KR20230095211A - Manufacturing method of bead-type arsenic adsorbent using iron hydroxide-based waste - Google Patents

Manufacturing method of bead-type arsenic adsorbent using iron hydroxide-based waste Download PDF

Info

Publication number
KR20230095211A
KR20230095211A KR1020210184446A KR20210184446A KR20230095211A KR 20230095211 A KR20230095211 A KR 20230095211A KR 1020210184446 A KR1020210184446 A KR 1020210184446A KR 20210184446 A KR20210184446 A KR 20210184446A KR 20230095211 A KR20230095211 A KR 20230095211A
Authority
KR
South Korea
Prior art keywords
iron hydroxide
bead
based waste
powder
inorganic binder
Prior art date
Application number
KR1020210184446A
Other languages
Korean (ko)
Other versions
KR102653354B1 (en
Inventor
박관인
고주인
권오훈
김신동
김가휘
신재철
Original Assignee
한국광해광업공단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광해광업공단 filed Critical 한국광해광업공단
Priority to KR1020210184446A priority Critical patent/KR102653354B1/en
Publication of KR20230095211A publication Critical patent/KR20230095211A/en
Application granted granted Critical
Publication of KR102653354B1 publication Critical patent/KR102653354B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3014Kneading
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

본 발명은 수산화철계열 폐기물 분말과 산화칼슘 분말을 비드 성형기에서 혼합하는 동안에 액상 무기바인더를 분무하여 뭉침 방지와 미립자 형성의 크기가 제어하면서 입자의 크기가 고른 비드형상의 비소흡착제를 제조할 수 있는 비소흡착제의 제조방법에 관한 것이다.
본 발명은 수산화철계열 폐기물을 이용한 수산화철계열 폐기물 분말을 생성하는 단계와; 수산화철계열 폐기물 분말과 산화칼슘 분말을 혼합하는 단계와; 비드성형기에서 수산화철계열 폐기물 분말과 산화칼슘 분말을 교반하면서 액상 무기바인더를 분무하여 반죽물을 생성하면서 입상 비드 형태의 비소흡착제로 성형하는 단계와, 생성된 비드형상의 비소흡착제를 입경이 4~6mm을 갖는 것으로 선별하는 단계를 포함하는 것을 특징으로 한다.
The present invention sprays a liquid inorganic binder while mixing iron hydroxide-based waste powder and calcium oxide powder in a bead molding machine to prevent aggregation and control the size of fine particles while controlling the size of particles. It relates to a method for preparing an adsorbent.
The present invention comprises the steps of generating iron hydroxide-based waste powder using iron hydroxide-based waste; mixing iron hydroxide-based waste powder and calcium oxide powder; Molding the arsenic adsorbent in the form of granular beads while stirring the iron hydroxide-based waste powder and calcium oxide powder in a bead molding machine while spraying a liquid inorganic binder to form a dough, and forming the resulting bead-shaped arsenic adsorbent with a particle size of 4 to 6 mm It is characterized in that it comprises the step of selecting as having.

Description

수산화철계열 폐기물을 이용한 비드형 비소흡착제의 제조방법{Manufacturing method of bead-type arsenic adsorbent using iron hydroxide-based waste}Manufacturing method of bead-type arsenic adsorbent using iron hydroxide-based waste}

본 발명은 수산화철계열 폐기물 분말과 산화칼슘 분말을 비드 성형기에서 혼합하는 동안에 액상 무기바인더를 분무하여 뭉침 방지와 미립자 형성의 크기가 제어하면서 입자의 크기가 고른 비드형상의 비소흡착제를 제조할 수 있는 수산화철계열 폐기물을 이용한 비드형 비소흡착제의 제조방법에 관한 것이다.The present invention sprays a liquid inorganic binder while mixing iron hydroxide-based waste powder and calcium oxide powder in a bead molding machine to prevent aggregation and control the size of fine particles. It relates to a method for manufacturing a bead-type arsenic adsorbent using series waste.

국내에서 발생되는 모든 수산화철계열 폐기물는「폐기물관리법■ 제 2조에 의거 사업장폐기물(지정외폐기물 무기성 오니류)로 분류되어 철 성분을 다량 함유하고 있는 무기성 소재임에도 불구하고 연간 약 6천톤(2018년 수질정화시설 연간 수산화철계열 폐기물 처리량 기준) 가량의 수산화철계열 폐기물이 매립하여 처분되거나 일부는 시멘트 부원료로 사용되고 있는 실정이다.All iron hydroxide-based waste generated in Korea is classified as industrial waste (non-designated waste, inorganic sludge) in accordance with Article 2 of the 「Waste Management Act」, and despite being an inorganic material containing a large amount of iron, about 6,000 tons per year (water quality in 2018 Based on the amount of iron hydroxide-based waste treated in purification facilities per year), about iron hydroxide-based waste is landfilled and disposed of, or some of it is used as a supplementary material for cement.

