KR20230091628A - Steel plate having excellent hydrogen induced cracing resistance and uniform elongation and method for manufacturing the same - Google Patents
Steel plate having excellent hydrogen induced cracing resistance and uniform elongation and method for manufacturing the same Download PDFInfo
- Publication number
- KR20230091628A KR20230091628A KR1020210180910A KR20210180910A KR20230091628A KR 20230091628 A KR20230091628 A KR 20230091628A KR 1020210180910 A KR1020210180910 A KR 1020210180910A KR 20210180910 A KR20210180910 A KR 20210180910A KR 20230091628 A KR20230091628 A KR 20230091628A
- Authority
- KR
- South Korea
- Prior art keywords
- less
- steel sheet
- present
- steel
- uniform elongation
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 66
- 239000010959 steel Substances 0.000 title claims abstract description 66
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title abstract description 36
- 229910052739 hydrogen Inorganic materials 0.000 title abstract description 36
- 239000001257 hydrogen Substances 0.000 title abstract description 36
- 238000000034 method Methods 0.000 title abstract description 14
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 238000001816 cooling Methods 0.000 claims description 21
- 230000014509 gene expression Effects 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 12
- 229910052791 calcium Inorganic materials 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 10
- 229910001568 polygonal ferrite Inorganic materials 0.000 claims description 10
- 229910000859 α-Fe Inorganic materials 0.000 claims description 10
- 238000005098 hot rolling Methods 0.000 claims description 9
- 229910001562 pearlite Inorganic materials 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 238000007670 refining Methods 0.000 claims description 8
- 238000003303 reheating Methods 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- 238000005266 casting Methods 0.000 claims description 4
- 238000004804 winding Methods 0.000 claims description 4
- 230000001186 cumulative effect Effects 0.000 claims description 3
- 238000005336 cracking Methods 0.000 abstract description 28
- 230000000052 comparative effect Effects 0.000 description 37
- 239000011651 chromium Substances 0.000 description 24
- 239000011572 manganese Substances 0.000 description 23
- 239000011575 calcium Substances 0.000 description 21
- 239000010936 titanium Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 239000010955 niobium Substances 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 230000009466 transformation Effects 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019362 perlite Nutrition 0.000 description 2
- 239000010451 perlite Substances 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- MUTDXQJNNJYAEG-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-(dimethylamino)pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)N(C)C MUTDXQJNNJYAEG-UHFFFAOYSA-N 0.000 description 1
- AWFYPPSBLUWMFQ-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(1,4,6,7-tetrahydropyrazolo[4,3-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=C2 AWFYPPSBLUWMFQ-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C47/00—Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
- B21C47/02—Winding-up or coiling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
본 발명은 고강도 강판 및 그 제조방법에 관한 것으로, 보다 상세하게는 고강도를 구비하면서 수소유기균열 저항성 및 균일연신율이 우수한 강판 및 그 제조방법에 관한 것이다.The present invention relates to a high-strength steel sheet and a method for manufacturing the same, and more particularly, to a steel sheet having high strength and excellent resistance to hydrogen induced cracking and uniform elongation, and a method for manufacturing the same.
최근, 에너지 수요가 증가하고 요구 품질이 엄격해짐에 따라, 황화수소(H2S)가 포함된 오일 및 가스 수송용 파이프라인의 수요가 증가하고 있다. 한편, 상기 황화수소(H2S)는 강 내 수소유기균열이나 황화물 응력 균열과 같은 수소취화 현상을 일으키는 주요 원인으로 알려져 있어, 이러한 황화수소 가스를 포함하는 환경에서 파손 저항성이 우수한 강을 적용하고자 하는 요구가 증가하고 있다.Recently, as energy demand increases and quality requirements become stricter, demand for pipelines for transporting oil and gas containing hydrogen sulfide (H 2 S) is increasing. On the other hand, the hydrogen sulfide (H 2 S) is known as the main cause of hydrogen embrittlement such as hydrogen induced cracking or sulfide stress cracking in steel, and the demand to apply steel with excellent breakage resistance in an environment containing such hydrogen sulfide gas is increasing
또한, offshore 지역 같은 변형이 심한 환경이나 캐나다 등에서의 기후 온난화에 의한 동토층 함몰 지역에서 파이프 변형파괴 저항성 확보를 위하여 상기 파이프라인의 균일연신율 보증을 요구하고 있다.In addition, in order to secure resistance to deformation and fracture of the pipe in an environment with severe deformation such as an offshore area or in an area where the permafrost subsides due to climate warming in Canada, etc., it is required to guarantee the uniform elongation of the pipeline.
이에, 단순히 내수소유기균열성을 확보하는 방법은 편석 및 개재물 제어, 고강도강에서의 에시큘라 페라이트 같은 균일한 저온변태조직 확보 등이 많이 알려져 있으며, 고강도강에서 균일연신율을 향상시키는 방법으로는 MA상 등의 이차상을 생성시키는 방법 등이 알려져 있다.Therefore, methods for simply securing hydrogen-induced cracking resistance are well known, such as controlling segregation and inclusions and securing a uniform low-temperature transformation structure such as escular ferrite in high-strength steel. As a method of improving uniform elongation in high-strength steel, MA Methods for generating secondary phases such as phases and the like are known.
하지만, 내수소유기균열성과 더불어 균일연신율까지 동시에 확보할 수 있는 방안에 대해서는 제시하지 못하고 있는 실정이다.However, it is not possible to suggest a method that can simultaneously secure hydrogen induced crack resistance and uniform elongation.
본 발명의 일 측면에 따르면 고강도를 구비하면서 수소유기균열 저항성 및 균일연신율이 우수한 강판 및 그 제조방법을 제공하고자 한다.According to one aspect of the present invention, it is intended to provide a steel sheet having high strength, excellent resistance to hydrogen induced cracking and uniform elongation, and a manufacturing method thereof.
본 발명의 과제는 상술한 내용에 한정되지 않는다. 통상의 기술자라면 본 명세서의 전반적인 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.The object of the present invention is not limited to the above. A person skilled in the art will have no difficulty understanding the further subject matter of the present invention from the general content of this specification.
본 발명의 일 측면은, 중량%로, C: 0.02~0.05%, Si: 0.05~0.3%, Mn: 0.4~1.1%, P: 0.01% 이하, S: 0.001% 이하, Al: 0.02~0.05%, Nb: 0.06~0.08%, Ti: 0.005~0.02%, N: 0.002~0.008%, Cr: 0.1~0.5%, Mo: 0.03% 이하, Ca: 0.0015~0.003%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, One aspect of the present invention, in weight%, C: 0.02 ~ 0.05%, Si: 0.05 ~ 0.3%, Mn: 0.4 ~ 1.1%, P: 0.01% or less, S: 0.001% or less, Al: 0.02 ~ 0.05% , Nb: 0.06~0.08%, Ti: 0.005~0.02%, N: 0.002~0.008%, Cr: 0.1~0.5%, Mo: 0.03% or less, Ca: 0.0015~0.003%, the balance including Fe and other unavoidable impurities do,
하기 관계식 1에서 정의되는 R 값이 1.5~4.0이며,The R value defined in the following relational expression 1 is 1.5 to 4.0,
하기 관계식 2에서 정의되는 A 값이 1.0~1.4이고,The A value defined in the following relational expression 2 is 1.0 to 1.4,
미세조직은 폴리고날 페라이트 및 에시큘라 페라이트 혼합조직을 기지조직으로 포함하고, 1~5면적%의 펄라이트를 포함하는 강판을 제공할 수 있다.The microstructure includes polygonal ferrite and escular ferrite mixture as a base structure, and 1 to 5 area% pearlite It is possible to provide a steel sheet containing.
