KR20230098612A - 유체 채널의 유동 용량을 증가시키기 위한 디바이스 - Google Patents

유체 채널의 유동 용량을 증가시키기 위한 디바이스 Download PDF

Info

Publication number
KR20230098612A
KR20230098612A KR1020237017799A KR20237017799A KR20230098612A KR 20230098612 A KR20230098612 A KR 20230098612A KR 1020237017799 A KR1020237017799 A KR 1020237017799A KR 20237017799 A KR20237017799 A KR 20237017799A KR 20230098612 A KR20230098612 A KR 20230098612A
Authority
KR
South Korea
Prior art keywords
fairing
channel
fluid
fluid channel
flow
Prior art date
Application number
KR1020237017799A
Other languages
English (en)
Inventor
피터 제이. 타빌라
데이비드 허드슨
토마스 지븐스
우테 마이즈너
Original Assignee
아티산 인더스트리즈, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아티산 인더스트리즈, 인크. filed Critical 아티산 인더스트리즈, 인크.
Publication of KR20230098612A publication Critical patent/KR20230098612A/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/02Influencing flow of fluids in pipes or conduits
    • F15D1/04Arrangements of guide vanes in pipe elbows or duct bends; Construction of pipe conduit elements for elbows with respect to flow, e.g. for reducing losses of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/002Influencing flow of fluids by influencing the boundary layer
    • F15D1/0025Influencing flow of fluids by influencing the boundary layer using passive means, i.e. without external energy supply
    • F15D1/0055Influencing flow of fluids by influencing the boundary layer using passive means, i.e. without external energy supply comprising apertures in the surface, through which fluid is withdrawn from or injected into the flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/002Influencing flow of fluids by influencing the boundary layer
    • F15D1/0025Influencing flow of fluids by influencing the boundary layer using passive means, i.e. without external energy supply
    • F15D1/006Influencing flow of fluids by influencing the boundary layer using passive means, i.e. without external energy supply comprising moving surfaces, wherein the surface, or at least a portion thereof is moved or deformed by the fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/002Influencing flow of fluids by influencing the boundary layer
    • F15D1/0065Influencing flow of fluids by influencing the boundary layer using active means, e.g. supplying external energy or injecting fluid
    • F15D1/007Influencing flow of fluids by influencing the boundary layer using active means, e.g. supplying external energy or injecting fluid comprising surfaces being moved by external supplied energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/02Influencing flow of fluids in pipes or conduits
    • F15D1/025Influencing flow of fluids in pipes or conduits by means of orifice or throttle elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/08Means in valves for absorbing fluid energy for decreasing pressure or noise level and having a throttling member separate from the closure member, e.g. screens, slots, labyrinths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/02Branch units, e.g. made in one piece, welded, riveted
    • F16L41/021T- or cross-pieces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L43/00Bends; Siphons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/02Energy absorbers; Noise absorbers
    • F16L55/027Throttle passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/8609Control during or prevention of abnormal conditions the abnormal condition being cavitation

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

액체가 유동하는 유체 채널(300)의 유체 채널 표면(304/308) 상에 잠긴 컨투어드 제한의 형태의 페어링(302)은 불연속(110)의 상류 및 일부 실시예들에서는 하류에서 속도 장들(velocity fields) 및 유동 기하 구조들을 재분배하고, 그에 따라 유동 분리(207)를 방지하고, 공동화 가능성을 감소시키고, 유동 용량을 증가시킨다. 그러한 불연속들(110)은 조인트들, 예를 들어 엘보우 조인트들(100), T-조인트들(1500) 및 Y-조인트들; 밸브-트림들(1200); 원심 펌프들에 대한 입구 영역들; 및 회전식 밸브들, 계단들, 감소들, 팽창들 및 레지들에 대한 입구 영역들을 포함하지만 이에 제한되지는 않는다. 페어링(302)은 채널(300)에 피팅되거나 채널(300)과 일체로 제조될 수 있다.