수산화철계열 폐기물에 다량 함유되어 있는 철 성분은 수산화철계 재제로 활용가치가 매우 높으며, 이미 국외에서는 이를 활용할 수 있는 다양한 연구개발들이 이루어져 활용되고 있다.The iron component contained in iron hydroxide-based waste has a very high utilization value as an iron hydroxide-based material, and various researches and developments that can utilize it have already been made and utilized abroad.

이와 같이 처리되고 있는 수산화철계열 폐기물은 처리공정 및 계절별 오염부하량(유입수질, 유량등)에 따라 성분에 변동성은 있지만 전반적으로 주요 성분 및 구조, 물성이 공통적인 부분을 활용하여 표준화 및 목적사업용 제품화가 가능하다는 연구결과들이 나오고 있다. The iron hydroxide-based waste treated in this way has variability in components depending on the treatment process and seasonal pollution load (influent water quality, flow rate, etc.), but overall, standardization and commercialization for target projects are made using common components, structure, and physical properties. Research results are emerging.

철 성분은 비소나 인 등 중금속 원소류와의 반응성이 높은 특성을 지닌다. 수산화철계열 폐기물에 다량 포함되어 있는 수산화철계 성분은 이러한 환경상의 중금속 오염물질등과 반응하여 화학적 또는 물리적 흡착을 통해 제거하기위한 제품의 소재로 활용하기에 아주 적합하다고 볼 수 있다. The iron component has high reactivity with heavy metal elements such as arsenic and phosphorus. Iron hydroxide-based components, which are contained in large amounts in iron hydroxide-based waste, react with heavy metal contaminants in the environment and can be considered very suitable for use as a material for products to be removed through chemical or physical adsorption.

그 중에서도 효율이 우수한 비소 제거제로 알려져있는 GFH는 독일 Wasserchemie사의 GEH가 대표적인 제품으로, 대부분의 수처리 시설에서 비소 및 인을 제거하기 위한 제재로 사용되고 있으며 1mm~2mm 범위 내의 규격을 가지는 그래뉼 형태의 수산화철, 산화철 복합 베이스 흡착제로 다양한 물 속 중금속도 함께 흡착 제거할 수 있는 제품으로 알려져 있으나 수입 의존도가 높으며, 교체 주기 대비 교체 비용이 매우 고가이므로 처리에 소비되는 비용이 매우 높아 GFH를 대체할 수 있는 흡착제의 발굴이 매우 중요한 실정이다.Among them, GFH, which is known as an efficient arsenic removal agent, is a representative product of Wasserchemie's GEH of Germany. It is used as a material for removing arsenic and phosphorus in most water treatment facilities. It is known as a product that can adsorb and remove various heavy metals in water as an iron oxide composite base adsorbent, but it is highly dependent on imports and the replacement cost compared to the replacement cycle is very high, so the cost consumed for treatment is very high. Excavation is very important.

기존의 대표적인 비소제거용 흡착제로 사용되고 있던 GFH는 비소 제거 효율이 매우 높은 비소제거용 흡착제로 알려져 있는데, 그래뉼 형태이기는 하나 그 입자의 규격 범위가 1mm~2mm에서 불균일한 입자 형태를 보인다.GFH, which has been used as a representative conventional adsorbent for arsenic removal, is known as an adsorbent for arsenic removal with very high arsenic removal efficiency.

수산화철계열 폐기물을 재활용한 수산화철계 비소제거용 흡착제의 제조방법의 개발을 통하여 시멘트의 부자재로 활용되거나 버려지고 있던 수산화철계열 폐기물을 비소제거용 비드형 흡착제로 사용하므로 인해 효율적이고 합리적인 비용으로 비소를 제거할 수 있다. 정화 시설에서 발생하는 슬러지는 많은 양의 철분 및 기타 금속물질, 칼슘 및 마그네슘 등을 함유하고 있다. 전술한 성분들이 포함되어 있는 슬러지는 회수하여 바인더류 등과 혼합하여 비드 성형기를 통하여 성형과정을 거쳐 비드형태로 제조되는데 기존의 펠릿형태 또는 그래뉼 형태의 흡착제들에 비하여 비드형태의 비소 제거용 흡착제는 규격범위 내에서 크기와 모양이 균일하고 투입과 회수가 용이하게 사용될 수 있다. 폐기물을 재활용하여 만들어진 비드형상의 흡착제는 원 부자재의 제조원가가 저렴하고 제조 공정이 용이하여 매우 경제적이다. Through the development of a manufacturing method of an iron hydroxide-based arsenic removal adsorbent that recycled iron hydroxide-based waste, arsenic is removed efficiently and at a reasonable cost by using iron hydroxide-based waste, which was used as a subsidiary material for cement or discarded, as a bead-type adsorbent for arsenic removal. can do. Sludge from purification plants contains large amounts of iron and other metals, calcium and magnesium. The sludge containing the above components is recovered, mixed with binders, etc., and then manufactured in the form of beads through a molding process through a bead molding machine. It is uniform in size and shape within the range and can be used easily for input and recovery. The bead-shaped adsorbent made by recycling waste is very economical because the manufacturing cost of raw materials is low and the manufacturing process is easy.

