의 해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침전물로부터 마그네슘을 회수하는 방법은 도 1과 같은 순서로 진행하였다. 본 발명에서는 해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침전물로부터 마그네슘을 회수하기 위해서 하기 공정을 연속적으로 진행하였다:The method of recovering magnesium from the precipitate generated in the electrolytic chlorine generation system using seawater and brackish water according to the present invention was performed in the same order as shown in FIG. In the present invention, in order to recover magnesium from the precipitate generated in the electrolytic chlorine generation system using seawater and brackish water, the following process was continuously performed:
1) 해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침전물인 수산화마그네슘(Mg(OH)2))에 폐황산이나 황산을 이용하여 마그네슘을 용출하는 단계;1) eluting magnesium from magnesium hydroxide (Mg(OH) 2) , which is a precipitate generated in an electrolytic chlorine generation system using seawater and brackish water, using waste sulfuric acid or sulfuric acid;
2) 상기 마그네슘 용출 용액에 유기용매(99.9% 에탄올, 99.9% 아세톤, 99.9% 아세토나이트릴, 99.9% 메탄올, 99.9% 이소프로필알코올)를 첨가하여 황산마그네슘(MgSO4·xH2O(s)) 석출하는 단계;2) Magnesium sulfate (MgSO 4 xH 2 O(s)) was obtained by adding an organic solvent (99.9% ethanol, 99.9% acetone, 99.9% acetonitrile, 99.9% methanol, 99.9% isopropyl alcohol) to the magnesium elution solution. precipitating step;
마그네슘 용출 용액과 상기 5종류의 유기용매를 1:1, 1:1.5, 1:2 비율로 혼합하여 황산마그네슘 석출량과 석출 효율을 비교하여 최적 유기용매를 선택하였고, 혼합용액에서 석출을 위해 3℃에서 12시간 냉장보관하고, 석출된 황산마그네슘과 혼합용액을 GF/F(Glass fiber filter)로 여과하여 황산마그네슘과 혼합용액을 분리한 후, 황산마그네슘은 70℃에서 24시간 건조, 건조된 황산마그네슘의 질량 측정하였다. The magnesium elution solution and the above five organic solvents were mixed at a ratio of 1:1, 1:1.5, and 1:2 to compare the amount of magnesium sulfate and the precipitation efficiency to select the optimal organic solvent. After refrigerating at ℃ for 12 hours, and filtering the precipitated magnesium sulfate and the mixed solution with a GF/F (Glass fiber filter) to separate the magnesium sulfate and the mixed solution, the magnesium sulfate was dried at 70 ° C for 24 hours, and the dried sulfuric acid The mass of magnesium was measured.
3) 황산마그네슘(MgSO4·xH2O(s))을 석출 후, 유기용매와 황산을 감압증발법을 이용해서 분리하는 방법과 유기용매 재사용하였다.3) After precipitating magnesium sulfate (MgSO 4 xH 2 O(s)), the organic solvent and sulfuric acid were separated by vacuum evaporation and the organic solvent was reused.
이를 상술하면 To elaborate on this
실시예 1: 마그네슘 용출Example 1: Magnesium elution
해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침전물을 105 ℃에서 24시간 동안 건조하여 분말 형태로 만들어 마그네슘 용출실험에 사용하였다. 각 분말 시료의 질량은 1.00 g이었다. 5개 고체 시료에 농도가 다른 황산(0.5, 1.0, 1.5, 2.0, 2.5 M)을 각각 50 mL씩 주입한 후, 150 rpm에서 20 분간 교반하였다. 황산을 사용한 이유는 마그네슘의 회수에 방해되는 칼슘을 황산칼슘(CaSO4)으로 석출하여 마그네슘과 함께 용출되는 것을 방지하기 위해서이다. 황산을 사용한 마그네슘 용출액을 GF/F 필터를 이용하여 여과하였다. The precipitate generated in the electrolytic chlorine generation system using seawater and brackish water was dried at 105 ° C for 24 hours to form powder and used for magnesium elution experiments. The mass of each powder sample was 1.00 g. After injecting 50 mL each of sulfuric acid (0.5, 1.0, 1.5, 2.0, 2.5 M) with different concentrations to each of the five solid samples, the mixture was stirred at 150 rpm for 20 minutes. The reason for using sulfuric acid is to precipitate calcium sulfate (CaSO 4 ), which interferes with the recovery of magnesium, to prevent elution with magnesium. Magnesium eluate using sulfuric acid was filtered using a GF/F filter.