Description

유체 채널의 유동 용량을 증가시키기 위한 디바이스
본 발명은 유체 역학(fluid mechanics)에 관한 것으로서, 특히, 예를 들어 조인트들, 밸브들 및 다른 기하학적 불연속들(geometric discontinuities) 주위의 공동화(cavitation)를 감소시키거나 방지하기 위해, 유체 채널(fluid channel)의 유동 용량(flow capacity)을 증가시키기 위한 페어링(fairing)에 관한 것이다.
밸브들, 파이프들, 기구들, 펌프들 등(총괄하여 유체 채널들)과 같은 유체 관리 디바이스들을 통한 액체 유동 용량을 최대화하는 것은 설계자들에게 오래된 산업 도전이었다. 유동 용량에 대한 제한들은 일반적으로, 많은 인자(factors) 가운데 특히, 유동하는 유체의 정적 압력, 온도, 점도, 표면 장력, 증기압과 같은 물리적 속성들 및 특성들, 고체들(solids)의 존재 및 유동 경로 기하구조에 의해 영향을 받는다. 이러한 인자들의 고려는 높은 유량들(flow rates)에서의 동작 동안 컴포넌트들에 걸친 공동화 및 압력 강하들을 감소시키는 설계들을 유도한다.
공동화는 액체에서의 압력 변화가 유체의 국지적 압력이 액체의 증기압 아래로 감소되는 장소들에서의 작은 증기-충전된(vapor-filled) 공동들의 형성을 유도하는 현상이다. 나중에, 더 높은 압력을 받을 때, 이러한 공동들은 붕괴되고 충격파들을 발생시킬 수 있다. 금속 또는 유동 경계 표면 근처에서 붕괴되는 붕괴 공동들은 반복적인 내부붕괴들(implosions)을 통해 주기적 응력(cyclic stress)을 유발한다. 이는 표면에 대한 손상 및 일부 경우들에서는 상당한 물리적 손상을 초래한다. 이러한 압력 변화들은 종종 파이프들에서의 굴곡부들 근처에서 그리고 유체 유동의 방향의 갑작스런 변화들이 발생하는 다른 구불구불한 유체 채널 경로에서 발생한다. 공동화는 일부 엔지니어링 상황들에서 컴포넌트 손상의 중요한 원인이다.
제어 밸브들의 설계에서의 광범위한 작업은 여러 공동화-감소 디바이스들 및 전략들을 초래하였고, 이는 결국 산업 표준들[1]의 형태의 지침을 유도하였다. 현재 이용가능한 공동화-감소 디바이스들 및 전략들은 케이지 트림들(cage trims)[2, 3], 공동화의 영향들을 견디기 위한 경화된 트림 재료들[4], 및 공동화 및 바람직하지 않은 압력 강하가 발생하는 전이 영역들(transition regions)의 일반적으로 증가된 전체 크기들 및 볼륨들을 포함한다. 이러한 디바이스들 및 전략들은 종종 특수화되고 값비싼 제조 기술들을 요구하고/하거나 결과적인 장비의 크기 증가로 인한 비용 증가에 기여한다.
파이프들, 밸브들, 기구들 및 펌프들에서의 응용들을 넘어서, 유체 유동을 개선하기 위한 기술들이 수십 년 동안 항공학에서 이용되어 왔다. 예를 들어, 비행기 표면들 상의 특정 위치들에 적용되는 리딩 에지 슬랫들(leading edge slats), 파울러 플랩(Fowler flap) 설계들 및 와류 생성기들(vortex generators)은 공기 유동 특성들을 개선한다. 골프공의 딤플형 표면은 담긴 물체 주위의 가스 유동을 개선하도록 구성된 구조적 특징(structural feature)의 다른 예를 제공한다. 이러한 예들 각각에서, 유동 분리(flow separation), 즉 표면으로부터의 유동하는 유체의 분리가 감소되어, 성능 개선을 유발한다. 그럼에도 불구하고, 파이프들, 피팅들(fittings) 및 밸브들과 같은 종래의 액체-운반 채널들은 공동화에 의해 빈번하게 손상된다. 그러므로, 유체 채널의 유동 용량을 증가시키기 위한 디바이스에 대한 필요성이 존재한다.
본 발명의 일 실시예는 하류 방향(310)에서의 유체 채널(300)의 유동 용량을 증가시키기 위한 디바이스를 제공한다. 유체 채널은 채널 표면(304, 308)을 갖는다. 채널 표면은 그를 따르는 액체 유동을 위해 구성된다. 채널 표면은 불연속(discontinuity, 110)을 포함한다. 디바이스는 페어링(fairing, 302)을 포함한다. 페어링(302)은 각각의 페어링 표면(312)을 정의한다. 페어링 표면은 유체 채널 내에 완전히 위치한다. 페어링 표면은 그를 따르는 액체 유동을 위해 구성된다. 페어링 표면은 불연속의 상류(306)에 위치하는 페어링 표면의 각각의 리딩 에지(leading edge, 400)로부터 리딩 에지의 하류에 위치하는 페어링 표면의 각각의 트레일링 에지(trailing edge, 402)로 연장된다. 페어링 표면은 적어도 불연속까지 연장된다.
리딩 에지에서, 페어링 표면은 채널 표면에 접한다. 트레일링 에지에서, 페어링 표면은 채널 표면에 접한다. 페어링 표면은 리딩 에지와 트레일링 에지 사이에서 매끄럽게 전이하는 곡선을 따른다.
선택적으로, 임의의 실시예에서, 페어링 표면은 리딩 에지와 트레일링 에지 사이에서 매끄럽게 전이하는 역곡선(reverse curve)을 따른다.
선택적으로, 임의의 실시예에서, 페어링 표면의 트레일링 에지는 불연속보다 더 하류에 위치하지 않는다.
선택적으로, 임의의 실시예에서, 페어링 표면의 트레일링 에지는 불연속의 하류에 위치한다.
선택적으로, 페어링 표면의 트레일링 에지가 불연속의 하류에 위치하는 임의의 실시예에서, 페어링 표면은 적어도 2-사이클 역곡선을 따른다.
선택적으로, 임의의 실시예에서, 유체 채널은 그를 통한 액체 유동을 위해 구성되는 볼륨(109)을 정의하고, 리딩 에지와 트레일링 에지 사이의 페어링 표면의 적어도 일부는 페어링이 없는 채널의 가상 채널 표면(hypothetical channel surface)으로부터 유체 채널의 볼륨 내로 하류 방향에 수직으로 측정되는 양의 거리(positive distance)만큼 변위된다.
선택적으로, 임의의 실시예에서, 유체 채널은 그를 통한 액체 유동을 위해 구성되는 볼륨(109)을 정의하고, 하류 방향을 따르는, 리딩 에지와 트레일링 에지 사이의 각각의 위치에서, 페어링 표면은 페어링이 없는 채널의 가상 채널 표면으로부터 유체 채널의 볼륨 내로 하류 방향에 수직으로 측정된 양의 거리만큼 변위된다.
선택적으로, 임의의 실시예에서, 하류 방향을 따르는, 리딩 에지와 트레일링 에지 사이의 각각의 대응하는 위치에서, 유체 채널의, 하류 방향에 수직으로 그리고 페어링을 고려하여 측정되는 단면(cross-sectional) 유체 유동 면적은 페어링이 없는 가상 단면 유체 유동 면적 이하이다.
선택적으로, 임의의 실시예에서, 불연속은 (a) 엘보우-형상, T-형상 또는 Y-형상을 갖거나, (b) 원심 펌프 또는 회전 밸브로의 입구 영역을 포함하는 유체 채널의 일부에 의해 정의된다.
선택적으로, 임의의 실시예에서, 페어링은 유체 채널에서의 영구적 또는 일시적 설치를 위해 구성된다.
선택적으로, 임의의 실시예에서, 페어링은 유체 채널의 일체형 부분(integral part)으로서 형성된다.
선택적으로, 임의의 실시예에서, 페어링 표면은 매끄럽다.
선택적으로, 임의의 실시예에서, 페어링 표면은 딤플형이거나, 거칠거나, 패터닝된다.
선택적으로, 페어링 표면이 딤플형이거나, 거칠거나, 패터닝되는 임의의 실시예에서, 페어링 표면은, 그를 따르는 유체의 유동에 응답하여, 유체의 미리 결정된 유동 특성(flow characteristic)을 나타내는 음향 신호의 방출을 유발하도록 구성된 표면 패턴을 정의한다.
선택적으로, 임의의 실시예에서, 페어링은 핀(pin, 900)을 포함하고, 페어링은 핀(900)을 중심으로 피벗(pivot)하도록 구성된다.
선택적으로, 임의의 실시예에서, 페어링은 중공 부분(hollow portion, 1000) 및 중공 부분(1000)과 유체 채널(300) 사이의 애퍼처(aperture, 1002)를 정의한다. 중공 부분(1000) 및 애퍼처(1002)는 애퍼처(1002)를 가로지르는 유체 유동에 응답하여 진동 음향 신호(oscillating acoustic signal)를 방출하도록 구성된다.
선택적으로, 임의의 실시예에서, 페어링은 제어 포트(1106)와 유체 연통하는 블래더(bladder, 1102)를 규정한다. 블래더는 블래더(1102)의 팽창에 응답하여 페어링(302)의 표면(312)의 형상을 변경하도록 구성된다.
선택적으로, 페어링이 블래더를 정의하는 임의의 실시예에서, 페어링(312)은 각각의 게이지 포트(gauge port, 1110)에 유체 결합된(fluidically coupled) 적어도 하나의 압력 감지 포트(1108)를 정의한다.
선택적으로, 게이지 포트(1110)를 포함하는 임의의 실시예에서, 게이지 포트(1110)는 제어 포트(1106)에 유체 결합된다.
선택적으로, 임의의 실시예에서, 페어링은 페어링(302)을 통한 적어도 하나의 통로(1200-1202)를 정의한다. 각각의 통로(1200-1202)는 페어링(302)의 각각의 상류 부분을 각각의 하류 부분에 유체 연결한다. 각각의 통로(1200-1202)는 각각의 상류 개구(1204-1206) 및 각각의 하류 개구(1208-1210)를 정의한다. 각각의 통로(1200-1202)는 유체 채널(300) 내에서 유동하는 액체의 적어도 일부가 페어링(302)의 전체 프로파일을 우회(bypass)하는 것을 허용하도록 구성된다.
선택적으로, 임의의 실시예에서, 페어링(302)은 피벗 힌지(pivot hinge, 1304)에 의해 함께 연결되는 상류 부분(1300) 및 하류 부분(1302)을 포함한다. 상류 부분(1300)의 상류 단부는 채널 표면(304)에 병진가능하게(translatably) 부착된다. 2개의 부분(1300 및 1302)은 상류 부분(1300)의 상류 단부의 병진에 응답하여 피벗하고, 그에 따라 피벗 힌지(1304), 상류 부분(1300)의 하류 단부 및 하류 부분(1302)의 상류 단부를 유체 채널(300) 내로 더 연장시키도록 구성된다. 페어링(302)은 상류 부분(1300)의 상류 단부를 중립 위치(neutral position)로 가세(urge)하도록 구성된 스프링(1318)을 더 포함한다.
선택적으로, 임의의 실시예에서, 페어링(302)은 제1 블래더(1402) 및 제2 블래더(1404)를 정의한다. 제1 블래더(1402)는 유체 채널(300) 내의 페어링(302)의 하류의 포트(1410)와 유체 연통한다. 제2 블래더(1404)는 유체 채널(300)내의 페어링(302)의 상류의 포트(1412)와 유체 연통한다. 제1 및 제2 블래더들(1402-1404)은 포트들(1410-1412)에서의 각각의 압력들에 기초하여 페어링(302)의 형상을 자동으로 조절하도록 구성된다.
선택적으로, 임의의 실시예에서, 채널 표면은 제2 불연속(1506)을 포함한다. 디바이스는 제2 페어링(1600)을 더 포함한다. 제2 페어링(1600)은 각각의 제2 페어링 표면(1602)을 정의한다. 제2 페어링 표면은 유체 채널 내에 완전히 위치한다. 제2 페어링 표면은 그를 따르는 액체 유동을 위해 구성된다. 제2 페어링 표면은 불연속(1506)의 상류(1606)에 위치하는 제2 페어링 표면의 각각의 리딩 에지(1604)로부터 리딩 에지의 하류에 위치하는 제2 페어링 표면의 각각의 트레일링 에지(1608)로 연장된다. 제2 페어링 표면은 적어도 불연속(1506)까지 연장된다.
리딩 에지(1604)에서, 제2 페어링 표면(1602)은 채널 표면에 접한다. 트레일링 에지(1608)에서, 제2 페어링 표면(1602)은 채널 표면에 접한다. 제2 페어링 표면(1602)은 리딩 에지(1604)와 트레일링 에지(1608) 사이에서 매끄럽게 전이하는 곡선을 따른다.
본 발명은 도면들과 함께 특정 실시예들의 이하의 상세한 설명을 참조함으로써 더 완전히 이해될 것이다. 도면들에서:
도 1은 종래 기술에 따른, 90도 엘보우 조인트 및 엘보우 조인트의 안팎으로 이어지는 파이프들을 포함하는 유체 채널의 단면도이다.
도 2는 종래 기술에 따른, 유체 채널을 통해 유동하는 유체를 나타내는 스트림라인들을 포함하는 도 1의 유체 채널의 단면도이다.
도 3은 본 발명의 일 실시예에 따른, 유체 채널에 설치된 페어링을 제외하고는, 도 1 및 2의 유체 채널과 유사한 유체 채널의 단면도이다.
도 4는 본 발명의 일 실시예에 따른, 유체 채널의 일부를 포함하는 도 3의 페어링의 확대도이다.
도 5는 본 발명의 일 실시예에 따른, 도 3 및 4의 페어링의 추가 확대도이다.
도 6은 본 발명의 일 실시예에 따른, 유체 채널에 설치된 페어링, 이 경우에는 불연속에 걸쳐 있는 페어링의 변형을 제외하고는, 도 3-5의 유체 채널과 유사한 유체 채널의 단면도이다.
도 7은 본 발명의 일 실시예에 따른, 페어링 표면의 리딩 에지와 트레일링 에지 사이의 다양한 위치들에서의 페어링의 표면의 곡률 반경들을 도시하는 도 3-5의 유체 채널 및 페어링의 단면도이다.