이에 따라 본 발명자는 철을 함유하는 광산배수를 이용하여 산업적으로 이용할 수 있는 비소흡착제를 제조하여 광산배수를 정화시키면서 슬러지 배출량을 절감시킬 수 있는 기술을 개발하게 되었다.Accordingly, the present inventors have developed a technology capable of reducing sludge discharge while purifying mine drainage by preparing an industrially usable arsenic adsorbent using iron-containing mine drainage.

본 발명이 해결하고자 하는 과제는 수산화철계열 폐기물 분말과 산화칼슘 분말을 비드 성형기에서 혼합하는 동안에 액상 무기바인더를 분무하여 뭉침 방지와 미립자 형성의 크기가 제어하면서 입자의 크기가 고른 비드형상의 비소흡착제를 제조할 수 있는 수산화철계열 폐기물을 이용한 비드형 비소흡착제의 제조방법을 제공하는 데 있다.The problem to be solved by the present invention is to prevent aggregation and control the size of fine particles by spraying a liquid inorganic binder while mixing iron hydroxide-based waste powder and calcium oxide powder in a bead molding machine. It is to provide a method for producing a bead-type arsenic adsorbent using iron hydroxide-based waste that can be produced.

본 발명에 따른 수산화철계열 폐기물을 이용한 비드형 비소흡착제의 제조방법은 수산화철계열 폐기물을 이용한 수산화철계열 폐기물 분말을 생성하는 단계와; 수산화철계열 폐기물 분말과 산화칼슘 분말을 혼합하는 단계와; 비드성형기에서 수산화철계열 폐기물 분말과 산화칼슘 분말을 교반하면서 액상 무기바인더를 분무하여 반죽물을 생성하면서 입상 비드 형태의 비소흡착제로 성형하는 단계와, 생성된 비드형상의 비소흡착제를 입경이 4~6mm을 갖는 것으로 선별하는 단계를 포함하는 것을 특징으로 한다.The manufacturing method of a bead-type arsenic adsorbent using iron hydroxide-based waste according to the present invention comprises the steps of generating iron hydroxide-based waste powder using iron hydroxide-based waste; mixing iron hydroxide-based waste powder and calcium oxide powder; Molding the arsenic adsorbent in the form of granular beads while stirring the iron hydroxide-based waste powder and calcium oxide powder in a bead molding machine while spraying a liquid inorganic binder to form a dough, and forming the resulting bead-shaped arsenic adsorbent with a particle size of 4 to 6 mm It is characterized in that it comprises the step of selecting as having.

바람직하게, 수산화철계열 폐기물 분말은 산성광산배수를 처리하는 수질정화시설에서 발생되는 폐기물을 건조하고, 평균 입경이 0.3 내지 2.0 ㎛로 분쇄된 것으로, 전체 중량에 대하여 45~65중량%로 혼합되는 것을 특징으로 한다.Preferably, the iron hydroxide-based waste powder is obtained by drying waste generated in a water purification facility that treats acid mine drainage, and pulverizing the waste with an average particle diameter of 0.3 to 2.0 μm, and mixing it at 45 to 65% by weight with respect to the total weight to be characterized

바람직하게, 산화칼슘 분말은 입자 크기가 10㎛ 이하이며, 전체 중량에 대하여 5~10중량%로 혼합되는 것을 특징으로 한다.Preferably, the calcium oxide powder has a particle size of 10 μm or less and is mixed in an amount of 5 to 10% by weight based on the total weight.

바람직하게, 액상 무기바인더는 실리콘계 무기바인더 또는 알루미늄계 무기바인더이며, 전체 중량에 대하여 30~40중량%로 혼합되는 것을 특징으로 한다.Preferably, the liquid inorganic binder is a silicon-based inorganic binder or an aluminum-based inorganic binder, and is characterized in that it is mixed at 30 to 40% by weight based on the total weight.

바람직하게, 비드 성형기는 원통형의 혼합조 내부에 회전형을 갖는 교반날개가 구비되고, 측면에 액상 무기바인더를 분무하는 토출노즐이 형성된 것을 특징으로 한다.Preferably, the bead forming machine is characterized in that a stirring blade having a rotating type is provided inside a cylindrical mixing tank, and a discharge nozzle for spraying a liquid inorganic binder is formed on a side surface.

본 발명은 수산화철계열 폐기물 분말, 산화칼슘 분말을 비드 성형기에서 혼합하는 동안에 포졸란 유도하는 액상 무기바인더를 노즐을 통해 분사하기 때문에 각 혼합물이 뭉치는 것을 방지하여 입자의 크기가 고른 비드형상의 비소흡착제를 제조할 수 있는 장점이 있다. The present invention sprays a pozzolan-inducing liquid inorganic binder through a nozzle while mixing iron hydroxide-based waste powder and calcium oxide powder in a bead molding machine, thereby preventing aggregation of each mixture and producing a bead-shaped arsenic adsorbent with uniform particle size. There are advantages to manufacturing.