실시예 2: 황산마그네슘 석출Example 2: Magnesium sulfate precipitation
상기 실시예 1에서 여과한 황산을 사용한 마그네슘 용출액과 5가지 유기용매(99.9% 에탄올, 99.9% 아세톤, 99.9% 아세토나이트릴, 99.9% 메탄올, 99.9% 이소프로필알코올) 중 한 가지 용매를 1:1(v:v), 1:1.5(v:v), 1:2 (v:v) 비율로 혼합하였다. 예를 들면, 0.5M 황산을 사용한 마그네슘 용출액 50 mL에 에탄올 또는 아세톤 50 mL, 100 mL, 150 mL를 주입하였다. 5가지 황산 농도와 유기용매 종류와 혼합비율이 각각 다른 75개 용액을 12 시간 동안 3℃에서 냉장보관하였다. GF/F 필터를 이용하여 생성된 고체를 여과한 다음 70℃에서 건조하였다. 건조고체의 질량을 측정하고 FE-SEM/EDX와 XPS 분석하였다.The magnesium eluate using sulfuric acid filtered in Example 1 and one of the five organic solvents (99.9% ethanol, 99.9% acetone, 99.9% acetonitrile, 99.9% methanol, and 99.9% isopropyl alcohol) were mixed 1:1. (v:v), 1:1.5 (v:v), and 1:2 (v:v). For example, 50 mL, 100 mL, and 150 mL of ethanol or acetone were injected into 50 mL of magnesium eluate using 0.5M sulfuric acid. Seventy-five solutions with different concentrations of five sulfuric acids, types of organic solvents, and mixing ratios were refrigerated at 3°C for 12 hours. The resulting solid was filtered using a GF/F filter and then dried at 70°C. The mass of the dry solid was measured and analyzed by FE-SEM/EDX and XPS.
실시예 3: 사용한 유기용매 회수Example 3: Recovery of Used Organic Solvent
상기 실시예 2에서 고체가 석출된 후 남은 용액(에탄올과 아세톤)을 둥근 플라스크에 넣고 감압분별 증류관과 냉각기를 연결하였다. 용액을 40-47℃에서 물 중탕하였을 때 일부 액체가 증기화하여 분리되었다. 증기화하여 분리된 용액을 GC-MS로 분석하였다.After the solid was precipitated in Example 2, the remaining solution (ethanol and acetone) was put into a round flask, and a vacuum fractionation tube and a condenser were connected. When the solution was bathed in water at 40-47 °C, some of the liquid was vaporized and separated. The vaporized and separated solution was analyzed by GC-MS.
상기 실시예의 결과는 하기와 같다.The results of the above examples are as follows.
X-ray fluorescence(XRF) spectroscopy 분석결과(침전물 구성 원소 분석)X-ray fluorescence (XRF) spectroscopy analysis result (sediment composition element analysis)
하기 표 1은 본 발명의 해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침전물의 XRF 분석결과이다. Table 1 below shows XRF analysis results of precipitates generated in the electrolytic chlorine generation system using seawater and brackish water according to the present invention.
표 1을 참고하면, 침전물의 주요 구성 성분은 마그네슘(Mg, 69.5wt%)이었고, 추가적으로 칼슘(Ca, 5.1 wt%), 규소(Si, 0.6 wt%), 나트륨(Na, 0.3 wt%), 염소(Cl, 4.2 wt%), 그리고 황(S, 0.5 wt%)을 포함하고 있으며, 해수나 기수를 사용해서 염소생성을 할 때 이러한 원소들이 공침할 수 있음을 나타낸다.Referring to Table 1, the main components of the precipitate were magnesium (Mg, 69.5 wt%), additionally calcium (Ca, 5.1 wt%), silicon (Si, 0.6 wt%), sodium (Na, 0.3 wt%), It contains chlorine (Cl, 4.2 wt%) and sulfur (S, 0.5 wt%), indicating that these elements can co-precipitate when chlorine is produced using seawater or brackish water.