도 8은 종래 기술에 따른, 도 7의 위치들에 대응하는 위치들에서의, 페어링이 없는 채널의 표면의 곡률 반경들을 도시하는 도 1 및 2의 유체 채널의 단면도이다.
도 9는 본 발명의 일 실시예에 따른, 핀에 대해 피벗하도록 장착된 페어링을 제외한, 도 3-5의 유체 채널의 일부의 단면도이다.
도 10은 본 발명의 일 실시예에 따른, 중공 부분 및 중공 부분으로 이어지는 애퍼처를 정의하는 페어링을 제외한, 도 3-5의 유체 채널의 일부의 단면도이다.
도 11은 본 발명의 일 실시예에 따른, 페어링의 형상을 변경하기 위한 팽창식 블래더, 및 선택적인 압력 감지 포트를 포함하는 페어링을 제외한, 도 3-5의 유체 채널의 일부의 단면도이다.
도 12는 본 발명의 일 실시예에 따른, 페어링의 각각의 상류 부분을 각각의 하류 부분에 연결하는 하나 이상의 통로를 포함하는 페어링을 제외한, 도 3-5의 유체 채널의 일부의 단면도이다.
도 13은 본 발명의 일 실시예에 따른, 2개의 피벗가능하게 연결된 부분, 및 슬라이딩 브래킷(bracket)을 포함하는 페어링을 제외한, 도 3-5의 유체 채널의 일부의 단면도이다.
도 14는 본 발명의 일 실시예에 따른, 포트들에서의 각각의 압력에 기초하여, 페어링의 형상을 자동으로 조절하기 위해 유체 채널 내의 각각의 포트와 유체 연통하는 다수의 블래더들을 포함하는 페어링을 제외한, 도 3-5의 유체 채널의 일부의 단면도이다.
도 15는 종래 기술에 따른, 유체 채널을 통해 유동하는 유체들을 나타내는 스트림라인들을 포함하는, T-조인트를 제외한, 도 1의 유체 채널과 유사한 유체 채널의 단면도이다.
도 16은 본 발명의 일 실시예에 따른, 유체 채널에 설치된 페어링들을 제외한, 도 15의 유체 채널의 단면도이다.
도 17, 18 및 19는 각각 본 발명의 일 실시예에 따른, 예시적인 페어링의 상면도, 측면 사시도 및 측면도이다.
도 20은 본 발명의 일 실시예에 따른, 도 17-19의 페어링의 예시적인 응용에서의 압력 강하에 대한 볼륨 유량(volume flow rate)을 특성화한 그래프이다.
도 21은 종래 기술에 따른, 종래의 멀티-스테이지 공동화 완화 글로브(multi-stage cavitation mitigation globe) 및 각도 밸브 트림(angle valve trim)의 일부의 사시도이다.
본 발명의 실시예들은 유체 채널의 유동장(flow field)을 통해 유동하는 액체 내에서의 성능 저하를 야기할 수 있는 기하학적 불연속의 상류 및/또는 하류에서 유동장 내에 하나 이상의 페어링을 도입한다. 그러한 불연속들은 방향의 갑작스런 변화들, 예를 들어 엘보우들, Ts, Ys, 밸브 트림들 및 원심 펌프들 및 회전 밸브들의 입구 또는 출구 영역들을 포함하지만 이에 제한되지 않는다. 유동하는 액체는 자유 표면을 가질 수 있으나, 반드시 그럴 필요는 없지만, 적어도 페어링이 그의 기능을 수행하고 있을 때, 페어링은 액체에 완전히 잠기도록 의도될 수 있다. 하나 이상의 페어링의 존재는 주어진 압력 강하에 대한 더 높은 유량을 촉진하는 것, 유동 분리를 감소시키는 것 및/또는 공동화를 감소시키는 것과 같이, 유동 성능을 개선한다.
유체역학적으로 설계된 채널 제한들(channel restrictions)의 사용을 통해, 페어링들은 유동 분리, 공동화 또는 다른 불연속들이 성능을 제한하는 경우에 액체 유동 특성들을 개선한다.
정의들
본 설명 및 첨부된 청구항들에서 사용되는 바와 같이, 다음의 용어들은 문맥이 달리 요구하지 않는 한은 표시된 의미들을 가질 것이다.
"유체 채널"은 액체가 흐를 수 있는 통로이다. 용어 "액체"는 슬러리뿐만 아니라, 현탁 또는 혼입된 입자들(entrained particles) 또는 가스들을 갖는 액체를 포함한다. 유체 채널들의 예들은 파이프들, 펌프들, 밸브들, 및 엘보우들, T-조인트들 및 Y-조인트들과 같은 피팅들(fittings)을 포함한다. 유체 채널은 유체의 유동 방향에 수직으로 액체 유동을 둘러싸고 보유한다. 유체 채널은 단면 영역 및 볼륨을 규정하고, 이를 통해 액체가 유동한다. 일반적으로, 액체는 유체 채널의 내부 표면과 접촉하지만, 액체는 유체 채널의 내부 표면과 접촉하지 않는 자유 표면을 규정할 수 있다. 예를 들어, 액체로 부분적으로만 채워진 파이프에서, 액체는 파이프의 내부, 통상적으로 하부 표면과 접촉하지만, 액체는 또한 파이프의 내부 표면과 접촉하지 않는 자유 표면을 규정한다.
"불연속"(본 명세서에서 "기하학적 불연속"이라고도 함)은 유체 채널의 벽에서 일어나는 마찰 손실로 인한 압력 변화 이외에, 유체 채널을 통해 유동하는 유체의 압력의 변화를 야기하는 유체 채널의 기하학적 또는 다른 특징이다. 불연속에서, 유동하는 유체의 스트림라인들(streamlines)은 유동하는 유체의 일반적인 방향으로 채널 벽에 접하지 않는다. 많은 경우에, 불연속은 유체 채널의 전체 길이 및/또는 방향에 대한, 채널을 통해 이동하는 유체의 유동 방향의 갑작스러운 변화에 의해 특성화(characterize)된다. 불연속들의 예들은 엘보우들, T-조인트들, Y-조인트들, 계단들, 감소들(reductions), 확장들(expansions), 레지들(ledges), 밸브 트림들, 원심 펌프들로의 입구들, 및 밸브들로의 입구 및 출구 영역들을 포함하지만 이에 제한되지는 않는다.
유체 채널의 "제한"은 채널의 단위 길이당 볼륨이 감소하는 채널의 영역이다.
"베나 콘트랙타(vena contracta)"는 노즐로부터 나가는 스트림에서와 같이 스트림의 직경이 최소이고 유체 속도가 최대인 유체 스트림 내의 지점이다. 베나 콘트랙타는 유체 채널 내의 기하학적 불연속에서 발생하는 유동 제한에서 발생할 수 있다. 유동 스트림라인들은 그러한 불연속에서 갑자기 방향을 변경할 수 없으며, 이는 스트림라인들이 수렴하게 하여, 유동 협소화, 유동 분리 및 궁극적으로 공동화를 초래한다.
"페어링"은 유체 채널의 컨투어드 제한(contoured restriction)을 생성하는 디바이스이다. 페어링은 채널의 내부 표면 상에 피팅되어 채널의 컨투어드 제한을 형성하는 채널과 별개인 컴포넌트일 수 있거나, 페어링은 채널의 일체형 기하학적 부분(integral geometric part), 즉 유체 채널을 갖는 유닛으로서 제조될 수 있다.
"역곡선"(S-형상 곡선)은 좌측 또는 우측으로의 곡선에 이어지는 반대 방향의 곡선이다.
"탄력적"이란, 탄성 변형될 때 에너지를 흡수할 수 있고, 언로딩 시에 형상이 복구(recoil) 또는 복원(spring back)되어 그 에너지의 적어도 일부가 방출된다는 것을 의미한다.
"액체 유동의 방향을 따라 오목한(concave)" 표면은 파이프 또는 튜브의 직경이 내부 압력으로 인해 국지적으로 확대되는 것처럼 액체 유동의 경로를 따라 바깥쪽으로 확장되는 표면이다.
"액체 유동의 방향을 따라 볼록한(convex)" 표면은 파이프 또는 튜브의 직경이 외부 압력으로 인해 국지적으로 압착되는 것처럼 액체 유동의 방향을 따라 안쪽으로 수축되는 표면이다. 따라서, 도 1에 예시된 바와 같이, 엘보우에서, 오목한 내벽은 110에서와 같은 볼록한 내벽 반경보다 101에서와 같은 더 큰 반경을 갖는다. 페어링은 볼록한 표면을 확대하거나 달리 수정한다.
유체 채널의 "일체형(integral)" 기하구조 또는 "일체형" 부분은 유체 채널을 갖는 부분(a piece)으로서 구성되는 구조를 설명한다. 이러한 일체형 기하구조는 유체 채널과 별개로 형성되고 나중에 유체 채널에 피팅되는 구조와 구별된다.
페어링
언급된 바와 같이, 본 발명의 실시예들은 유체 채널의 유동장을 통해 유동하는 액체 내에서의 성능 열화를 야기할 수 있는 기하학적 불연속의 상류 및/또는 하류에서 유동장 내에 하나 이상의 페어링을 도입한다. 상류 페어링은 (a) 불연속의 상류에 있는 유체 채널의 내부 표면으로부터의 매끄러운 전이(smooth transition), 및 (b) 유동 스트림라인들의 방향으로 불연속에 있는 또는 불연속의 하류에 있는 내부 표면으로의 매끄러운 전이에 의해 특성화된다.
페어링은 매끄럽거나, 딤플형이거나, 거칠어지거나, 정적 기하학적 특징들로 패터닝되는 전이 영역들 사이의 표면을 가질 수 있다. 이러한 특징들은 조립 및 설치를 위해, 난류 레벨들을 조절(증가 또는 감소)하기 위해, 열 전달을 돕기 위해, 혼입된 고체들 또는 가스들을 캡처하기 위해 필요할 수 있거나, 유동 제어를 위한 피드백을 제공하기 위해 측정될 수 있는 음향 신호를 방출하는 헬름홀츠 공진기(Helmholtz resonator)로서 기능하도록 설계될 수 있다.
페어링의 내부 볼륨은 고체일 필요는 없고, 공동(cavity) 또는 일련의 공동들을 포함할 수 있다. 일부 실시예들에서, 페어링 내의 공동들은 서로 그리고/또는 페어링의 상류 및/또는 하류의 유동 영역들에, 그리고/또는 페어링 및 유동장 외부의 유체 또는 가스 저장소들(reservoirs)에 그리고/또는 기구들에 상호연결될 수 있다.
페어링 내의 공동들은 온도 제어를 위해 유체들과의 공동들의 상호연결을 위한 그리고/또는 액체 압력, 증기압, 점도, 비중(specific gravity), 표면 장력, 온도 및/또는 유량(flow rate)과 같은, 유체 유동에 관련된 파라미터들을 모니터링하는 기기들을 하우징하기 위한 공간을 제공할 수 있다. 페어링 내의 공동들은 또한 공동들을 통해 이동 액체를 지향시키기 위해 개방될 수 있는 조정가능한 플랩들에 연결할 수 있음으로써, 다수의 유동 체제들(flow regimes)에 걸쳐 개선된 성능을 가능하게 한다.
페어링의 표면들의 기하학적 특징들은 속도, 증기압, 점도, 비중 및 표면 장력과 같은 액체 유동과 관련된 파라미터들에 따라 선택될 수 있다. 스플라인 곡선들(spline curves)이 페어링 표면의 곡률을 설명하기 위해 사용되는 경우, 스플라인들은 2차 이상의 연속 다항식들(continuous polynomials)에 의해 정의될 수 있다. 그러나, 페어링 표면의 곡률은 표준 다항식들(standard polynomials)에 의한 설명으로 한정되지 않으며, 타원, 나선(involutes), 현수선(catenaries), 축폐선(evolutes) 또는 임의의 적절한 수학적 또는 기하학적 표현(들) 또는 이들의 일부로서 표현될 수 있다. 다항식들을 포함하는 다양한 함수들이 페어링을 예상된 유동 프로파일에 곡선-맞추기(curve-fit)하기 위해 사용될 수 있다.
페어링의 전이 영역의 다항식 값들은 원하는 유동 속도에 맞춰질 수 있고, 유체의 속도, 점도, 증기압 및/또는 다른 특성들에 기초하여 크기 및 위치가 변할 수 있다.
각각의 페어링은 단일 컴포넌트 또는 특징(feature)을 가질 수 있거나, 페어링은 다수의 컴포넌트 및/또는 특징의 합성일 수 있다. 페어링 또는 페어링들은 불연속 및 하류 영역들에 걸쳐 있을 수 있다.
베인(vane)들 및 종래의 차량 페어링들과의 차이들
본 발명에 따른 페어링들은 적어도 다음과 같은 측면들에서 베인들과 구별된다. 베인은 유동하는 유체의 곡률 반경을 감소시켜, 유동하는 유체를 유체가 베인 없이 유동하는 것보다 기존의 또는 원하는 기하구조(때때로 경계)에 더 가깝게 유지하도록 설계된다. 대조적으로, 본 발명에 따른 페어링은, 유동하는 유체의 곡률 반경을 증가시키고/시키거나 불연속에서 유체 채널의 유효 볼륨을 변화시키도록 구성된다. 페어링은 유동 채널의 내부 표면의 곡률 반경을 유동하는 유체의 자연 곡률 반경(natural radius of curvature)과 더 가깝게 매칭하도록 변화시키는 것으로 간주될 수 있다. 따라서, 페어링은 베인과 반대이다. 베인이 자연 유체 유동 경로를 변경하여 유체 유동 경로가 기하학적 표면을 따르게 하도록 설계되는 반면, 페어링은 기하학적 표면을 자연 유체 유동 경로에 보다 가깝게 따르도록 변경한다.
베인은 기존의 유동 경계와 접촉하지 않고, 오히려 유동에 수직인 평면에서 볼 때 유동 내에서 현수된다(suspended). 따라서, 베인은 유동 경계에 근접하며, 즉 유동 경계에 가깝지만 유동 경계로부터 이격되어 있다. 일반적으로, 본 명세서에 설명된 바와 같이, 페어링들은 기존의 유동 경계들과 접촉한다.
베인은, 기존의 유동 경계의 곡률을 재분배(re-distribute)하거나 기존의 유동 속도 프로파일을 재분배하거나 하지 않는다. 페어링은 이러한 특성들을 조작한다.