도 1은 본 발명에 따른 수산화철계열 폐기물을 이용한 비드형 비소흡착제의 제조과정에 대한 플로차트.
도 2는 본 발명에 의해 제조된 실시예1, 실시예2의 비드형 비소흡착제에 대한 등온흡착 실험 결과 그래프.
도 3은 본 발명에 의해 제조된 실시예1, 실시예2의 비드형 비소흡착제에 대한 반응속도상수 실험 결과 그래프.
1 is a flow chart of a manufacturing process of a bead-type arsenic adsorbent using iron hydroxide-based waste according to the present invention.
Figure 2 is a graph of isothermal adsorption test results for the bead-type arsenic adsorbents of Examples 1 and 2 prepared by the present invention.
Figure 3 is a graph of the reaction rate constant test results for the bead-type arsenic adsorbents of Examples 1 and 2 prepared by the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

도 1을 참조하면, 본 발명에 따른 수산화철계열 폐기물을 이용한 수산화철계열 폐기물 분말을 생성하는 단계(S10)와; 수산화철계열 폐기물 분말과 산화칼슘 분말을 고르게 혼합하는 단계(S20)와; 비드성형기에서 수산화철계열 폐기물 분말과 산화칼슘 분말을 교반하면서 액상 무기바인더를 분무하여 반죽물을 생성하면서 입상 비드 형태의 비소흡착제로 성형하는 단계(S30)와, 생성된 비드형상의 비소흡착제를 소정 입경을 갖는 것으로 분리하는 단계(S30)를 포함하다.Referring to FIG. 1, generating iron hydroxide-based waste powder using iron hydroxide-based waste according to the present invention (S10); Evenly mixing iron hydroxide-based waste powder and calcium oxide powder (S20); Molding the arsenic adsorbent in the form of granular beads while stirring the iron hydroxide-based waste powder and calcium oxide powder in a bead molding machine while spraying a liquid inorganic binder to form a dough (S30), It includes a step (S30) of separating into one having.

수산화철계열 폐기물 분말 생성단계(S10)는 철을 함유하는 광산배수를 처리하는 수질정화시설에서 발생되는 폐기물을 자연건조, 열풍건조 등으로 건조하고 소정크기로 분쇄하여 생성하게 된다. 수산화철계열 폐기물 분말의 평균 입경은 0.3 내지 2.0 ㎛ 인 것이 바람직하다. 이때, 수산화철계열 폐기물은 산성광산배수에 Ca(OH)2를 혼합하여 철 등의 성분이 침전되는 폐기물이다.In the iron hydroxide-based waste powder generation step (S10), the waste generated in the water purification facility for treating mine drainage containing iron is dried by natural drying or hot air drying, and then pulverized into a predetermined size. The iron hydroxide-based waste powder preferably has an average particle diameter of 0.3 to 2.0 μm. At this time, iron hydroxide-based waste is a waste in which components such as iron are precipitated by mixing Ca(OH) 2 with acid mine drainage.

산화칼슘 분말 혼합단계(S20)는 수산화철계열 폐기물 분말에 산화칼슘 분말이 고르게 분포되도록 혼합한다. 이러한 산화칼슘 분말은 수산화철계열 폐기물 분말에 함유된 철성분과 함께 액상 무기바인더와 반응하여 포졸란 반응을 형성하게 된다. 이러한 산화칼슘 분말은 수산화철계열 폐기물 분말에 고르게 혼합되도록 입자 크기가 10㎛ 이하인 것이 바람직하다. 이때, 수산화철계열 폐기물 분말과 산화칼슘 분말의 혼합은 비드성형기에서 이루어지는 것이 바람직하다.In the calcium oxide powder mixing step (S20), the calcium oxide powder is mixed to evenly distribute the iron hydroxide-based waste powder. The calcium oxide powder reacts with the liquid inorganic binder together with the iron component contained in the iron hydroxide-based waste powder to form a pozzolanic reaction. The calcium oxide powder preferably has a particle size of 10 μm or less so that it is evenly mixed with the iron hydroxide-based waste powder. At this time, it is preferable that the mixing of the iron hydroxide-based waste powder and the calcium oxide powder is performed in a bead forming machine.

한편, 수산화철계열 폐기물 분말은 전체 중량에 대하여 45~65중량%, 산화칼슘 분말은 5~10중량%로 혼합되는 것이 바람직하다. 수산화철계열 폐기물 분말의 함량이 45 중량% 미만이면 비소 흡착능이 감소할 수 있고, 65 중량% 초과인 경우 비드형성이 어려울 수 있다. 또한, 산화칼슘 분말의 함량이 5중량% 미만이면 포졸란 반응의 유도가 어렵고, 10 중량% 초과인 경우 뭉침현상으로 비드형성이 어려울 수 있다.On the other hand, it is preferable to mix the iron hydroxide-based waste powder at 45 to 65% by weight and the calcium oxide powder at 5 to 10% by weight based on the total weight. If the content of the iron hydroxide-based waste powder is less than 45% by weight, the arsenic adsorption capacity may decrease, and if it exceeds 65% by weight, bead formation may be difficult. In addition, if the content of the calcium oxide powder is less than 5% by weight, it is difficult to induce a pozzolanic reaction, and if it is more than 10% by weight, bead formation may be difficult due to agglomeration.