또한 침전물에 포함된 Mg는 수산화칼슘(Ca(OH)2, 용해도 상수 = 5.5 × 10-6) 보다 상대적으로 낮은 용해도 상수로 인해 수산화마그네슘 (Mg(OH)2, 용해도 상수 = 5.61 × 10-12) 형태로 존재한다 (Zheng, L.; Xuehua, C.; Mingshu, T. Hydration and setting time of MgO-type expansive cement. Cem. Concr. Res. 1992, 22, 1-5).In addition, Mg contained in the precipitate is magnesium hydroxide (Mg(OH) 2 , solubility constant = 5.61 × 10 -12 ) due to its relatively lower solubility constant than calcium hydroxide (Ca(OH) 2 , solubility constant = 5.5 × 10 -6 ) (Zheng, L.; Xuehua, C.; Mingshu, T. Hydration and setting time of MgO-type expansive cement. Cem. Concr. Res. 1992, 22, 1-5).
표 1은 XRF를 이용한 해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침전물의 구성 원소 분석결과Table 1 shows the analysis results of the constituent elements of the sediment generated from the electrolytic chlorine generation system using seawater and brackish water using XRF.
침전물 FE-SEM/EDX 분석결과Sediment FE-SEM/EDX analysis results
도 2는 본 발명의 해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침전물의 field emission-scanning electron microscope(FE-SEM) 이미지와 energy dispersive X-ray(EDX) 스펙트럼 분석결과이다. Figure 2 is a field emission-scanning electron microscope (FE-SEM) image and energy dispersive X-ray (EDX) spectrum analysis results of precipitates generated in the electrolytic chlorine generation system using seawater and brackish water according to the present invention.
도 2를 참고하면, 침전물의 표면은 불규칙한 광물 형태를 보였고, EDX 결과 주요 원소는 산소(45.99%)와 마그네슘(44.38%)으로 구성되어 있는 것으로 나타났다. 이는 XRF의 결과와 일치하며 수산화마그네슘이 침전물의 지배적 성분임을 나타낸다.Referring to FIG. 2, the surface of the precipitate showed an irregular mineral form, and EDX results showed that the main elements were composed of oxygen (45.99%) and magnesium (44.38%). This is consistent with the results of XRF and indicates that magnesium hydroxide is the dominant component of the precipitate.
침전물 XPS 분석결과Sediment XPS analysis result
도 3은 본 발명의 해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침전물의 엑스선 광전자 분광법(X-ray Photoelectron. Spectroscopy; XPS) 분석결과이다. 3 is an X-ray photoelectron spectroscopy (XPS) analysis result of the precipitate generated in the electrolytic chlorine generation system using seawater and brackish water according to the present invention.
도 3을 참고하면, 침전물의 주요 원소는 마그네슘과 산소로 구성되어 있는 것으로 나타났다. 이는 상기 표 1과 도 2의 결과와 일치하며 수산화마그네슘(Mg(OH)2)이 침전물의 지배적 성분임을 나타낸다.Referring to Figure 3, the main elements of the precipitate was found to be composed of magnesium and oxygen. This is consistent with the results of Table 1 and FIG. 2 and indicates that magnesium hydroxide (Mg(OH) 2 ) is a dominant component of the precipitate.
황산마그네슘 석출Magnesium Sulphate Precipitation
용출액의 황산 농도와 유기용매의 종류를 달리하여 진행한 석출 실험 결과는 표2에 정리하였다.Table 2 summarizes the results of precipitation experiments conducted by varying the concentration of sulfuric acid in the eluent and the type of organic solvent.
히기 표 2를 참고하면, 침출물 1g을 황산에 용해시켜 얻은 용출액의 황산 농도(0.5-2.5M)변화와 5종류의 유기용매와의 혼합 비율 변화(1:1; 1:1.5; 1:2)조건에 따른 황산마그네슘(MgSO4) 석출량을 살펴보면 0.5 M 황산 조건에서 에탄올과 아세톤의 1:1.5 혼합 비율(석출 효율: 에탄올 = 68%; 아세톤 = 97%)과 1:2 혼합 비율(석출 효율: 에탄올 = 150%; 아세톤 = 170%), 1.0 M 황산 조건에서 에탄올과 아세톤의 1:2 혼합 비율(석출 효율: 에탄올 = 108%; 아세톤 = 127%)인 것을 특징으로 한다.Referring to Table 2 below, the change in sulfuric acid concentration (0.5-2.5M) of the eluate obtained by dissolving 1 g of leachate in sulfuric acid and the change in mixing ratio with 5 organic solvents (1:1; 1:1.5; 1:2 ) Looking at the amount of magnesium sulfate (MgSO 4 ) precipitation according to conditions, 1:1.5 mixing ratio of ethanol and acetone (precipitation efficiency: ethanol = 68%; acetone = 97%) and 1:2 mixing ratio (precipitation efficiency: ethanol = 68%; acetone = 97%) under 0.5 M sulfuric acid conditions Efficiency: ethanol = 150%; acetone = 170%), and a 1:2 mixing ratio of ethanol and acetone in 1.0 M sulfuric acid conditions (precipitation efficiency: ethanol = 108%; acetone = 127%).