[관계식 1][Relationship 1]
R = [Ca]/[S]R = [Ca]/[S]
(여기서, [Ca] 및 [S]는 각 원소의 중량%이다.)(Where [Ca] and [S] are the weight% of each element.)
[관계식 2][Relationship 2]
A = [Mn]+[Cr]+[Mo]A = [Mn] + [Cr] + [Mo]
(여기서, [Mn], [Cr] 및 [Mo]는 각 원소의 중량%이다.)(Where [Mn], [Cr] and [Mo] are the weight percent of each element.)
상기 강판은 미세조직으로 폴리고날 페라이트를 40~80%, 에시큘라 페라이트를 20~60% 포함할 수 있다.The steel sheet may include 40 to 80% of polygonal ferrite and 20 to 60% of escular ferrite as a microstructure.
상기 강판은 항복강도가 500~600MPa이고, CLR (Crack Length Ratio)이 10% 이하이고, 균일연신율이 10% 이상일 수 있다.The steel sheet may have a yield strength of 500 to 600 MPa, a crack length ratio (CLR) of 10% or less, and a uniform elongation of 10% or more.
상기 강판은 항복강도가 530~600MPa일 수 있다.The steel sheet may have a yield strength of 530 to 600 MPa.
본 발명의 다른 일 측면은, 중량%로, C: 0.02~0.05%, Si: 0.05~0.3%, Mn: 0.4~1.1%, P: 0.01% 이하, S: 0.001% 이하, Al: 0.02~0.05%, Nb: 0.06~0.08%, Ti: 0.005~0.02%, N: 0.002~0.008%, Cr: 0.1~0.5%, Mo: 0.03% 이하, Ca: 0.0015~0.003%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기 관계식 1에서 정의되는 R 값이 1.5~4.0이며, 하기 관계식 2에서 정의되는 A 값이 1.0~1.4인 용강을 정련 및 연속주조하여 슬라브를 제조하는 단계;Another aspect of the present invention, in weight percent, C: 0.02 ~ 0.05%, Si: 0.05 ~ 0.3%, Mn: 0.4 ~ 1.1%, P: 0.01% or less, S: 0.001% or less, Al: 0.02 ~ 0.05 %, Nb: 0.06-0.08%, Ti: 0.005-0.02%, N: 0.002-0.008%, Cr: 0.1-0.5%, Mo: 0.03% or less, Ca: 0.0015-0.003%, the balance Fe and other unavoidable impurities Including, the R value defined in the following relational expression 1 is 1.5 to 4.0, the A value defined in the following relational expression 2 is 1.0 to 1.4 by refining and continuously casting molten steel to prepare a slab;
상기 강 슬라브를 재가열하는 단계;reheating the steel slab;
상기 재가열된 강 슬라브를 Ar3~950℃의 온도범위에서 마무리 열간압연하는 단계; 및Finishing hot-rolling the reheated steel slab in a temperature range of Ar3 to 950 ° C; and
상기 열간압연된 강판을 10~30℃/s의 냉각속도로 550~650℃의 온도범위까지 냉각한 후 권취하는 단계를 포함하는 강판 제조방법을 제공할 수 있다.It is possible to provide a steel sheet manufacturing method comprising the step of cooling the hot-rolled steel sheet to a temperature range of 550 ~ 650 ℃ at a cooling rate of 10 ~ 30 ℃ / s and then winding.
[관계식 1][Relationship 1]
R = [Ca]/[S]R = [Ca]/[S]
(여기서, [Ca] 및 [S]는 각 원소의 중량%이다.)(Where [Ca] and [S] are the weight% of each element.)
[관계식 2][Relationship 2]
A = [Mn]+[Cr]+[Mo]A = [Mn] + [Cr] + [Mo]
(여기서, [Mn], [Cr] 및 [Mo]는 각 원소의 중량%이다.)(Where [Mn], [Cr] and [Mo] are the weight percent of each element.)
상기 재가열은 1200~1350℃의 온도범위에서 행하고, The reheating is performed in a temperature range of 1200 to 1350 ° C,
상기 열간압연 시, 누적 압하율은 70% 이상이며,During the hot rolling, the cumulative reduction ratio is 70% or more,
상기 냉각 시, Ar3 이상의 온도범위에서 냉각 개시할 수 있다.During the cooling, cooling may be initiated in a temperature range of Ar3 or higher.
본 발명의 일 측면에 따르면 고강도를 구비하면서 수소유기균열 저항성 및 균일연신율이 우수한 강판 및 그 제조방법을 제공할 수 있다.According to one aspect of the present invention, it is possible to provide a steel sheet having high strength, excellent resistance to hydrogen induced cracking and uniform elongation, and a manufacturing method thereof.
본 발명의 일 측면에 따르면 황화수소(H2S) 함유 오일 및 천연가스 수송용 파이프에 적용될 수 있는 고강도 강판 및 그 제조방법을 제공할 수 있다.According to one aspect of the present invention, it is possible to provide a high-strength steel sheet that can be applied to pipes for transporting hydrogen sulfide (H 2 S)-containing oil and natural gas, and a manufacturing method thereof.
도 1은 본 발명의 일 실시예에 따른 (a) 발명예 1, (b) 비교예 2 및 (c) 비교예 4의 미세조직의 사진을 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 발명예 1과 비교예 4의 인장커브를 비교하여 도시한 것이다.
도 3은 본 발명의 일 실시예에 따른 비교예 5에 있어서, 수소유기균열이 발생한 균열 파면을 관찰한 사진이다. 1 shows photographs of microstructures of (a) Inventive Example 1, (b) Comparative Example 2, and (c) Comparative Example 4 according to an embodiment of the present invention.
2 is a diagram illustrating a comparison between tensile curves of Inventive Example 1 and Comparative Example 4 according to an embodiment of the present invention.
3 is a photograph of a crack fracture surface in which hydrogen-induced cracking occurred in Comparative Example 5 according to an embodiment of the present invention.
이하에서는 본 발명의 바람직한 구현예들을 설명하고자 한다. 본 발명의 구현예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명되는 구현예들에 한정되는 것으로 해석되어서는 안된다. 본 구현예들은 당해 발명이 속하는 기술분야에서 통상의 기술자에게 본 발명을 더욱 상세하게 설명하기 위하여 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described. Embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. These embodiments are provided to explain the present invention in more detail to those skilled in the art.
이하, 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.
이하에서는, 본 발명의 강 조성에 대해 자세히 설명한다.Hereinafter, the steel composition of the present invention will be described in detail.
본 발명에서 특별히 달리 언급하지 않는 한 각 원소의 함량을 표시하는 %는 중량을 기준으로 한다.In the present invention, unless otherwise specified, % indicating the content of each element is based on weight.