액상 무기바인더 분무단계(S30)는 비드 성형기에서 수산화철계열 폐기물 분말, 산화칼슘이 교반되면서 고르게 혼합되는 동안에 노즐을 통해 분사되어 수산화철계열 폐기물 분말에 포함된 철성분, 산화칼슘과 반응하면서 포졸란(Pozzolan) 반응을 유도하여 혼합물을 견고하게 유지시킨다. 액상 무기바인더는 포졸란 반응이 용이한 실리콘계 무기바인더, 알루미늄계 무기바인더인 것이 바람직하다. 액상 무기바인더는 전체 중량에 대하여 30~40중량%로 혼합되는 것이 바람직하다. 이때, 액상 무기바인더의 함량이 30중량% 미만이면 포졸란 반응의 유도가 어렵고, 40중량% 초과인 경우 뭉침현상으로 비드형성이 어려울 수 있다. 또한, 액상 무기바인더를 한 번에 투입하여 혼합하면 포졸란 반응이 일시에 일어나게 되어 비드성형이 어려운 문제가 발생되기 때문에 액상 무기바인더는 비드 성형기에 수산화철계열 폐기물 분말, 산화칼슘 분말이 교반되는 동안에 분무방식으로 혼합되는 것이 바람직하다.In the liquid inorganic binder spraying step (S30), while the iron hydroxide-based waste powder and calcium oxide are stirred and evenly mixed in the bead molding machine, they are sprayed through a nozzle and react with the iron component and calcium oxide contained in the iron hydroxide-based waste powder to form Pozzolan. Induce a reaction to keep the mixture firm. The liquid inorganic binder is preferably a silicon-based inorganic binder or an aluminum-based inorganic binder having easy pozzolanic reaction. The liquid inorganic binder is preferably mixed in an amount of 30 to 40% by weight based on the total weight. At this time, if the content of the liquid inorganic binder is less than 30% by weight, it is difficult to induce a pozzolanic reaction, and if it is more than 40% by weight, bead formation may be difficult due to agglomeration. In addition, if the liquid inorganic binder is injected and mixed at once, a pozzolanic reaction occurs at once, resulting in a difficult problem in bead molding. It is preferable to mix with.

한편, 비드 성형기는 원통형의 혼합조 내부에 회전형을 갖는 교반날개가 구비되어서 수산화철계열 폐기물 분말과 산화칼슘 분말을 고르게 혼합하고 측면에 노즐이 형성되어서 액상 바인더를 분무방식으로 투입하여 수산화철계열 폐기물 분말, 산화칼슘 분말과 함께 반죽되면서 비드형 흡착제를 형성하게 된다. 이러한 비드 성형기는 일정량으로 투입되는 액상 바인더에 의하여 뭉침이 발생할 수 있으나, 이는 성형기 내부 원통 혼합조에 설치된 고속회전 교반날개에 의하여 뭉침 방지와 미립자 형성의 크기가 제어될 수 있다. On the other hand, the bead forming machine is equipped with a stirring blade having a rotating type inside the cylindrical mixing tank to evenly mix the iron hydroxide-based waste powder and calcium oxide powder, and a nozzle is formed on the side to inject the liquid binder in a spraying manner to mix the iron hydroxide-based waste powder , while being kneaded with calcium oxide powder, a bead-type adsorbent is formed. In this bead forming machine, agglomeration may occur due to the liquid binder introduced in a certain amount, but this can be prevented from aggregation and the size of fine particle formation can be controlled by high-speed rotating stirring blades installed in the cylindrical mixing tank inside the molding machine.

비드형 비소흡착제 선별단계(S40)는 비드 성형기에서 생성된 흡착제의 입경이 약 4~6mm을 갖는 것으로 선별한다. In the bead-type arsenic adsorbent selection step (S40), the adsorbent produced in the bead forming machine is selected to have a particle diameter of about 4 to 6 mm.

이와 같이 생성된 비드형 흡착제는 높은 비표면적을 보이는 구형의 형상을 갖기 때문에 동일부피대비 높은 비소제거 효율을 나타낼 수 있으며, 수상에 머무르며 오래도록 형상이 변형되거나 파손되지 않고 유지될 수 있다. 또한, 기존의 펠릿형 흡착제와 비교하였을 때 보다 세밀하고 균일한 크기를 가짐으로써 흡착 베드(용기)에 충진 시 일정한 공극률 확보할 수 있으며, 구형상의 특성상 투입과 배출이 용이하다는 장점을 가짐과 동시에 펠릿형태의 가장자리의 충격에 의한 파편발생 부분에 대한 단점도 감소할 수 있다.Since the bead-type adsorbent produced in this way has a spherical shape with a high specific surface area, it can exhibit a high arsenic removal efficiency compared to the same volume, and can remain in the aqueous phase for a long time without deforming or breaking its shape. In addition, compared to conventional pellet-type adsorbents, it has a more detailed and uniform size, so it is possible to secure a constant porosity when filling the adsorption bed (container), and has the advantage of easy input and discharge due to the spherical nature of the pellet. Disadvantages to the fragmentation part due to impact of the edge of the shape can also be reduced.