해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침전물로부터 황산마그네슘을 석출하기 위한 최적 조건은 다음과 같다. 침전물을 0.5~1.0M 황산을 이용하여 용출하고, 용출액에 두가지 유기용매(에탄올과 아세톤) 중 한 가지를 1:1.5~1:2(v:v) 비율로 혼합하여 황산마그네슘을 석출하는 것이 바람직하고, 가장 바람직하게는 0.5M 황산을 이용하여 용출하고, 아세톤을 1:2(v:v)로 혼합하여 황산마그네슘을 석출하는 경우이다.The optimal conditions for precipitating magnesium sulfate from the precipitate generated in the electrolytic chlorine generation system using seawater and brackish water are as follows. It is preferable to elute the precipitate using 0.5~1.0M sulfuric acid, and mix one of the two organic solvents (ethanol and acetone) in the eluate at a ratio of 1:1.5~1:2 (v:v) to precipitate magnesium sulfate. And, most preferably, it is a case where magnesium sulfate is precipitated by eluting with 0.5M sulfuric acid and mixing with acetone at a ratio of 1:2 (v:v).
표 2는 황산 농도와 유기용매 혼합 비율에 따른 석출량과 석출 효율 비교Table 2 compares precipitation amount and precipitation efficiency according to sulfuric acid concentration and organic solvent mixing ratio
황산마그네슘 석출 후 FE-SEM/EDX 분석결과FE-SEM/EDX analysis result after magnesium sulfate precipitation
황산마그네슘 석출 후 FE-SEM/EDX 분석결과를 도 4 내지 도 8에 도시하였다.FE-SEM/EDX analysis results after magnesium sulfate precipitation are shown in FIGS. 4 to 8.
황산마그네슘 석출 후 XPS 분석결과XPS analysis result after magnesium sulfate precipitation
도 9 내지 도 13은 황산마그네슘 석출 후 XPS 분석결과를 나타낸 그림으로, 석출물 정성분석 결과 황산마그네슘(MgSO4)이 주요구성 성분으로 SEM-EDX결과와 일치하는 것을 알 수 있다.9 to 13 are figures showing the XPS analysis results after magnesium sulfate precipitation, and as a result of qualitative analysis of the precipitate, it can be seen that magnesium sulfate (MgSO 4 ) is consistent with the SEM-EDX results as a major component.
회수된 용매의 GC-MS 분석결과GC-MS analysis of recovered solvent
도 14는 회수된 용매, (a) 에탄올과 (b) 아세톤의 GC-MS 분석결과이다. 상기와 같이 황산마그네슘 석출 후에 여과한 용액을 감압 증류하여 분리하였다. 감압 압력 100 hpa이하, 물 중탕 온도 40-47℃에서 회수하였으며, 회수된 용매를 GC-MS를 이용하여 분석한 결과, 에탄올과 아세톤 모두 99.9%로 사용 전 용매의 순도와 일치하였다. 또한 회수된 용매의 부피는 석출에 사용된 용매 부피의 99.5%이상을 유지하였다. 황산마그네슘 석출하는데 사용한 에탄올과 아세톤을 회수하여 재사용한다면 경제성 향상에 큰 도움이 될 것으로 사료된다.14 is a GC-MS analysis result of the recovered solvents, (a) ethanol and (b) acetone. As described above, after magnesium sulfate was precipitated, the filtered solution was distilled under reduced pressure and separated. It was recovered at a reduced pressure of 100 hpa or less and a water bath temperature of 40-47 ° C. As a result of analyzing the recovered solvent using GC-MS, both ethanol and acetone were 99.9%, consistent with the purity of the solvent before use. In addition, the volume of the recovered solvent maintained 99.5% or more of the volume of the solvent used for precipitation. If ethanol and acetone used to precipitate magnesium sulfate are recovered and reused, it is considered to be of great help in improving economic feasibility.