본 발명의 일 측면에 따르는 강은 중량%로, C: 0.02~0.05%, Si: 0.05~0.3%, Mn: 0.4~1.1%, P: 0.01% 이하, S: 0.001% 이하, Al: 0.02~0.05%, Nb: 0.06~0.08%, Ti: 0.005~0.02%, N: 0.002~0.008%, Cr: 0.1~0.5%, Mo: 0.03% 이하, Ca: 0.0015~0.003%, 잔부 Fe 및 기타 불가피한 불순물을 포함할 수 있다.Steel according to one aspect of the present invention, by weight%, C: 0.02 ~ 0.05%, Si: 0.05 ~ 0.3%, Mn: 0.4 ~ 1.1%, P: 0.01% or less, S: 0.001% or less, Al: 0.02 ~ 0.05%, Nb: 0.06~0.08%, Ti: 0.005~0.02%, N: 0.002~0.008%, Cr: 0.1~0.5%, Mo: 0.03% or less, Ca: 0.0015~0.003%, balance Fe and other unavoidable impurities can include
탄소(C): 0.02~0.05%Carbon (C): 0.02 to 0.05%
탄소(C)는 강을 강화시키는데 가장 경제적이며 효과적인 원소이다. 다만, 상기 탄소(C)가 0.02% 미만으로 첨가되는 경우에는 Nb 또는 Ti와 결합하여 강을 강화시키는 효과가 매우 적고, 0.05%를 초과하는 경우에는 수소유기균열 저항성을 저하시키는 중심 편석이 증대되는 문제가 있을 수 있다. 보다 바람직하게는 0.025% 이상 포함할 수 있으며, 보다 바람직하게는 0.045% 이하로 포함할 수 있다.Carbon (C) is the most economical and effective element for strengthening steel. However, when the carbon (C) is added at less than 0.02%, the effect of strengthening the steel by combining with Nb or Ti is very small, and when it exceeds 0.05%, the center segregation that lowers the hydrogen-induced cracking resistance increases There may be a problem. More preferably, it may contain 0.025% or more, and more preferably, it may contain 0.045% or less.
실리콘(Si): 0.05~0.3%Silicon (Si): 0.05 to 0.3%
실리콘(Si)은 탈산 및 고용강화에 유효한 성분으로, 상기 효과를 위해서는 0.05% 이상 첨가되는 것이 바람직하다. 다만, 그 함량이 0.3%를 초과하는 경우에는 용접성 및 취성을 저하시킬 우려가 있다. 보다 바람직한 하한은 0.1%일 수 있으며, 보다 바람직한 상한은 0.27%일 수 있다.Silicon (Si) is an effective component for deoxidation and solid solution strengthening, and is preferably added in an amount of 0.05% or more for the above effect. However, if the content exceeds 0.3%, there is a possibility of reducing weldability and brittleness. A more preferred lower limit may be 0.1%, and a more preferred upper limit may be 0.27%.
망간(Mn): 0.4~1.1%Manganese (Mn): 0.4 to 1.1%
망간(Mn)은 강도 및 인성 확보를 위하여 필수적인 성분이나, 그 함량이 0.4% 미만으로 첨가되는 경우에는 강도와 인성을 확보하기 어려울 수 있다. 반면, 그 함량이 1.1%를 초과하는 경우에는 연주 시, 중심 편석을 조장하여 수소유기균열 저항성을 저하시킬 수 있다. 보다 바람직하게는 0.7% 이상으로 포함할 수 있으며, 보다 바람직하게는 1.05% 이하로 포함할 수 있다. Manganese (Mn) is an essential component for securing strength and toughness, but when the content thereof is less than 0.4%, it may be difficult to secure strength and toughness. On the other hand, if the content exceeds 1.1%, the hydrogen-induced cracking resistance may be reduced by promoting central segregation during playing. More preferably, it may be included in 0.7% or more, and more preferably, it may be included in 1.05% or less.
인(P): 0.01% 이하Phosphorus (P): 0.01% or less
인(P)의 함량이 0.01%를 초과하게 되는 경우에는 연주 시, Mn과 함께 중심 편석을 조장하여 내수소유기균열 저항성을 저하시킬 뿐만 아니라 용접성도 저하시킬 우려가 있다. 다만, 불가피하게 함유되는 것을 고려하여 0%는 제외한다.When the phosphorus (P) content exceeds 0.01%, center segregation is promoted along with Mn during casting, which may reduce hydrogen induced cracking resistance as well as reduce weldability. However, considering that it is unavoidably contained, 0% is excluded.
황(S): 0.001% 이하Sulfur (S): 0.001% or less
황(S)은 강 중에서 Mn과 반응하여 MnS를 형성함으로써 취성을 크게 저하시키는 성분으로서, 0.001%를 초과하는 경우 수소유기균열 저항성을 크게 감소시킬 수 있다. 다만, 불가피하게 함유되는 것을 고려하여 0%는 제외한다.Sulfur (S) is a component that greatly reduces brittleness by reacting with Mn in steel to form MnS, and when it exceeds 0.001%, it can greatly reduce hydrogen induced cracking resistance. However, considering that it is unavoidably contained, 0% is excluded.
알루미늄(Al): 0.02~0.05%Aluminum (Al): 0.02 to 0.05%
알루미늄(Al)은 Si과 함께 탈산 작용을 하는 성분으로서, 그 함량이 0.02% 미만으로 첨가되는 경우에는 탈산 효과를 얻기 어렵다. 반면, 그 함량이 0.05%를 초과하는 경우에는 알루미나 집합체를 증가시켜 수소유기균열 저항성을 저하시킬 수 있다. 보다 바람직한 하한은 0.023%일 수 있으며, 보다 바람직한 상한은 0.04%일 수 있다.Aluminum (Al) is a component that acts as a deoxidizer together with Si, and it is difficult to obtain a deoxidizer effect when the content thereof is less than 0.02%. On the other hand, when the content exceeds 0.05%, the resistance to hydrogen induced cracking may be reduced by increasing the alumina aggregate. A more preferred lower limit may be 0.023%, and a more preferred upper limit may be 0.04%.
니오븀(Nb): 0.06~0.08%Niobium (Nb): 0.06-0.08%
니오븀(Nb)은 소량 첨가에 의해 석출강화 효과를 나타내는 성분으로서, 상기 효과를 통한 고강도 확보를 위해서는 0.06% 이상으로 포함하는 것이 바람직하다. 다만, 그 함량이 0.08% 초과 시, 다량의 석출물에 의한 용접성 및 내수소유기균열성이 저하될 수 있다. 보다 바람직한 하한은 0.061%일 수 있으며, 보다 바람직한 상한은 0.075%일 수 있다.Niobium (Nb) is a component that exhibits a precipitation strengthening effect by adding a small amount, and it is preferable to include 0.06% or more in order to secure high strength through the above effect. However, when the content exceeds 0.08%, weldability and hydrogen induced crack resistance due to a large amount of precipitates may be deteriorated. A more preferred lower limit may be 0.061%, and a more preferred upper limit may be 0.075%.