<제조예><Production Example>

<실시예1><Example 1>

영동지역의 탄광에서 배출되는 산성광산배수를 처리하여 배출되는 폐기물을 열풍건조하였으며, 24메쉬체를 통과시켜 수산화철계열 폐기물 분말을 생성하였다. 그 후, 비드 성형기의 원통형 혼합조에 수산화철계열 폐기물 분말 60중량%와 산화칼슘 분말 5중량%를 투입하고 교반하면서 혼합하는 동안에 혼합조에 형성된 노즐을 통해서 액상 무기바인더인 알루미나 35중량%를 분사하여 수산화철계열 폐기물 분말, 산화칼슘 및 액상 무기바인더가 뭉치지 않으면서 고르게 경화되도록 하면서 비드형상으로 제작하였고, 그 중에서 약 2~5mm의 입경을 갖는 것을 선별하여 비드형 비소흡착제(CMDS-YD)를 분리하였다.Acid mine drainage discharged from coal mines in the Yeongdong area was treated, and the discharged waste was dried with hot air, and iron hydroxide-based waste powder was generated by passing it through a 24-mesh sieve. After that, 60% by weight of iron hydroxide-based waste powder and 5% by weight of calcium oxide powder were added to the cylindrical mixing tank of the bead forming machine, and while mixing while stirring, 35% by weight of alumina, a liquid inorganic binder, was sprayed through a nozzle formed in the mixing tank to generate iron hydroxide-based waste. The waste powder, calcium oxide, and liquid inorganic binder were prepared in a bead shape while curing evenly without clumping, and among them, a bead-type arsenic adsorbent (CMDS-YD) was separated by selecting one having a particle diameter of about 2 to 5 mm.

<실시예2><Example 2>

나전지역의 탄광에서 배출되는 산성광산배수를 처리하여 배출되는 폐기물을 열풍건조시켜 생성된 수산화철계열 폐기물 분말을 이용하면서 실시예1과 동일한 방법을 사용하여 2~5mm 직경을 갖는 입경을 갖는 상체로 실시예 2의 비드형 비소흡착제(CMDS-NJ)를 제조하였다.Using iron hydroxide-based waste powder generated by treating acid mine drainage discharged from coal mines in the Najeon area and drying waste with hot air, the same method as in Example 1 was used, and the upper body having a particle size of 2 to 5 mm was used. A bead-type arsenic adsorbent (CMDS-NJ) of Example 2 was prepared.

<실험예1><Experimental Example 1>

<등온흡착 실험><Isothermal adsorption experiment>

실시예 1로 제조된 비드형 비소흡착제를 이용하여 pH에 따른 등온 흡착 실험을 As(III), As(V)에 대하여 실시하여 그 결과를 도 2의 그래프로 나타내었다.An isothermal adsorption experiment according to pH was performed for As(III) and As(V) using the bead-type arsenic adsorbent prepared in Example 1, and the results are shown in the graph of FIG. 2.

도 2의 그래프에 나타난 바와 같이, 실시예 1의 비드형 비소흡착제는 As(III)와 As(V)를 막론하고 pH에 관계없이 비소를 흡착할 수 있었다. 특히, As(III)의 경우 As(V)보다 높은 흡착능을 갖는 것을 확인할 수 있다.As shown in the graph of FIG. 2, the bead-type arsenic adsorbent of Example 1 could adsorb arsenic regardless of pH, regardless of As(III) and As(V). In particular, it can be confirmed that As(III) has a higher adsorption capacity than As(V).

<반응속도상수 실험><Reaction rate constant experiment>

실시예 1 및 실시예2로 제조된 비드형 비소흡착제를 이용하여 pH 6.5, 온도 250C, 흡착제 3g/L의 조건으로 비소흡착 반응속도를 실험을 As(III), As(V)에 대하여 실시하여 그 결과를 도 3a, 도 3b의 그래프로 나타내었다.Using the bead-type arsenic adsorbents prepared in Examples 1 and 2, the arsenic adsorption reaction rate was tested for As (III) and As (V) under the conditions of pH 6.5, temperature 250 C, and adsorbent 3 g / L The results are shown in the graphs of FIGS. 3A and 3B.

도 3a, 도 3b의 그래프에 나타난 바와 같이, 실시예1 및 실시예2의 비소흡착제는 반응속도상수는 As(III)의 경우 실시예1는 24×10-3, 실시예2는 15×10-3이었고, As(V)의 경우 실시예1는 455×10-3, 실시예2는 2.31×10-3이다. 이는 본 발명의 비소흡착제가 높은 반응속도로 비소를 제거하는 것을 알 수 있었다. As shown in the graphs of FIGS. 3A and 3B, the reaction rate constant of the arsenic adsorbents of Examples 1 and 2 was 24×10 -3 in Example 1 and 15×10 in Example 2 in the case of As(III). -3 , and in the case of As(V), Example 1 is 455×10 -3 , and Example 2 is 2.31×10 -3 . It was found that the arsenic adsorbent of the present invention removed arsenic at a high reaction rate.