본 명세서에 설명된 페어링들은 종래의 항공기 페어링들, 자전거 또는 모터사이클 페어링들, 페이로드(payload) 페어링들 및 케이블 페어링들과는 구별된다. 항공기 페어링은 형태 항력(form drag) 및 간섭 항력(interference drag)을 줄이고 외관을 개선하기 위해 항공기의 부품들 사이의 갭들 또는 공간들을 커버하는 구조이다. 자전거 페어링은 공기 역학적 항력(aerodynamic drag)을 감소시키거나 풍우로부터 탑승자를 보호하기 위한 자전거에 대한 전체 또는 부분 커버링이다. 모터사이클 페어링은, 공기 항력을 감소시키기 위한 주요 목적을 가지고, 모터사이클, 특히 레이싱 또는 스포츠 모터사이클의 프레임 위에 배치된 쉘(shell)이다. 이차적인 기능들은 탑승자를 비행 위험들(airborne hazards) 및 바람에 의한 저체온증으로부터 보호하고, 사고의 경우에 엔진 컴포넌트들을 보호하는 것이다. 모터사이클 페어링은 통합된 바람막이 창(windshield)을 거의 항상 포함한다. 페이로드 페어링은 대기를 통한 발사 동안 동적 압력 및 공기역학적 가열로부터 우주선(발사체 페이로드)을 보호하는 데 사용되는 노즈 콘(nose cone)이다. 케이블 페어링은 주로 해양 환경들에서 케이블 주위의 유동을 간소화하도록 설계된 견인 케이블(towed cable)에 부착된 구조이다.
예시적인 문제
도 1은 종래의 90도 엘보우 조인트(100)의 단면도이며, 파이프들(102 및 104)이 엘보우 조인트(100)의 안팎으로 이어진다. 엘보우 조인트(100) 및 파이프들(102-104)은 집합적으로 유체 채널(105)을 정의한다. 유체 채널(105) 내에서의 유체 유동의 일반적인 방향들은 축들(axes, 106 및 108)에 의해 표시된다. 유체 채널(105)은 액체가 유동할 수 있는 볼륨(109)을 정의한다. 도 1에서 알 수 있는 바와 같이, 유체 유동의 일반적인 방향은 엘보우(100)에서 갑자기 변하며, 이는 논의된 바와 같이 공동화(cavitation)를 야기할 수 있다. 엘보우(100)는 여기서 예리한 코너(sharp corner)로 예시된 불연속(110)을 도입한다. 그러나, 코너의 예리함은 상대적이라는 점에 유의해야 한다. 둥근 코너조차도 코너의 기하 구조 및/또는 치수와 관련하여 유체 유동의 특성에 따라 공동화를 유발할 수 있다. 따라서, 본 명세서에서 사용되는 바와 같이, "불연속"이라는 용어는, 유체 채널을 통해 유동하는 유체의 방향이 갑자기 변하고, 생각할 수 있는 동작 조건들 하에서, 그러한 방향의 변화가 공동화를 야기하거나 유동 성능에 부정적으로 영향을 미칠 수 있는 유체 채널 내의 임의의 장소를 포함한다.
도 2는 스트림라인들(200)이 엘보우 조인트(100)를 통해 유동하는 유체를 나타내는 것을 제외한, 도 1의 엘보우 조인트(100)의 단면도이다. 화살표들(202 및 204)은 유체 유동의 방향들을 나타낸다. 방향(202)은 불연속(110)에서 방향(204)으로 갑자기 변한다. 도 2에 도시된 예에서, 갑작스런 방향 변화의 결과로서, 유동 스트림라인(200)은 불연속(110)의 예리한 에지를 따를 수 없어, 베나 콘트랙타(206)를 초래하고 유체 채널(105)의 내부 표면(208)으로부터 스트림라인들(200)의 압력 강하 및 유동 분리(207)를 초래한다. 고속 유동들에서, 압력 강하 및 벽 분리(207)는 공동화를 초래하고 궁극적으로 유체 채널(105)의 구조적 손상을 초래한다.
예시적인 실시예들
도 3은 본 발명의 일 실시예에 따른, 유체 채널(300)에 설치된 페어링(302)을 제외하고는, 도 1 및 2의 유체 채널(105)과 유사한 유체 채널(300)의 단면도이다. 화살표들(306 및 310)은 각각 상류 및 하류 방향들을 나타낸다. 도 3에서 알 수 있는 바와 같이, 페어링(302)은 불연속(110)의 상류(306)에 있는 유체 채널(300)의 일부, 예를 들어 파이프(102)의 내벽 표면(304)으로부터 불연속(110)의 하류(310)에 있는 유체 채널(300)의 일부, 예를 들어 파이프(104)의 내벽 표면(308)으로의 매끄러운 전이를 제공한다. 따라서, 페어링(302)은 전이 영역(311)을 규정한다.
종래 기술과 대조적으로, 페어링(302)은 유체가 전이 영역 및 불연속(110) 주위에서 연속적으로 페어링(302)의 표면(312)을 따라 매끄럽게 유동하게 하고, 그에 의해 종래 기술에 비해, 유체(300) 채널의 표면(304 및/또는 308)으로부터의 유동 분리가 발생할 유체 속도를 증가시키고, 주어진 유체 속도에 대한 공동화를 감소시킨다. 개선된 유동 거동은 스트림라인들(314)로부터 명백하다. 예를 들어, 316에서는, 종래 기술에서보다 국지적으로 더 높은 속도가 유지되는 한편, 벽 접촉이 유지된다는 점을 알 수 있다.
따라서, 도 3은 하류 방향(310)으로 유체 채널(300)의 유동 용량을 증가시키기 위한 디바이스를 예시한다. 유체 채널(300)은, 예를 들어 도 1 및 2를 참조하여 논의된 바와 같이, 엘보우(100)에 의해 연결된 2개의 파이프(102 및 104)일 수 있다. 유체 채널(300)은 유체가 채널 표면(304/308)을 따라 유동하도록 구성된 채널 표면(304/308)을 갖는다. 채널 표면(304/308)은 파이프들(102 및 104)의 내벽 표면뿐만 아니라 엘보우(100)의 일부일 수 있다. 채널 표면(304/308)은 예리한 굴곡부(sharp bend)와 같은 불연속(110)을 포함한다.
디바이스는 제1 페어링(302)을 포함한다. 통상의 사용에서, 제1 페어링(302)은 유체 채널(300) 내에서 유동하는 유체 내에 완전히 잠겨야 한다. 제1 페어링(302)은 각각의 페어링 표면(312)을 규정한다. 페어링 표면(312)은 유체 채널(300) 내에 완전히 위치한다. 페어링 표면(312)은 페어링 표면(312)을 따른 유체 유동을 위해 구성된다.
도 4는 유체 채널(300)의 일부를 포함하는, 도 3의 페어링(302)의 확대도이다. 도 5는 페어링(302)만의 추가 확대도이다. 페어링 표면(312)은 불연속(110)의 상류(306)에 위치하는 페어링 표면(312)의 각각의 리딩 에지(400)로부터 리딩 에지(400)의 하류(310)에 위치하는 페어링 표면(312)의 각각의 트레일링 에지(402)로 적어도 불연속(110)까지 연장된다. 양방향 화살표(404)(도 4)는 페어링 표면(312)의 크기를 나타낸다.
페어링(302)은 그 길이(408)에 걸쳐 두께(406)가 변하고, "두께"는 페어링 표면(312)과 페어링(302)이 없는 유체 채널(300)의 가상 내벽 표면(304) 사이의 치수를 의미한다. 치수(501)는 페어링 표면(312)을 따르는 한 지점에서의 페어링(302)의 예시적인 두께이다. 페어링(302)은 리딩 에지(400)에 근접하여 테이퍼링되고(즉, 그에 더 가깝게 점진적으로 더 얇아지고), 이상적으로는 재료, 제조 및 다른 제약들을 고려하여 실용적인 만큼 얇아진다. 도 3-5에 도시된 실시예에서, 리딩 에지(400)에 근접한 페어링 표면(312)은 반경(408)(도 4)을 갖는 볼록 곡선형이다.
다른 실시예들에서, 예를 들어 도 4의 삽입부에 도시된 바와 같이, 리딩 에지(400)에 근접한 페어링 표면(312)은 경사지지만 직선인 램프(ramp)(410)의 형태일 수 있고, 이는 채널 표면(304)과 비교적 작은 각도(412)를 형성한다. 각도(412)는 예상된 동작 조건들 및 제조 실용성(practicalities)에 기초하여 선택될 수 있다. 이러한 인자들은 서로 트레이드오프될 수 있다. 예를 들어, 각도(412)는 경제적으로 제조하기에 충분히 두꺼우면서, 성능에 크게 부정적인 영향을 미치지 않고 유동하는 유체를 방향 전환시키기에 충분히 작도록 선택될 수 있다. 일반적으로, 각도(412)는 약 75도 미만이다. 일부 실시예들에서, 각도(412)는 약 60도 미만, 또는 약 40도 미만, 또는 약 30도 미만, 또는 약 25도 미만, 또는 약 7도 미만이다.
리딩 에지(400)에서 어느 경우든, 즉 곡선형, 계단형, 또는 직선형인 경우에, 페어링 표면(312)은 본 명세서에서 채널 표면(304)에 "접하는(tangent)" 것으로 지칭된다. 접한다는 것(접선)은 종래의 수학적 및 기하학적 의미를 포함한다. 그러나, 본 명세서에서 사용되는 바와 같이, 접한다는 것은 페어링들(302)의 제조의 실제 양태들도 고려한다. 내벽(채널 표면)(304)으로부터 페어링 표면(312)으로의 전이는 실용적인 정도로 매끄럽고 연속적이어야 한다. 예를 들어, 금속, 플라스틱 및 다른 실용적인 재료들은 무한히 얇게 할 수 없기 때문에, 페어링(302)이 내벽(채널 표면)(304)에 부착될 별개의 유닛으로서 제조되는 경우, 리딩 에지(400)는, 예를 들어 도 4의 확대도에 도시된 바와 같이, 작지만 유한한 단차(step, 414)를 포함할 수 있다. 유사하게, 각도(412)에서 채널 표면(304)과 만나는 직선 리딩 에지(400)는 채널 표면(304)에 접하는 것으로 간주된다. 본 명세서에 설명된 모든 실시예들은 접선의 의미 내에 있다. 트레일링 에지(402)에서, 페어링 표면(312)은 리딩 에지(400)에 대한 것과 동일한 접선의 정의를 사용하여 채널 표면(308)에 접한다.
일부 실시예들에서, 예를 들어, 도 3-5에 도시된 바와 같이, 페어링 표면(312)은 리딩 에지(400)와 트레일링 에지(402) 사이에서 매끄럽게 전이하는 역곡선을 따른다. 예를 들어, 도 5에 가장 잘 도시된 바와 같이, 리딩 에지(400)에 근접한 페어링 표면(312)의 제1 부분(500)에서, 페어링 표면(312)은 (하류 방향(310)에서 볼 때) 좌측(502)으로 곡선을 따르고, 제1 부분(500)의 하류의 제2 부분(504)에서, 페어링 표면(312)은 우측(506)으로 곡선을 따른다. 2개의 부분(500, 504)은 도 5에 도시된 바와 같이 직선 부분(508)에 의해 서로 연결될 수 있다. 이 경우, 곡선은 직선 부분(508)을 따라 또는 직선 부분에서 반전된다. 선택적으로, 2개의 부분(500 및 504)은 곡선 부분(도시되지 않음)에 의해 서로 연결될 수 있거나, 2개의 부분(500 및 504)은 서로 직접 연결될 수 있고(도시되지 않음), 따라서 용어의 엄격한 수학적 의미에서 접할 수 있다.
도 3-5에 도시된 실시예들에서, 리딩 에지(400)에 근접한 페어링 표면(312)의 부분(500)(도 5에 라벨링됨)은 하류 방향(310)으로 선형으로 오목하다. 이 부분(500)은 불연속(110)의 상류(306)의 채널 표면(304)(도 4)으로부터 트레일링 에지(402)로 매끄럽게 전이한다. 트레일링 에지(402)에 근접한 페어링 표면(312)의 부분(504)(도 5)은 하류 방향(310)으로 선형으로 볼록하다. 이 부분(504)은 차례로 불연속(110)에 근접한 채널 표면(308)으로 전이한다. 도 5로부터 알 수 있는 바와 같이, 리딩 에지(400)에 근접한 페어링 표면(312)의 부분(500)은 유동하는 유체의 곡률 반경을 증가시키도록 구성되어, 유동하는 유체를 채널 표면(304)으로부터 멀리 지향시킨다. 이는 페어링 표면(312)으로부터의 유동 분리가 발생하는 증가된 유체 속도, 및 주어진 유체 속도에 대한 감소된 공동화를 초래한다.
도 6은 본 발명의 일 실시예에 따른, 유체 채널(300)에 설치된 페어링(302)에 대한 변형을 제외하고는, 도 3-5의 유체 채널(300)과 유사한 유체 채널(300)의 단면도이다. 도 3-5와 관련하여 설명된 페어링 표면(312)의 트레일링 에지(402)는 불연속(110)보다 더 하류(310)에 위치하지 않는다. 그러나, 도 6에 도시된 페어링(302)의 변형에서, 페어링 표면(312)의 트레일링 에지(402)는 불연속(110)의 하류(310)에 위치한다. 즉, 변형 페어링(302)은 불연속(110)에 걸쳐 있다. 많은 속성 가운데 특히, 도 6의 페어링은 어느 한 방향(310 또는 306)으로의 유동을 용이하게 한다.
도 6에 도시된 변형 페어링(302)의 페어링 표면(312)은 적어도 2 사이클 역곡선을 따르며, 이는 곡선이 적어도 2회 방향을 반전시킨다는 것을 의미한다. 도 6의 페어링 표면(312)은 지점(600)에서 또는 그 근처에서 곡선 방향을 (좌측으로) 반전시키고, 페어링 표면(312)은 다른 지점(602)에서 또는 그 근처에서 곡선을 다시(이번에는 우측으로) 반전시킨다.