티타늄(Ti): 0.005~0.02%Titanium (Ti): 0.005 to 0.02%
티타늄(Ti)은 강 중에서 TiN으로 석출되어 재가열 시, 오스테나이트의 결정립 성장을 억제함으로써 고강도 및 우수한 충격인성을 얻을 수 있게 하며 또한 TiC 등으로 석출되어 강을 강화하는 역할을 한다. 본 발명에서 제안하는 탄소범위에서 상기 효과를 얻기 위해서는 상기 티타늄(Ti)의 함량이 0.005% 이상인 것이 바람직하다. 반면, 그 함량이 0.02%를 초과하는 경우에는 상기 효과가 포화상태에 이르게 되어 조대한 Ti 정출물이 만들어짐으로 인해 내수소유기균열성이 저하될 수 있다. 보다 바람직하게는 0.007% 이상 포함할 수 있으며, 보다 바람직하게는 0.018% 이하로 포함할 수 있다.Titanium (Ti) is precipitated as TiN in steel and suppresses grain growth of austenite during reheating, thereby enabling high strength and excellent impact toughness to be obtained, and also precipitated as TiC to strengthen steel. In order to obtain the above effect in the carbon range proposed in the present invention, it is preferable that the content of the titanium (Ti) is 0.005% or more. On the other hand, when the content exceeds 0.02%, the effect reaches a saturation state, and coarse Ti crystallization is produced, resulting in deterioration in hydrogen-induced cracking resistance. More preferably, it may contain 0.007% or more, and more preferably, it may contain 0.018% or less.
질소(N): 0.002~0.008%Nitrogen (N): 0.002 to 0.008%
질소(N)는 강 중에서 Ti와 TiN으로 석출되어 오스테나이트의 결정립 성장을 억제한다. 상기 질소(N)를 0.002% 미만으로 첨가될 경우 상기 효과가 적을 수 있다. 반면, 그 함량이 0.008%를 초과할 경우에는 조대한 TiN이 석출되어 수소유기균열 및 황화물응력균열의 개시점 역할을 하여 그 함량을 0.002~0.008중량%로 제어하는 것이 바람직하다. Nitrogen (N) precipitates as Ti and TiN in steel and suppresses grain growth of austenite. When the nitrogen (N) is added in an amount of less than 0.002%, the effect may be small. On the other hand, when the content exceeds 0.008%, coarse TiN is precipitated and serves as an initiation point for hydrogen induced cracking and sulfide stress cracking, so that the content is preferably controlled to 0.002 to 0.008% by weight.
크롬(Cr): 0.1~0.5%Chromium (Cr): 0.1~0.5%
상기 크롬(Cr)은 강도 증가 및 내식성 확보를 위해 첨가된다. 상기 크롬(Cr)이 0.1% 미만으로 첨가될 경우 상기 효과가 적고, 0.5%를 초과할 경우에는 경화능이 커져 균일연신율이 저하될 우려가 있다. 보다 바람직한 하한은 0.12%일 수 있으며, 보다 바람직한 상한은 0.35%일 수 있다.The chromium (Cr) is added to increase strength and secure corrosion resistance. When the amount of chromium (Cr) is added to be less than 0.1%, the effect is small, and when the amount of chromium (Cr) exceeds 0.5%, the hardenability increases and uniform elongation may decrease. A more preferred lower limit may be 0.12%, and a more preferred upper limit may be 0.35%.
몰리브덴(Mo): 0.03% 이하Molybdenum (Mo): 0.03% or less
몰리브덴(Mo)은 경화능 확보를 통한 강도 확보를 위해 첨가될 수 있다. 몰리브덴(Mo)이 0.03%를 초과하여 첨가될 경우 경화능 증가에 따른 저온변태조직이 생성되어 균일연신율을 저하시킬 수 있다. 보다 바람직하게는 0.02% 이하로 포함할 수 있다.Molybdenum (Mo) may be added to secure strength through securing hardenability. When molybdenum (Mo) is added in excess of 0.03%, a low-temperature transformation structure is generated due to an increase in hardenability, which may decrease uniform elongation. More preferably, it may contain 0.02% or less.
칼슘(Ca): 0.0015~0.003%Calcium (Ca): 0.0015 to 0.003%
칼슘(Ca)은 유화물계 개재물의 형상을 구상화시킴으로써 수소에 의한 균열의 발생 기점을 억제하는 역할을 하는 성분이다. 칼슘(Ca)의 함량이 0.0015% 미만일 경우에는 상기 효과를 얻기가 어렵고, 0.003%를 초과할 경우에는 비금속 개재물 양이 오히려 증가하여 내수소유기균열성을 저하시킬 수 있다. Calcium (Ca) is a component that serves to suppress the origin of cracks caused by hydrogen by spheroidizing the shape of emulsion-based inclusions. When the content of calcium (Ca) is less than 0.0015%, it is difficult to obtain the above effect, and when the content of calcium (Ca) exceeds 0.003%, the amount of non-metallic inclusions rather increases, thereby reducing hydrogen induced cracking resistance.
본 발명의 강은, 상술한 조성 이외에 나머지 철(Fe) 및 불가피한 불순물을 포함할 수 있다. 불가피한 불순물은 통상의 제조공정에서 의도되지 않게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이러한 불순물들은 통상의 철강제조분야의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The steel of the present invention may include remaining iron (Fe) and unavoidable impurities in addition to the above-described composition. Since unavoidable impurities may be unintentionally incorporated in the normal manufacturing process, they cannot be excluded. Since these impurities are known to anyone skilled in the steel manufacturing field, not all of them are specifically mentioned in this specification.
본 발명의 일 측면에 따르는 강판은 하기 관계식 1에서 정의되는 R 값이 1.5~4.0일 수 있다.The steel sheet according to one aspect of the present invention may have an R value of 1.5 to 4.0 defined in the following relational expression 1.
관계식 1의 R 값이 1.5 미만일 경우, MnS 형성이 용이하여 황화물 응력균열 저항성이 저하되며, 그 값이 4.0를 초과하는 경우, Ca계 비금속 개재물량이 증가하여 내수소유기균열성이 저하되는 문제가 있다.When the R value in relational expression 1 is less than 1.5, MnS is easily formed and sulfide stress cracking resistance is lowered, and when the value exceeds 4.0, the amount of Ca-based nonmetal inclusions increases and hydrogen induced cracking resistance is lowered. there is.
[관계식 1][Relationship 1]
R = [Ca]/[S]R = [Ca]/[S]
(여기서, [Ca] 및 [S]는 각 원소의 중량%이다.)(Where [Ca] and [S] are the weight% of each element.)
본 발명의 일 측면에 따르는 강판은 하기 관계식 2에서 정의되는 A 값이 1.0~1.4일 수 있다.The steel sheet according to one aspect of the present invention may have an A value of 1.0 to 1.4 defined in the following relational expression 2.
관계식 2의 A 값이 1.0 미만일 경우, 균일연신율 확보는 유리하나 고강도를 확보하기 어려울 수 있다. 반면, 그 값이 1.4를 초과하는 경우, 경화능이 과도하게 커져 저온 변태조직이 생성됨으로 인해 균일연신율을 확보하기 어려울 수 있다.When the A value of relational expression 2 is less than 1.0, it is advantageous to secure uniform elongation, but it may be difficult to secure high strength. On the other hand, when the value exceeds 1.4, it may be difficult to secure a uniform elongation due to the generation of a low-temperature transformation structure due to excessive increase in hardenability.
[관계식 2][Relationship 2]
A = [Mn]+[Cr]+[Mo]A = [Mn] + [Cr] + [Mo]
(여기서, [Mn], [Cr] 및 [Mo]는 각 원소의 중량%이다.)(Where [Mn], [Cr] and [Mo] are the weight percent of each element.)
이하에서는, 본 발명의 강 미세조직에 대해 자세히 설명한다.Hereinafter, the steel microstructure of the present invention will be described in detail.
본 발명에서 특별히 달리 언급하지 않는 한 미세조직의 분율을 표시하는 %는 면적을 기준으로 한다.In the present invention, % representing the fraction of the microstructure is based on the area unless otherwise specified.
본 발명의 일 측면에 따르는 강판의 미세조직은 폴리고날 페라이트 및 에시큘라 페라이트 혼합조직을 기지조직으로 포함하고, 1~5면적%의 펄라이트를 포함할 수 있다.The microstructure of the steel sheet according to one aspect of the present invention may include a mixed structure of polygonal ferrite and escular ferrite as a base structure, and may include 1 to 5 area % of pearlite.
본 발명에서는 우수한 내수소유기균열성 및 균일연신율 확보를 위하여 폴리고날 페라이트 및 에시큘라 페라이트 혼합조직을 기지조직으로 포함할 수 있다. 또한 제2상으로는 펄라이트를 포함할 수 있다. 펄라이트가 5%를 초과하면 내수소유기균열성이 저하되는 문제가 있으며, 1% 미만일 때는 우수한 균일연신율을 확보하기 어려운 문제점이 있다. 보다 바람직하게는 폴리고날 페라이트를 40~80%, 에시큘라 페라이트를 20~60% 포함할 수 있다.In the present invention, in order to secure excellent hydrogen induced crack resistance and uniform elongation, a mixed structure of polygonal ferrite and escular ferrite may be included as a base structure. In addition, perlite may be included as the second phase. When the pearlite content exceeds 5%, hydrogen induced crack resistance is deteriorated, and when it is less than 1%, it is difficult to secure excellent uniform elongation. More preferably, 40 to 80% of polygonal ferrite and 20 to 60% of escular ferrite may be included.
이하에서는, 본 발명의 강판 제조방법에 대해 자세히 설명한다.Hereinafter, the steel sheet manufacturing method of the present invention will be described in detail.
본 발명의 일 측면에 따르는 강판은 상술한 합금조성을 만족하는 용강을 정련, 연속주조, 재가열, 열간압연 및 냉각하여 제조될 수 있다.A steel sheet according to an aspect of the present invention may be manufactured by refining, continuous casting, reheating, hot rolling, and cooling molten steel satisfying the alloy composition described above.
슬라브 제조slab manufacturing
본 발명의 합금조성을 만족하는 용강을 정련 및 연속주조하여 슬라브를 제조할 수 있다.A slab can be manufactured by refining and continuously casting molten steel that satisfies the alloy composition of the present invention.
본 발명에 따른 비금속 개재물의 제어는 통상적인 2차 정련과정에서의 공정조건 제어를 통해서 얻어질 수 있으며, 예를 들면 상기 2차 정련 공정은 LF에서 Ar 버블링 및 VTD 또는 RH 등과 같은 탈가스 공정에서 Ar 버블링에 의해 개재물을 제어할 수 있다. 물론, 본 발명의 제조방법이 상기 공정조건에 반드시 한정되는 것이 아니며, 다양한 방법에 의해 비금속 개재물을 제어할 수 있다. 상기 용강 정련 후, 용강을 연속주조하여 슬라브로 제조할 수 있다.Control of non-metallic inclusions according to the present invention can be obtained through process condition control in a conventional secondary refining process, for example, the secondary refining process is a degassing process such as Ar bubbling in LF and VTD or RH Inclusions can be controlled by Ar bubbling. Of course, the manufacturing method of the present invention is not necessarily limited to the above process conditions, and non-metallic inclusions can be controlled by various methods. After refining the molten steel, the molten steel may be continuously cast to produce a slab.
재가열reheat
상기 제조된 강 슬라브를 1200~1350℃의 온도범위에서 재가열할 수 있다.The prepared steel slab may be reheated in a temperature range of 1200 to 1350 ° C.
재가열 온도는 Nb계 석출물의 고용온도에 의해 결정되며, 본 발명의 성분범위에서는 1200℃이상에서 Nb 전체 고용이 가능하다. 한편, 재가열 온도가 1350℃를 초과하여 가열하는 경우에는 강판의 결정립도가 과도하게 커져 인성이 저하되고, 산화물이 많이 생겨 압연에 지장을 초래할 수 있다.The reheating temperature is determined by the solid solution temperature of the Nb-based precipitate, and in the component range of the present invention, the entire solid solution of Nb is possible at 1200 ° C or higher. On the other hand, when the reheating temperature exceeds 1350 ° C., the crystal grain size of the steel sheet becomes excessively large, the toughness decreases, and a lot of oxides are generated, which may interfere with rolling.
열간압연hot rolled
상기 재가열된 강 슬라브를 Ar3~950℃의 온도범위에서 70% 이상의 누적 압하율로 마무리 열간압연할 수 있다.The reheated steel slab may be finished hot rolled at a cumulative reduction ratio of 70% or more in a temperature range of Ar3 to 950 ° C.
재결정온도 이하에서의 압하량은 열연강판 미세조직의 결정입도 및 균일성에 매우 큰 영향을 끼친다. 상기 결정입도 및 균일성은 수소유기균열 저항성 및 균일연신율과 상호관련성이 크다. 따라서, 결정립도와 균일성의 제어를 위하여 압연 시 압하율이 70% 이상이 되도록 하는 것이 바람직한데, 압하율이 70% 미만인 경우에는 결정입도의 균질성이 저하되어 균일연신율이 저하될 수 있다. The amount of reduction below the recrystallization temperature has a very large effect on the grain size and uniformity of the microstructure of the hot-rolled steel sheet. The crystal grain size and uniformity are highly correlated with hydrogen induced cracking resistance and uniform elongation. Therefore, in order to control the grain size and uniformity, it is preferable to have a rolling reduction ratio of 70% or more during rolling. If the rolling reduction ratio is less than 70%, the homogeneity of the grain size may decrease and the uniform elongation may decrease.
한편, 마무리 열간압연은 Ar3~950℃의 온도범위에서 행하여지는 것이 바람직한데, 950℃를 초과하여 압연할 경우 불균일하고 조대한 결정립 성장이 발생할 수 있는 가능성이 커서 균일연신율을 저하시킬 수 있으며, Ar3 미만의 온도범위에서 마무리 열간압연이 행하여질 경우에는 취성파괴에 열위한 집합조직이 생성되어 수소유기균열 저항성이 매우 낮아질 수 있다.On the other hand, finish hot rolling is preferably performed in the temperature range of Ar3 to 950 ° C. When rolling in excess of 950 ° C., there is a high possibility that non-uniform and coarse crystal grain growth may occur, and uniform elongation can be reduced. Ar3 When finish hot rolling is performed in a temperature range below the temperature range, a texture that is inferior to brittle fracture may be generated and hydrogen induced cracking resistance may be very low.
[식][ceremony]
Ar3 = 910-310[C]-80[Mn]-20[Cu]-15[Cr]-55[Ni]-80[Mo]Ar3 = 910-310[C]-80[Mn]-20[Cu]-15[Cr]-55[Ni]-80[Mo]
(여기서, [C], [Mn], [Cu], [Cr], [Ni] 및 [Mo]는 각 원소의 중량%이다.)(Where [C], [Mn], [Cu], [Cr], [Ni] and [Mo] are the weight percent of each element.)
냉각 및 권취cooling and winding
상기 열간압연된 강판을 Ar3~950℃의 온도범위에서 냉각 개시하여 10~30℃/s의 냉각속도로 550~650℃의 온도범위까지 냉각한 후 권취할 수 있다.The hot-rolled steel sheet may be cooled to a temperature range of 550 to 650° C. at a cooling rate of 10 to 30° C./s by starting cooling in the temperature range of Ar3 to 950° C., and then winding.
상기 열연공정을 통해 얻어진 열연강판의 냉각은 Ar3 온도 이상에서 개시하는 것이 바람직하다. 상기 냉각이 Ar3 미만의 온도에서 개시되는 경우에는 수소유기균열 저항성을 떨어뜨리는 취성파괴 집합조직을 발달시킬 수 있다. Cooling of the hot-rolled steel sheet obtained through the hot-rolling process is preferably initiated at an Ar3 temperature or higher. When the cooling is initiated at a temperature lower than Ar3, a brittle fracture texture may develop which reduces the hydrogen induced cracking resistance.
상기 냉각속도가 10℃/s 미만일 경우에는 내수소유기균열성을 떨어뜨리는 조대한 펄라이트 조직이 용이하게 형성될 수 있으며, 그 속도가 30℃/s를 초과하는 경우에는 MA상과 같은 경한 이차상의 생성이 촉진되어 내수소유기균열성을 저하시킬 수 있다.When the cooling rate is less than 10 ° C / s, a coarse pearlite structure that deteriorates hydrogen induced cracking resistance can be easily formed, and when the rate exceeds 30 ° C / s, a light secondary phase such as MA phase Its production can be accelerated and its resistance to hydrogen-induced cracking can be reduced.
이와 같이 제조된 본 발명의 강판은 항복강도가 500~600MPa이고, CLR (Crack Length Ratio)이 10% 이하이고, 균일연신율이 10% 이상으로, 고강도를 구비하면서 내수소유기균열성과 균일연신율이 우수한 특성을 구비할 수 있다.The steel sheet of the present invention prepared as described above has a yield strength of 500 to 600 MPa, a CLR (Crack Length Ratio) of 10% or less, and a uniform elongation of 10% or more, having high strength and excellent hydrogen induced crack resistance and uniform elongation. characteristics can be provided.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 아래의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다.Hereinafter, the present invention will be described in more detail through examples. However, it should be noted that the following examples are only for illustrating the present invention in more detail, and are not intended to limit the scope of the present invention.
(실시예)(Example)
하기 표 1의 합금조성을 가지는 용강을 정련하여 비금속 개재물을 제어하고, 하기 표 2의 제조조건을 통해 두께가 6~10mm인 열연강판을 제조하였다. 여기서, 냉각은 Ar3 온도 이상에서 개시하였으며, 시편 모두 동일하게 적용하였다. 하기 표 1에는 각 강종에 따른 관계식 1 및 2의 값을 계산하여 나타내었으며, Ar3를 계산하여 나타내었다.Non-metallic inclusions were controlled by refining molten steel having the alloy composition of Table 1 below, and hot-rolled steel sheets having a thickness of 6 to 10 mm were manufactured through the manufacturing conditions of Table 2 below. Here, cooling was initiated above the Ar3 temperature, and the same was applied to all specimens. In Table 1 below, the values of relational expressions 1 and 2 according to each steel type are calculated and shown, and Ar3 is calculated and shown.
종river
bell
계
식
1coffin
total
ceremony
One
계
식
2coffin
total
ceremony
2
(℃)Ar3
(℃)
[관계식 1][Relationship 1]
R = [Ca]/[S]R = [Ca]/[S]
(여기서, [Ca] 및 [S]는 각 원소의 중량%이다.)(Where [Ca] and [S] are the weight% of each element.)
[관계식 2][Relationship 2]
A = [Mn]+[Cr]+[Mo]A = [Mn] + [Cr] + [Mo]
(여기서, [Mn], [Cr] 및 [Mo]는 각 원소의 중량%이다.)(Where [Mn], [Cr] and [Mo] are the weight percent of each element.)
[식][ceremony]
Ar3 = 910-310[C]-80[Mn]-20[Cu]-15[Cr]-55[Ni]-80[Mo]Ar3 = 910-310[C]-80[Mn]-20[Cu]-15[Cr]-55[Ni]-80[Mo]
(여기서, [C], [Mn], [Cu], [Cr], [Ni] 및 [Mo]는 각 원소의 중량%이다.)(Where [C], [Mn], [Cu], [Cr], [Ni] and [Mo] are the weight percent of each element.)
번호Psalter
number
하기 표 3에는 제조된 강판의 미세조직 및 물성을 나타내었다. 하기 표 3에서 발명예의 경우 폴리고날 페라이트 및 펄라이트 분율 외 나머지는 에시큘라 페라이트가 관찰되었다. 한편, 비교예의 경우에는, 폴리고날 페라이트, 펄라이트 외 나머지 조직으로 에시큘라 페라이트가 주조직이나, 일부 저온변태조직이 형성되었다. 저온변태조직으로는 베이나이트, MA상 등일 수 있다. 미세조직은 광학 현미경을 사용하여 배율 500배에서 화상해석(Image analysis)을 통해 측정하였으며, 항복강도 및 균일연신율은 상온 API-5L규격의 인장시험을 통하여 측정하였다. 여기서, 균일연신율은 인장시험 시, 시험편이 국부적인 줄임을 일으키지 않고 균일하게 변형할 때까지의 연신율을 의미한다. 또한, CLR은 NACE TM0284에 따라, 1기압 H2S로 가스로 포화된 5%NaCl+0.5%CH3COOH 용액에 시편을 96시간 동안 침지시험 후, 시편을 꺼내어 초음파 탐상을 통해 도출하였다. Table 3 below shows the microstructure and physical properties of the manufactured steel sheet. In the case of the inventive examples in Table 3 below, escular ferrite was observed except for polygonal ferrite and pearlite fractions. On the other hand, in the case of Comparative Example, the main structure of polygonal ferrite and pearlite was the main structure of escular ferrite, but some low-temperature transformation structures were formed. The low-temperature transformation structure may be bainite, MA phase, and the like. The microstructure was measured through image analysis at a magnification of 500 times using an optical microscope, and the yield strength and uniform elongation were measured through a tensile test of API-5L standard at room temperature. Here, the uniform elongation means the elongation until the test piece is uniformly deformed without causing local shrinkage during the tensile test. In addition, according to NACE TM0284, the CLR was immersed in a 5% NaCl + 0.5% CH 3 COOH solution saturated with gas at 1 atm H 2 S for 96 hours, and then the specimen was taken out and ultrasonically tested.
번호Psalter
number
표 3에 나타난 바와 같이, 본 발명의 합금조성 및 제조조건을 만족하는 발명예의 경우, 본 발명에서 제안하는 미세조직 특징을 만족하였으며, 본 발명에서 목적하는 물성을 확보하였다.As shown in Table 3, in the case of the inventive example satisfying the alloy composition and manufacturing conditions of the present invention, the microstructure characteristics proposed in the present invention were satisfied, and the desired physical properties were secured in the present invention.
도 1은 본 발명의 일 실시예에 따른 (a) 발명예 1, (b) 비교예 2 및 (c) 비교예 4의 미세조직의 사진을 나타낸 것이다. 1 shows photographs of microstructures of (a) Inventive Example 1, (b) Comparative Example 2, and (c) Comparative Example 4 according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 발명예 1과 비교예 4의 인장커브를 비교하여 도시한 것이다. 그래프와 같이, 발명예 1이 비교예 4와 비교하여 균일연신율이 우수한 것을 확인할 수 있다.2 is a diagram illustrating a comparison between tensile curves of Inventive Example 1 and Comparative Example 4 according to an embodiment of the present invention. As shown in the graph, it can be confirmed that Inventive Example 1 has excellent uniform elongation compared to Comparative Example 4.
도 3은 본 발명의 일 실시예에 따른 비교예 5에 있어서, 수소유기균열이 발생한 균열 파면을 관찰한 사진이다. 미세조직에서 흰색은 조대 NbTi 정출물을 나타내며, 이로부터 수소유기균열이 발생한 것을 확인할 수 있다.3 is a photograph of a crack fracture surface in which hydrogen-induced cracking occurred in Comparative Example 5 according to an embodiment of the present invention. In the microstructure, white indicates coarse NbTi crystallization, from which it can be confirmed that hydrogen induced cracking has occurred.
반면, 비교예 1 내지 3은 관계식 2가 본 발명에서 제안하는 범위를 벗어난 예시로, 각각 C, Mn 및 Cr 함량이 초과하여 관계식 2의 범위를 초과하였다. 그 결과, 본 발명에서 목적하는 CLR 특성 및 균일연신율을 확보하지 못하였다.On the other hand, Comparative Examples 1 to 3 are examples where Relational Equation 2 is out of the range proposed in the present invention, and the C, Mn, and Cr contents exceeded the range of Relational Equation 2, respectively. As a result, the desired CLR characteristics and uniform elongation were not secured in the present invention.
비교예 4는 Mo 함량이 과도한 경우로, 저온변태조직이 과도하게 형성되었으며, 그 결과 균일연신율이 저하되었다.In Comparative Example 4, when the Mo content was excessive, the low-temperature transformation structure was excessively formed, and as a result, the uniform elongation was lowered.
비교예 5는 Ti, Nb 함량이 과도하게 첨가된 경우로, 석출물이 과도하게 형성되어 목적하는 CLR 특성을 확보하지 못하였다.Comparative Example 5 is a case where Ti and Nb contents were excessively added, and precipitates were excessively formed, so that desired CLR characteristics were not secured.
비교예 6 및 7은 관계식 1의 범위를 만족하지 않는 예시로, 비교예 6은 Ca가 과도하게 첨가되어 관계식 1의 값이 초과되었으며, 그 결과 목적하는 내수소유기균열성이 열위하였다. 비교예 7은 본 발명의 합금조성은 만족하나, 관계식 1의 값이 미달된 경우이다. 그 결과, MnS 형성이 용이하였으며, 내수소유기균열성이 저하되었다.Comparative Examples 6 and 7 are examples that do not satisfy the range of Relational Equation 1, and Comparative Example 6 exceeded the value of Relational Equation 1 due to the excessive addition of Ca, and as a result, the desired hydrogen induced cracking resistance was inferior. Comparative Example 7 is a case where the alloy composition of the present invention is satisfied, but the value of relational expression 1 is insufficient. As a result, the formation of MnS was easy, and the resistance to hydrogen induced cracking was reduced.
비교예 8 및 9는 본 발명에서 제안하는 합금조성은 만족하나, 관계식 2의 범위를 만족하지 않는 예시이다. 비교예 8은 관계식 2의 값이 높아 저온변태조직이 과도하게 형성되어 균일연신율이 저하되었다. 비교예 9의 경우, 관계식 2의 값이 미달되어 강도 확보가 어려웠다.Comparative Examples 8 and 9 are examples that satisfy the alloy composition proposed in the present invention, but do not satisfy the range of relational expression 2. In Comparative Example 8, the value of relational expression 2 was high, and the low-temperature transformation structure was excessively formed, resulting in a decrease in uniform elongation. In the case of Comparative Example 9, the value of relational expression 2 was insufficient, so it was difficult to secure strength.
비교예 10은 합금조성은 본 발명의 범위를 만족하나, 마무리 열간압연 온도가 미달되는 경우이다. 그 결과, 취성파괴에 열위한 집합조직이 형성되었으며, 펄라이트가 형성되지 않았으며, 그 결과 균일연신율 및 내수소유기균열성이 열위하였다.Comparative Example 10 is a case where the alloy composition satisfies the range of the present invention, but the finish hot rolling temperature is not reached. As a result, a texture inferior to brittle fracture was formed, pearlite was not formed, and as a result, uniform elongation and hydrogen induced crack resistance were inferior.
비교예 11 및 12가 본 발명의 냉각종료온도를 만족하지 않는 예시이다. 비교예 11은 냉각종료온도가 미달되어, 저온변태조직이 과도하게 형성되었으며, 그 결과 균일연신율이 저하되었다. 비교예 12는 냉각종료온도가 초과되어 펄라이트가 과도하게 생겼으며 내수소유기균열성이 열위하였다.Comparative Examples 11 and 12 are examples that do not satisfy the cooling end temperature of the present invention. In Comparative Example 11, the cooling end temperature was not reached, and a low-temperature transformation structure was excessively formed, and as a result, the uniform elongation was lowered. In Comparative Example 12, the cooling end temperature was exceeded and pearlite was excessively formed, and the hydrogen induced crack resistance was inferior.
비교예 13은 냉각속도가 과도한 경우로, 경질상이 형성되어 내수소유기균열성이 저하되었다.In Comparative Example 13, when the cooling rate was excessive, a hard phase was formed and hydrogen induced crack resistance was reduced.
이상에서 실시예를 통하여 본 발명을 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.Although the present invention has been described in detail through examples above, other types of embodiments are also possible. Therefore, the spirit and scope of the claims set forth below are not limited to the embodiments.
Claims (6)
하기 관계식 1에서 정의되는 R 값이 1.5~4.0이며,
하기 관계식 2에서 정의되는 A 값이 1.0~1.4이고,
미세조직은 폴리고날 페라이트 및 에시큘라 페라이트 혼합조직을 기지조직으로 포함하고, 1~5면적%의 펄라이트를 포함하는 강판.
[관계식 1]
R = [Ca]/[S]
(여기서, [Ca] 및 [S]는 각 원소의 중량%이다.)
[관계식 2]
A = [Mn]+[Cr]+[Mo]
(여기서, [Mn], [Cr] 및 [Mo]는 각 원소의 중량%이다.)
In % by weight, C: 0.02 to 0.05%, Si: 0.05 to 0.3%, Mn: 0.4 to 1.1%, P: 0.01% or less, S: 0.001% or less, Al: 0.02 to 0.05%, Nb: 0.06 to 0.08% , Ti: 0.005-0.02%, N: 0.002-0.008%, Cr: 0.1-0.5%, Mo: 0.03% or less, Ca: 0.0015-0.003%, the balance Fe and other unavoidable impurities,
The R value defined in the following relational expression 1 is 1.5 to 4.0,
The A value defined in the following relational expression 2 is 1.0 to 1.4,
The microstructure is a steel sheet containing a polygonal ferrite and an escular ferrite mixture as a base structure and containing 1 to 5 area% of pearlite.
[Relationship 1]
R = [Ca]/[S]
(Where [Ca] and [S] are the weight% of each element.)
[Relationship 2]
A = [Mn] + [Cr] + [Mo]
(Where [Mn], [Cr] and [Mo] are the weight percent of each element.)
상기 강판은 미세조직으로 폴리고날 페라이트를 40~80%, 에시큘라 페라이트를 20~60% 포함하는 강판.
According to claim 1,
The steel sheet is a steel sheet containing 40 to 80% of polygonal ferrite and 20 to 60% of escular ferrite in a microstructure.
상기 강판은 항복강도가 500~600MPa이고, CLR (Crack Length Ratio)이 10% 이하이고, 균일연신율이 10% 이상인 강판.
According to claim 1,
The steel sheet has a yield strength of 500 to 600 MPa, a crack length ratio (CLR) of 10% or less, and a uniform elongation of 10% or more.
상기 강판은 항복강도가 530~600MPa인 강판.
According to claim 1,
The steel sheet is a steel sheet having a yield strength of 530 to 600 MPa.
상기 강 슬라브를 재가열하는 단계;
상기 재가열된 강 슬라브를 Ar3~950℃의 온도범위에서 마무리 열간압연하는 단계; 및
상기 열간압연된 강판을 10~30℃/s의 냉각속도로 550~650℃의 온도범위까지 냉각한 후 권취하는 단계를 포함하는 강판 제조방법.
[관계식 1]
R = [Ca]/[S]
(여기서, [Ca] 및 [S]는 각 원소의 중량%이다.)
[관계식 2]
A = [Mn]+[Cr]+[Mo]
(여기서, [Mn], [Cr] 및 [Mo]는 각 원소의 중량%이다.)
In % by weight, C: 0.02 to 0.05%, Si: 0.05 to 0.3%, Mn: 0.4 to 1.1%, P: 0.01% or less, S: 0.001% or less, Al: 0.02 to 0.05%, Nb: 0.06 to 0.08% , Ti: 0.005 to 0.02%, N: 0.002 to 0.008%, Cr: 0.1 to 0.5%, Mo: 0.03% or less, Ca: 0.0015 to 0.003%, the balance including Fe and other unavoidable impurities, defined in the following relational expression 1 Preparing a slab by refining and continuously casting molten steel having an R value of 1.5 to 4.0 and an A value of 1.0 to 1.4 defined in the following relational expression 2;
reheating the steel slab;
Finishing hot-rolling the reheated steel slab in a temperature range of Ar3 to 950 ° C; and
Steel sheet manufacturing method comprising the step of winding the hot-rolled steel sheet after cooling to a temperature range of 550 ~ 650 ℃ at a cooling rate of 10 ~ 30 ℃ / s.
[Relationship 1]
R = [Ca]/[S]
(Where [Ca] and [S] are the weight% of each element.)
[Relationship 2]
A = [Mn] + [Cr] + [Mo]
(Where [Mn], [Cr] and [Mo] are the weight percent of each element.)
상기 재가열은 1200~1350℃의 온도범위에서 행하고,
상기 열간압연 시, 누적 압하율은 70% 이상이며,
상기 냉각 시, Ar3 이상의 온도범위에서 냉각 개시하는 강판 제조방법.
According to claim 5,
The reheating is performed in a temperature range of 1200 to 1350 ° C,
During the hot rolling, the cumulative reduction ratio is 70% or more,
During the cooling, the steel sheet manufacturing method in which cooling is initiated in a temperature range of Ar3 or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210180910A KR20230091628A (en) | 2021-12-16 | 2021-12-16 | Steel plate having excellent hydrogen induced cracing resistance and uniform elongation and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210180910A KR20230091628A (en) | 2021-12-16 | 2021-12-16 | Steel plate having excellent hydrogen induced cracing resistance and uniform elongation and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20230091628A true KR20230091628A (en) | 2023-06-23 |
Family
ID=86993801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210180910A KR20230091628A (en) | 2021-12-16 | 2021-12-16 | Steel plate having excellent hydrogen induced cracing resistance and uniform elongation and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20230091628A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130073472A (en) | 2011-12-23 | 2013-07-03 | 주식회사 포스코 | Linepipe steel plate with excellent low temperature fracture toughness and high uniform elongation method for producing same |
KR20160077418A (en) | 2014-12-23 | 2016-07-04 | 주식회사 포스코 | Hot rolled steel plate having excellent pipe expansibility and method for manufacturing the same |
-
2021
- 2021-12-16 KR KR1020210180910A patent/KR20230091628A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130073472A (en) | 2011-12-23 | 2013-07-03 | 주식회사 포스코 | Linepipe steel plate with excellent low temperature fracture toughness and high uniform elongation method for producing same |
KR20160077418A (en) | 2014-12-23 | 2016-07-04 | 주식회사 포스코 | Hot rolled steel plate having excellent pipe expansibility and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019504210A (en) | Steel for pressure vessels excellent in resistance to hydrogen induced cracking (HIC) and method for producing the same | |
JP7339339B2 (en) | Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same | |
KR101585724B1 (en) | A thick plate of pipeline with excellent DWTT at low temperature and YR ratio characteristics, and method of the same | |
JP2023110068A (en) | High strength steel excellent in resistance to sulfide stress corrosion crack and manufacturing method thereof | |
JP2022510933A (en) | Steel materials with excellent hydrogen-induced crack resistance and their manufacturing methods | |
KR20160077392A (en) | Thick hot rolled steel plate having exellent hydrogen induced crack resistance and sulfide stress cracking and method for manufacturing the same | |
KR102164110B1 (en) | High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof | |
KR102498135B1 (en) | High-strength steel material having excellent resistance of sulfide stress crack, and method for manufacturing thereof | |
KR101786262B1 (en) | Hot-rolled thick steel plate having excellent strength and dwtt toughness at low temperature, and method for manufacturing the same | |
KR100832982B1 (en) | Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same | |
KR20140006657A (en) | Thick steel plate having excellent property in haz of large-heat-input welded joint and method for producing same | |
KR20230091628A (en) | Steel plate having excellent hydrogen induced cracing resistance and uniform elongation and method for manufacturing the same | |
KR101889186B1 (en) | High-strength hot-rolled steel plate having excellent hydrogen induced cracking resistance and dwtt toughness at low temperature, and method for manufacturing the same | |
JP2022510934A (en) | Steel materials for pressure vessels with excellent hydrogen-induced crack resistance and their manufacturing methods | |
KR101714913B1 (en) | Hot-rolled steel sheet having excellent resistance of hydrogen induced crack and sulfide stress crack for use in oil well and method for manufacturing the same | |
KR20200047081A (en) | High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof | |
KR102236850B1 (en) | Hot rolled steel plate having exellent hydrogen induced crack resistance and tensile property at high temperature and method of manufacturing the same | |
KR101461730B1 (en) | Hot-rolled steel sheet having excellent hydrogen induced crack resistance and low temperature impact toughness and method of manufacturing the same | |
KR102326109B1 (en) | Steel sheet having excellent resistance of sulfide stress cracking and method of manufacturing the same | |
KR20240097250A (en) | Hot-rolled steel plate having exellent hydrogen induced crack resistance and good tensile property at high temperature and method for manufacturing | |
JP7366246B2 (en) | Steel plate for pressure vessels with excellent cryogenic lateral expansion and method for manufacturing the same | |
KR102043521B1 (en) | Hot-rolled steel sheet for use in oil well and method for manufacturing the same | |
KR102164094B1 (en) | High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof | |
KR20240097525A (en) | High strength hot rolled steel having low yield ratio and low-temperature toughness and method for manufacturing the same | |
KR101639910B1 (en) | Low strength hot rolled steel plate having exellent hydrogen induced crack resistance and ultra-low temperature toughness and method for manufacturing the same |