<비소흡착 메커니즘><Arsenic Adsorption Mechanism>

실시예1과 실시예2로 제조된 비드형 비소흡착제 대한 Dubinin-Radushkevich (D-R)모델을 이용한 흡착에너지값을 계산한 결과 두 흡착제 모두 8 kJ/mol 이하였다. 때문에 물리적 흡착이었다. 이는 에너지 값이 E<8 kJ/mol 일 때 물리적 흡착, E>16 kJ/mol 일 때 화학적 흡착, 8 kJ/mol <E<16 kJ/mol 일 때는 이온교환 이라는 (Redl et al., 1996) 보고에 따른 것이다. As a result of calculating the adsorption energy values using the Dubinin-Radushkevich (D-R) model for the bead-type arsenic adsorbents prepared in Examples 1 and 2, both adsorbents were 8 kJ/mol or less. because of physical adsorption. This is called physical adsorption when the energy value is E<8 kJ/mol, chemical adsorption when E>16 kJ/mol, and ion exchange when the energy value is 8 kJ/mol <E<16 kJ/mol (Redl et al., 1996). according to the report.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by the limited embodiments and drawings, the present invention is not limited thereto, and the technical spirit of the present invention and the following Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described in.

Claims (5)

수산화철계열 폐기물을 이용한 수산화철계열 폐기물 분말을 생성하는 단계와;
수산화철계열 폐기물 분말과 산화칼슘 분말을 혼합하는 단계와;
비드성형기에서 수산화철계열 폐기물 분말과 산화칼슘 분말을 교반하면서 액상 무기바인더를 분무하여 반죽물을 생성하면서 입상 비드 형태의 비소흡착제로 성형하는 단계와,
생성된 비드형상의 비소흡착제를 입경이 4~6mm을 갖는 것으로 선별하는 단계를 포함하는 것을 특징으로 하는 수산화철계열 폐기물을 이용한 비드형 비소흡착제의 제조방법.
Generating iron hydroxide-based waste powder using iron hydroxide-based waste;
mixing iron hydroxide-based waste powder and calcium oxide powder;
Molding into arsenic adsorbent in the form of granular beads while spraying a liquid inorganic binder while stirring iron hydroxide-based waste powder and calcium oxide powder in a bead molding machine to create a dough;
A method for producing a bead-shaped arsenic adsorbent using iron hydroxide-based waste, comprising the step of selecting the generated bead-shaped arsenic adsorbent to have a particle size of 4 to 6 mm.
청구항 1에 있어서, 수산화철계열 폐기물 분말은 산성광산배수를 처리하는 수질정화시설에서 발생되는 폐기물을 건조하고, 평균 입경이 0.3 내지 2.0 ㎛로 분쇄된 것으로, 전체 중량에 대하여 45~65중량%로 혼합되는 것을 특징으로 하는 수산화철계열 폐기물을 이용한 비드형 비소흡착제의 제조방법.
The method according to claim 1, the iron hydroxide-based waste powder is obtained by drying waste generated in a water purification facility treating acid mine drainage and pulverizing to an average particle diameter of 0.3 to 2.0 μm, and mixing at 45 to 65% by weight based on the total weight Method for producing a bead-type arsenic adsorbent using iron hydroxide-based waste, characterized in that.
청구항 1에 있어서, 산화칼슘 분말은 입자 크기가 10㎛ 이하이며, 전체 중량에 대하여 5~10중량%로 혼합되는 것을 특징으로 하는 수산화철계열 폐기물을 이용한 비드형 비소흡착제의 제조방법.
The method according to claim 1, wherein the calcium oxide powder has a particle size of 10 μm or less and is mixed in an amount of 5 to 10% by weight based on the total weight.
청구항 1에 있어서, 액상 무기바인더는 실리콘계 무기바인더, 알루미늄계 무기바인더이며, 전체 중량에 대하여 30~40중량%로 혼합되는 것을 특징으로 하는 수산화철계열 폐기물을 이용한 비드형 비소흡착제의 제조방법.
The method of claim 1, wherein the liquid inorganic binder is a silicon-based inorganic binder or an aluminum-based inorganic binder, and is mixed in an amount of 30 to 40% by weight based on the total weight.
청구항 1에 있어서, 비드 성형기는 원통형의 혼합조 내부에 회전형을 갖는 교반날개가 구비되고, 측면에 액상 무기바인더를 분무하는 토출노즐이 형성된 것을 특징으로 하는 수산화철계열 폐기물을 이용한 비드형 비소흡착제의 제조방법.The method according to claim 1, wherein the bead forming machine is provided with a stirring blade having a rotating type inside the cylindrical mixing tank, and a discharge nozzle for spraying a liquid inorganic binder is formed on the side of the bead-type arsenic adsorbent using iron hydroxide-based waste. manufacturing method.
KR1020210184446A 2021-12-22 2021-12-22 Manufacturing method of bead-type arsenic adsorbent using iron hydroxide-based waste KR102653354B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210184446A KR102653354B1 (en) 2021-12-22 2021-12-22 Manufacturing method of bead-type arsenic adsorbent using iron hydroxide-based waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210184446A KR102653354B1 (en) 2021-12-22 2021-12-22 Manufacturing method of bead-type arsenic adsorbent using iron hydroxide-based waste