Claims (11)
해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침전물인 수산화마그네슘에 황산을 이용하여 마그네슘을 용출하는 단계;
상기 마그네슘 용출 용액에 유기용매를 첨가하여 황산마그네슘을 석출하는 단계; 및
상기 황산마그네슘을 석출 후, 유기용매와 황산을 감압증발법을 이용해서 분리하고, 상기 유기용매를 재사용하는 단계
를 포함하는 해수 또는 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침천물로부터 마그네슘을 회수하는 방법.A method for recovering magnesium from precipitates generated in an electrolytic chlorine generation system using seawater or brackish water,
Eluting magnesium by using sulfuric acid from magnesium hydroxide, which is a precipitate generated in an electrolytic chlorine generation system using seawater and brackish water;
Precipitating magnesium sulfate by adding an organic solvent to the magnesium elution solution; and
After the magnesium sulfate is precipitated, the organic solvent and sulfuric acid are separated using a vacuum evaporation method, and the organic solvent is reused.
Method for recovering magnesium from precipitate generated in an electrolytic chlorine generation system using seawater or brackish water comprising a.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2023/000373 WO2023136569A1 (en) | 2022-01-11 | 2023-01-09 | Method for recovering magnesium by using sediment and sulfuric acid generated in electrolytic chlorine generation system using seawater and brackish water |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20220003864 | 2022-01-11 | ||
KR1020220003864 | 2022-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20230108694A true KR20230108694A (en) | 2023-07-18 |
Family
ID=87423669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220154549A KR20230108694A (en) | 2022-01-11 | 2022-11-17 | Method for recovering magnesium using the precipitates and sulfuric acid produced from the chlorine generation system using seawater and brackish water electrolysis |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20230108694A (en) |
-
2022
- 2022-11-17 KR KR1020220154549A patent/KR20230108694A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11396452B2 (en) | Method for preparing lithium concentrate from lithium-bearing natural brines and processing thereof into lithium chloride or lithium carbonate | |
US11465907B2 (en) | Process for producing a concentrated aqueous sodium hydroxide solution | |
Yuksekdag et al. | A holistic approach for the recovery of rare earth elements and scandium from secondary sources under a circular economy framework–A review | |
US20030080066A1 (en) | Recovery of common salt and marine chemicals from brine | |
JP2019099874A (en) | Recovery method of lithium | |
KR101936809B1 (en) | A method for producing high purity calcium carbonate using indirect carbonation of alkaline industrial by-products and seawater | |
CN110004309A (en) | The method of soda acid combined extracting tungsten from tungsten mineral | |
KR101957130B1 (en) | Method for recovering strontium in sea water | |
KR20160101003A (en) | Method for recovering ash from waste incineration | |
US4980136A (en) | Production of lithium metal grade lithium chloride from lithium-containing brine | |
Wang et al. | Effective removal of calcium and magnesium sulfates from wastewater in the rare earth industry | |
Na et al. | Determination of optimal conditions for magnesium recovery process from seawater desalination brine using paper sludge ash, sulfuric acid, and ethanol | |
KR101828471B1 (en) | Recovery method of magnesium from seawater and magnesium compound produced by the method | |
DE102012003487B3 (en) | Producing sodium bicarbonate from sodium carbonate-containing first stream, comprises e.g. mixing first stream with second stream portion, bicarbonizing flow, separating aqueous suspension and partially decarbonizing aqueous mother liquor | |
KR20230108694A (en) | Method for recovering magnesium using the precipitates and sulfuric acid produced from the chlorine generation system using seawater and brackish water electrolysis | |
KR102280171B1 (en) | Method of separating calcium and magnesium from seawater | |
CN115432714B (en) | Comprehensive utilization method of electrolytic manganese slag and demanganization building material | |
EP4157794A1 (en) | A two stages extraction method for synthesizing precipitated calcium carbonate | |
Shu et al. | Cooperative removal of Mn2+, NH4+− N, PO43−− P and F− from electrolytic manganese residue leachate and phosphogypsum leachate | |
WO2023136569A1 (en) | Method for recovering magnesium by using sediment and sulfuric acid generated in electrolytic chlorine generation system using seawater and brackish water | |
KR20230091320A (en) | Selective removal method of calcium ion from rejected seawater from refined salt manufacturing process | |
JPS59193230A (en) | Preparation of ga or in from substance containing minute amount of ga or in | |
Zhang et al. | Recovery of potassium chloride from blast furnace flue dust | |
KR20160002574A (en) | Method for manufacturing magnesium carbonate, with high purity using magnesium hydroxide | |
KR102181829B1 (en) | A method for preparing calcium carbonate using acid mine drainage sludge and a calcium carbonate prepared by the same |