언급된 바와 같이, 그리고 도 7에서 알 수 있는 바와 같이, 유체 채널(300)은 그를 통한 액체 유동을 위해 구성된 볼륨(109)을 규정한다. 화살표들(700, 702, 704 및 706)의 위치들에 의해 예시되는 리딩 에지(400)와 트레일링 에지(402) 사이의 페어링 표면(312)의 적어도 일부의 하류 방향(310)을 따르는 각각의 위치에서, 페어링 표면(312)은 하류 방향에 수직으로 측정된 화살표들의 길이들에 의해 표현되는 양의 거리(positive distance), 즉 페어링(302)의 두께만큼, 페어링(302)이 없는 채널의 가상 채널 표면(708)으로부터 유체 채널(300)의 볼륨(109) 내로 변위된다. 따라서, 페어링 표면(312)은 리딩 에지(400)와 트레일링 에지(402) 사이에서 매끄럽게 전이하는 곡선을 따르므로, 리딩 에지(400)와 트레일링 에지(402) 사이의 페어링 표면(312)의 적어도 일부, 예를 들어 위치(700-706) 각각은 하류 방향(310)에 수직으로 측정된 양의 거리만큼 페어링(302)이 없는 채널(300)의 가상 채널 표면(708)으로부터 유체 채널(300)의 볼륨(109) 내로 변위된다. 결과적으로, 유체는 페어링 표면(312)보다 가상 채널 표면(708)에 더 가깝게 유동할 수 없다.
도 8은 페어링(302)이 없는 것을 제외하고는 도 7의 유체 채널(300)과 유사한 유체 채널(105)의 단면도이다. 언급된 바와 같이, 유체 채널(105)은 내벽 표면(808)을 규정한다. 내벽 표면(808)은 도 7과 관련하여 논의된 가상 채널 표면(708)에 대응한다. 도 8의 화살표들(800-806)의 위치들은 도 7의 화살표들(700-706)의 위치들에 대응한다. 물론, 도 7의 유체 채널(105)은 페어링을 갖지 않는다. 결과적으로, 유체는 내벽 표면(808)을 따라 유동할 수 있다. 즉, 유체는 유체가 도 7의 가상 채널 표면(708)을 따라 흐를 수 있는 것보다 도 8의 가상 채널 표면(808)에 더 가깝게, 사실상 그를 따라 직접 흐를 수 있다.
도 3에서 알 수 있는 바와 같이, 페어링 표면(312)을 따른 다수의 위치에서, 페어링(302)은 유체가 내벽 표면(304)으로부터 소정 거리, 예를 들어 거리(318)만큼 흐르게 강제한다. 도 7로 돌아가면, 일부 실시예들에서, 리딩 에지(400)의 하류의 지점, 예를 들어 지점(716)(도 7)과 불연속의 상류의 지점, 예를 들어 지점(718) 사이의, 하류 방향(310)을 따르는 각각의 대응하는 위치에서, 페어링(302)은 0보다 큰, 하류 방향(310)에 수직으로 측정된 두께(501)를 가지며, 이는 유체로 하여금 유체가 페어링(302)이 없는 내벽 표면(808)으로부터 흐를 수 있는 것보다 가상 채널 표면(708)으로부터 더 멀리 흐르게 강제한다.
일부 실시예들, 예를 들어 도 6에 도시된 실시예에서, 불연속(110)의 하류의 지점, 예를 들어 지점(604)과 트레일링 에지(402)의 상류의 다른 지점, 예를 들어 지점(606) 사이의, 하류 방향(310)을 따른 각각의 대응하는 위치에서, 페어링 표면(312)은 0보다 큰, 하류 방향(310)에 수직으로 측정된 두께(608)를 가지며, 이는 유체로 하여금 유체가 페어링(302)이 없는 내벽 표면(304)으로부터 유동할 수 있는 것보다 가상 채널 표면(304)으로부터 더 멀리 유동하게 강제한다. 하류 방향(310)은 불연속(110) 근처에서 (도 6의 예에서, 수평에서 수직으로) 변한다는 점에 유의한다.
유사하게, 리딩 에지(400)와 트레일링 에지(402) 사이의, 하류 방향(310)을 따른 각각의 대응하는 위치에서, 유체 채널(300)(도 3)의, 하류 방향(310)에 수직으로 그리고 페어링(302)을 고려하여 측정된 단면 유체 유동 면적은 페어링(302)이 없는(도 1 또는 도 2) 가상 단면 유체 유동 면적 이하이다.
불연속(110)은 엘보우 형상, T-형상 또는 Y-형상을 갖는 유체 채널(300)의 일부에 의해 정의될 수 있다. 불연속(110)은 원심 펌프 또는 회전 밸브로의 입구 영역을 포함하는 유체 채널(300)의 일부에 의해 정의될 수 있다.
페어링(302)은 유체 채널(300) 내에서의 영구적인 또는 일시적인 설치를 위해 구성될 수 있다. 대안적으로, 페어링(302)은 유체 채널(300)의 일체형 부분으로서 형성될 수 있다.
페어링 표면(312)은 매끄럽거나, 딤플형이거나, 거칠거나, 패터닝될 수 있다. 페어링 표면(312)은 페어링 표면(312)을 따른 유체의 유동에 응답하여 음향 신호의 방출을 야기하도록 구성된 표면 패턴을 정의할 수 있다. 음향 신호는 반드시 인간이 들을 수 있을 필요는 없다. 음향 신호는 음파, 초저주파(infrasonic) 또는 초음파(ultrasonic)일 수 있다. 음향 신호는 속력, 속도, 압력 또는 점도와 같은 유체의 미리 결정된 유동 특성을 나타낼 수 있다. 예를 들어, 음향 신호의 주파수는 유체의 속력에 비례할 수 있고/있거나, 음향 신호의 진폭은 유체 내의 혼입된 고체들(entrained solids)의 양에 비례할 수 있다.
도 9는 본 발명의 일 실시예에 따른, 유체 채널(300)에 설치된 페어링(302)에 대한 변형을 제외하고는, 도 3-5의 유체 채널(300)과 유사한 유체 채널(300)의 일부의 단면도이다. 이 실시예에서, 페어링(302)은 핀(900)에 부착되고, 페어링(302)은 핀(900)을 중심으로 피벗하도록 구성된다. 이 실시예의 제1 버전에서, 페어링(302)은 중립 위치로부터 시계 방향(902)으로만 피벗하도록 구성된다. 이 실시예의 제2 버전에서, 페어링(302)은 중립 위치로부터 반시계 방향(904)으로만 피벗하도록 구성된다. 이 실시예의 제3 버전에서, 페어링(302)은 중립 위치로부터 시계 방향(902) 및 반시계 방향(904) 둘 다로 피벗하도록 구성된다. 선택적으로, 이 실시예의 임의의 버전은 페어링(302)에 부착되고 페어링(302)을 중립 위치를 향해 가세하도록 구성된 스프링을 포함한다. 일부 경우들에서, 스프링은 핀(900) 주위에 감긴 비틀림 스프링(torsional spring, 906)이다.
사용 시에, 페어링(302)은 유체 채널(300) 내에서 유동하는 액체의 유량에 응답하여 핀(900)을 중심으로 자동으로 피벗한다. 도 3과 관련하여 논의된 바와 같이, 높은 유량은 페어링(302)이 반시계 방향(904)으로 자동으로 피벗하게 하고, 그에 의해 액체의 유동 스트림라인들에 자동으로 매칭되어, 채널 표면(308)으로부터의 유동 분리를 방지한다.
도 10은 본 발명의 일 실시예에 따른, 유체 채널(300)에 설치된 페어링(302)에 대한 다른 변형을 제외하고는, 도 3-5의 유체 채널(300)과 유사한 유체 채널(300)의 일부의 단면도이다. 이 실시예에서, 페어링(302)은 중공 부분(1000) 및 네크(neck), 및 중공 부분(1000)과 유체 채널(300) 사이의 애퍼처(1002)를 규정한다. 중공 부분(1000) 및 애퍼처(1002)는 집합적으로 헬름홀츠 공진기(1004)를 형성한다. 애퍼처(1002)의 입구(mouth)를 가로질러 유동하는 유체에 응답하여, 헬름홀츠 공진기(1004)는 진동 음향 신호를 방출하고, 이 진동 음향 신호는 선택적인 음향 센서(1006)에 의해 검출될 수 있고, 집합적으로 1008로 표시된 표시기(indicator) 회로, 제어 회로, 경보(alarm) 회로 또는 다른 적합한 회로에 의해 처리될 수 있다. 음향 센서(1006)는 페어링(302)의 경계 벽을 통해 전달되는 진동 또는 작은 압력 차이를 감지할 수 있어야 한다. 음향 신호는 반드시 인간이 들을 수 있을 필요는 없다. 음향 신호는 음파, 초저주파 또는 초음파일 수 있다. 중공 부분(1000) 및/또는 애퍼처(1002)의 치수들 및 형상은, 예를 들어 유량이 안전한 값에 도달하거나 이를 초과할 때 경보로서, 미리 결정된 유량으로 음향 신호를 방출하기 위해 헬름홀츠 공진기(1004)를 튜닝하도록 선택될 수 있다. 다른 경우에, 중공 부분(1000) 및/또는 애퍼처(1002)의 치수들 및 형상은 공동화로부터의 음향 신호와 공진하도록 선택될 수 있으며, 이에 의해 공동화 신호를 증폭하여 신호가 음향 센서(1006)에 의해 검출될 수 있다.
도 11은 본 발명의 일 실시예에 따른, 유체 채널(300)에 설치된 페어링(302)에 대한 또 다른 변형을 제외하고는, 도 3-5의 유체 채널(300)과 유사한 유체 채널(300)의 일부의 단면도이다. 이 실시예에서, 페어링(302)의 적어도 일부(1100)는 가요성이고, 일부 경우들에서 탄력성이다. 가요성 부분(1100)은 블래더(1102)의 부분을 형성한다. 블래더(1102)는 제어 포트(1106)와 유체 연통되는 중공 부분(1104)을 규정한다.
블래더(1102)는 제어 포트(1106)를 통해 중공 부분(1104) 내외로 유체를 주입(injecting) 또는 인출(withdrawing)하는 것에 의해 팽창 또는 수축될 수 있다. 블래더(1102)를 팽창 또는 수축시키는 것은 페어링(302)의 적어도 가요성 부분(1100)의 형상을 변화시키고 그로써 페어링(302)의 표면(312)의 형상을 변화시킨다. 제어 포트(1106)는 사용자 또는 프로그램 제어 하에서 페어링(302)의 형상을 변경하기 위해 피스톤(도시되지 않음)과 같은 구동 메커니즘에 유체 결합될 수 있다.
선택적으로서 또는 대안으로서, 페어링(312)은 게이지 포트(1110)로 예시되는 각각의 게이지 포트에 유체 결합되는, 압력 감지 포트(1108)로 예시되는 하나 이상의 압력 감지 포트를 규정한다. 압력 감지 포트들(1108)은 페어링(302)을 따른 다양한 위치들에서 각각의 압력을 측정하기 위해 페어링(302)을 따라 종방향으로 분포될 수 있다. 각각의 게이지 포트(1110)는, 예를 들어 페어링(202)의 표면(312)을 따라 압력(들)을 모니터링하기 위해 압력 센서 또는 사용자 판독 가능 게이지(user-readable gauge, 도시되지 않음)에 유체 결합될 수 있다. 선택적으로 또는 대안적으로, 게이지 포트들(1110) 중 하나 이상은, 예컨대 직접적으로 또는 정규화 밸브(normalizing valve, 1112), 증폭기(1114) 또는 피스톤(1116)(이들 각각은 개략적으로 도시됨)을 통해 제어 포트(1106)에 유체 결합되어, 페어링(302)의 표면(312)을 따른 압력(들) 또는 페어링(302)의 표면(312)을 따른 압력 차이들에 응답하여 블래더(1102)를 자동으로 팽창 또는 수축시킬 수 있다.
도 12는 본 발명의 일 실시예에 따른, 유체 채널(300)에 설치된 페어링(302)에 대한 또 다른 변형을 제외하고는, 도 3-5의 유체 채널(300)과 유사한 유체 채널(300)의 일부의 단면도이다. 이 실시예에서, 페어링(302)은 페어링(302)을 통한, 통로들(1200 및 1202)에 의해 표현된 하나 이상의 통로를 규정한다. 통로들(1200-1202)은 각각의 상류 부분을 페어링(302)의 각각의 하류 부분에 연결한다. 각각의 통로(1200-1202)는 상류 개구들(1204, 1206)에 의해 표현되는 각각의 상류 개구를 가지며, 각각의 통로(1200-1202)는 하류 개구들(1208, 1210)에 의해 표현되는 각각의 하류 개구를 갖는다.
통로들(1200-1202)은 유체 채널(300) 내에서 유동하는 액체의 적어도 일부가 페어링(302)의 전체 프로파일을 우회하는 것을 허용한다. 비교적 낮은 유량에서, 유체 채널(300) 내에서 유동하는 액체의 상당 부분 또는 전부가 파이프(102)의 내 벽 표면(304)에 가장 가까운 통로(1200)를 통해 유동할 수 있다. 유량이 증가함에 따라, 유체 채널(300) 내에서 유동하는 액체의 추가적인 부분들은 파이프(102)의 내벽 표면(304)으로부터 점진적으로 더 먼 추가적인 통로들(1200- 1202)을 통해 유동한다. 예를 들어, 더 높은 유량에서, 유체 채널(300) 내에서 유동하는 액체의 일부는 통로(1200)를 통해 유동할 수 있고, 유체 채널(300) 내에서 유동하는 액체의 추가적인 부분은 파이프(102)의 내벽 표면(304)에 다음으로 가장 가까운 통로(1202)를 통해 유동한다. 따라서, 페어링(302)은 이동 부분들 없이 다양한 유량들에 자동으로 적응한다.
도 13은 본 발명의 일 실시예에 따른, 유체 채널(300)에 설치된 페어링(302)에 대한 다른 변형을 제외하고는, 도 3-5의 유체 채널(300)과 유사한 유체 채널(300)의 일부의 단면도이다. 이 실시예에서, 페어링(302)은 피벗 힌지(1304)에 의해 단부-대-단부로 함께 연결되는 상류 부분(1300) 및 하류 부분(1302)을 포함한다. 하류 부분(1302)의 하류 단부는 제2 피벗 힌지(1306)에 의해 고정된 브래킷(1308)을 통해 파이프(102)의 내벽 표면(304)에 부착된다. 상류 부분(1300)의 상류 단부는 피벗(1310)에 의해 슬라이딩 브래킷(1312)을 통해 파이프(102)의 내벽 표면(304)에 부착된다. 슬라이딩 브래킷(1312)은 양방향 화살표(1314)로 표시된 바와 같이 유동 방향에 평행하게 종방향으로 병진 가능하다.
슬라이딩 브래킷(1312)이 고정 브래킷(1308)을 향해 병진(translate)함에 따라, 페어링(302)의 2개의 부분(1300, 1302)은 화살표들로 표시되는 바와 같이 피벗한다. 그 결과, 피벗 힌지(1304)는 물론, 부분(1300)의 하류 단부 및 부분(1302)의 상류 단부는 파선들(1316)로 도시된 바와 같이, 유체 채널(300)의 유동 스트림 내로 추가로 연장되고, 그로써 유동 스트림의 반경을 감소시킨다. 슬라이딩 브래킷(1312)을 고정 브래킷(1308)으로부터 멀어지게 병진시키는 것은 실선으로 도시된 바와 같이, 피벗 힌지(1304), 부분(1300)의 하류 단부 및 부분(1302)의 상류 단부를 유체 채널(300)의 유동 스트림으로부터 적어도 부분적으로 후퇴(withdraw)시킨다. 스프링(1318)은 슬라이딩 브래킷(1312)을 중립 또는 초기 위치로 가세한다.
유체 채널(300) 내에서 유동하는 액체는 슬라이딩 브래킷(1312) 및 페어링(302)의 하나의 부분(1300)을 고정 브래킷(1308)을 향해 밀어내어, 스프링(1318)을 압축하고, 페어링(302)의 곡선을 더 공격적으로 만든다. 액체의 유량이 감소하는 경우, 스프링은 슬라이딩 브래킷(1312) 및 페어링(302)의 부분(1300)을 그들의 중립 또는 초기 위치들을 향해 복귀시킨다. 따라서, 도 13의 페어링은 유속 조절기(flow speed regulator)로서 사용될 수 있다.
스프링(1318)을 캠(cam, 도시되지 않음) 상에 장착하는 것은 스프링에 비선형 스프링 상수(nonlinear spring constant)를 제공한다. 히스테리시스 스프링 상수(hysteretic spring constant)에 의해, 페어링(302)은 안전 디바이스로서 또는 유체 채널(300)을 통한 유량을 제한하기 위해 사용될 수 있다. 그러한 실시예의 응용은 히스테리시스 스프링 상수를 미리 결정된 값까지의 유량을 허용하는 값으로 사전 설정하는 것을 포함하지만, 유체 채널 및 페어링(302)은 적어도 이론적으로는 더 높은 유량을 유지할 수 있다. 미리 결정된 유량은 다른 장비 또는 배관을 보호하기 위해 선택될 수 있거나, 또는 미리 결정된 유량은 더 높은 유량으로 설정될 수 있고, 그 후 히스테리시스 스프링 상수는 증가된 유량을 허용하도록 조정될 수 있다.
도 14는 본 발명의 일 실시예에 따른, 유체 채널(300)에 설치된 페어링(302)에 대한 또 다른 변형을 제외하고는, 도 3-5의 유체 채널(300)과 유사한 유체 채널(300)의 일부의 단면도이다. 이 실시예에서, 페어링(302)의 적어도 일부(1400)는 가요성이고, 일부 경우들에서는 탄력성이다. 가요성 부분(1400)은 블래더들(1402 및 1404)로 표현된 다수의 블래더들의 부분을 형성한다. 각각의 블래더(1402-1404)는, 중공 부분들(1406 및 1408)에 의해 표현된 각각의 중공 부분을 정의한다. 중공 부분들(1406-1408)은 포트들(1410-1412)에서의 각각의 압력에 기초하여, 페어링(302)의 형상을 자동으로 조절하기 위해, 채널들(1414 및 1416)에 의해 표현되는 각각의 채널을 통해, 유체 채널(300) 내의 페어링(302)의 하류 및 상류에서, 포트들(1410 및 1412)에 의해 표현되는 각각의 포트들과 유체 연통한다.
선택적으로, 중공 부분들(1406 및 1408)은, 예를 들어 중공 부분들(1408) 중 하나에서의 압력이 미리 결정된 값을 초과하는 경우, 중공 부분들(1406-1408)에서의 압력들을 정규화(normalize)하기 위해, 예를 들어 단방향 밸브(one-way valve, 1418)를 통해 서로 연통가능하게 결합된다.
유체 유동들의 합류점(Confluence)에서의 페어링들
도 3-7 및 9-14의 페어링(302)은 엘보우들과 관련하여 설명된다. 그러나, 페어링(302)의 원리는 또한 T-조인트, Y-조인트, 및 다수의 유체 유동이 함께 합류하여 단일 출구를 생성하는 다수의 입력 포트를 갖는 다른 조인트와 같은 다른 유형의 파이프에도 적용된다. 도 15는 2개의 입력 포트(1502, 1504)를 갖는 T-조인트(1500)의 단면도이다. 도 2와 유사하게, 도 15는 T-조인트(1500)를 통해 유동하는 유체를 나타내는 스트림라인들(200)을 포함한다. 스트림라인들(200)의 라인 패턴들은 도 15의 키(key)에 표시된 바와 같이 예시적인 유속들을 나타낸다. 도 15 및 16에 도시된 유속들은 사실상 대표적인 것으로 의도되며, 가상 예들에서의 유동 거동의 분석 모델링에 기초하여 설명된다. 다른 예들에서의 유속들은 더 높거나 더 낮을 수 있거나, 도 15 및 16에 도시된 것들과 상이한 범위들에 걸쳐 확장될 수 있다.
화살표들(202 및 204)은 유체 유동들의 방향들을 나타낸다. 2개의 갑작스런 방향 변화의 결과로서, 유동 스트림라인들(200)은 불연속들(110 및 1506)의 예리한 에지들을 따를 수 없어, 베나 콘트랙타(206)를 야기하고 유체 채널의 내부 표면(208)으로부터의 스트림라인들(200)의 압력 강하 및 유동 분리(207)를 초래한다.
도 15에 도시된 문제들은 회전 및 3-웨이 밸브들, 배수로들(spill ways) 및 배기(exhaust) 또는 릴리프 헤더들(relief headers)을 포함하는 많은 상황에서 발생할 수 있다. 헤더, 밸브 등의 입구 및 출구 영역들에서의 예리한 코너들 및 회전 밸브 내의 슬롯들은 불연속들이며, 도 1, 2 및 15와 관련하여 설명된 바와 같이, 결과적인 액체 유동의 방향들의 갑작스런 변화들은 베나 콘트랙타를 유발하여, 내부 표면들로부터의 압력 강하들 및 유동 분리들을 초래한다. 높은 액체 속도 유동들에서, 압력 강하들 및 벽 분리들은 공동화 및 궁극적으로 구조적 손상을 초래할 수 있다.
도 16은 유체 채널(300) 내에 입력 포트(1502 및 1504)당 하나의 페어링(302 및 1600)씩 2개의 페어링(302 및 1600)이 설치된 것을 제외하고는, 도 15의 유체 채널과 유사한 유체 채널(300)의 단면도이다. 도 3-5를 참조하여 논의된 바와 같이, 페어링들(302 및 1600)은 불연속들(110 및 1506)의 상류에 있는 유체 채널(300)의 각각의 부분들로부터 불연속들(110 및 1506)의 하류에 있는 유체 채널(300)의 각각의 부분들로의 매끄러운 전이들을 제공한다. 따라서, 페어링들(302 및 1600)은 각각의 전이 영역을 규정한다.
제2 페어링 표면(1602)은 불연속(1506)의 상류(1606)에 위치하는 제2 페어링 표면(1602)의 리딩 에지(1604)로부터 리딩 에지(1604)의 하류에 위치하는 제2 페어링 표면(1602)의 트레일링 에지(1608)로 적어도 불연속(1506)까지 연장된다.
페어링들(302 및 1600)은 전이 영역들 및 불연속들(110 및 1506) 주위에서 연속적으로 페어링들(302 및 1600)의 표면들(312 및 1602)을 따라 유체가 매끄럽게 유동하게 하고, 그에 의해 종래 기술에 비해, 유체 채널(300)의 표면으로부터의 유동 분리가 발생할 유체 속도를 증가시키고, 주어진 유체 속도에 대한 공동화를 감소시킨다. 개선된 유동 거동은 스트림라인들(1610)로부터 명백하다.
페어링 형상
도 17, 18 및 19는 각각 본 발명의 일 실시예에 따른 예시적인 페어링(1700)의 상면도, 측면 사시도 및 측면도이다. 도 17에서 알 수 있는 바와 같이, 페어링(1700)의 세로축(1702)은 곡선이지만, 다른 실시예들에서 세로축은 직선이다. 페어링(1700)의 표면(1708)의 부분들 상의 오목 영역들(1704 및 1706)도 도 17에서 볼 수 있다.
도 17-19의 페어링을 사용하고 탄화수소가 높은 볼륨 유량으로 펌핑되는 유체 유동 응용의 합류점에서의 압력 강하에 대한 유량의 분석적 특성화는 주어진 유량에 대한 압력 강하의 50% 감소가 요구되는 동일한 펌핑 에너지(압력 강하)에 대해 거의 25% 더 많은 볼륨 유량과 다시 동일시(re-equated)될 수 있음을 나타낸다. 이러한 성능의 통상적인 특성화가 도 20에 도시되어 있다.
제어 밸브 케이지 트림 어셈블리들에서의 페어링들
3D 프린팅 기술의 확산에 의해, 본 명세서에 설명된 바와 같이, 페어링들은 유체 성능의 대응하는 개선들과 함께 제어 밸브 케이지 트림 어셈블리들 및 다른 컴포넌트들에서 제조될 수 있다. 현재의 케이지 트림 설계들은 전통적인 방법들을 사용하여 제조되는 유동 경로 프로파일들에 제한되는 것으로 보이며, 드릴링된 홀들(drilled holes), 와이어-컷(wire-cut) 정사각형 프로파일 채널들, 및 트림의 실린더의 외부로부터 밀링(mill)될 수 있는 특징들을 포함하는 특징 세트들을 포함한다. 그러나, 본 개시내용에 따른 페어링들은, 예를 들어 적층형 제조 방법들(additive manufacturing methods)을 통해 일체형 설계들을 갖는 밸브 트림들에 통합될 수 있다.
종래의 공동화 완화 설계들은 본 명세서에 설명된 페어링들의 추가로 개선될 수 있다. 예를 들어, 종래의 멀티-스테이지 공동화 완화 글로브 및 각도 밸브 트림(1200)의 일부가 도 21(플로우서브 코퍼레이션에 기인하는 도면)에 도시되어 있다. 페어링들(도시되지 않음)은 밸브 트림(2100) 내의 급격한 턴들(sharp turns)에 제조되거나 설치될 수 있다.
참고문헌들
[1] SA-RP75.23-1995 - Recommended Practice - Considerations for Evaluating Control Valve Cavitation, Instrument Society of America, 1995, Research Triangle Park, North Carolina.
[2] Monsen, J., "Liquid Flow in Control Valves," Valin® blog, 1/30/2017, https://www.valin.com/resources/blog/liquid-flow-control-valves-choked-flow-cavitation-and-flashing.
[3] Roth, K.W., Stares, J. A., "Avoid Control Valve Application Problems with Physics-based Models," Hydrocarbon Processing, August 2001.
[4] Stares, J., "Control Valve Cavitation, Damage Control," Dresser-Masoneilan publication, February 2007.
본 발명이 위에서 설명된 예시적인 실시예들을 통해 설명되지만, 예시된 실시예들에 대한 수정들 및 변형들은 본 명세서에서 개시된 발명의 개념들로부터 벗어나지 않으면서 이루어질 수 있다. 예를 들어, 각도들과 같은 특정 파라미터 값들이 개시된 실시예들과 관련하여 기재될 수 있지만, 본 발명의 범위 내에서, 모든 파라미터들의 값들은 상이한 응용들에 적합하도록 넓은 범위들에 걸쳐 달라질 수 있다. 문맥상 달리 표시되지 않거나, 이 분야의 통상의 기술자에 의해 달리 이해되지 않는 한, "약"과 같은 용어들은 ±20% 이내를 의미한다.
청구항들을 포함하여, 본 명세서에서 사용되는 바와 같이, 항목들의 리스트와 관련하여 사용되는 용어 "및/또는"은 리스트 내의 항목들 중 하나 이상, 즉 리스트 내의 항목들 중 적어도 하나를 의미하지만, 반드시 리스트 내의 모든 항목들을 의미하는 것은 아니다. 청구항들을 포함하여, 본 명세서에서 사용되는 바와 같이, 항목들의 리스트와 관련하여 사용되는 용어 "또는"은 리스트 내의 항목들 중 하나 이상, 즉 리스트 내의 항목들 중 적어도 하나를 의미하지만, 반드시 리스트 내의 모든 항목들을 의미하는 것은 아니다. "또는"은 "배타적 논리합(exclusive or)"을 의미하지 않는다.
개시된 양태들, 또는 그 부분들은 위에 열거되지 않은 그리고/또는 명시적으로 청구되지 않은 방식들로 조합될 수 있다. 또한, 본 명세서에 개시된 실시예들은 본 명세서에 구체적으로 개시되지 않은 임의의 요소 없이 적절하게 실시될 수 있다. 따라서, 본 발명은 개시된 실시예들로 제한되는 것으로 간주되어서는 안 된다.
본 명세서에서 사용되는 바와 같이, "제1", "제2" 및 "제3"과 같은 수치 용어들은 각각의 페어링들을 서로 구별하는 데 사용되며, 임의의 특정 실시예에서 페어링들의 임의의 특정 순서 또는 총 수를 반드시 표시하는 것을 의도하지 않는다. 따라서, 예를 들어, 주어진 실시예는 제2 페어링 및 제3 페어링만을 포함할 수 있다.

Claims (23)

  1. 하류 방향(310)에서의 유체 채널(300)의 유동 용량을 증가시키기 위한 디바이스로서, 상기 유체 채널은 그를 따르는 액체 유동을 위해 구성된 채널 표면(304, 308)을 갖고, 상기 채널 표면은 불연속(110)을 포함하고, 상기 디바이스는:
    각각의 페어링 표면(312)을 정의하는 페어링(302)을 포함하고, 상기 페어링 표면은:
    상기 유체 채널 내에 완전히 위치되고;
    그를 따르는 액체 유동을 위해 구성되고;
    상기 불연속의 상류(306)에 위치하는 상기 페어링 표면의 각각의 리딩 에지(400)로부터 상기 리딩 에지의 하류에 위치하는 상기 페어링 표면의 각각의 트레일링 에지(402)로 적어도 상기 불연속까지 연장되며;
    상기 리딩 에지에서, 상기 페어링 표면은 상기 채널 표면에 접하고;
    상기 트레일링 에지에서, 상기 페어링 표면은 상기 채널 표면에 접하고;
    상기 페어링 표면은 상기 리딩 에지와 상기 트레일링 에지 사이에서 매끄럽게 전이하는 곡선을 따르는, 디바이스.
  2. 제1항에 있어서, 상기 페어링 표면은 상기 리딩 에지와 상기 트레일링 에지 사이에서 매끄럽게 전이하는 역곡선을 따르는, 디바이스.
  3. 제1항 또는 제2항에 있어서, 상기 페어링 표면의 상기 트레일링 에지는 상기 불연속보다 더 하류에 위치하지 않는, 디바이스.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 페어링 표면의 상기 트레일링 에지는 상기 불연속의 하류에 위치되는, 디바이스.
  5. 제4항에 있어서, 상기 페어링 표면은 적어도 2-사이클 역곡선을 따르는, 디바이스.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 유체 채널은 그를 통한 액체 유동을 위해 구성되는 볼륨(109)을 정의하고, 상기 리딩 에지와 상기 트레일링 에지 사이의 상기 페어링 표면의 적어도 일부는 상기 하류 방향에 수직으로 측정된 양의 거리(positive distance)만큼, 상기 페어링이 없는 상기 채널의 가상 채널 표면으로부터 상기 유체 채널의 상기 볼륨 내로 변위되는, 디바이스.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 유체 채널은 그를 통한 액체 유동을 위해 구성된 볼륨(109)을 정의하고, 상기 리딩 에지와 상기 트레일링 에지 사이에서, 상기 하류 방향을 따르는 각각의 위치에서, 상기 페어링 표면은 상기 하류 방향에 수직으로 측정된 양의 거리만큼, 상기 페어링이 없는 상기 채널의 가상 채널 표면으로부터 상기 유체 채널의 상기 볼륨 내로 변위되는, 디바이스.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 리딩 에지와 상기 트레일링 에지 사이에서, 상기 하류 방향을 따르는 각각의 대응하는 위치에서, 상기 유체 채널의, 상기 하류 방향에 수직으로 그리고 상기 페어링을 고려하여 측정된 단면 유체 유동 면적은 상기 페어링이 없는 가상 단면 유체 유동 면적 이하인, 디바이스.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 불연속은 (a) 엘보우-형상, T-형상 또는 Y-형상을 갖거나 (b) 원심 펌프 또는 회전 밸브로의 입구 영역을 포함하는 상기 유체 채널의 일부에 의해 정의되는, 디바이스.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 페어링은 상기 유체 채널 내의 영구적인 또는 일시적인 설치를 위해 구성되는, 디바이스.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 페어링은 상기 유체 채널의 일체형 부분(integral part)으로서 형성되는, 디바이스.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서, 상기 페어링 표면은 매끄러운, 디바이스.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서, 상기 페어링 표면은 딤플형이거나, 거칠거나, 패터닝되는, 디바이스.
  14. 제13항에 있어서, 상기 페어링 표면은 그를 따르는 유체의 유동에 응답하여, 상기 유체의 미리 결정된 유동 특성을 나타내는 음향 신호의 방출을 야기하도록 구성된 표면 패턴을 정의하는, 디바이스.
  15. 제1항 내지 제14항 중 어느 한 항에 있어서, 상기 페어링은 핀(900)을 포함하고, 상기 페어링은 상기 핀(900)을 중심으로 피벗하도록 구성되는, 디바이스.
  16. 제1항 내지 제15항 중 어느 한 항에 있어서, 상기 페어링은 중공 부분(1000) 및 상기 중공 부분(1000)과 상기 유체 채널(300) 사이의 애퍼처(1002)를 정의하고, 상기 중공 부분(1000) 및 상기 애퍼처(1002)는 상기 애퍼처(1002)를 가로지르는 유체 유동에 응답하여 진동 음향 신호를 방출하도록 구성되는, 디바이스.
  17. 제1항 내지 제16항 중 어느 한 항에 있어서, 상기 페어링은 제어 포트(1106)와 유체 연통하는 블래더(1102)를 정의하고, 상기 블래더(1102)는 상기 블래더(1102)의 팽창에 응답하여 상기 페어링(302)의 상기 표면(312)의 형상을 변경하도록 구성되는, 디바이스.
  18. 제17항에 있어서, 상기 페어링(312)은 각각의 게이지 포트(1110)에 유체 결합된 적어도 하나의 압력 감지 포트(1108)를 정의하는, 디바이스.
  19. 제18항에 있어서, 상기 게이지 포트(1110)는 상기 제어 포트(1106)에 유체 결합되는, 디바이스.
  20. 제1항 내지 제19항 중 어느 한 항에 있어서, 상기 페어링은 상기 페어링(302)을 통한 적어도 하나의 통로(1200-1202)를 정의하고, 각각의 통로(1200-1202)는 상기 페어링(302)의 각각의 상류 부분을 각각의 하류 부분에 유체 연결하고, 각각의 통로(1200-1202)는 각각의 상류 개구(1204-1206) 및 각각의 하류 개구(1208-1210)를 정의하고, 각각의 통로(1200-1202)는 상기 유체 채널(300) 내에서 유동하는 액체의 적어도 일부가 상기 페어링(302)의 전체 프로파일을 우회하는 것을 허용하도록 구성되는, 디바이스.
  21. 제1항 내지 제20항 중 어느 한 항에 있어서, 상기 페어링(302)은 피벗 힌지(1304)에 의해 함께 연결된 상류 부분(1300) 및 하류 부분(1302)을 포함하고, 상기 상류 부분(1300)의 상류 단부는 상기 채널 표면(304)에 병진가능하게 부착되고, 상기 2개의 부분(1300 및 1302)은 상기 상류 부분(1300)의 상기 상류 단부의 병진에 응답하여 피벗하고, 그에 따라 상기 피벗 힌지(1304), 상기 상류 부분(1300)의 하류 단부 및 상기 하류 부분(1302)의 상류 단부를 상기 유체 채널(300) 내로 더 연장시키도록 구성되고, 상기 페어링(302)은 상기 상류 부분(1300)의 상기 상류 단부를 중립 위치로 밀어내도록 구성된 스프링(1318)을 더 포함하는, 디바이스.
  22. 제1항 내지 제21항 중 어느 한 항에 있어서, 상기 페어링(302)은:
    상기 유체 채널(300) 내의 상기 페어링(302)의 하류에 있는 포트(1410)와 유체 연통하는 제1 블래더(1402); 및
    상기 유체 채널(300) 내의 상기 페어링(302)의 상류에 있는 포트(1412)와 유체 연통되는 제2 블래더(1404)를 정의하고; 상기 제1 및 제2 블래더들(1402-1404)은 상기 포트들(1410-1412)에서의 각각의 압력에 기초하여, 상기 페어링(302)의 형상을 자동으로 조절하도록 구성되는, 디바이스.
  23. 제1항 내지 제22항 중 어느 한 항에 있어서, 상기 채널 표면은 제2 불연속(1506)을 포함하고, 상기 디바이스는:
    각각의 제2 페어링 표면(1602)을 정의하는 제2 페어링(1600)을 더 포함하고, 상기 제2 페어링 표면은:
    상기 유체 채널 내에 완전히 위치되고;
    그를 따르는 액체 유동을 위해 구성되고;
    상기 불연속(1506)의 상류(1606)에 위치하는 상기 제2 페어링 표면의 각각의 리딩 에지(1604)로부터 상기 리딩 에지의 하류에 위치하는 상기 제2 페어링 표면의 각각의 트레일링 에지(1608)로 적어도 상기 불연속(1506)까지 연장되며;
    상기 리딩 에지(1604)에서, 상기 제2 페어링 표면(1602)은 상기 채널 표면에 접하고;
    상기 트레일링 에지(1608)에서, 상기 제2 페어링 표면(1602)은 상기 채널 표면에 접하고;
    상기 제2 페어링 표면(1602)은 상기 리딩 에지(1604)와 상기 트레일링 에지(1608) 사이에서 매끄럽게 전이하는 곡선을 따르는, 디바이스.
KR1020237017799A 2020-10-28 2021-09-28 유체 채널의 유동 용량을 증가시키기 위한 디바이스 KR20230098612A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17/082,705 US11592041B2 (en) 2020-10-28 2020-10-28 Device for increasing flow capacity of a fluid channel
US17/082,705 2020-10-28
PCT/US2021/052343 WO2022093466A1 (en) 2020-10-28 2021-09-28 Device for increasing flow capacity of a fluid channel

Publications (1)

Publication Number Publication Date
KR20230098612A true KR20230098612A (ko) 2023-07-04

Family

ID=78303012

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237017799A KR20230098612A (ko) 2020-10-28 2021-09-28 유체 채널의 유동 용량을 증가시키기 위한 디바이스

Country Status (5)

Country Link
US (1) US11592041B2 (ko)
EP (1) EP4237693A1 (ko)
JP (1) JP2023548542A (ko)
KR (1) KR20230098612A (ko)
WO (1) WO2022093466A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102706662B1 (ko) * 2024-03-12 2024-09-13 주식회사 에스비데크 유속증가모듈이 구비된 쿨링포그 장치

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2590797A (en) * 1950-02-03 1952-03-25 Gen Electric Low-pressure drop fluid duct bend
JPS59170514A (ja) * 1983-03-16 1984-09-26 Hitachi Ltd 配管継手
US4995426A (en) 1988-10-17 1991-02-26 Milton Hinden Stock material for forming air turning vanes and air guide devices
US5213138A (en) * 1992-03-09 1993-05-25 United Technologies Corporation Mechanism to reduce turning losses in conduits
US5327940A (en) * 1992-03-09 1994-07-12 United Technologies Corporation Mechanism to reduce turning losses in angled conduits
CN1277664A (zh) 1998-09-21 2000-12-20 东林产业株式会社 用于充满微粒的高速流体的抗磨管接头
US6640926B2 (en) * 2000-12-29 2003-11-04 Industrial Acoustics Company, Inc. Elbow silencer
US6520738B2 (en) 2001-03-15 2003-02-18 Honeywell International, Inc. Plenum entry bulk swirl generator
US7197881B2 (en) * 2004-03-25 2007-04-03 Honeywell International, Inc. Low loss flow limited feed duct
ES2280934T3 (es) * 2004-12-30 2007-09-16 C.R.F. Societa' Consortile Per Azioni Dispositivo para impartir un movimiento de rotacion al flujo de aire alimentado a un motor de combustion interna turboalimentado.
JP5985315B2 (ja) * 2012-03-26 2016-09-06 株式会社Roki 通気ダクト
US9476547B2 (en) * 2012-12-28 2016-10-25 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
EP2938700B1 (en) 2012-12-28 2020-09-02 SunCoke Technology and Development LLC Duct intersection incorporating a flow modifier and method for improving gas flow
JP7243195B2 (ja) * 2019-01-11 2023-03-22 トヨタ自動車株式会社 エンジン吸気ダクト構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102706662B1 (ko) * 2024-03-12 2024-09-13 주식회사 에스비데크 유속증가모듈이 구비된 쿨링포그 장치

Also Published As

Publication number Publication date
WO2022093466A1 (en) 2022-05-05
JP2023548542A (ja) 2023-11-17
US20220128071A1 (en) 2022-04-28
US11592041B2 (en) 2023-02-28
EP4237693A1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
US7044434B2 (en) High recovery sonic gas valve
CN105090671B (zh) 具有压力脉冲阻尼器和止回阀的压缩机系统
US5771929A (en) Low noise ball valve assembly with airfoil insert
US7730907B2 (en) Device, with vanes, for use within a pipeline, and pipeline arrangement including such device
US20030192601A1 (en) Low noise fluid control valve
US11644123B2 (en) Device and method for conditioning flow through a valve assembly
KR20230098612A (ko) 유체 채널의 유동 용량을 증가시키기 위한 디바이스
RU2738387C2 (ru) Уравновешенный клапанный регулятор и способ уменьшения усилий штока на штоке клапана
EP2438307B1 (en) Apparatus for reducing turbulence in a fluid stream
US10245586B2 (en) Three-dimensional fluidic check device
EP3287676B1 (en) Guide vane check valves
US5890505A (en) Low noise ball valve assembly with downstream airfoil insert
CN102232147B (zh) 离心泵机组
CN113483983B (zh) 一种孔壁横流特性测定装置及其测定方法
US6276397B1 (en) Apparatus and method for shaping fluid flow
RU212501U1 (ru) Регулирущий клапан
CA2680627C (en) Poppet valve with diverging-converging flow passage and method to reduce total pressure loss
RU2810873C2 (ru) Клапан
WO2024044512A1 (en) Choke and control valves
Panicker Leakage Prediction of Labyrinth Seals Having Advanced Cavity shapes
CN101315071A (zh) 往复压缩机消振节能装置
Dehner et al. Effective suppression of surge instabilities in turbocharger compression systems through a close-coupled compressor inlet restriction
Gao et al. Numerical Study of the Microflow Characteristics in a V-ball Valve. Micromachines 2021, 12, 155
CN113513616A (zh) 流道型值曲线设计方法及轴流式止回阀
CN201339558Y (zh) 往复压缩机消振节能装置

Legal Events

Date Code Title Description
A201 Request for examination