Publications (2)

Publication Number Publication Date
KR20230095211A true KR20230095211A (en) 2023-06-29
KR102653354B1 KR102653354B1 (en) 2024-03-29

Family

ID=86946118

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210184446A KR102653354B1 (en) 2021-12-22 2021-12-22 Manufacturing method of bead-type arsenic adsorbent using iron hydroxide-based waste

Country Status (1)

Country Link
KR (1) KR102653354B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270933A (en) * 2004-03-26 2005-10-06 Nittetsu Mining Co Ltd Anion adsorbent, elimination method of anion, recycle method of anion adsorbent, and recovery method of elements
KR100788120B1 (en) * 2000-09-26 2007-12-21 란세스 도이치란트 게엠베하 Contact and adsorber granulates
KR20150060031A (en) * 2013-11-25 2015-06-03 성호길 Manufacturing method of carriers for arsenic removal
CN109529789A (en) * 2017-09-22 2019-03-29 霍尼韦尔国际公司 Absorbent particles and preparation method thereof for removing heavy metal
KR20210148669A (en) * 2020-06-01 2021-12-08 한국광해관리공단 Preparation method of arsenic adsorbent using iron-containing mine drainage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788120B1 (en) * 2000-09-26 2007-12-21 란세스 도이치란트 게엠베하 Contact and adsorber granulates
JP2005270933A (en) * 2004-03-26 2005-10-06 Nittetsu Mining Co Ltd Anion adsorbent, elimination method of anion, recycle method of anion adsorbent, and recovery method of elements
KR20150060031A (en) * 2013-11-25 2015-06-03 성호길 Manufacturing method of carriers for arsenic removal
CN109529789A (en) * 2017-09-22 2019-03-29 霍尼韦尔国际公司 Absorbent particles and preparation method thereof for removing heavy metal
KR20210148669A (en) * 2020-06-01 2021-12-08 한국광해관리공단 Preparation method of arsenic adsorbent using iron-containing mine drainage

Also Published As

Publication number Publication date
KR102653354B1 (en) 2024-03-29

Similar Documents

Publication Publication Date Title
Al-Harahsheh et al. Fly ash based geopolymer for heavy metal removal: A case study on copper removal
Zhao et al. Characterization of red mud granular adsorbent (RMGA) and its performance on phosphate removal from aqueous solution
Sanguanpak et al. Porous metakaolin-based geopolymer granules for removal of ammonium in aqueous solution and anaerobically pretreated piggery wastewater
CN110624506B (en) Method for preparing water purifying agent by utilizing coal gasification furnace slag and obtained water purifying agent
CN102731198A (en) Method for producing organic-inorganic compound fertilizer by using high tower melting granulation process
CN103170488B (en) The treatment process of incineration of refuse flyash solidifying agent and incineration of refuse flyash
CN110508264A (en) A kind of lanthanum iron compound oxide modified steel scoria haydite and its application
CN104083945A (en) Zeolite ceramic prepared by utilizing coal gangue and construction waste and preparation technology thereof
KR101602926B1 (en) Method for Manufacturing Synthetic Zeolites using Gangue
CN101693186B (en) Dephosphorization and denitrification integrated material prepared based on battering method and preparation method thereof
CN104069690A (en) Zeolite ceramisite filter material prepared by gangue and preparation method of zeolite ceramisite filter material
CN107265548A (en) A kind of method using the attapulgite depth adsorption and dephosphorization for loading hydrated ferric oxide
CN102068898B (en) Composite calcium-based solid desulfurizer and production method thereof
CN108854942A (en) A kind of dry process method for preparation of modified bentonite
CN112661231A (en) Multifunctional long-acting composite filler and preparation method thereof
CN111116224B (en) Desulfurizer using red mud waste residue as active raw material, and preparation method and application thereof
CN102319557A (en) Active alumina/active carbon composite material and preparation method thereof
CN107176804A (en) Metallurgy steel slag tank grid and its production method
CN105126740B (en) A kind of BIOLOGICAL CALCIUM type Phosphateadsorption porous material and preparation method thereof
CN113634587A (en) Resource utilization method for desulfurization and sulfur by using magnesite
KR102653354B1 (en) Manufacturing method of bead-type arsenic adsorbent using iron hydroxide-based waste
CN111747437A (en) Preparation process of ultrafine calcium carbonate powder
CA2746025A1 (en) Manufactured aggregate material and method
CN115557735A (en) Porous fly ash based polymer and preparation method and application thereof
CN106944040A (en) Utilize the method that catalyst for purification of nitrogen oxides is prepared containing Titanium slag and containing manganese mud

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant